
Physica D 369 (2018) 30–46

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Traveling waves in a spatially-distributed Wilson–Cowan model of
cortex: From fronts to pulses
Jeremy D. Harris a,*, Bard Ermentrout b
a Department of Biology, Emory University, Atlanta, GA, 30322, United States
b Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15260, United States

h i g h l i g h t s

• Traveling waves in a Wilson–Cowan type neural field model.
• Front-like waves that join the down state to different up states.
• Traveling breathers.
• Bistability between traveling front and pulse solutions.

a r t i c l e i n f o

Article history:
Received 25 April 2017
Received in revised form 12 December 2017
Accepted 18 December 2017
Available online 2 January 2018
Communicated by B. Sandstede

Keywords:
Neural fields
Spatially-distributed networks
Traveling waves

a b s t r a c t

Wave propagation in excitable media has been studied in various biological, chemical, and physical
systems. Waves are among themost common evoked and spontaneous organized activity seen in cortical
networks. In this paper, we study traveling fronts and pulses in a spatially-extended version of the
Wilson–Cowan equations, a neural firing rate model of sensory cortex having two population types:
Excitatory and inhibitory. We are primarily interested in the case when the local or space-clamped
dynamics has three fixed points: (1) a stable down state; (2) a saddle point with stable manifold that acts
as a threshold for firing; (3) an up state having stability that depends on the time scale of the inhibition.
In the case when the up state is stable, we look for wave fronts, which transition the media from a down
to up state, and when the up state is unstable, we are interested in pulses, a transient increase in firing
that returns to the down state. We explore the behavior of these waves as the time and space scales of the
inhibitory population vary. Some interesting findings include bistability between a traveling front and
pulse, fronts that join the down state to an oscillation or spatiotemporal pattern, and pulses which go
through an oscillatory instability.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Cortical waves have been observed in a variety of neural circuit
experiments. Examples from slice preparation include hippocam-
pal slices in guinea pigs [1], and rodent neocortex [2]. In addition,
experimentalists have observed traveling waves in vivo, such as
in the study of neural responses to whisker deflection in barrel
cortex of anesthetized rats [3,4] and more recently, in propagation
reliability in primary visual cortex of awake macaques using mul-
tichannel electrodes [5]. The authors in [6] suggest that the shape
and velocity of cortical waves in neocortex may be important to
understanding underlying structures of the network. Their role in
sensory and motor processing ranges from inducing variability [7]
to controlling motor patterns [8–13] to setting diverse phases
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in sensory oscillations [14,15]. In addition, several researchers
suggest that understanding the initiation and termination of so-
called epileptiform events that lead to seizure activity may prove
paramount for developing therapeutic techniques for seizure pa-
tients [16,17].

There is a long-standing history of studying traveling waves
not only in general nonlinear systems but also in neural field
models. Moreover, there has been an effort to develop theoretical
models along with experimental results to qualitatively describe
wave propagation and make further predictions. For instance, the
authors in [18] studied the effects of GABAA-mediated inhibitory
post-synaptic potentials on the initiation, propagation, and termi-
nation of synchronous activity in slices of rat neocortex. Rather
than capturing all of the synaptic dynamics as in the Hodgkin–
Huxley model [19], theorists often consider a reduced model such
as the FitzHugh–Nagumo equation [20,21], which does not take
into account voltage-gating variables. Moreover, since many areas
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of sensory cortex have a spatial-structure [22], neural field equa-
tionswith one-dimensional continuous space can be used tomodel
cortical waves [23]. Amari considered a scalar firing rate model
given by a partial integro-differential equation. By assuming a
Heaviside step function for the transfer function, he was able
to analytically construct localized patterns of activity and assess
their stability to determine wave propagation [24]. Since then,
many others have studied traveling waves in spatially-distributed
neuronal networks, including, but not limited to [25–27]. Pinto
and Ermentrout studied a single population with linear adaptation
using singular perturbation and were able to construct waves by
separating the time scale of fast inhibition from slow inhibitory
feedback [28].

In the absence of input, the cortex shows many complex spon-
taneous patterns. Among those which have garnered interest by
physiologists are ‘‘up’’ and ‘‘down’’ states. During up states, in-
tracellular recordings of neurons show that they are depolarized,
which is due to ongoing synchronous synaptic activity. In [29],
multi-electrode recordings reveal that there is a transition from
down to up states in the form of a propagating wave; in other
words, a wave front. In contrast, there is no such spatially orga-
nized transition from up to down states. Hence, we cannot simply
propose that the fronts are traveling fronts in a scalar bistable
medium [30]. Moreover, since inhibition plays a crucial role in the
existence of up and down states [31], the model should involve an
interplay between the excitatory and inhibitory populations.

In this paper, we describe a firing rate model for the dynamics
of the space-clamped excitatory–inhibitory cortical circuit that,
depending on the timescale of the inhibition is either bistable
or monostable. We base this circuit on the experimental results
of [31] and [32]. We embed the dynamics in a spatially-extended
system of integro-differential equations in one- and two-spatial
dimensions and then analyze the resulting dynamics. In the one-
dimensional spatial case, by our choice of spatial weighting func-
tions, we are able to reduce the existence of traveling fronts and
pulses to solving a low-dimensional dynamical system. We find
that, as the inhibitory time scale increases, there are fronts (hete-
roclinic orbits) that join the down state to an up state characterized
by a spatially-homogeneous fixed point, a bulk oscillation, or a
period-doubled, spatiotemporal pattern. For slower inhibition, we
show that there are pulses (homoclinic orbits) which bifurcate into
periodicallymodulatedwaves as the spread of inhibition increases.
We combine direct simulation of the spatially discretized systems
with numerical continuation of solutions to the corresponding
boundary value problem tounderstand the transitions and stability
of the pulse and fronts. Lastly, we show simulations in two spatial
dimensions and close with a discussion of our findings throughout
the paper.

2. Methods

2.1. The Wilson–Cowan equations: A spatially distributed network

Large networks of synaptically connected neurons are often
modeled by so-called firing rate or neural field equations [23], typ-
ically with two types of populations: Excitatory (u) and inhibitory
(v). The Wilson–Cowan model is one such dynamical system that
represents population activity of interconnected excitatory and
inhibitory populations. We extend this model of cortex to include
spatially-dependent connections with the assumption that the
spatial kernels are dependent on the pre-synaptic population, but
not on the post-synaptic population receiving the input:

τe
∂u
∂t

(x, t) = −u(x, t) + F (aeeKe(x) ⋆ u(x, t) − aeiKi(x)

⋆ v(x, t) − θe) (1)

τi
∂v

∂t
(x, t) = −v(x, t) + F (aieKe(x) ⋆ u(x, t) − aiiKi(x)

⋆ v(x, t) − θi)

where u, v are the firing rates of the excitatory and inhibitory
populations, respectively, F (I) is a nonlinear function representing
the firing rate as a function of the spatially distributed inputs: Kj(x),
j ∈ {e, i} are spatial interaction functions (typically Gaussian or
exponentially decaying with distance) which are convolved with
the activities. Here, k(x) ⋆ m(x) :=

∫
D k(x − y)m(y) dy, where D

is the spatial domain of the network. The parameters τj, j ∈ {e, i}
represent the time scales of the excitatory and inhibitory activities;
the parameters aj k are the coupling strengths from population k to
population j and θj are thresholds. Throughout this paper, we let
F (I) = 1/(1 + exp(−β I)) and β = 50, aee = aie = 1, aei =

1.5, aii = 0.25, θe = 0.125, θi = 0.4. Since we can rescale time,
without loss of generality, we set τe = 1 so that τ = τi is the
relative time constant of inhibition to excitation. The parameters
σj, j ∈ {e, i} are the spatial length scales of the excitatory and
inhibitory connections:

Ke(x) =
1

2 σe
exp

(
−

|x|
σe

)
and Ki(x) =

1
2 σi

exp
(

−
|x|
σi

)
,

normalized so that
∫
R Ke(x) dx =

∫
R Ki(x) dx = 1. Though Gaussian

kernels yield similar results, we choose exponential kernels to
facilitate with mathematical analysis. (See Fig. 1).

