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The study of brain rhythms is an open-ended, and challenging, subject of interest in neuroscience. One of
the best tools for the understanding of oscillations at the single neuron level is the phase-resetting curve (PRC).
Synchronization in networks of neurons, effects of noise on the rhythms, effects of transient stimuli on the ongoing
rhythmic activity, and many other features can be understood by the PRC. However, most macroscopic brain
rhythms are generated by large populations of neurons, and so far it has been unclear how the PRC formulation can
be extended to these more common rhythms. In this paper, we describe a framework to determine a macroscopic
PRC (mPRC) for a network of spiking excitatory and inhibitory neurons that generate a macroscopic rhythm.
We take advantage of a thermodynamic approach combined with a reduction method to simplify the network
description to a small number of ordinary differential equations. From this simplified but exact reduction, we can
compute the mPRC via the standard adjoint method. Our theoretical findings are illustrated with and supported
by numerical simulations of the full spiking network. Notably our mPRC framework allows us to predict the
difference between effects of transient inputs to the excitatory versus the inhibitory neurons in the network.
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I. INTRODUCTION

Emerging oscillations are ubiquitous in nature [1,2]; brain
rhythms, for example, form a basis for multiple cognitive
functions [3]. Within the dynamical systems framework, such
rhythms can be seen as limit cycles, and like the limit
cycles of single neuron oscillations, these rhythms have a
phase-resetting curve (PRC) [2], a function that describes how
the oscillation shifts depending on the timing or phase of the
input. The PRC can be computed directly (e.g., by simulation
or experimentally) for any rhythm by applying short pulses
at different phases of the cycle and observing the phase shift.
The PRC method and its benefits, such as the mechanistic
understanding of neural synchronization, have been reviewed
by various authors [4-6]. Of course, similar outcomes are
expected for brain rhythms [7].

For oscillations defined by a dynamical system, such as
many coupled differential equations, it is much easier and
more accurate to compute the infinitesimal PRC (iPRC) by
solving a certain linear equation. In the case of single neuron
models, this is quite easy to do numerically and even, in some
cases, analytically [8]. A major theoretical challenge has been
to provide analytical derivations of iPRCs for macroscopic
oscillations [9,10]. Yet despite extensive research, computing
the iPRC of a conductance-based spiking neural network ex-
hibiting emergent population-wide oscillations has remained
an open issue (yet see Ref. [11] for a step in that direction).
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Recently, the adjoint method, which is at the core of the iPRC
computation (see Ref. [8]), has been generalized in a number
of ways: for Fokker-Planck equations [11], delay differential
equations [12], and reaction diffusion systems [13].

In this paper, we develop a framework to determine
a macroscopic phase response curve (mPRC) for spiking
networks with heterogeneous neural populations. To do so
we take advantage of a thermodynamic approach combined
with the reduction method developed by Montbri6, Paz6, and
Roxin (MPR) [14]. The mean-field framework produces an
analytically tractable population model written in terms of
partial differential equations (PDEs), which gives access to the
firing activity of the network [15]. The MPR reduction allows
further simplification and breaks down the PDE into a low-
dimensional system. Such a reduced description can be related,
via a conformal map, with the low-dimensional description
in terms of the Kuramoto order parameter provided by the
Ott-Antonsen theory [16] and recently applied in neuroscience
[17]. However, the MPR reduction has the advantage to be
written in terms of a dynamical system involving the firing
activity and the mean membrane potential of the network, two
quantities of interest in neuroscience.

Applying the MPR reduction, we simplify the description of
an excitatory-inhibitory neural network. Bifurcation analysis
of the reduced system enables us to reveal how synaptic
interactions and inhibitory feedback permit the emergence
of the macroscopic rhythms. The resulting low-dimensional
system allows us to easily apply the usual adjoint method and
obtain an expression for the macroscopic iPRC.

