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Macroscopic phase-resetting curves for spiking neural networks
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The study of brain rhythms is an open-ended, and challenging, subject of interest in neuroscience. One of

the best tools for the understanding of oscillations at the single neuron level is the phase-resetting curve (PRC).

Synchronization in networks of neurons, effects of noise on the rhythms, effects of transient stimuli on the ongoing

rhythmic activity, and many other features can be understood by the PRC. However, most macroscopic brain

rhythms are generated by large populations of neurons, and so far it has been unclear how the PRC formulation can

be extended to these more common rhythms. In this paper, we describe a framework to determine a macroscopic

PRC (mPRC) for a network of spiking excitatory and inhibitory neurons that generate a macroscopic rhythm.

We take advantage of a thermodynamic approach combined with a reduction method to simplify the network

description to a small number of ordinary differential equations. From this simplified but exact reduction, we can

compute the mPRC via the standard adjoint method. Our theoretical findings are illustrated with and supported

by numerical simulations of the full spiking network. Notably our mPRC framework allows us to predict the

difference between effects of transient inputs to the excitatory versus the inhibitory neurons in the network.

DOI: 10.1103/PhysRevE.96.042311

I. INTRODUCTION

Emerging oscillations are ubiquitous in nature [1,2]; brain

rhythms, for example, form a basis for multiple cognitive

functions [3]. Within the dynamical systems framework, such

rhythms can be seen as limit cycles, and like the limit

cycles of single neuron oscillations, these rhythms have a

phase-resetting curve (PRC) [2], a function that describes how

the oscillation shifts depending on the timing or phase of the

input. The PRC can be computed directly (e.g., by simulation

or experimentally) for any rhythm by applying short pulses

at different phases of the cycle and observing the phase shift.

The PRC method and its benefits, such as the mechanistic

understanding of neural synchronization, have been reviewed

by various authors [4–6]. Of course, similar outcomes are

expected for brain rhythms [7].

For oscillations defined by a dynamical system, such as

many coupled differential equations, it is much easier and

more accurate to compute the infinitesimal PRC (iPRC) by

solving a certain linear equation. In the case of single neuron

models, this is quite easy to do numerically and even, in some

cases, analytically [8]. A major theoretical challenge has been

to provide analytical derivations of iPRCs for macroscopic

oscillations [9,10]. Yet despite extensive research, computing

the iPRC of a conductance-based spiking neural network ex-

hibiting emergent population-wide oscillations has remained

an open issue (yet see Ref. [11] for a step in that direction).
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Recently, the adjoint method, which is at the core of the iPRC

computation (see Ref. [8]), has been generalized in a number

of ways: for Fokker-Planck equations [11], delay differential

equations [12], and reaction diffusion systems [13].

In this paper, we develop a framework to determine

a macroscopic phase response curve (mPRC) for spiking

networks with heterogeneous neural populations. To do so

we take advantage of a thermodynamic approach combined

with the reduction method developed by Montbrió, Pazó, and

Roxin (MPR) [14]. The mean-field framework produces an

analytically tractable population model written in terms of

partial differential equations (PDEs), which gives access to the

firing activity of the network [15]. The MPR reduction allows

further simplification and breaks down the PDE into a low-

dimensional system. Such a reduced description can be related,

via a conformal map, with the low-dimensional description

in terms of the Kuramoto order parameter provided by the

Ott-Antonsen theory [16] and recently applied in neuroscience

[17]. However, the MPR reduction has the advantage to be

written in terms of a dynamical system involving the firing

activity and the mean membrane potential of the network, two

quantities of interest in neuroscience.

Applying the MPR reduction, we simplify the description of

an excitatory-inhibitory neural network. Bifurcation analysis

of the reduced system enables us to reveal how synaptic

interactions and inhibitory feedback permit the emergence

of the macroscopic rhythms. The resulting low-dimensional

system allows us to easily apply the usual adjoint method and

obtain an expression for the macroscopic iPRC.