Throughout this manuscript, we focus on the time and space
constants of the inhibitory feedback, both of which have been
shown to be important in the dynamics of cortex. Then when
we consider the full network model with both excitatory and
inhibitory spatially-distributed connections, we will fix the time
and space constants of excitation to be one, i.e. τe = σe = 1, so that
the temporal and spatial scales of the network, denoted τ = τi/τ
and σ = σi/σe, are those of inhibition relative to excitation.

We want to study two types of traveling waves: The first is a
traveling front of activity that transitions the media from a down
state (low firing rate) to an up state (high firing rate). This type
of network-level propagation and activation has been studied for
its relation to epileptiform behavior during seizure activity; the
second waveform is the traveling pulse which has been observed
experimentally in several areas of animal cortex such as in the
whisker barrel circuit of rat cortex. To better understand the wave
fronts that transition from the down state to the up state, we must
first describe the behavior of these two states, both in the space-
clamped model (‘‘zero-dimensional’’ with no space) and in the
spatially-extended system.

2.2. The E-I system without spatial coupling

As long as the spatial kernels are normalized, the space-
clamped system (when all solutions are independent of x) reduce
to the classical Wilson–Cowan equations:

u′
= −u + F (aee u − aei v − θe) (2)

τ v′
= −v + F (aie u − aii v − θi) ,

where ′
=

d
dt and τ = τi/τ is the time constant of inhibition

relative to excitation. For the chosen set of parameters, there are
three equilibria: (1) The down state (ū1, v̄1); (2) the saddle point
(ū2, v̄2); and (3) the up state equilibrium (ū3, v̄3), which, in the case
that it is stable, has been referred to as the Inhibitory Stabilized
Network (ISN) state [32,33]. Fig. 2B shows the configuration of
the nullclines with the given parameter set. The three fixed points
satisfy

0 = −u + F (aee u − aei v − θe) (3)
0 = −v + F (aie u − aii v − θi) .
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Fig. 1. The firing rate function and spatial kernels. (A) The sigmoidal firing rate function with increasing gain parameter: β = [25, 50, 200]. (B) The excitatory (Ke) and
inhibitory (Ki) kernels without lateral inhibition: σ < 1. (C) Excitatory and inhibitory kernels in the case of lateral inhibition σ > 1.

Fig. 2. The space-clamped dynamics. (A) The bifurcation diagram with u-values plotted against the relative time constant of inhibition τ > 0. The top horizontal red curve
is the stable up state (E3) that goes through a supercritical Hopf Bifurcation (HB) at τHB = 0.2697. The green curve corresponds to stable limit cycles which terminate at the
Homoclinic Bifurcation (HC), shownwith a vertical dashed line at τHC = 0.6764. (B) The u-v phase plane: The u-nullcline (orange) and v-nullcline (violet), the three equilibria
E1, E2, E3, a periodic orbit (PO) for τ = 0.4 and a homoclinic connecting the unstable and stable manifolds of saddle point (E2). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

As we will see shortly, the lower left equilibrium, E1, is the down
state which is unconditionally asymptotically stable; the middle
state, E2, is always a saddle point, and the right-most fixed point,
E3, is the stable up state if τ is sufficiently small. We note that
the up state is on the middle branch of the cubic nullcline rather
than on the right branch. In chapter 11 of [34], the authors argue
that this nullcline configuration (with a fixed point on the middle
branch) is the only one that can explain the properties of up and
down states to stimuli [31]. Moreover, this configuration has been
used to explain the paradoxical effects of a sustained drive to
the inhibitory population which decreases the firing rate of the
excitatory and inhibitory populations [32,33].

We can understand the stability of the equilibria from the
linearization about each of them which is given by the matrix, A0:

A0 =

(
−1 + bee −bei
bie/τ −(1 + bii)/τ

)
.

Here bjk = ajkF ′(ajeū − ajiv̄ − θj), for j, k ∈ {e, i}. Since F ′(·) > 0,
each of the bjk ≥ 0. Since the down state lies on the negatively
sloped branch of the excitatory nullcline, then −1 + bee < 0,
and so the trace (determinant) of A0 is negative (positive) and the
down state is stable for all values of τ . The middle equilibrium, E2,
lies on a point where the slope of the excitatory nullcline exceeds
that of the inhibitory so it is always a saddle point which has a
stable manifold that acts as a separatrix of the phase plane. That
is, for small perturbations of the rest state, the activity tends back
to rest, but for sufficiently large perturbations past the separatrix,
the trajectory may go away from the down state. Depending on
the stability of the up state, E3, the trajectory may tend to E3, to a
limit cycle surrounding E3, or make an excursion around E3 and
fall back down to rest. We note that at the up state, the slope

of the inhibitory nullcline is greater than that of the excitatory
nullcline so it is always a source or a sink (the determinant is
always positive) depending on the trace of A0. For the parameters
of interest, we can show that for small τ > 0, the trace and
discriminant are both negative, so we have complex conjugate
eigenvalueswith negative real part. Aswe increase τ > 0, the trace
increases through zero while the discriminant remains negative.
Hence, the fixed point goes through a Hopf bifurcation at τ = τHB,
where

τHB = (1 + bii)/(bee − 1) = (1 + aii βv̄(1 − v̄))/(β ū (1 − ū) − 1) ,

which for our parameters is approximately τHB = 0.2697.
In Fig. 2A, we show the change in stability: For small τ > 0,

E3 is a stable fixed point (red horizontal line), and as τ increases,
the fixed point goes through a supercritical Hopf Bifurcation from
which limit cycles emerge (green curves in Fig. 2A). The limit cycles
grow with increasing τ and terminate at a homoclinic bifurcation
(vertical, dashed blue line in Fig. 2A) which connects the unstable
manifold (as t → −∞) to the stable manifold (as t → ∞) of
the saddle point (blue curve in Fig. 2B). This bifurcation will be im-
portant not only for finding the homoclinic orbit that corresponds
to a traveling pulse, but also for understanding how the network
transitions from supporting a front to a pulsewaveform as the time
constant of inhibition increases. To summarize the equilibria and
stability of the space-clamped system, E1 is always a stable fixed
point, E2 is always a saddle point, and E3 is a spiral node with
stability depending on the time constant of inhibition: For small
τ , the up state is a stable fixed point; for τ slightly greater than τHB,
the up state consists of a stable limit cycle; for τ > τHC , there are
no stable up states.
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2.3. Pattern formation in the up state

Before we study the traveling waves, which involves the
spatially-distributed network, we want to determine the behavior
of the up states within the spatially-distributed network. Since the
traveling fronts join the down to up states, then at the very least,
we want there to be some type of stable up state dynamics. In
the previous section, we showed that the equilibrium up state of
the homogeneous (space-clamped) system was unstable once the
inhibition time constant, τ , exceeded τHB (the Hopf bifurcation),
which gives rise to periodic orbits. The oscillatory up state per-
sisted until it was lost at a homoclinic bifurcation. In this section,
we examine the stability of these spatially homogeneous states in
the spatially-extended network. We first note that since bee < 1 in
the down state, a pattern forming instability is not possible in this
lower state, so we restrict our attention to the up state.