The paper is structured as follows. First, we present the
network and our neuron model of choice which will be used
throughout. Then we go over the MPR reduction and the
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low-dimensional system for which we perform a bifurcation
analysis and extract the infinitesimal PRC. We support our
findings with extensive numerical evidence involving simula-
tion of finite-size networks neurons compared with the reduced
system.

II. THE NETWORK AND ITS REDUCED SYSTEM

The circuit considered is a network of N, excitatory
cells (E cells) and N; inhibitory cells (I cells) all-to-all
connected with delta-pulse synapses. Each cell is characterized
by the quadratic integrate-and-fire (QIF), a well-established
model that describes the dynamics, subthreshold, and spike
generating, of the neural membrane potential [18,19]. The
QIF model is endowed with a discontinuous reset that models
the depolarization and the relative refractory period after an
action potential. When the voltage reaches a cut off value v,
considered to be the peak of a spike, it is reset to v,, a reset
parameter. In this study, to facilitate analysis, threshold v, and
reset v, are, respectively, set at positive and negative infinity
[18]. The QIF reads

‘L’%vj(t) =n; +v5(1) + 1), (1)
where v(?) is the membrane potential, T the membrane time
constant, n the bias current that defines the intrinsic resting
potential and firing threshold of the cell (see Ref. [18] for
more details), and /(¢) the total synaptic current injected at the
soma. To account for the network heterogeneity, the intrinsic
parameter 7 is distributed randomly according to a Lorentzian
distribution:

L0 = 1 A

TR
Here 7 stands for the mean value taken by the parameter
n across the population, and A is the half-width of the
distribution. The total synaptic current, /(¢), depends on the
cell type. For the E cells, respectively for the I cells, we have

]e(t) = ]eext(t) + Jeefere - Jeiferis
I:(0) = IF(0) + JieTire — Jiitiri.

Here I°* is an external current, J the synaptic strength, and
r(t) the population firing rate:

N, Ni
r(t) = NL ZZS(t — t'}) ri(t) = Ni ZZ‘S(’ - t/})

€ k=1 f Lk=1 f

where § is the Dirac mass measure and tjﬁ the firing time of the
neuron numbered k.

In the mean-field limit (see, e.g., Ref. [15]) the system is
well represented by the probability of finding the membrane
potential of any randomly chosen neuron at voltage v at
time ¢ knowing that its intrinsic parameter is n. The dynamic
evolution of this density, which we denote p.(¢,v|n) for the
E cells and p;(¢,v|n) for the I cells, is given by a continuous
transport equation written in the form of a conservation law
(see Appendixes A—C for more details):

0 0
—p(t, —J(t, =0, 2
ratp( vin) + 8vd( v(n) 2
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where the total probability flux is defined as
J (vl = [n+v* + 1Olp(t.vln).

A boundary condition for the flux, consistent with the reset
mechanism of the QIF model (1), is imposed:

lim J(t,vin) = lim J(t,v|n).
v——00 v—>+00

The firing rate of the considered population r(¢) is given by
the flux through the threshold:

+00
r(t)=lim LT (¢,vm) dn.
v—>+00 —50
One can show that [14] the PDE (2) reduces to a low-
dimensional dynamical system. In our case (see Appendix C
for more details) the dynamics of the two coupled PDEs that
describe the time evolution of p,(z,v|n) and p;(¢,v|n) reduces
to a set of four differential equations,

e

To—F, = +2nr,V,
dt TT,
J 3)
T.—V, = Ve2 + e + 1.(t) — nzrez,
dt
and for the I cells,
d A;
Ti—F = — +27‘[}’,’Vi
dt TT;
4

d
T Vi = VA4 L — 70,

where V (¢) represents the mean potential of the population:

+00 +00
V() = / L(n) / op(t, vl dv dn.

Note that the second integral is defined via the Cauchy
principal value, the reason being that the Lorentz distribution
only has a mean in the principal value sense; see Appendix B.
Note also that in this reduced formulation, the two subsystems
are coupled and the coupling is made via their respective total
synaptic currents 1,(t); 1;(¢).