The paper is structured as follows. First, we present the

network and our neuron model of choice which will be used

throughout. Then we go over the MPR reduction and the
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low-dimensional system for which we perform a bifurcation

analysis and extract the infinitesimal PRC. We support our

findings with extensive numerical evidence involving simula-

tion of finite-size networks neurons compared with the reduced

system.

II. THE NETWORK AND ITS REDUCED SYSTEM

The circuit considered is a network of Ne excitatory

cells (E cells) and Ni inhibitory cells (I cells) all-to-all

connected with delta-pulse synapses. Each cell is characterized

by the quadratic integrate-and-fire (QIF), a well-established

model that describes the dynamics, subthreshold, and spike

generating, of the neural membrane potential [18,19]. The

QIF model is endowed with a discontinuous reset that models

the depolarization and the relative refractory period after an

action potential. When the voltage reaches a cut off value vth,

considered to be the peak of a spike, it is reset to vr , a reset

parameter. In this study, to facilitate analysis, threshold vth and

reset vr are, respectively, set at positive and negative infinity

[18]. The QIF reads

τ
d

dt
vj (t) = ηj + v2

j (t) + I (t), (1)

where v(t) is the membrane potential, τ the membrane time

constant, η the bias current that defines the intrinsic resting

potential and firing threshold of the cell (see Ref. [18] for

more details), and I (t) the total synaptic current injected at the

soma. To account for the network heterogeneity, the intrinsic

parameter η is distributed randomly according to a Lorentzian

distribution:

L(η) =
1

π

�

(η − η̄)2 + �2
.

Here η̄ stands for the mean value taken by the parameter

η across the population, and � is the half-width of the

distribution. The total synaptic current, I (t), depends on the

cell type. For the E cells, respectively for the I cells, we have

Ie(t) = I ext
e (t) + Jeeτere − Jeiτeri,

Ii(t) = I ext
i (t) + Jieτire − Jiiτiri .

Here I ext is an external current, J the synaptic strength, and

r(t) the population firing rate:

re(t) =
1

Ne

Ne
∑

k=1

∑

f

δ
(

t − tkf
)

, ri(t) =
1

Ni

Ni
∑

k=1

∑

f

δ
(

t − tkf
)

,

where δ is the Dirac mass measure and tkf the firing time of the

neuron numbered k.

In the mean-field limit (see, e.g., Ref. [15]) the system is

well represented by the probability of finding the membrane

potential of any randomly chosen neuron at voltage v at

time t knowing that its intrinsic parameter is η. The dynamic

evolution of this density, which we denote pe(t,v|η) for the

E cells and pi(t,v|η) for the I cells, is given by a continuous

transport equation written in the form of a conservation law

(see Appendixes A–C for more details):

τ
∂

∂t
p(t,v|η) +

∂

∂v
J(t,v|η) = 0, (2)

where the total probability flux is defined as

J (t,v|η) = [η + v2 + I (t)]p(t,v|η).

A boundary condition for the flux, consistent with the reset

mechanism of the QIF model (1), is imposed:

lim
v→−∞

J (t,v|η) = lim
v→+∞

J (t,v|η).

The firing rate of the considered population r(t) is given by

the flux through the threshold:

r(t) = lim
v→+∞

∫ +∞

−∞

L(η)J (t,v|η) dη.

One can show that [14] the PDE (2) reduces to a low-

dimensional dynamical system. In our case (see Appendix C

for more details) the dynamics of the two coupled PDEs that

describe the time evolution of pe(t,v|η) and pi(t,v|η) reduces

to a set of four differential equations,

τe

d

dt
re =

�e

πτe

+ 2πreVe

τe

d

dt
Ve = V 2

e + η̄e + Ie(t) − π2r2
e ,

(3)

and for the I cells,

τi

d

dt
ri =

�i

πτi

+ 2πriVi

τi

d

dt
Vi = V 2

i + η̄i + Ii(t) − π2r2
i ,

(4)

where V (t) represents the mean potential of the population:

V (t) =

∫ +∞

−∞

L(η)

∫ +∞

−∞

vp(t,v|η) dv dη.