2.3.1. Stationary patterns
We first want to determine whether a stationary pattern may

arise from perturbations of the up state when 0 < τ < τHB. For the
perturbation analysis, we will denote the up state equilibrium by
(ū, v̄) = (ū3, v̄3) and consider a perturbed solution of the form

U(x, t) = ū + ε u(t) eiω x , V (x) = v̄ + ε v(t) eiω x ,

so that the convolutions become

Ke(x) ⋆ U(x, t) = ū + ε K̂e(ω) u(t) eiω x (4)
Ki(x) ⋆ V (x, t) = v̄ + ε K̂i(ω) v(t) eiω x ,

where K̂j(ω) are the Fourier transforms of Kj(x). We plug (4) into
(1) and take a Taylor expansion. Using the constant steady-state
conditions in (3), we collect order ε terms to obtain a family of
linear two-dimensional ODEs parametrized by wavenumber, ω:

ut = −u + beeK̂e(ω)u − beiK̂i(ω)v (5)
τ vt = −v + bieK̂e(ω)u − biiK̂i(ω)v ,

where bjk are constants bjk = ajk F ′(aj,e ū − aj,i v̄ − θj). Then the
linearization is a family of matrices which are parametrized by ω,

A(ω) =

(
−1 + beeK̂e(ω) −beiK̂i(ω)(
bieK̂e(ω)

)
/τ

(
−1 − biiK̂i(ω)

)
/τ

)
.

By the choice of firing rate function, F satisfies the logistic equation,
F ′

= β F (1 − F ). Now, since (ū, v̄) satisfy (3), we obtain bje =

aje β ū (1 − ū) and bji = ajiβ v̄ (1 − v̄). Then the trace of A(ω) is
Tr(ω) = beeK̂e(ω)−1−

(
1 + biiK̂i(ω)

)
/τ . For the case thatwe study

here, the trace is negative for small τ > 0. Then the onlyway for an
instability to occur is for the determinant to be positive at ω = 0
and become negative for some positive value of ω. We consider
D(ω) =

(
1 − beeK̂e(ω)

)(
1 + biiK̂i(ω)

)
+ bei bie K̂i(ω) K̂e(ω), which

is τ multiplied by the determinant of A(ω) and see that

D(0) = (1 − bee) (1 + bii) + bei bie
= (1 − βū(1 − ū)) (1 + aii βv̄ (1 − v̄))

+ aei β2 ū (1 − ū) v̄ (1 − v̄)
= 1 + β (aii v̄ (1 − v̄) − ū (1 − ū))

+ β2 (aei − aii) ū (1 − ū) v̄ (1 − v̄) .

As noted in the previous section, the determinant of the space-
clamped system is always positive, so D(0) > 0. Then, considering
D(ω) for ω > 0, we have

D(ω) = 1 + β (aii Ki(ω) v̄ (1 − v̄) − Ke(ω) ū (1 − ū))

+ β2 (aei − aii) ū (1 − ū) v̄ (1 − v̄) Ki(ω) Ke(ω) .

In Fig. 3A, we graph the function D(ω) and see that σ = σi/σe
must be greater than one in order for the spatially-homogeneous
constant solution to go unstable. In addition, we show the Turing
stripes that can arise as a stationary pattern in Fig. 3B.

2.3.2. Spatiotemporal patterns
To continue with our analysis of the up state, we consider

the spatially-extended network when there is a periodic up state,
which occurs for the range of inhibitory time constants, τHB <
τ < τHC . This periodic up state is a bulk oscillation of the
spatially-extended network and corresponds to a periodic orbit
of the space-clamped system in Eq. (2). The authors of [35] study
spatiotemporal pattern formation in Eq. (1) by considering a sim-
ilar perturbation as in the previous section, but instead, from the
spatially-homogeneous, periodic orbit, (ū(t), v̄(t)). The dynamics
of the perturbation are given by the family of time dependent
matrices, parametrized by wavenumber, ω:

A(t; ω) =

(
−1 + bee(t)K̂e(ω) −bei(t)K̂i(ω)(
bie(t)K̂e(ω)

)
/τ

(
−1 − bii(t)K̂i(ω)

)
/τ

)
,

where bek(t) = aek F ′(aee ū(t) − aei v̄(t) − θe) and bik(t) =

aik F ′(aie ū(t) − aii v̄(t) − θi) for k ∈ {e, i}. For a fixed ω, we
solve for the T -periodic orbit of the linear system X ′

= A(t; ω) X
with initial conditions, X = I , where I is the 2 by 2 identity
matrix. This forms the principal matrix of solutions, X(t; ω), which
we evaluate after one period to obtain the Monodromy matrix
M(ω) := X(T ; ω). The authors of [35] find that the periodic orbit
loses stability through a period-doubling bifurcation, whereby a
real eigenvalue of M(ω) decreases below −1. Hence the periodic
orbit is unstable to perturbations of wave numbers that satisfy

Q(ω) := 1 + Tr(ω) + D(ω) < 0 ,

where Tr(ω) and D(ω) denote the trace and determinant of the
Monodromy matrix.

For 0 < σ < 1, the graph of Q(ω) has a quadratic shape
that dips below zero for an interval of wave numbers. As we vary
a parameter, say σ , the zeros come together at a double root.
This gives a minimal value of σ for which instabilities to the bulk
oscillation can occur. In Fig. 4A,we show the lower pattern forming
boundary (PF) in (σ , τ ) parameter space: Above PF, the spatially-
extended network has an unstable periodic orbit (UO); below PF,
there is either a stable periodic orbit (above the Hopf, HB) or a
stable fixed point (below HB). A spatiotemporal pattern is shown
in Fig. 4B when (σ , τ ) = (0.8, 0.5). These are the same parameter
values as in Fig. 6C(iii), which shows a similar spatiotemporal
pattern left in the wake of the front. We see that in the absence of
inhibitory connections (σ = 0) there is an interval of τ -values for
which the periodic orbit goes unstable. We will see that there can
be fronts that join the down state to this complex spatio-temporal
up state.

Summarizing, we have shown that the down state consists
only of a stable equilibrium point and that the up state can be
one of four different types: a stable spatially uniform equilibrium;
a stable spatially uniform oscillation; a stable spatially periodic
pattern; or a complex spatio-temporal pattern. By varying the time
constant or the spatial spread of inhibition, we are able to find
these different regimes as shown in Fig. 4A. (Note that the regime
of time-independent spatial patterns is not shown in this diagram
as it occurs for σ outside the range shown here.)

2.4. A system of partial differential equations: Localized inhibition

To study traveling waves, we first focus on Eq. (1) when there
is only localized inhibition, i.e. σ = σi = 0. In this case, the
transfer function of the inhibitory dynamics only has spatial de-
pendence through the excitatory interaction kernels. By judicious
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Fig. 3. Stationary patterns. (A) The graph of D(ω) for three values: σ = [2, 3, 5] to show the Turing-instability as the spatial spread of inhibition increases in the system.
(B) Turing stripes of the excitatory population array for N = 512, when σ = 3 and τ = 0.1. (C) A cross-section (vertical, white line) of the time-invariant stripes from the
excitatory array in panel (B) at time t = 10.

