
Building the SLATE Platform
Joe Breen

University of Utah
joe.breen@utah.edu

Lincoln Bryant
University of Chicago
lincolnb@uchicago.edu

Gabriele Carcassi
University of Michigan
carcassi@umich.edu

Jiahui Chen
University of Utah

jiahui.chen@utah.edu

Robert W. Gardner∗
University of Chicago
rwg@uchicago.edu

Ryan Harden
University of Chicago

hardenrm@uchicago.edu

Martin Izdimirski
University of Utah

nitram.izdi@gmail.com

Robert Killen
University of Michigan
rkillen@umich.edu

Ben Kulbertis
University of Utah

ben.kulbertis@utah.edu

Shawn McKee
University of Michigan
smckee@umich.edu

Benedikt Riedel
University of Chicago
briedel@uchicago.edu

Jason Stidd
University of Utah

jason.stidd@utah.edu

Luan Truong
University of Utah

luan.truong@utah.edu

Ilija Vukotic
University of Chicago
ivukotic@uchicago.edu

ABSTRACT
We describe progress on building the SLATE (Services Layer at the
Edge) platform. The high level goal of SLATE is to facilitate creation
of multi-institutional science computing systems by augmenting
the canonical Science DMZ pattern with a generic, “programmable",
secure and trusted underlayment platform. This platform permits
hosting of advanced container-centric services needed for higher-
level capabilities such as data transfer nodes, software and data
caches, workflow services and science gateway components. SLATE
uses best-of-breed data center virtualization and containerization
components, and where available, software defined networking, to
enable distributed automation of deployment and service lifecycle
management tasks by domain experts. As such it will simplify cre-
ation of scalable platforms that connect research teams, institutions
and resources to accelerate science while reducing operational costs
and development cycle times.

CCS CONCEPTS
• Computer systems organization → Grid computing, Edge
Computing;
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1 MOTIVATION
Multi-institutional research collaborations propel much of the sci-
ence today. These collaborations require platforms connecting ex-
periment facilities, computational resources, and data distributed
among laboratories, research computing centers, and in some cases
commercial cloud providers. The scale of the data and complexity of
the science drive this diversity. In this context, research computing
teams strive to empower their universities with emergent technolo-
gies which bring new and more powerful computational and data
capabilities that foster multi-campus and multi-domain collabora-
tions to accelerate research. Recently, many institutions invested
in their campus network infrastructure with these goals in mind.
Yet even for the most advanced, well-staffed, and well-equipped
campus research computing centers the task is daunting. Acquir-
ing and maintaining the full scope of cyber-engineering expertise
necessary to meet the complex and expanding demands of data and
computationally driven science is too costly and does not scale to
the full spectrum of science disciplines. The diversity of compu-
tation, data and research modalities all but ensures that scientists
spend more time on computation and data management related
tasks than on their domain science while research computing staff
spend more time integrating domain specific software stacks with
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Figure 1: SLATE implemented in the local HPC context

limited applicability and sustainability beyond the immediate com-
munities served. Capabilities elsewhere are not available locally,
and vice versa. How should campus and HPC resource providers
evolve their cyberinfrastructure to more easily incorporate data
infrastructure building blocks developed in other contexts?

2 APPROACH
We address this challenge in complexity and scaling by introducing
a Services Layer At The data center “Edge” (SLATE) which enables
distributed automation, centralized delivery and operation of data,
software, gateway and workflow infrastructure. Much as Google
re-imagined the data center [41] and initiated a wave of data center
virtualization development, we view advanced “cyberinfrastruc-
ture as code” as an appropriate metaphor for transforming the way
advanced science platforms are built and operated. SLATE will aug-
ment the Science DMZ pattern [33] by adding a secure and trusted
“underlayment” platform to host advanced data and software ser-
vices needed for higher-level, connective functions between data
centers. These connective services could include, for example, a
domain specific content delivery network endpoint, a collabora-
tion data cache, a job (workflow) scheduler, a service component
of a distributed science gateway, an http-based software cache,
or a resource discovery service (for higher level, meta scheduling
systems).