Note that the second integral is defined via the Cauchy

principal value, the reason being that the Lorentz distribution

only has a mean in the principal value sense; see Appendix B.

Note also that in this reduced formulation, the two subsystems

are coupled and the coupling is made via their respective total

synaptic currents Ie(t); Ii(t).

The numerical simulation presented in Fig. 1 illustrates a

comparison between the dynamics of the full network and the

low-dimensional system (3)–(4). It shows the time evolution

of the external stimulus in the first panel [Fig. 1(a)], whereas

the second panel gives the spiking activity obtained from a

simulation of the full network [Fig. 1(b)]. In the subsequent

panels [Figs. 1(c)–1(d)], the firing rate given by the reduced

description is compared with the firing rate obtained from

network simulations. The blue line corresponds to the I cells,

and the red line to the E cells. The reduced description captures

the essential shape of the firing activity of the full network,

and, of course, it has the advantage to be low dimensional. The

perfect agreement confirms the validity of the reduction.

Note that the reduced dynamical system (3)–(4) shares

some similarities with the Wilson-Cowan model [20]. Bifurca-

tion analysis reveals that the low-dimensional system (3)–(4)

exhibits a Hopf bifurcation as the E drive is increased [see

Fig. 2(a)]; this rhythmic regime disappears as the heterogeneity

(�) in the network is increased [see Fig. 2(b)]. We see from

the network raster plots [Fig. 2(d)] that both the E and I cell
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(a)

(b)

(c)

(d)

FIG. 1. Comparison between the full network dynamics and the reduced system. Left panel: Schematic illustration of the neural network.

The parameter Jαβ denotes the connectivity strength of the population β onto the population α. The external influence on the population α is

denoted I ext
α . Right panels: Comparison. (a) Time evolution of the stimulus I ext

e on the E cells. (b) Spiking activity obtained from simulations of

the full network; the first 800 cells are excitatory, the last 200 are inhibitory. (c) Firing rate of the E cells obtained from simulations of the full

network (red line) compared with the reduced system (black line). (d) Firing rate of the I cells obtained from simulations of the full network

(blue line) compared with the reduced system (black line). Parameters: Ne = Ni = 5000; �e = �i = 1; τe = τi = 1; η̄e = η̄i = −5; Jee = 0;

Jei = 15; Jii = 0; Jie = 15; I ext
i = 0; vth = 200; vr = −200.

populations globally engage in rhythmic behavior as soon as

the external E drive is sufficiently strong [Fig. 2(c)].

The mechanism underlying this macroscopic oscillation is

known as the PING (Pyramidal Interneuron Network Gamma)

interaction [21]. We note that since by design the neurons

within the network are parametrically heterogenous, with a

portion of them not being excitable (as opposed to oscillators),

the rhythm emerges at the global network scale. In other words,

if we were to disconnect the network, no oscillatory rhythm

would be observable.

III. PHASE-RESETTING CURVE

Being applicable to every self-sustained oscillatory system,

PRC has turned into an essential measure in nonlinear science.

It quantifies the effect of external perturbation on stable

limit cycles. When a short depolarizing current is applied to

the network, the spiking activity and resulting macroscopic
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FIG. 2. Bifurcation diagram. (a) The blue line (respectively, the

red line) corresponds to the steady state of the inhibitory cells

(respectively the excitatory cells), and dots correspond to limit cycles.

(b) Stability region. (c) Illustration of the stimulus. (d) Raster plot of

the spiking activity. The parameters are the same as in Fig. 1.

oscillation will shift in time. We can choose to apply the

short depolarizing input to the excitatory or the inhibitory

neurons. Raster plots from numerical simulations of the full

network [Fig. 3(a)] illustrate the shift. Here the black dots

correspond to the unperturbed network, and the colored dots to

the perturbed circuit. Before the stimulus onset [Fig. 3(b)], the

two rasters overlap perfectly. After the stimulus presentation,

spikes of the perturbed network are shifted: either delayed

[Fig. 3(a)] or advanced [Fig. 3(b)] depending on the onset

phase of the perturbation. The mPRC results in plotting the

advance or delay as a function of the perturbation phase onset

[Figs. 4(a)–4(b)].