Fig. 4. Spatiotemporal Pattern Formation. (A) Stability diagram for the homogeneous periodic orbit (PO) as the σ and τ vary. The (violet) horizontal dashed line is the
homoclinic (HC) for θe = 0.125. The lower boundary (PF) has a lower bound at the Hopf Bifurcation (HB). Below the HB line, the up state is a stable equilibrium point. The
black dots are (σ , τ ) = (0.8, 0.35), (σ , τ ) = (0.8, 0.5), and correspond to values in Fig. 6B, C (ii), (iii). (B) Period-doubled patterns of the excitatory population array for
N = 512 when σ = 0.8 and τ = 0.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

choice of weight kernel, namely the exponential that decays with
distance, we can convert the partial integro-differential equation
to an equivalent 4D system of partial differential equations using
similar techniques as in [36,37]. Specifically, we letw = w(x, t) :=

Ke(x) ⋆ u(x, t) denote the convolved excitatory activity; taking two
partial derivatives with respect to x, one can show that w satisfies
the second order partial differential equation: ∂2w

∂x2
= (w − u)/σ 2

e .
Then, defining z = z(x, t) :=

∂w
∂x , we can write the partial integro-

differential equation in (1), assuming localized inhibition, as

∂u
∂t

= −u + F (aee w − aei v − θe) (6)

τ
∂v

∂t
= (−v + F (aie w − aii v − θi))

∂w

∂x
= z

∂z
∂x

= (w − u)/σ 2
e .

This is a system of four coupled PDEs. If we include nonlocal
inhibition,we can apply the same trick to get six coupled first order
PDEs.

In the coming sections, we will explore the traveling wave
solution of (6) and then follow the orbits of this 4D system em-
bedded in the full 6D system. In the next section, we introduce the
traveling wave frame (ξ = x + η t), and the PDEs become ODEs
of the same dimension in this coordinate system. The solutions of
the 6D system, are approximated through a decomposed shooting
method, which decouples the 6D system into a 4D+2D set of ODEs.
This technique allows us to numerically approximate the traveling
wave solutions of Eq. (1) by a homotopy of solutions from the 4D
to the full 6D model when σi > 0 using continuation methods.

2.5. The traveling wave frame

In the next sections, we study the two traveling wave solutions
to Eq. (6): 1. A traveling front solution, where the mean firing rate
of E and I populations transitions from a down to up state; 2. A
traveling pulse solution, where the E and I populations transiently
increase their firing rates, make an excursion around the up state
and then decay back to the down state. In particular, we analyze
how the inhibitory time constant transitions the system from
traveling fronts to traveling pulses. Later, when we consider the
fully coupled 6D system, another bifurcation parameter of interest
is the spatial length scale of inhibition, which for σe > 0, can
be studied in terms of the relative spatial spread of inhibition to
excitation given by the ratio σ = σi/σe.

These waveforms can be analyzed within the traveling wave
frame, ξ = x + η t , where η > 0 is the unknown velocity of
the wave. If we suppose solutions of the form U(x, t) = u(ξ ),
V (x, t) = v(ξ ), then ∂

∂x =
d
dξ , and the chain rule yields ∂

∂t = η d
dξ . In

phase space, the traveling waves correspond to homoclinic (pulse)
or heteroclinic (front) orbits; these are trajectories that connect a
single equilibrium or two distinct equilibria, respectively, in the
limit as ξ → ±∞. Denoting ′

=
d
dξ , we obtain a 4-dimensional

system of first-order differential equations:

η u′
= (−u + F (aee w − aei v − θe)) (7)

(η τ) v′
= (−v + F (aie w − aii v − θi))

w′
= z

z ′
= (w − u)/σ 2

e ,

where η > 0 is the unknown wave speed. There are three fixed
points of the system, just as in the space-clamped system, which
we denote (u, v, w, z)µ = (ū, v̄, ū, 0)µ, where µ = 1 for the down
state, µ = 2 for the saddle point, and µ = 3 for the up state.
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Fig. 5. Comparison of traveling front solutions of the boundary value problem and simulations of the discretized network of N = 512 excitatory and inhibitory neurons
with local inhibitory connections (σi = 0). (A) In panel (i), we continue the traveling front solution with respect to (τ , η). The red star indicates an instability (computed
numerically) of the front at τ = 0.2923. In panel (ii), we show the three different solutions for τ = [0.1 , 0.4 , 0.6]. (B) The u-v phase planes: (i) τ = 0.1: The system tends
to the constant steady-state E3; (ii) τ = 0.4: The firing rate increases and tends to a spatially-homogeneous limit cycle around the up state; (iii) τ = 0.6: The stimulated
system increases in activity and moves away from the spatially homogeneous periodic orbit (bulk oscillation) toward a period-doubled oscillation (spatiotemporal pattern).
(C) The three tendencies are shown in the corresponding array plots of the excitatory population firing rates. Horizontal, white lines denote the temporal dynamics projected
in (B).

2.5.1. The traveling front: Localized inhibition
We first consider when τ < τHB and determine parameters for

the existence of a traveling front with wave speed η > 0. This
solution corresponds to a heteroclinic orbit which connects the
unstable manifold of the down state, (u, v, w, z)1 = (ū, v̄, ū, 0)1
to the stable manifold of the up state, (u, v, w, z)3 = (ū, v̄, ū, 0)3.
Hence, the boundary conditions satisfy

lim
ξ→−∞

(u, v, w, z) (ξ) = (ū, v̄, ū, 0)1

lim
ξ→∞

(u, v, w, z) (ξ) = (ū, v̄, ū, 0)3 .
(8)

The linearization around the down and up states is given by

Mµ =

⎛⎜⎜⎝
−1/η −bei/η bee/η 0

0 (−1 − bii) /(η τ ) bie/(η τ ) 0
0 0 0 1

−1/σ 2
e 0 1/σ 2

e 0

⎞⎟⎟⎠ ,

where bke = ake β ū (1 − ū) and bki = akiβ v̄ (1 − v̄), evaluated at
the fixed points: (u, v, w, z)µ, µ = 1, 3. In Appendix A, we show
that M1 has exactly one positive eigenvalue and the remaining
eigenvalues have negative real parts. We also show that as long
as the up state is a stable solution to the space-clamped system

in (2), then the matrix M3 has one positive eigenvalue and the re-
maining three eigenvalues have negative real parts (for all η > 0).
Thus, there is a one-dimensional unstable manifold for the down
state equilibrium which gives us an approximate starting point
for our numerical shooting. We note that the dimensions of these
manifolds may be preserved outside the range of parameters
where the up state is stable. So, as we will see, the existence of
a front joining the down state to the up state persists well beyond
the range of parameters where the up state is a stable equilibrium
point.