The numerical simulation presented in Fig. 1 illustrates a
comparison between the dynamics of the full network and the
low-dimensional system (3)—(4). It shows the time evolution
of the external stimulus in the first panel [Fig. 1(a)], whereas
the second panel gives the spiking activity obtained from a
simulation of the full network [Fig. 1(b)]. In the subsequent
panels [Figs. 1(c)-1(d)], the firing rate given by the reduced
description is compared with the firing rate obtained from
network simulations. The blue line corresponds to the I cells,
and the red line to the E cells. The reduced description captures
the essential shape of the firing activity of the full network,
and, of course, it has the advantage to be low dimensional. The
perfect agreement confirms the validity of the reduction.

Note that the reduced dynamical system (3)—(4) shares
some similarities with the Wilson-Cowan model [20]. Bifurca-
tion analysis reveals that the low-dimensional system (3)—(4)
exhibits a Hopf bifurcation as the E drive is increased [see
Fig. 2(a)]; this rhythmic regime disappears as the heterogeneity
(A) in the network is increased [see Fig. 2(b)]. We see from
the network raster plots [Fig. 2(d)] that both the E and I cell
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FIG. 1. Comparison between the full network dynamics and the reduced system. Left panel: Schematic illustration of the neural network.
The parameter J,4 denotes the connectivity strength of the population 8 onto the population «. The external influence on the population o is
denoted I:. Right panels: Comparison. (a) Time evolution of the stimulus /5* on the E cells. (b) Spiking activity obtained from simulations of
the full network; the first 800 cells are excitatory, the last 200 are inhibitory. (c) Firing rate of the E cells obtained from simulations of the full
network (red line) compared with the reduced system (black line). (d) Firing rate of the I cells obtained from simulations of the full network
(blue line) compared with the reduced system (black line). Parameters: N, = N; =5000; A, = A, =Lit. =t =15, =1 = =5, Joe. = 0;

Joi =15, J;; =0; J;, = 15; IfEXt = 0; vy, = 200; v, = —200.

populations globally engage in rhythmic behavior as soon as
the external E drive is sufficiently strong [Fig. 2(c)].

The mechanism underlying this macroscopic oscillation is
known as the PING (Pyramidal Interneuron Network Gamma)
interaction [21]. We note that since by design the neurons
within the network are parametrically heterogenous, with a
portion of them not being excitable (as opposed to oscillators),
the rhythm emerges at the global network scale. In other words,
if we were to disconnect the network, no oscillatory rhythm
would be observable.

III. PHASE-RESETTING CURVE

Being applicable to every self-sustained oscillatory system,
PRC has turned into an essential measure in nonlinear science.
It quantifies the effect of external perturbation on stable
limit cycles. When a short depolarizing current is applied to
the network, the spiking activity and resulting macroscopic

Oscillatory

=

Asynchronous

Neuron #

Time

FIG. 2. Bifurcation diagram. (a) The blue line (respectively, the
red line) corresponds to the steady state of the inhibitory cells
(respectively the excitatory cells), and dots correspond to limit cycles.
(b) Stability region. (c) Illustration of the stimulus. (d) Raster plot of
the spiking activity. The parameters are the same as in Fig. 1.

oscillation will shift in time. We can choose to apply the
short depolarizing input to the excitatory or the inhibitory
neurons. Raster plots from numerical simulations of the full
network [Fig. 3(a)] illustrate the shift. Here the black dots
correspond to the unperturbed network, and the colored dots to
the perturbed circuit. Before the stimulus onset [Fig. 3(b)], the
two rasters overlap perfectly. After the stimulus presentation,
spikes of the perturbed network are shifted: either delayed
[Fig. 3(a)] or advanced [Fig. 3(b)] depending on the onset
phase of the perturbation. The mPRC results in plotting the
advance or delay as a function of the perturbation phase onset
[Figs. 4(a)—-4(b)].