The iPRC is defined mathematically for infinitesimally

small perturbation, and it is computed in a perfectly rigorous

FIG. 3. Illustration of stimulus-induced phase shifting. (a), (b)

Top panels: Spiking activity obtained from simulations of the full

spiking network. The black dots illustrate the ongoing activity and

the colored dots (blue for the I cells and red for the E cells)

the activity of the perturbed network. Lower panels: Illustration

of the stimulus. For this example, the perturbation is made with a

square wave current pulse (amplitude 20, duration 0.25) to the I cells.

The network parameters are the same as in Fig. 1 with I ext
e = 10.
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FIG. 4. Comparison between simulated and calculated mPRCs.

The black line illustrates the analytical adjoint method, and dots

indicates direct perturbations of the full spiking neural network. (a)

The perturbation is delivered to the E cells. (b) The perturbation

is delivered to the I cells. The network parameters are the same as

in Fig. 1 with I ext
e = 10, the perturbation made with a square wave

current pulse (amplitude 10, duration 0.05).

way via the adjoint method [8]. This method can be applied

on the low-dimensional system (3)–(4), and a semianalytical

expression of the infinitesimal mPRC can be extracted; see

Appendix D. Assuming that

O(t) = (reo
(t),Veo

(t),rio (t),Vio (t)),

is a stable limit cycle of the E-I system (3)–(4) of period T ,

that is,

O(t) = O(t + T ),

we find that the iPRC Z(t) is a periodic vector of four

components,

Z(t) = (Zre
(t),Zve

(t),Zri
(t),Zvi

(t)),

that is a solution of the adjoint equation

−
d

dt
Z(t) = M(t)T · Z(t), (5)

where the matrix M(t) is given by a linearization of the E-I

system (3)–(4) around the limit cycle:

M(t) =

⎡

⎢

⎢

⎢

⎣

2Veo (t)

τe

2reo (t)

τe
0 0

−2τeπ
2reo

(t) + Jee
2Veo (t)

τe
−Jei 0

0 0
2Vio (t)

τi

2rio (t)

τi

Jie 0 −2τiπ
2rio (t) − Jii

2Vio (t)

τi

⎤

⎥

⎥

⎥

⎦

.

The iPRC Z(t) is given by the unique periodic solution that

satisfies the normalization condition

Z(t) · Ȯ(t) = 2π/T .

When perturbations made to the network are small enough,

the iPRC will be proportional to the mPRC [11–13].

When we compare the analytically determined infinitesimal

mPRC (5) to the mPRC obtained from direct perturbations

of the spiking neural network (Fig. 4), it shows an excellent

agreement, confirming the validity of the theoretical approach.

The two panels correspond to perturbations made onto the

membrane voltage of the E cells [Fig. 4(a)] and the I cells

[Fig. 4(b)]. We carried out comparisons for simulations with a

wide range of network parameters with good agreement. We

note, of course, that modifying the network parameters, such

as the external drive I ext
e , will affect the shape of the mPRC;

see Fig. 5.

Note the biphasic shape of the mPRC [see Fig. 4(b) or

Fig. 5(b)] when perturbations are made on the I cells. In

contrast, when perturbations are on the E cells, the mPRC

is monophasic [see Fig. 4(a) or Fig. 5(a)]. We also note that

for this set of parameters, the network is more sensitive to
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FIG. 5. PRC shape in function of parameters. (a) PRC Zvi

obtained via the adjoint method. (b) PRC Zve
obtained via the adjoint

method. The network parameters are the same as in Fig. 1.

perturbation to the excitatory cells than to the inhibitory cells

as is clear from the difference in amplitudes of the respective

mPRCs. We observe that modification of network parameters

mostly impacts the amplitude of the PRC. Indeed, as we

shall see in Fig. 5, the PRC amplitude becomes much smaller

when increasing the coupling strength. This can be intuitively

interpreted as an increase of robustness of the macroscopic

oscillation against external perturbations.