In Fig. 5, we approximate the heteroclinic with a one-dimens-
ional shooting method in which we fix τ = 0.1 and then vary
η > 0 to obtain a trajectory (of finite period) that connects to
the stable manifold of the up state. We refine this estimate using
AUTO [38] by extending the period to a large number (104). We
then continue in the desired parameter. In Fig. 5A(ii), we show the
curve of heteroclinics in (τ , η) parameter space and note that as
the inhibition slows down, the wave velocity increases. Intuitively,
if the inhibition is slower, then the excitation has a chance to excite
the down state before the inhibition gets a chance to kick in. In
Fig. 5A(ii), we show several trajectories for various time constants.
We note that the heteroclinic orbit has been continued up to τ
nearly 1 in Fig. 5A(i), which is well past the values of τ for which
the up state is a stable equilibrium in the space-clamped system
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(cf Fig. 2A, where τHB ≈ 0.27, τHC ≈ 0.67). We find from our
numerical stability analysis (described in Appendix E) that for σi =

0 the front loses stability at around τ = 0.2923 (indicated by a
star in Fig. 5A(i)) as a pair of complex eigenvalues passes through
the imaginary axis. In Fig. 5B, we superimpose the simulations of
the discretized network with N = 512 onto our numerical ap-
proximation of the heteroclinic in the u-v phase plane. To initialize
the wave in the discretized system, we excite a small portion of
the medium and then check to see that a wave propagates. For
τ < τHB, we see that the excitation propagates as a front and that
the shooting and simulations of the full network match very well
(Fig. 5B(i)). However, when τ > τHB, the up state equilibrium is no
longer a stable fixed point for the space-clamped system, and this
is demonstrated in panels (ii) and (iii) of Fig. 5B, C. In panel (ii), τ =

0.4 > τHB and we observe that instead of joining the down state
to a fixed point, as seen in the shooting method, the full spatially
discretized system shows a wave that connects the down state
to a spatially homogeneous oscillation. For even larger τ , the full
system appears to join the down state to a complex spatiotemporal
pattern. Such patterns arise through a period-doubling bifurcation
of a spatially homogeneous oscillation (see Fig. 4). In all three cases
shown in Fig. 5B, the portion of the trajectory from the down state
out to the maximum value of u is the same for both the shooting
and the simulation of the full spatial model. For this reason, the
velocity of the front is predicted by the shooting even though the
asymptotic up state is not the equilibrium point required by the
shooting. Thus, while our shooting method does not technically
apply for values of τ > τHB, it provides an almost exact predictor
for the velocity of the transition, since the solutions mostly agree
with simulations during the up stroke of propagation. Fig. 5A(ii)
shows the front velocity only up to τ ≈ 0.95, beyond which we
were unable to continue the solution. Ifwe choose τ close to 1, then
instead of fronts, we see pulses in the spatially discretized system.
These will be analyzed in Section 2.5.3.

2.5.2. The traveling front: Nonlocal inhibition
By introducing nonlocal coupling of the inhibitory population,

the system in Eq. (6) increases to a 6D system of first order differ-
ential equations given by

η u′
= (−u + F (aee w − aei q − θe)) (9)

(η τ) v′
= (−v + F (aie w − aii q − θi))

w′
= z

z ′
= (w − u)

q′
= r

r ′
= (q − v)/σ 2 ,

where q, r are the additional variables to represent the convolu-
tion (Ki ⋆ v)(x) as a second order system, and σ = σi/σe is the
relative length scale of inhibition to excitation. Similar to the 4D
system, we write the boundary conditions for the traveling front
(with wave speed η > 0). In the phase plane, this corresponds to a
heteroclinic orbit with the following boundary conditions:

lim
ξ→−∞

(u, v, w, z, q, r) (ξ) = (ū, v̄, ū, 0, v̄, 0)1

lim
ξ→∞

(u, v, w, z, q, r) (ξ) = (ū, v̄, ū, 0, v̄, 0)3 .
(10)

The linearization of the full 6D system in Eq. (9) around the down
and up states is given by

Mµ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1/η 0 bee/η 0 −bei/η 0
0 −1/(η τ ) bie/(η τ ) 0 −bii/(η τ ) 0
0 0 0 1 0 0

−1 0 1 0 0 0
0 0 0 0 0 1
0 −1/σ 2 0 0 1/σ 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where bek = aek β ū (1− ū) and bik = aikβ v̄ (1− v̄). In Appendix A,
we show that the down state has a two-dimensional unstable
subspace and a four-dimensional stable subspace. We also show
that if the up state is a stable equilibrium of the space-clamped
system in (2), then the dimensions of the stable and unstable sub-
spaces are the same as those of the down state. Since the unstable
space has a dimension greater than one, the numerical shooting is
more difficult to implement than in the 4-dimensional ODE. More
precisely, in the case of 4-dimensions, only one parameter (e.g. η)
needs to be varied to approximate the heteroclinic and homoclinic
orbits , while in the present case of 6-dimensions, two parameters
(e.g. η and another parameter to adjust the angle along the two-
dimensional unstable subspace) must be varied.

We thus use numerical solutions of the 4D system in Eq. (7) to
shoot in the higher dimensional system in which the variables q, r
are decoupled from the dynamics of the 4D system (but not vice-
versa). From this, we can obtain a decent approximation for the
solution of Eq. (9) when 0 < σi ≪ 1.We then perform a homotopy
from one system to the next using numerical continuation of a
parameter, say λ, from 0 to 1, where λ = 0 gives the solution
of Eq. (7) and λ = 1 gives the solution to Eq. (9) when the
inhibitory population has nonlocal, spatially-distributed connec-
tions. We provide further explanation of this procedure along with
detailed equations for the homotopy in Appendix B.

Fig. 6A depicts the velocity of the traveling front solutions
to Eq. (9) when both excitation and inhibition have nonlocal,
spatially-distributed connections. In Fig. 6A(i), we fix σ = 0.8 and
vary τ against η. Then in Fig. 6A(ii), we plot the curve of fronts in
(σ , η) parameter space for fixed values of τ = [0.1 , 0.35 , 0.5]
and see that as σ increases, the velocity of the traveling front
tends to zero.Moreover, the velocitymonotonically decreaseswith
increasing spatial spread of inhibition which suggests that the
longer reach of inhibition more strongly suppresses excitation of
the down state. This extends the onset of the pulse, which slows
propagation of the wave. The behavior of the velocity as τ varies,
shown in Fig. 6A(i), is qualitatively the same as in Fig. 5A(i); it is
just slower as expected from Fig. 6A(ii).

In Fig. 6B, we let σ = 0.8 and find transitions which are similar
to those found in Fig. 5B. For τ = 0.1, the up state is stable and we
see a transition of the system from the down state to the up state.
Aswe increase τ to 0.35, a limit-cycle emerges around the unstable
fixed point for the space-clamped system. Despite this, the curve of
traveling fronts continues in (τ , η) space, so in Fig. 6B(ii) and (iii),
we superimpose network simulations of the discretized spatial
system onto numerical solutions and project them in the u-v phase
plane. Since the spatially uniform up state is unstable, the network
tends to a bulk oscillation similar to the limit-cycle depicted in
Fig. 2B. When τ = 0.5, the spatially homogeneous oscillation
is unstable and the system tends to a spatiotemporal pattern,
which can be seen in the excitatory array plot in Fig. 6C(iii) (cf.
Fig. 4B). Thus, we see that the effect of spatial connectivity of the
inhibition has little qualitative effect on the form of the waves,
both in the shooting and the full simulation. However, we note that
the velocity is very strongly dependent on σ with the maximum
effect occurring around σ = 1. That is, the velocity of the wave is
very sensitive to the lateral connectivity of the inhibitory neurons
when that connectivity has roughly the same spatial spread as
the excitatory population. For nonlocal inhibition, the transition
from the down state to a spatiotemporal patterned up state at
higher values of τ is much more apparent than in the purely local
inhibition case. Compare Fig. 5C(iii) and 6C(iii). Interestingly, the
shooting correctly predicts the velocity of the transition from the
down state to the up state in the full simulation even though
the steady state dynamics of the simulation are not spatially or
temporally uniform. According to our numerical stability analysis,
the traveling wave that joins the down state to the up state (found
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Fig. 6. Comparison of traveling front solutions of the boundary value problem with simulations of the discretized network of (N = 512) excitatory and inhibitory neurons
with nonlocal inhibitory connections (σi > 0). (A) The curve of heteroclinic orbits of the 6D system: (i) σ = 0.8 in (τ , η); (ii) τ = [0.1 , 0.35 , 0.5] in (σ , η) parameter space.
The red star at τ = 0.2893 is the value for which the numerical stability analysis predicts the wave goes unstable. (B) Numerical solutions and simulations in the u-v phase
plane, increasing τ from left to right: (i) τ = 0.1, (ii) τ = 0.35, (iii) τ = 0.5. (C) Space–time plot of the excitatory population firing rates for parameters in (B).

through shooting) is unstable as a solution to the full integral
equations. That is, while the front exists, it is not stable. In spite of
the instability, the heteroclinic orbit provides an excellent estimate
of the velocity for the down to up state activation.