A major focus of SLATE will be development of community
accepted Science DMZ patterns capable of supporting advanced
and emerging technologies while respecting local site security poli-
cies and autonomy. In this project, we are focusing on production
services for data mobility, management, and access as driven by
data-intensive science domains. For operators of distributed data
management services, content delivery networks, and science gate-
ways SLATE will closely resemble the NIST definition [38] of a
PaaS (Platform-as-a-Service) though the resemblance does not limit
the underlying infrastructure to a cloud context. We are leveraging
experience and lessons learned in the deployment and operation of
data systems linking over 60 data centers for the LHC computing
grid. Figure 1 gives a schematic of the SLATE concept in the local
HPC context.

The SLATE concept should accommodate large, well-equipped
HPC centers, research computing facilities at institutionswith fewer
resources, as well as commercial cloud providers. Modern HPC cen-
ters which support data intensive science typically have a Science
DMZ which hosts dedicated data transfer nodes, perfSONAR [1, 28]
measurement hosts, and security and enforcement policies needed

for high performance, wide area applications. A dedicated SLATE
edge cluster will augment the existing Science DMZ by offering a
platform capable of hosting advanced, centrally managed research
computing edge services including, where the local infrastructure
permits it, the deployment of virtual circuits and other software de-
fined networking constructs [2, 37]. For a small institution with lim-
ited resources, the SLATE concept may provide a complete Science
DMZ infrastructure to more quickly integrate these institutions
into centrally managed research platforms. The SLATE concept will
allow local resource administrators the ability to simply install the
infrastructure while offering central research groups the services
needed for mdanagement of software and science tools used on
the platform. Thus, a local researcher in a small institution could
focus on the science and connecting any requisite science instru-
mentation, while the local IT staff would not have the burden of
trying to understand the science requirements, application software
dependencies, data and workflow particulars, etc. A good science
use-case comes from a medium sized collaboration to detect dark
matter.

2.1 A Platform for Dark Matter Searches
Observations of the cosmic microwave background fluctuation,
large-scale galaxy surveys, and studies of large-scale structure for-
mation indicate that a large fraction of the matter in the universe is
not visible. An exotic but as yet undiscovered elementary particle
could explain these observations. Several experiments have been
built in last two decades to prove the existence of such elusive
particles but their detection has proved challenging as we do not
have yet a clear picture of what they are and if they really exist.

The XENON1T [27] experiment, a two-phase xenon Time Projec-
tion Chamber has been built in the Laboratori Nazionali del Gran
Sasso (LNGS) in Italy to study fundamental questions about the ex-
istence and make-up of dark matter. Commissioning began during
the first few months of 2016, with the first large scale science run
beginning in December 2016. Because of its one ton fiducial mass
and ultra-low background, the XENON1T experiment is probing
properties of dark matter in yet unexplored regions.

A data processing and analysis hub is hosted by the University
of Chicago Research Computing Center to complement processing
and analysis facilities in Europe (Stockholm is the European analysis
hub). A distributed data management service for the collaboration
was built so that experiment and simulation data sets at various
stages of processing could be distributed and shared easily through-
out the 22 member institutes. Figure 2 shows the deployment of
the XENON1T Rucio service [35]. The deployment is a network
of five storage endpoints (GridFTP-based data transfer nodes) in
Europe and the U.S providing a highly scalable global namespace, a
reliable and fast transfer service, a subscription (“placement rules”)
service, and a deletion service for data lifecycle management. The
raw experimental data are uploaded at the experiment lab and au-
tomatically replicated to specific HPC centers for processing, and
data products from those systems are registered into the system for
distribution to the analysis hubs. The Rucio client tools provide a
uniform data access model for the various endpoints.
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Figure 2: The multi-institution data management platform
for the XENON collaboration
A central server for managed file transfer is hosted at Brookhaven
National Laboratory, and central file and dataset catalogs and service
agents are hosted by the University of Chicago. At each of the storage
endpoints is a GridFTP service. Each of these services is managed indi-
vidually so that the platform itself requires efforts from 10 individual
administrators. With a SLATE hosted platform, the services, configu-
ration, monitoring and optimization could be managed by a single
operator, requiring only basic server management at the endpoints.

We envision the SLATE platform as a key component for scal-
ing and operating data placement services like Rucio for multi-
institution science collaborations like XENON1T, especially where
local expertise in complex scientific software stacks may be limited.