IV. CONCLUSION

The PRC framework is among the most influential of

neuroscience theories. It has already generated key insights,

including an appreciation for the emergence of neural syn-

chronization [22,23]. The need for this conceptual tool to

investigate brain rhythms is underscored by the fact that

PRC can provide clarity into their informational properties

[7]. Important strides are being taken in that direction, and a

number of efforts have been taken to compute the iPRC of

emerging macroscopic oscillations in spiking networks [11].

In this study, we developed methodology to compute

macroscopic iPRCs for emergent network oscillations using

recent framework for analytically tractable reduction of large

spiking networks [14–17]. By contrast to previous works (see,

e.g., Ref. [11]) where the analytical derivation of the mPRC

relies on the computation of the dual system of a partial

differential equation, our derivation is made via the usual

adjoint method.

Although we have restrained ourselves to considering

networks with homogenous synaptic weights, the framework

is sufficiently flexible to allow a certain level of synaptic

heterogeneity [14]. Another restriction made here is the

absence of conduction delays within the local circuit. Again,
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a generalization to include the delays poses no problem since

the low-dimensional reduction can be achieved with delay

[24], and the adjoint method still applies for delay differential

equations [12]. We note that it is unclear how existing methods

to compute mPRCs for a population of oscillators [10,25]

generalize in this situation.

We further note that the framework developed in

Refs. [10,25] assumes that the interaction across oscillators

is made via a sine wave coupling function. Although it can be

appropriate in a variety of biological contexts, it is simply

unrealistic for neural circuits. The description of synaptic

interaction within the Kuramoto framework is built upon the

expression of the interaction function [4]. The interaction

function describes the effect of the coupling onto the phase

of the neural oscillator. Unfortunately, it is far from being a

sine wave, and its general form does not permit the use of

the Ott-Antonsen reduction as it is needed in Refs. [10,25].

Therefore, whereas the method described by Refs. [10,25]

permits us to link the PRC of the individual units to the mPRC,

it is unfortunately not very well suited for the computation of

the mPRC of neural networks.

The main limitation is that our derivation is built upon the

work of Ref. [14]. As a consequence, our strategy can be

applied only to neural network made up of individual units

described by the QIF model. It does not apply for a network

of leaky integrate-and-fire neurons, for instance.

As we have seen, our analytical computations enable us

to make key predictions about the origin of biphasic versus

monophasic PRCs. In the light of our theory, the biphasic PRC

observed in neural networks can be interpreted as arising from

stimulation targeting the inhibitory neurons; on the other hand,

the monophasic PRC is characteristic of stimulation onto the

excitatory cells. Biphasic PRCs are known to facilitate entrain-

ment to periodic inputs at both higher and lower frequencies

than the natural frequency of the network. This provides some

theoretical supports for the strong implication of interneurons

not only on the emergence of macroscopic oscillations, but

also on locking capacity of neural networks [26,27].

Our work also opens new avenues to study the links

between the biophysics of the neurons, network connectivity,

and the time-persistent phase relationships seen during in vivo

brain activity and that have been proposed to play a crucial

role in the transfer and control of information across brain

regions [28]. Thus, the proposed method could be a key

technique to elucidate the underlying synaptic mechanism and

the functional roles of the so-called cross frequency coupling

observed in theta-gamma oscillations, for instance [29].
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APPENDIX A: MEAN-FIELD DESCRIPTION

In the mean-field limit (see, e.g., Ref. [15]) the system is

well represented by the probability of finding the membrane

potential of any randomly chosen neuron at voltage v at time t

knowing that its intrinsic parameter is η. The dynamics of this

density, which we denote p(t,v|η), is given by a continuous

transport equation written in the form of a conservation law:

τ
∂

∂t
p(t,v|η) +

∂

∂v
J(t,v|η) = 0, (A1)

where the total probability flux is defined as

J (t,v|η) = [η + v2 + I (t)]p(t,v|η).