2.5.3. The traveling pulse: Nonlocal inhibition
As we noted in Section 2.2, when τ is large enough, there are

no attractors around the up state and, so, excursions away from
the down state return to the down state. Thus, we will now look
for traveling pulse solutions to Eq. (9). These can be constructed
in the same manner as for the traveling front, i.e. by starting with
the 4D system in Eq. (7) and then performing a shootingmethod to
obtain solutions of the fully connected 6D system. When τ is suf-
ficiently large, the space-clamped system is an excitable medium;
that is, there is a unique globally stable down state but sufficient
perturbations cause a transient excitation before decaying back
to the down state. Traveling pulse solutions are often found in
spatially distributed excitable media [24,28,39], so it is natural to
look for such solutions in our network. Thus, in this and the next
few sections, we will study the properties of traveling pulses.

Here, we increase the time constant of inhibition, τ > τHC =

0.6764, and look for a pulse solution satisfying the boundary con-
ditions,

lim
ξ→±∞

(u, v, w, z, q, r) (ξ) = (ū, v̄, ū, 0, v̄, 0)1 .

In our analysis of the traveling pulse, we are interested in how the
spatial (σ ) and temporal (τ ) scales affect the speed of the traveling
wave as well as the stability. In Fig. 7A(i), we fix τ and continue the
orbit with respect to σ . (In a subsequent section, we will fix σ and
continue with respect to τ as this enables us to see the transition
from fronts to pulses.) Here, we note that the speedmonotonically
decreases with respect to σ , which means that as the spread of in-
hibition increases, thewave slows down. Aswith fronts, the reason
for this is that the inhibitory population can reach longer a range
relative to the excitatory population, which slows the increase in
firing rate of excitation during propagation. Moreover, the curves
in (σ , η) parameter spacewith larger τ lie above thosewith smaller
τ , so as with fronts, slowing the inhibition speeds up the wave.
This can be explained by the fact that activation occurs through
feedforward excitation of neighboring excitatory populations and
is quenched by the tracking inhibition. Hence, inhibition releases
excitation to spread, but a larger time scale of inhibition, means
inhibitory tracking is slower in turning off excitation. In addition,
we observe in Fig. 7A(ii) and (iii) that the amplitude of the pulse
increases with larger τ and larger σ .

In Fig. 7B, we plot the pulse trajectory in the u-v phase plane
for fixed τ = 2 and increasing σ to compare the trajectory from
shooting (blue, yellow, green) with network simulations (black).
We note that for small σ the simulations and the shooting match
exactly, as in Fig. 7B(i), but there is an increasing discrepancy with
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Fig. 7. Comparison of traveling pulse solutions of the boundary value problem and simulations of the discretized network ofN = 512 excitatory and inhibitory neurons with
nonlocal inhibitory connections (σi > 0). (A) (i) The velocity (η) of the pulse solutions as σ varies for several different values of the inhibitory time constant: τ = [0.8, 1.5, 2].
(ii) Excitatory–inhibitory (u, v) firing rates corresponding to the dots in panel (i) for τ = 2 and σ = [0.8, 1.33, 1.339]. The red star indicates σ = 1.345, the value for which
the numerical stability analysis predicts the wave goes unstable. (iii) Excitatory–inhibitory (u, v) firing rates of population for σ = 0.8 and τ = [0.8, 1.5, 2] corresponding
to intersections of the vertical dashed line in panel (i). (B) Numerical solutions and simulations in the u-v phase plane when τ = 2 and increasing σ from left to right: (i)
σ = 0.8, (ii) σ = 1.33, (iii) σ = 1.339. (C) Space–time plot of the excitatory population firing rates for parameters in (B). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

larger values of σ , as shown in Fig. 7B(ii), (iii). This can be explained
by looking at Fig. 7C where we show the full space–time plots of
the excitatory firing rate for these same three values of σ . What
appears to happen is that at higher values of σ (specifically, σ >
1) an instability of the pulse occurs that seems to be periodic in
the traveling frame. Thus, the width of the pulse is not constant
over time, and this appears to account for the discrepancy seen in
Fig. 7B(ii), (iii). This type of pulse is often called a breather [40,41],
or a lurching wave [42,43].

To better see the periodic orbit, we can make a coordinate
change along the line y = x + η t for the space–time arrays in
Fig. 7C. These types of waves are not simply similarity solutions, as
in regular travelingwave solutions, but rather, they have additional
temporal dynamics. Specifically, we observe oscillations of the
activated region even when transformed to the moving frame by
subtracting the mean velocity of the pulse (Fig. 8B). In Fig. 8C,
we see these oscillations grow with increasing σ , which indicates
that the oscillation goes through a bifurcation similar to the Hopf
bifurcation for a fixed point. Though the oscillatory instability
to the traveling wave is apparent in the discretized simulations,
continuation of the pulse solution found from shooting gives no
indication. Instead, we see from Fig. 7A that the curves and orbits
continue to exist, leaving from the unstablemanifold and returning
to the stable manifold of the down state. That is, while regular

traveling pulses continue to exist, they appear to lose stability as σ
increases. We note that this instability occurs over a limited range
of values of τ and σ . If τ is large, then the wave appears to just
die out as σ increases, while if τ is too small, then there is no
pulse. We found from our stability analysis (see Appendix E) that
for τ = 2, the wave goes through an instability at around σ =

1.345 which is close to what the discretized simulations indicate
in Fig. 8. Intuitively, the mechanism for lurching can be explained
as follows: The larger time scale of inhibition allows for the wave
to propagate quickly but the longer reach of inhibition staunches
this propagation, slowing the wave down and reducing the total
excitation. However, the diminished excitation and increased re-
current inhibition to the inhibitory network diminishes the inhibi-
tion, allowing the excitation to once again build up and push the
wave forward. The fact that the details of the mechanism rely on
a precise interplay between the temporal and spatial components
of the system is consistent with our finding that the instability
occurs within a small region of parameter space, specifically, at
intermediate values of τ and σ .

2.6. Stimulus-dependent activation

In Fig. 6, we see that for σ = 0.8 there exists a traveling front
up to about τ = 0.6, while in Fig. 7A(i), there are pulses for at least
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Fig. 8. Domain-straightening of the lurching wave to show the oscillatory instability as σ increases. (A) Array plot of the excitatory population firing rates when N = 512,
σe = 15 and σi is such that σ = 1.339 as in Fig. 7C(iii). (B) We estimate the speed and make a change of coordinates to transform the activated region enclosed in the
rectangle shown in (A). (C) A spatial average of panel (B) gives a smooth oscillation with amplitude that grows with increasing σ = [1.3, 1.31, 1.32, 1.33, 1.339].