The iPRC is defined mathematically for infinitesimally
small perturbation, and it is computed in a perfectly rigorous
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FIG. 3. Illustration of stimulus-induced phase shifting. (a), (b)
Top panels: Spiking activity obtained from simulations of the full
spiking network. The black dots illustrate the ongoing activity and
the colored dots (blue for the I cells and red for the E cells)
the activity of the perturbed network. Lower panels: Illustration
of the stimulus. For this example, the perturbation is made with a
square wave current pulse (amplitude 20, duration 0.25) to the I cells.
The network parameters are the same as in Fig. 1 with I = 10.
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FIG. 4. Comparison between simulated and calculated mPRCs.
The black line illustrates the analytical adjoint method, and dots
indicates direct perturbations of the full spiking neural network. (a)
The perturbation is delivered to the E cells. (b) The perturbation
is delivered to the I cells. The network parameters are the same as
in Fig. 1 with I = 10, the perturbation made with a square wave
current pulse (amplitude 10, duration 0.05).

way via the adjoint method [8]. This method can be applied
on the low-dimensional system (3)—(4), and a semianalytical

J
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expression of the infinitesimal mPRC can be extracted; see
Appendix D. Assuming that

O(1) = (re, (1), Ve, (1)1, (1), Vi, (1)),

is a stable limit cycle of the E-I system (3)-(4) of period T,
that is,

0@)=0@+T),

we find that the iPRC Z(¢) is a periodic vector of four
components,

Z(t) = (Zy,(1), 2y, (1), Zy, (1), Zy, (1)),

that is a solution of the adjoint equation

d . T
— 20 = M0 Z), ®)

where the matrix M(¢) is given by a linearization of the E-I
system (3)—(4) around the limit cycle:

ZV;U (t) 2r:, (t) 0 0
e 2Ve(
M(l) —2‘1,'(_,71'27'3”(1‘) + Jee %0) _Jei 0
= . 2V, (0) 27, (1)
0 0 - 2VT_’
J 0 2guln,()—Ji T

The iPRC Z(t) is given by the unique periodic solution that
satisfies the normalization condition

Z@t)- O(t) =27/ T.

When perturbations made to the network are small enough,
the iPRC will be proportional to the mPRC [11-13].

When we compare the analytically determined infinitesimal
mPRC (5) to the mPRC obtained from direct perturbations
of the spiking neural network (Fig. 4), it shows an excellent
agreement, confirming the validity of the theoretical approach.
The two panels correspond to perturbations made onto the
membrane voltage of the E cells [Fig. 4(a)] and the I cells
[Fig. 4(b)]. We carried out comparisons for simulations with a
wide range of network parameters with good agreement. We
note, of course, that modifying the network parameters, such
as the external drive 1 f’“, will affect the shape of the mPRC;
see Fig. 5.

Note the biphasic shape of the mPRC [see Fig. 4(b) or
Fig. 5(b)] when perturbations are made on the I cells. In
contrast, when perturbations are on the E cells, the mPRC
is monophasic [see Fig. 4(a) or Fig. 5(a)]. We also note that
for this set of parameters, the network is more sensitive to

11 @
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FIG. 5. PRC shape in function of parameters. (a) PRC Z,
obtained via the adjoint method. (b) PRC Z,, obtained via the adjoint
method. The network parameters are the same as in Fig. 1.

Ti

(

perturbation to the excitatory cells than to the inhibitory cells
as is clear from the difference in amplitudes of the respective
mPRCs. We observe that modification of network parameters
mostly impacts the amplitude of the PRC. Indeed, as we
shall see in Fig. 5, the PRC amplitude becomes much smaller
when increasing the coupling strength. This can be intuitively
interpreted as an increase of robustness of the macroscopic
oscillation against external perturbations.

IV. CONCLUSION

The PRC framework is among the most influential of
neuroscience theories. It has already generated key insights,
including an appreciation for the emergence of neural syn-
chronization [22,23]. The need for this conceptual tool to
investigate brain rhythms is underscored by the fact that
PRC can provide clarity into their informational properties
[7]. Important strides are being taken in that direction, and a
number of efforts have been taken to compute the iPRC of
emerging macroscopic oscillations in spiking networks [11].