3 ARCHITECTURE
SLATE leverages advances made by previous testbeds [12, 29, 30,
36, 39] and similar platforms [8, 19] and integrates best-of-breed
data center virtualization and service orchestration technologies
from the open source community. The SLATE team has created a
platform architecture [23] with a centralized service deployment
model in mind. Users coming to the SLATE platform will inter-
act with a centralized API which the SLATE team is is currently
developing. This API will have a RESTful design which both the
SLATE command line tool and the web portal will use. The SLATE
provisioning service, while firstly targeting the (bare metal) SLATE
edge nodes, will have the ability to handle multiple infrastructure
types, including various public and private cloud providers.

The SLATE team has designed the platform to make deployment
and operation as streamlined as possible. Figure 3 gives a schematic
picture of the SLATE architecture. The SLATE Platform Portal will
provide views for science data operators as well as for operators of
the underlying infrastructure at a local institution.

3.1 Hardware Platform
The development of the SLATE platform is to facilitate high-throughput,
next generation scientific computing applications to interact with
both on-premise instruments and facilities, as well as, external
upstream services such as those hosted in public clouds or other
institutions. One of the key elements of the SLATE platform is
a hardware configuration that will minimize the amount of local
system administration expertise needed to run complex software
stacks, and ideally work as a trusted appliance that lives on the
Science DMZ. To that end, we are focusing on three key pieces for
the hardware platform deployed at each site:

Figure 3: SLATE architecture

• A high performance networking device, either deploying a
new device or reusing an existing high performance network
device

• An out-of-band management server, to allow SLATE plat-
form administrators to perform system maintenance and for
SLATE central services to stage OS updates and configura-
tion

• A scalable compute infrastructure, able to accomodate small
sites while allowing for horizontal expansion for larger or-
ganizations

3.2 Container Orchestration and Federated
Services

In order to realize the vision of deploying and operating edge service
applications across disparate resources consistently and at scale,
SLATE has adopted a Linux container-based approach to software
deployment. This approach, as made popular by Docker and similar
products, enables rapid development and deployment by presenting
a uniform application environment, and encourages developers
to build stateless services for scalability. In the SLATE context,
this approach will allow edge service application developers to
create services which they can build once and run on any SLATE
node. This approach also simplifies the ability to scale and load
balance across resources not only between sites, but across compute
platforms within a site as well.

To facilitate deployments across geographically distributed hard-
ware, the SLATE platform has the capability to federate individual
sites. This federation of the individual sites allows scientific edge
service application developers to deploy their application at one
location and have it replicate across all sites authorized to host the
service. Updating an application will follow the same principles,
thereby allowing a consistent deployment among all collabora-
tor sites. To facilitate federated applications, the SLATE platform
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allocates and schedules edge service resources, ensures network
connectivity between deployments, configures DNS entries and
manages load balancing between sites. In addition, SLATE gives
platform and site operators some control over how edge service
resources slice and allocate to respective scientific groups sharing
the platform.

3.3 User-Facing Services and Tools
In addition to providing a consistent hardware platform and container-
based edge service application deployment function, SLATE pro-
vides a set of tools to manage the full edge service application
lifecycle. This lifecycle includes:

• Application development: taking an existing scientific edge
service application and configuring it to run on the SLATE
infrastructure

• Application registration: managing a catalog of edge services
that have been approved to be installed on a SLATE platform,
either for testing or for general consumption

• Application usage: taking an application from the catalog,
configuration and deploying on the infrastructure

SLATE provides a development environment, which comprises a
set of images that can run a virtualized version of a SLATE platform
on a development machine. This development environment utilizes
technologies such as VirtualBox, minikube, etc., and allows SLATE
application developers to work on packaging the application in an
isolated environment.

SLATE also provides an edge service application catalog which
the SLATE platform administrator can use to manage the list of
applications to install on the SLATE platform. We use technologies
already established in the cloud community such as Kubernetes
[15, 31], Helm[17] and GitHub[13].

As a final piece, SLATE will also need to provide tools to in-
stall/monitor/uninstall applications from each SLATE platform. The
tools will also need to allow the configuration of the application
for the specific use within a science domain.