Fig. 9. Bistability near the transition from fronts to pulses. (A) Continuation of the front (solid line) and the pulse (dashed line) as the relative time scale of inhibition, τ
varies for σ = 0.8. The values of τ that characterize the onset of the Hopf bifurcation (HB), spatiotemporal patterns (ST), and a homoclinic (HO) are indicated. (B) Temporal
evolution of a front (orange, blue) and a pulse (black) at two different spatial locations for τ = 0.68. (C, D) The front and the pulse in a space–time plot of the excitatory
firing rate. The pulse is evoked by a stimulus lasting 1 time unit and the front, by a stimulus lasting 2.5 time units. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

τ = 0.8, and so, we try to understand how the waves make the
transition from fronts to pulses as τ increases. Indeed, τ is a natural
parameter to study as it does not change the equilibria of the
space-clamped system but determines the stability of the up state
equilibrium. Fig. 9A shows a plot for the continuation of the front
(solid) and the pulse (dashed) at σ = 0.8. The front continuation
terminates near the homoclinic bifurcation for the space-clamped
system as does the pulse. The velocity of the traveling solutions
seems to be continuous as the dynamics pass from the front to the
pulse. We note that for τ > τHB, the front is unstable (cf. Fig. 6B),
but the velocity matches the velocity of the front that joins the
down state to the up state attractor. If we choose a value of τ near
the transition point (shown by the dotted line, τ = 0.68) and
briefly excite a local region in the spatially discretized network,
we observe that there are two kinds of attractors depending on the
duration of the stimulus: Front-like for longer lasting stimuli and
pulse-like for shorter lasting stimuli. These different behaviors are

shown in Fig. 9C, D. The pulses appear to reflect off the boundaries,
so in a semi-infinite domain, we would expect to see a traveling
pulse that continued in one direction. In Fig. 9B, we show the
temporal evolution of the two waves at two spatial locations. The
front is depicted with the orange and blue curves and the pulse is
depicted by the black curves. The temporal evolution of the front
and pulse solutions look identical up until a point where the pulse
drops back to the down state, while the front continues to evolve
to a spatiotemporal patterned up state.

2.7. Traveling waves in the 2D model

Thus far, we have only considered theWilson–Cowan equations
on a one-dimensional spatial domain to analyze how the speed and
stability of the wave depend on the temporal and spatial length
scales of the system.Next,we consider a two-dimensional spatially
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Fig. 10. Traveling fronts in the 2D spatially-distributed network (256 × 256) initiated by disc-shaped stimuli of radius 10 spatial units about the center of the media. We set
σe = 10, τe = 1 and show the excitatory population firing rates as a sequence of equal time frames for σi = 9 and three values of the inhibitory time constant: (A) τi = 0.1;
(B) τi = 0.4; (C) τi = 0.6.

distributed network with kernels that decay with the Euclidean
distance. Here we take the kernel to be the decaying exponential,

Kj(
√
x2 + y2) =

1
2π σ 2

j
exp

(
−

√
x2 + y2

σj

)
, j ∈ {e, i} .

We can use the curves in Figs. 6 and 7 to find parameters where
we might expect traveling waves in the system. To simulate the
2D spatially connected network, we create an array of 256 by
256 excitatory and inhibitory neurons with reflecting boundary
conditions. We impart an initial localized stimulus and present
the resulting numerical solutions in Fig. 10 as a series of five
frames over equal time intervals to show the propagation. We
fix τe = 1 and σe = 10 and choose three different pairs of
values for τi and σi to represent the three different behaviors of
the up state. In Fig. 10A, the up state is a stable equilibrium, and
the outwardly moving front eventually goes to a spatially uniform
constant steady state. In Fig. 10B, parameters are such that the
up state has a stable homogeneous oscillation and the asymptotic
state of the 2D system is a spatially uniformbulk oscillation. Finally
in Fig. 10C, parameters are chosen so that there is a symmetry
breaking instability of the uniform oscillation in the up state and
the wave transitions to that state. (See the supplemental movies
for a better picture of these three types of traveling fronts.)

In Fig. 11A, we increase τi to 2 so that a stable pulse exists for
σ = 0.9. An outwardly traveling pulse appears which meets with
the boundary and leaves the system back at the down state. We
then increase the spatial scale of inhibition (as in Fig. 8C) to look
for ‘‘lurching’’ waves in the 2D system. In Fig. 11B, we stimulate
the upper left corner of the media (instead of the center) to show
how the band of excitation propagates with varying width. From
t = 4 to t = 6, the band of excitation contracts as inhibition
catches up, and then from t = 6 to t = 8, it expands as feedforward
excitation progresses the wave. This lurching behavior is better

seen in a space–time plot of the excitatory populations along the
diagonal of the domain in panel B, which we display in Fig. 11C.
In the cases where we impart a center-stimulus, we note that the
outward propagation of the waves in 2D is radially symmetric in
both the front and pulse simulations. Thus, it is possible to reduce
the 2D system to a 1D system in order to better explore features
like the velocity and magnitude of the waves. We briefly explain
how to do this in Appendix D.

3. Discussion

Traveling waves in nonlocal media have been the object of a
great deal ofmathematical and computational study. In the context
of cortical networks, experimentalists have used the waves to say
something about the local circuitry of the network and have also
suggested some roles for waves in sensory processing [44,45].
Waves arise when active space-clamped dynamics interact in a
spatially localized manner. In almost all the studies of waves in
neural fields, the space-clamped dynamics is either bistable or
excitable; in the former case, the models are scalar with just a
population of excitatory cells and in the latter, the space-clamped
dynamics generally has a single equilibrium point. In this paper,
we have considered a different type of active medium for which
there are three spatially homogeneous equilibria—one of which is
on themiddle branch of the excitatory nullcline, whichmeans that
it is conditionally stable. This state (called the Inhibitory Stabilized
Network (ISN) state [32,33] or up state) has been found to have
many interesting computational features. Thus, we have focused
our attention on waves that join the down state to this up state
and how their existence depends on the stability of this state. For
such systems, the combination of numerical shooting, continuation
with AUTO, and numerical stability analysis in the comoving frame
has allowed us to study how the speed and other properties of the
waves depend on the inhibitory time and space scales.
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Fig. 11. Traveling pulses in the 2D spatially distributed network (256 × 256), setting σe = 10, τe = 1, τi = 2. We show the excitatory population firing rates as a sequence
of equal time frames: (A) The regular traveling pulse for σi = 9; (B) The lurching pulse initiated in the corner for σi = 14.5. (C) Space–time plot along the diagonal of (B) to
better illustrate the lurching behavior.

Traveling fronts in the full network correspond to heteroclinic
orbits of the ODE system obtained when converting to traveling
wave coordinates. These fronts take the network from the stable
down state to the up state. The experiments described in [29]
indicate that the transitions of cortical states from down to up are
spatially organized into waves, though the transitions from up to
down are not. Our results are consistent with these experiments
in that we have not found fronts that transition the system from
up to down state activity. It is typical for waves in bistable media
to only transition in one direction (e.g. up to down or down to up,
but not both). We note also that the dynamics in the up state are
far richer than in the down state with oscillations and complex
spatiotemporal dynamics possible. This richness could endow cor-
tical networks with greater computational capabilities [46,47] so
it makes biological sense for the transition to the up state to be
organized.