In this study, we developed methodology to compute
macroscopic iPRCs for emergent network oscillations using
recent framework for analytically tractable reduction of large
spiking networks [14—17]. By contrast to previous works (see,
e.g., Ref. [11]) where the analytical derivation of the mPRC
relies on the computation of the dual system of a partial
differential equation, our derivation is made via the usual
adjoint method.

Although we have restrained ourselves to considering
networks with homogenous synaptic weights, the framework
is sufficiently flexible to allow a certain level of synaptic
heterogeneity [14]. Another restriction made here is the
absence of conduction delays within the local circuit. Again,
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a generalization to include the delays poses no problem since
the low-dimensional reduction can be achieved with delay
[24], and the adjoint method still applies for delay differential
equations [12]. We note that it is unclear how existing methods
to compute mPRCs for a population of oscillators [10,25]
generalize in this situation.

We further note that the framework developed in
Refs. [10,25] assumes that the interaction across oscillators
is made via a sine wave coupling function. Although it can be
appropriate in a variety of biological contexts, it is simply
unrealistic for neural circuits. The description of synaptic
interaction within the Kuramoto framework is built upon the
expression of the interaction function [4]. The interaction
function describes the effect of the coupling onto the phase
of the neural oscillator. Unfortunately, it is far from being a
sine wave, and its general form does not permit the use of
the Ott-Antonsen reduction as it is needed in Refs. [10,25].
Therefore, whereas the method described by Refs. [10,25]
permits us to link the PRC of the individual units to the mPRC,
it is unfortunately not very well suited for the computation of
the mPRC of neural networks.

The main limitation is that our derivation is built upon the
work of Ref. [14]. As a consequence, our strategy can be
applied only to neural network made up of individual units
described by the QIF model. It does not apply for a network
of leaky integrate-and-fire neurons, for instance.

As we have seen, our analytical computations enable us
to make key predictions about the origin of biphasic versus
monophasic PRCs. In the light of our theory, the biphasic PRC
observed in neural networks can be interpreted as arising from
stimulation targeting the inhibitory neurons; on the other hand,
the monophasic PRC is characteristic of stimulation onto the
excitatory cells. Biphasic PRCs are known to facilitate entrain-
ment to periodic inputs at both higher and lower frequencies
than the natural frequency of the network. This provides some
theoretical supports for the strong implication of interneurons
not only on the emergence of macroscopic oscillations, but
also on locking capacity of neural networks [26,27].

Our work also opens new avenues to study the links
between the biophysics of the neurons, network connectivity,
and the time-persistent phase relationships seen during in vivo
brain activity and that have been proposed to play a crucial
role in the transfer and control of information across brain
regions [28]. Thus, the proposed method could be a key
technique to elucidate the underlying synaptic mechanism and
the functional roles of the so-called cross frequency coupling
observed in theta-gamma oscillations, for instance [29].
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APPENDIX A: MEAN-FIELD DESCRIPTION

In the mean-field limit (see, e.g., Ref. [15]) the system is
well represented by the probability of finding the membrane

PHYSICAL REVIEW E 96, 042311 (2017)

potential of any randomly chosen neuron at voltage v at time ¢
knowing that its intrinsic parameter is 1. The dynamics of this
density, which we denote p(t,v|n), is given by a continuous
transport equation written in the form of a conservation law:

3 3
T—P(t,vln)+5d(t,v|n)=0, (A1)

at
where the total probability flux is defined as

J(@vln) = [n + v* + 101 p(t,vn).
A boundary condition for the flux, consistent with the reset
mechanism of the QIF model, is imposed:

lim J(t,vln) = lim J(,v|n).
V—>—00 v—>+00

Due to the boundary condition, one can check easily the
conservation property of the equation:

+00
/ pt,vin)dv = L(n),

00
with £ the Lorentzian distribution,

1 A

7 — )P+ A2

that defines the probability that a cell has an intrinsic parameter

n. The firing rate of the population r(¢) is the flux through the
threshold, defining

L) =

r(t,m) = lim J(t,v|n);
v— 400

the total firing rate is then
+00

r(t) = UETOO LT (t,v|n)dn.