A good part of the functionality will be provided to the user
by interacting to the SLATE service through either a command
line interface (CLI), a web user interface (WebUI) or an application
programming interface (API). The service will implement the ac-
tual logic and expose it through a REST interface which is then
consumed by the three different client types. The SLATE service
will try to rely as much as possible on the state already provided by
the tools it builds upon thus avoiding the problem of synchronize
the duplicated state.

3.4 Edge Service Applications
A fundamental goal of the SLATE platform is to host edge service
applications in support of scientific computing, such as science gate-
ways. The SLATE platform is able to host various services such as
data transfer nodes with Globus Connect[40], caching applications
such as Squid[24] and XCache[25], resource sharing applications
for job submission and storage sharing, as well as applications used
for data organization, delivery and analysis, needed for scalable,
multi-institutional collaborations.

All project software running on the SLATE platform will run
inside of an application container. This approach allows great flexi-
bility, as experts in a particular domain can provide a specific image
for their application. To facilitate allocation and scheduling, all
edge service application containers will have to declare a set of
resource requirements. These requirements may include disk uti-
lization, minimum throughput (MB/s), firewall ports, memory and
CPU. The SLATE platform will be able to compare these resource
declarations to the available resources, and provide a candidate
list of resource targets for the application. The platform may go
further and suggest changes that could be made to the application
for greater proliferation.

3.5 Logging and Monitoring
Though SLATE comprises geographically disparate hardware, the
SLATE team maintains central logging and monitoring in order to
assess the health of the distributed system. Centralized monitoring
comprises active measurement, i.e. perfSONAR, passive monitoring
and log aggregation through tools such as: Check_mk[5], Elastic
Stack[10], and OSSIM[3]

3.6 Security
The nature of the SLATE platform and its role in providing “pro-
grammable” access to edge resources makes it critical that we care-
fully consider all aspects of security in the design and implementa-
tion of SLATE. Sites that deploy SLATE need to be confident that
their edge resources will achieve appropriate utilization and will
be robust against attacks.

A key emphasis is that SLATE, by providing a well defined API,
enables straightforward vulnerability testing. SLATE provides a
specific set of capabilities which external entities can review and
analyze in order to help ensure the platform is resilient to attack, and
that the platform is following applicable security best practices. This
description is in stark contrast with the situation many sites find
themselves when supporting multiple science domains, each with
their own unique software stacks and methods. SLATE provides
the opportunity to create a specific, well-defined way to interact
with a site’s resources which a developer can test and validate.

The SLATE project has scheduled an engagement with the Cen-
ter for Trusted Scientific Cyberinfastructure (CTSC)[4] and we
are already engaging campus security officers to help ensure we
are designing a functional and secure cyberinfrastructure compo-
nent. This external security discussion is in addition to an internal
project-driven focus on providing security as a fundamental design
principle in our development, prototyping and testing of SLATE.

4 DEMONSTRATION OF ALPHA SLATE
DISTRIBUTED PLATFORM

4.1 Status of Sites
As part of its distributed alpha platform, the SLATE team has de-
ployed clusters at three sites: University of Chicago, University
of Michigan, and the University of Utah. For rapid prototyping
purposes, the team has deployed these clusters on virtual machines
that the team can tear down and re-instantiate at-will. The virtual
machines also allow scaling investigation to act as input to the final
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hardware design. Currently, we have started architecting the design
of the command-line client and will implement a web portal at a
later date.

Since the rapid deployment of science services across multiple
sites is a key obective, the SLATE team has been investigating
container deployment technologies. While several container or-
chestration platforms exist, the team is prototyping Kubernetes
as an orchestration mechanism based on team members’ initial
work, and, based on prevalence in different communities and the
market. The team has tested Kubernetes on different operating
systems such as CentOS, Ubuntu, RancherOS[21], and CoreOS[7].
The objective of testing the different operating systems was to find
a match between what sites use, what sites support, and how to
best support and integrate the SLATE platform. Most HPC environ-
ments deploy RedHat or its derivatives (such as CentOS or Scientific
Linux) due to the long term stability. However, many Kubernetes
deployments run on Ubuntu due to its commercial popularity, more
recent kernel, and development tools. Specific container-focused
Linux distributions such as RancherOS and CoreOS have gained
popularity due to being relatively light-weight, having customized
Kubernetes deployment systems, and custom tooling for update
management.