A boundary condition for the flux, consistent with the reset

mechanism of the QIF model, is imposed:

lim
v→−∞

J (t,v|η) = lim
v→+∞

J (t,v|η).

Due to the boundary condition, one can check easily the

conservation property of the equation:
∫ +∞

−∞

p(t,v|η) dv = L(η),

with L the Lorentzian distribution,

L(η) =
1

π

�

(η − η̄)2 + �2
,

that defines the probability that a cell has an intrinsic parameter

η. The firing rate of the population r(t) is the flux through the

threshold, defining

r(t,η) = lim
v→+∞

J (t,v|η);

the total firing rate is then

r(t) = lim
v→+∞

∫ +∞

−∞

L(η)J (t,v|η) dη.

APPENDIX B: REDUCTION

The reduction [14] consists of assuming that the solution

of the partial differential equation (A1) has the form of a

Lorentzian distribution:

p(t,v|η) =
1

π

x(t,η)

[v − y(t,η)]2 + x(t,η)2
. (B1)

The mean potential and the firing rate are related to the

Lorentzian coefficients:

r(t,η) =
1

π
x(t,η)

and

y(t,η) =

∫ +∞

−∞

vp(t,v|η) dv,

so in the end, the mean membrane potential is defined as

V (t) = lim
M→+∞

∫ +M

−M

L(η)y(t,η) dη.

After algebraic manipulation [14], the transport equation (A1)

reduces to the low-dimensional dynamical system

τ
d

dt
r =

�

πτ
+ 2πrV

τ
d

dt
V = V 2 + η̄ + I (t) − π2r2.
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APPENDIX C: E-I INTERACTION SYSTEM

1. Mean-field description

Considering now a network of two interacting neural

populations, the system is then represented by two probability

density functions, one for the excitatory neurons, which we

denote pe(t,v|ηe), and one for the inhibitory cells, pi(t,v|ηi).

Each density follows a continuous transport equation; for the

E cells we have

τe

∂

∂t
pe(t,v|ηe) +

∂

∂v
Je(t,v|ηe) = 0, (C1)

where the total probability flux is defined as

Je(t,v|ηe) = [ηe + v2 + Ie(t)]pe(t,v|ηe).

A boundary condition for the flux, consistent with the reset

mechanism of the QIF model, is imposed. The firing rate of

the population r(t) is the flux through the threshold. Having

set the threshold at infinity, we get

re(t,ηe) = lim
v→+∞

Je(t,v|ηe),

and thus the total firing rate

re(t) =

∫ +∞

−∞

Le(ηe)r(t,ηe) dηe,

where Le is the Lorentzian distribution,

Le(ηe) =
1

π

�e

(ηe − η̄e)2 + �2
e

,

that defines the probability that a randomly chosen E cell has

an intrinsic parameter ηe. Similarly for the I cells, we have

τi

∂

∂t
pi(t,v|ηi) +

∂

∂v
Ji(t,v|ηi) = 0, (C2)

where the total probability flux is defined as

Ji(t,v|ηi) = [ηi + v2 + Ii(t)]pi(t,v|ηi).

A boundary condition for the flux, consistent with the reset

mechanism of the QIF model, is again imposed. The firing

rate of the population ri(t) is the flux through the threshold,

denoting again

ri(t,ηi) = lim
v→+∞

Ji(t,v|ηi);

the total firing rate is thus given by

ri(t) =

∫ +∞

−∞

Li(ηi)r(t,ηi) dηi,

where Li the Lorentzian distribution,

Li(ηi) =
1

π

�i

(ηi − η̄i)2 + �2
i

,

that defines the probability that a randomly chosen I-cell has

an intrinsic parameter ηi .