—0Q

APPENDIX B: REDUCTION

The reduction [14] consists of assuming that the solution
of the partial differential equation (A1) has the form of a
Lorentzian distribution:

(t.0ln) = ~ e
P = e =y + xtn?

The mean potential and the firing rate are related to the
Lorentzian coefficients:

(BI)

1
r(tvn) = ;-x(tﬂn)

and

+o00
y(t,n) = / vp(t,v|n)dv,

o0

so in the end, the mean membrane potential is defined as

+M
vio= jim [ oy,
— 400 -M

After algebraic manipulation [14], the transport equation (A1)
reduces to the low-dimensional dynamical system

d
T—r=—+2nrV

dt TT

d 2, = 2.2
TE‘/:V +aq+1()—nmre.
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APPENDIX C: E-1 INTERACTION SYSTEM
1. Mean-field description

Considering now a network of two interacting neural
populations, the system is then represented by two probability
density functions, one for the excitatory neurons, which we
denote p,.(t,v|n.), and one for the inhibitory cells, p;(t,v|n;).
Each density follows a continuous transport equation; for the
E cells we have

d d
Te—pe(t,vIn.) + —Je(t,vIn.) =0, (CD
ot ov

where the total probability flux is defined as

To(t,v|10) = [Me + 02+ L(O]pe(t,v]ne).

A boundary condition for the flux, consistent with the reset
mechanism of the QIF model, is imposed. The firing rate of
the population r(¢) is the flux through the threshold. Having
set the threshold at infinity, we get

re(t,ne) = UETOO Te(t,v|n.),

and thus the total firing rate

+00

Leme)r(t,ne) dne,

—0Q0

re(t) =

where L, is the Lorentzian distribution,

1 A,

Le e 2_—7
) = o =P + A2

that defines the probability that a randomly chosen E cell has
an intrinsic parameter .. Similarly for the I cells, we have

9 5
T, —pit,v|n) + —Ji(@t,vn;) =0, (C2)
at ov

where the total probability flux is defined as
Jit,vln) = [ 4+ v° + L@ pi(e,vlm).

A boundary condition for the flux, consistent with the reset
mechanism of the QIF model, is again imposed. The firing
rate of the population r;(¢) is the flux through the threshold,
denoting again

ri(t,n;) = UETwﬂ(LUMz‘);

the total firing rate is thus given by

+00

Limi)r(t,n;)dn;,

—0Q

ri(t) =

where £; the Lorentzian distribution,
1 A;
Lim)=———""+,

o 7 (g —M)* + A?

that defines the probability that a randomly chosen I-cell has
an intrinsic parameter 7;.

2. Reduction

Applying the reduction method (B1) to the two probability
densities p.(z,v|n.) and p;(z,v|n;) will therefore lead to the

PHYSICAL REVIEW E 96, 042311 (2017)

reduced dynamical system:

e

rgEre = +27r,V,
y e (C3)
T.—V, = Ve2 + e + 1.(t) — nzrez,
dt
and for the I cells
d A;
‘L'ial"i = — +27'rriV,~
T c4)

d
TiEVi = V724 i + L) — 7l

Assuming an instantaneous synaptic dynamic, the injected

current at the soma of the excitatory cells 7,(z) will be given
by

L(t) = I:Xt(t) + JeeTele — JoiTeTi,
respectively for the I cells,
Li(t) = IF() + Jietire — JuTir,

where I°*' is an extern al current and J the synaptic strength.