The alpha configurations at each site chose different operating
systems in order to gain some experience with each. This work has
led to an investigation of creating an alpha image on CoreOS as
the packaged thrust. One of the key advantages of CoreOS is the
ease of patch management without taking down an entire site for
upgrades. A challenge of CoreOS that the team is still exploring
relates to driver support for different hardware, such as GPUs.

4.2 SLATE Development Image
The SLATE team has derived the alpha base image from CoreOS
Container Linux, which has a number of features that make it
attractive for the SLATE platform. The team can deploy Container
Linux as a RAM-resident image, so that containers deploy to disk
while the operating system remains ephemeral. For SLATE, this
configuration allows for atomic updates via images that can be built
and distributed by a centralized upstream system. In the current
iteration, a build host with the Container Linux SDK has been
prepared, and SLATE-specific changes are pushed to the image
at build time. Currently, the team has limited the SLATE-specific
changes to installing and configuring a single-node Kubernetes
deployment via kubeadm.

In lieu of forking Container Linux itself, we apply our changes
to a base Container Linux image at boot time, using CloudInit
[6]. CloudInit provides a YAML [26]-based configuration language
where we define services, configuration files, scripts for fetching
binaries from our upstream, etc. Currently, we are deploying the
CloudInit configuration as part of the development image, but once
we deploy the SLATE hardware platform, we will use a vanilla
CoreOS image and apply the SLATE-specific changes at boot. These
images and configurations will either stage into, or proxy through,
the out-of-band management device.

4.3 Initial Federation Testing
The SLATE alpha federation deployment leverages the Kubernetes
Federation project[16]. This project provides two major building
blocks: the ability to sync resources across clusters and the ability
to do cross-cluster discovery for DNS and load balancing purposes.
SLATE is primarily leveraging the first building block in order to
obtain the ability to present a single point of deployment for an
application.

As part of the initial development work to test the concepts of
federation, the SLATE team built a small federation platform for
testing. This mini-federation platform allows for initial understand-
ing of the federation technology and quick prototyping of ideas. The
SLATE team has also federated two discrete sites at the University
of Michigan and the University of Utah. A small NGINX application
has been successfully deployed at the University of Michigan and
the University of Utah using the federation tooling.

Testing the current state of federations as provided by Kuber-
netes has revealed a number of key areas that require work. An
initial issue was that some of the tooling that we used to deploy
Kubernetes was not sufficiently flexible for federations to work
properly. SLATE tooling has taken this issue and other issues into
consideration for future deployment iterations.

Aside from bugs and minor issues in the Kubernetes federation
control plane, we found that two key areas were lacking in our tests.
First, the federation tooling required that we maintain consistent
naming and labeling across multiple sites. This requirement implies
that either some upstream contributions will need to integrate into
Kubernetes itself, or the SLATE subsystem responsible for site-level
configuration will need to ensure the naming and labeling main-
tains the proper consistency, external to Kubernetes. The second
issue is that the federation tooling, as it currently exists, requires a
high level of permissions (and therefore trust) between sites and
site administrators. This particular issue presents serious security
considerations for SLATE deployments across disparate resources.

4.4 Progress of CLI Development
To expedite the development of the command-line tools and ser-
vices, we are currently developing the CLI as a single tool with no
distinction between frontend and backend. By getting the tool into
the hands of developers quickly, this allows us to rapidly iterate
upon the semantic definition of the commands we need to provide.
However, the current implementation keeps the interface fully sep-
arate from the backend logic, such that a client/server model can
implement later as the other SLATE platform components develop.

We have chosen to develop the command-line tooling in Go[14],
as this language is the language of choice to develop Kubernetes and
related projects in this space, such as Docker[9] and etcd[11]. One of
the challenges we have encountered in developing the SLATE CLI is
that many of the underlying tools and components are themselves
under heavy development and thus moving very rapidly. While
this rapid development is a positive sign that the Kubernetes and
associated projects have a healthy and active developer community,
this rapid change has forced us to take a conservative stance with
regard to how we interface with these tools. Currently, the we have
prototyped the following commands:
slate dev start
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Figure 4: Example of command line installation lifecycle

This command starts the development environment. This environ-
ment consists of minikube[18] (which is assumed to be available
and properly installed) properly configured with Helm and the
SLATE application catalog[22].
slate app install

This command installs an application from the application catalog.
slate app delete

This command removes already installed applications.
slate dev delete

This command tears down the development environment. Figure 4
shows an example of the working tool.