2. Reduction

Applying the reduction method (B1) to the two probability

densities pe(t,v|ηe) and pi(t,v|ηi) will therefore lead to the

reduced dynamical system:

τe

d

dt
re =

�e

πτe

+ 2πreVe

τe

d

dt
Ve = V 2

e + η̄e + Ie(t) − π2r2
e ,

(C3)

and for the I cells

τi

d

dt
ri =

�i

πτi

+ 2πriVi

τi

d

dt
Vi = V 2

i + η̄i + Ii(t) − π2r2
i .

(C4)

Assuming an instantaneous synaptic dynamic, the injected

current at the soma of the excitatory cells Ie(t) will be given

by

Ie(t) = I ext
e (t) + Jeeτere − Jeiτeri,

respectively for the I cells,

Ii(t) = I ext
i (t) + Jieτire − Jiiτiri,

where I ext is an extern al current and J the synaptic strength.

APPENDIX D: PRC

1. PRC for a general system

Let us consider a general dynamical system,

d

dt
x(t) = F [x(t)],

where x ∈ Rn. Assume that the system admits a stable

limit cycle x0(t), then if the system is perturbed by a small

perturbation, the solution can be written as

x(t) = x0(t) + εp(t),

where p(t) is the perturbed part. Up to a linearization, we get

that

d

dt
p(t) = DF [x0(t)] · p(t).

The iPRC [8] is defined as

d

dt
[Z(t) · p(t)],

which is equivalent to

d

dt
[Z(t) · p(t)] =

d

dt
Z(t) · p(t) + Z(t) ·

d

dt
p(t)

=
d

dt
Z(t) · p(t) + Z(t) · DF [x0(t)] · p(t)

=
d

dt
Z(t) · p(t) + DF [x0(t)]T · Z(t) · p(t)

=

{

d

dt
Z(t) + DF [x0(t)]T · Z(t)

}

· p(t).

Since the last equation is valid for every perturbation p(t), we

get that the iPRC is solution of the adjoint equation:

d

dt
Z(t) = −DF [x0(t)]T · Z(t).
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FIG. 6. Comparison between PRCs. The black line is obtained

via the adjoint method, the dots are obtained via direct perturbation

of the reduced system. (a) The perturbation is made with a square

wave current pulse (amplitude 5, duration 0.05) on the Ve component.

(b) The perturbation is made with a square wave current pulse (am-

plitude 5, duration 0.08) on the Vi component. (c) The perturbation is

made with a square wave current pulse (amplitude 3, duration 0.03)

on the re component. (d) The perturbation is made with a square

wave current pulse (amplitude 2, duration 0.02) on the ri component.

Parameters are the same as in Fig. 1.

2. PRC of the E-I system

We now assume that

O(t) = (reo
(t),Veo

(t),rio (t),Vio (t)),

is a stable limit cycle of the E-I system (C3)–(C4) of period T :

O(t) = O(t + T ).
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FIG. 7. Comparison between PRCs. The black line is obtained

via the adjoint method, the dots are obtained via direct perturbation

made either on the full network or on the reduced system. (a) The

perturbation is made with a square wave current pulse (amplitude

8, duration 0.09) on theVe component. (b) The perturbation is made

with a square wave current pulse (amplitude 20, duration 0.09) on the

Vi component. (c) The perturbation is made with a square wave

current pulse (amplitude 5, duration 0.09) on theVe component.

(d) The perturbation is made with a square wave current pulse

(amplitude 20, duration 0.09) on the Vi component. Parameters are

the same as in Fig. 1.

The iPRC Z(t) is a periodic vector of four components,

Z(t) = (Zre
(t),Zve

(t),Zri
(t),Zvi

(t)),

that is a solution of the adjoint equation

−
d

dt
Z(t) = M(t)T · Z(t),

where the matrix M(t) is given by a linearization of the E-I

system (C3)–(C4) around the limit cycle:

M(t) =

⎡

⎢

⎢

⎢

⎣

2Veo
(t)/τe 2reo

(t)/τe 0 0

−2τeπ
2reo

(t) + Jee 2Veo
(t)/τe −Jei 0

0 0 2Vio (t)/τi 2rio (t)/τi

Jie 0 −2τiπ
2rio (t) − Jii 2Vio (t)/τi

⎤

⎥

⎥

⎥

⎦

.