APPENDIX D: PRC
1. PRC for a general system

Let us consider a general dynamical system,

%x(t) = F[x(®)],

where x € R". Assume that the system admits a stable
limit cycle xo(¢), then if the system is perturbed by a small
perturbation, the solution can be written as

x(1) = xo(r) + €p(1),

where p(t) is the perturbed part. Up to a linearization, we get
that

d
EP(I) = DF[xo(0)] - p().
The iPRC [8] is defined as
d [Z() - p(D)]
dr p()l,
which is equivalent to

le t _le t Z(t d t
SIZ@) - pO) = 5 Z0) - p(6)+ Z(@) - 5 p(0)

d
= EZ(I) -p(t) + Z(1) - DF[xo(1)] - p(2)

d

= Z() p(t) + DF[xoM1" - Z(t) - p(t)
d

= {EZO) + DF[xo(t)]" - Z(l)} - p@).

Since the last equation is valid for every perturbation p(¢), we
get that the iPRC is solution of the adjoint equation:

d _ T
220 = =DFlx01" - Z(®).
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FIG. 6. Comparison between PRCs. The black line is obtained
via the adjoint method, the dots are obtained via direct perturbation
of the reduced system. (a) The perturbation is made with a square
wave current pulse (amplitude 5, duration 0.05) on the V, component.
(b) The perturbation is made with a square wave current pulse (am-
plitude 5, duration 0.08) on the V; component. (c) The perturbation is
made with a square wave current pulse (amplitude 3, duration 0.03)
on the r, component. (d) The perturbation is made with a square
wave current pulse (amplitude 2, duration 0.02) on the r; component.
Parameters are the same as in Fig. 1.

2. PRC of the E-I system

We now assume that
O(t) = (re, (1), Ve, (1),ri, (1), Vi, (1)),
is a stable limit cycle of the E-I system (C3)—(C4) of period T':

oW)=0@+T).
|
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FIG. 7. Comparison between PRCs. The black line is obtained
via the adjoint method, the dots are obtained via direct perturbation
made either on the full network or on the reduced system. (a) The
perturbation is made with a square wave current pulse (amplitude
8, duration 0.09) on theV, component. (b) The perturbation is made
with a square wave current pulse (amplitude 20, duration 0.09) on the
V: component. (c) The perturbation is made with a square wave
current pulse (amplitude 5, duration 0.09) on theV, component.
(d) The perturbation is made with a square wave current pulse
(amplitude 20, duration 0.09) on the V; component. Parameters are
the same as in Fig. 1.

The iPRC Z() is a periodic vector of four components,
Z(t) = (Zr? (t)’ng(t)9Zr,' (t)’Zv,' (t))a
that is a solution of the adjoint equation
d
——Zt) =MD" - Z@),
7 (®) (1) - Z@)

where the matrix M(¢) is given by a linearization of the E-I
system (C3)—(C4) around the limit cycle:

2V, ()]t 2r,, )/, 0 0

_2‘597727‘6(7 (t) + Jee 2Veo (t)/‘ce _Jei O
M) = 0 0 2V, 0/ 2ri, (1)/7;
Jie 0 =207, (1) — Jii 2V, (0)/7;

The Z(t) is given by the unique periodic solution that satisfies the normalization condition

. 21
Z@)- 0@t) = —.

T

The panels of Fig. 6 respectively compare the PRC obtained from perturbation of the reduced dynamical E-I system (C3)—(C4)
with the four components of the iPRC Z(¢). When the perturbation is small enough, the iPRC Z(¢) will be proportional to the
PRC. This is indeed what we observe in Fig. 6 for the different components of the PRC.

Although we obtained four components

Z(t) = (Zr,,(t)a ng(t)vzr[ @), Zv,- ®);

in practice, only the voltage components are meaningful; see Figs. 6(a)-6(b). The reason is that, on the full spiking network,
perturbation can be made only by a current that affects the membrane potential. The panels of Fig. 6 compare the PRC obtained
from perturbation of the full spiking network, of the reduced dynamical system and the voltage components of the iPRC Z(¢). As
expected, the network PRC is more noisy than the reduced system PRC; see Figs. 7(a)-7(b). When the strength of the perturbation
is increased, we do observe a mismatch between the PRCs and the iPRC; see Figs. 7(c)-7(d).
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