4.5 Applications
The SLATE team has deployed several applications on its alpha plat-
form.: JupyterHub, perfSONAR, Elasticsearch, and Kibana. The team
has also created an XCache [25] prototype in order to demonstrate
caching, an essential feature of future distributed data delivery
networks.

The team is working to prototype a process for packaging these
using a combination of SLATE developed tools, Helm and other
tools. The SLATE deployment process will comprise the testing and
integration of the application container, as well as the ability to
deploy the application container across the federation.

The SLATE team has encountered a number of challenges which
the team is attempting to mitigate in its packaging and deployment
process. Some of those challenges are:

• Library support
• Helm support
• Package builds focused on virtual machine installations as
opposed to containers

• Location of static config files for packages so that containers
can be ephemeral

4.5.1 XCache deployment. XCache is a caching service that can
reduce latency and reduce bandwidth needs of the wide area net-
work accesses based on the XRootD [34] protocol. Reliable oper-
ation of the XCache service, without local systems administrator
input, is very important for the successful utilization of network
resources by the experiments at the CERN Large Hadron Collider
which must deliver data to hundreds of HPC centers. Resources
needed by the application depend on the scale of the computing
resources served by the cache and range from a single caching
node with 10 Gbps network interface card and a few terabytes of
disk, to a cluster of caching nodes and hundreds of terabytes of
disk. The single-node use case is very simple: a single pod with
the xrootd server is run, with only one service exposing port 1094.
Cluster installation is more complex requiring two services per
node (xrootd and cmsd), and a "master" service that unifies them.
Client authentication is based on X509[32] certificates, while the
XCache service itself authenticates against data origins (XRootD
services at different storage elements) using so-called “robot" cer-
tificates. Figure 5 shows a production implementation which uses
SLATE as the management layer in the edge network. A production
deployment will have three more services:

• Service registration. A health-check probe will automatically
register and enable an XCache endpoint in an information
service, and blacklist it when necessary.

• Reporting of cache state. In addition to caching blocks of data
accessed, XCache stores important metadata per file. This
metadata includes: number of accesses, times of first and last
access, number of blocks accessed, etc. All this information is
periodically aggregated and reported to a central monitoring
service.

• Summary stream reporting. Everyminute, the service reports
important operational parameters of the XCache server, in-
cluding number of connections, number of errors, memory
used, etc.

XCache is one of the first science applications supported on
the SLATE platform, and has driven requirements for the initial
alpha platform. The team has packaged XCache for a Kubernetes
deployment, including a Dockerfile, Kubernetes YAML files, scripts
to create and retrieve shared secrets, etc. All code and configura-
tion lives on Github, and hooks are enabled to automatically build
XCache via DockerHub.

4.6 Logging and Monitoring
Logging and monitoring of a distributed infrastructure requires
both a central and distributed approach. The University of Chicago
has deployed a central Elastic Stack[10] and Prometheus[20] for
gathering data from the remote sites. For visualization, Grafana al-
lows for different dashboards and perspectives. Each site is running
perfSONAR and the Elastic Stack to support active measurement
and passive collection.

5 SUMMARY & OUTLOOK
The SLATE team has completed a first iteration of its alpha version
platform distributed and federated over three sites. The next iter-
ation in the project will be to harden the packaging of the image,
package example applications for deployment, test the loading and
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Figure 5: Example distributed caching and data delivery ser-
vice using SLATE
A data lake service can deliver experimental data to processing facil-
ities using a network of caching servers and purpose-built delivery
services that transform the data into the needed format.

scaling of the platform, finalize the hardware configuration based
on loading and scaling, and start to explore the network aspects.
The project welcomes contributions and participation from groups
and individuals focused on building distributed research platforms
and gateway systems. Interested readers may follow developments
at http://slateci.io/.
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