The Z(t) is given by the unique periodic solution that satisfies the normalization condition

Z(t) · Ȯ(t) =
2π

T
.

The panels of Fig. 6 respectively compare the PRC obtained from perturbation of the reduced dynamical E-I system (C3)–(C4)

with the four components of the iPRC Z(t). When the perturbation is small enough, the iPRC Z(t) will be proportional to the

PRC. This is indeed what we observe in Fig. 6 for the different components of the PRC.

Although we obtained four components

Z(t) = (Zre
(t),Zve

(t),Zri
(t),Zvi

(t));

in practice, only the voltage components are meaningful; see Figs. 6(a)–6(b). The reason is that, on the full spiking network,

perturbation can be made only by a current that affects the membrane potential. The panels of Fig. 6 compare the PRC obtained

from perturbation of the full spiking network, of the reduced dynamical system and the voltage components of the iPRC Z(t). As

expected, the network PRC is more noisy than the reduced system PRC; see Figs. 7(a)–7(b). When the strength of the perturbation

is increased, we do observe a mismatch between the PRCs and the iPRC; see Figs. 7(c)–7(d).
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[10] Z. Levnajić and A. Pikovsky, Phys. Rev. E 82, 056202 (2010).

[11] K. Kotani, I. Yamaguchi, L. Yoshida, Y. Jimbo, and G. B.

Ermentrout, J. R. Soc. Interface 11 (2014).

[12] K. Kotani, I. Yamaguchi, Y. Ogawa, Y. Jimbo, H. Nakao, and

G. B. Ermentrout, Phys. Rev. Lett. 109, 044101 (2012).

[13] H. Nakao, T. Yanagita, and Y. Kawamura, Phys. Rev. X 4,

021032 (2014).

[14] E. Montbrió, D. Pazó, and A. Roxin, Phys. Rev. X 5, 021028

(2015).

[15] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K.

Friston, PLoS Comput. Biol. 4, 1 (2008).

[16] E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008).

[17] T. B. Luke, E. Barreto, and P. So, Neural Comput. 25, 3207

(2013).

[18] E. M. Izhikevich, in Dynamical Systems in Neuroscience, edited

by T. Sejnowski and T. A. Poggio (MIT Press, Cambridge, MA,

2007).

[19] G. B. Ermentrout and D. Terman, Mathematical Foundations of

Neuroscience (Springer, New York, 2010).

[20] H. R. Wilson and J. D. Cowan, Biophys. J. 12, 1 (1972).

[21] M. Bartos, I. Vida, and P. Jonas, Nat. Rev. Neurosci. 8, 45 (2007).

[22] R. M. Smeal, G. B. Ermentrout, and J. A. White, Phil. Trans. R.

Soc. London B: Biol. Sci. 365, 2407 (2010).

[23] G. B. Ermentrout, R. F. Galn, and N. N. Urban, Trends Neurosci.

31, 428 (2008).

[24] D. Pazó and E. Montbrió, Phys. Rev. Lett. 116, 238101 (2016).

[25] K. M. Hannay, V. Booth, and D. B. Forger, Phys. Rev. E 92,

022923 (2015).

[26] J. A. Cardin, M. Carlen, K. Meletis, U. Knoblich, F. Zhang, K.

Deisseroth, L.-H. Tsai, and C. I. Moore, Nature (London) 459,

663 (2009).

[27] T. Akam, I. Oren, L. Mantoan, E. Ferenczi, and D. M. Kullmann,

Nat. Neurosci. 15, 763 (2012).

[28] E. Maris, P. Fries, and F. van Ede, Trends Neurosci. 39, 86.

[29] R. T. Canolty and R. T. Knight, Trends Cognitive Sci. 14, 506

(2010).

042311-8