While we were able to find fronts over a wide range of pa-
rameters, simulations of the discretized spatial network showed
that the front did not always settle into the up state equilibrium.
Indeed, as the time scale of inhibition (τ ) increases, the up state
goes through several bifurcations, and the front joins the down
state to more complex dynamics in the up state—first leading to a
spatially uniform oscillation and then to a spatiotemporal pattern.
In spite of the instability, we found that the velocity determined
by shooting closely matches the velocity of the full network sim-
ulation. Numerically, we found that the front loses stability at a
τ -value which is greater than that of the Hopf bifurcation of the
space-clamped system. Hence, there is a small interval of time
scales for which the traveling front (connecting to the spatially ho-
mogeneous up state) is stabilized bynonlinearities in the comoving
frame even when the spatially homogeneous up state is linearly
unstable. A similar phenomenonwas studied in a general reaction–
diffusion system near a supercritical Hopf or Turing bifurcation of
the rest state behind the front [48,49]. Their results showed that
the small patterns left in the wake of the front stayed bounded and
were pushed away from the front interface. Lastly, we found that
further increasing the time constant of inhibition pushed the up
state oscillation through a homoclinic bifurcation, and hence there
was a maximum τ beyond which both simulation and numerical
shooting indicated that there were no fronts of any kind.

Fronts have been well-studied in the so-called scalar model
which consists of a single excitatory population. Ermentrout and
McLeod [27] proved that there is a unique monotone traveling
front solution to a class of scalar models with sigmoidal shaped
firing rate functions and spatially decaying connections. This trav-
eling front solution is a good approximation for the spread of

excitation when inhibition is slow. Building on these results, [28]
looked at propagating fronts in the scalar model with linear adap-
tation, showing how the wave speed depended on the threshold
for activation, spatial length scale, and synaptic decay parameters.
Since then, many others [50–52] have studied traveling fronts
in the scalar model with negative feedback term, either in the
form of synaptic depression or spike-frequency adaptation. For
instance, [50] found parameter regimes with stable counter prop-
agating fronts by deriving an Evans function for the stability of the
stationary front solution. Moreover, [51] constructed these fronts
using a perturbation expansion in powers of the speed, showing a
Hopf bifurcation in the case of weak input inhomogeneities and
found breather-like solutions at the interface of the stationary
front resulting from a modulation of the input inhomogeneity.
They followed the Hopf instability for various adaptation time
constants with respect to the strength of negative feedback and
inhomogeneous input. [52] also studied how inhomogeneities in
themedia affect front propagation in the scalarmodel. Specifically,
they modulated local excitability via changes in the slope of the
firing rate function which resulted in wave speed hysteresis such
that fronts moved faster when initiated on the less excitable side
of the media. They further investigated this hysteresis behavior by
inducing spatially dependent sinusoidal modulations of the down
state and found that the difference in wave speed was linearly
correlated to the gradient of the sinusoid. [52] also studied the
interplay between local and nonlocal features in the scalar model.
They showed a phase diagram of wave speed with respect to local
and nonlocal connectivity strengths and used it to explain how
the scalar model with spike-frequency adaptation might move
through regions of this diagram to capture the dynamics of slow-
wave activity during sleep, specifically, the roughly synchronous
up to down state transitions contrasted with the more sequential
down to up state transitions.

The traveling pulse corresponds to a homoclinic orbit in the
traveling wave frame. As with the traveling front, we compared
solutions to the boundary value problem with 1D simulations of
the discretized network. For pulses, we took the bifurcation pa-
rameter to be the spatial scale, σ = σi/σe, and simulations showed
that the traveling pulse goes through aHopf-like instability leading
to lurching waves. Our numerical stability analysis gave a similar
σ -value as to estimates found through simulation. [42] found
similar oscillatory instabilities to solitary waves in an excitatory–
inhibitory network of integrate-and-fire neurons in which there
was an explicit delay in the coupling between the neurons. Such
wave instabilities have also been studied in the scalar model with
linear adaption. For instance, the authors in [40] determine the
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instability of the traveling pulse for the case of the Heaviside
firing rate function using an Evans function approach. Using a
similar approach, [53,54] studied instabilities of a stationary pulse,
referring to these types of localized oscillatorywaves as ‘breathers’
or ‘sloshers’. (The difference between the two corresponded to the
destabilization of different modes, the sum or difference modes,
respectively.)

Traveling pulses are a fairly common phenomena in neural
tissue, both in vitro and in vivo [5,44] as well as in patholog-
ical situations [55,56] where they have been modeled without
an inhibitory population of neurons. In the latter setting where
inhibition is pharmacologically blocked, the scalar neural field
with adaptation may be an appropriate model to study, since
the negative feedback in these systems most likely arises in the
local system dynamics. As previously mentioned, fronts can be
obtained without adaptation [27,57], but traveling pulses will not
be observed, as an inhibitory feedback mechanism is necessary
to quench the activity and bring the field back to the down state
equilibrium. [28,40,50,54] studied pulses in the scalar model with
linear adaptation, but [57] looked at a more phenomenological
neural field model for spike-frequency adaptation in which the
adaptive threshold had nonlinear dynamics. In this case, insta-
bilities to a stationary pulse lead to either breathers or traveling
pulses, a richness of pulse dynamics in a homogeneous medium
that is most likely attributable to the nonlinear adaptation. [58]
looked at the feedback mechanism in more detail, including dy-
namics for both synaptic depression and nonlinear adaptation.
For the parameter regime that supported pulses, they showed a
phase plane and bifurcation diagram that was very similar to our
space-clamped system. In their space-clamped system, they estab-
lished the existence of stable limit cycles around the up state for
sufficiently fast depression or adaptation. However, the intrinsic
oscillation imparted different spatiotemporal effects because of
the different types of traveling waves present. In their spatially-
extended system, pulses emitters arose from localized oscillations
that propagated with a spatially-dependent phase shift, while in
our spatially-extended model, the front traveled with one or two
rebounding activationswhichwere overtaken by a spatially homo-
geneous oscillation.

We also compared the wave speed curves (varying the in-
hibitory time constant) for the front and pulse solutions obtained
through numerical shooting.We found that the transition between
the two curves is continuous and occurs near the homoclinic
bifurcation of the space-clamped system. To see the behavior of
the network at this transition, we activated one end of the media
and varied the duration of the initial stimulus. For brief stimuli,
we saw pulses, while for longer stimuli we observed front-like
waves that tended to a period-doubled spatiotemporal pattern.
The initial activation profiles were similar between the twowaves,
but sufficiently long stimuli prevented the media from decaying
back to rest, so waves rebounded to an activated state. [59] also
found bistability between different types of traveling waves in a
scalar neural field with linear adaptation. They showed a phase
diagram of the front and pulse speeds as a function of adaptation
strength. Different types of fronts and pulses emanated from a cen-
tral bifurcation point, near which, they found bistability between
a pulse and anti-pulse as well as between a pulse and inactivating
front.

Webegan our studywith localized inhibition and thenmade the
extension to nonlocal connections in both populations, in part to
illustrate our shootingmethod, but also to point out the differences
between wave activity in the two networks: local versus nonlocal
inhibition. According to our simulations and numerical analysis,
the front solutions behave quite similarly in the two systems,
losing stability near the Hopf bifurcation of the spatially homo-
geneous up state equilibrium. However, for the traveling pulses,

both simulation and numerical stability analysis indicate that the
solutions behave differently: In the case of localized inhibition,
the pulse is lost as the time constant of inhibition decreases but
remains stable as long as it exists. In the case of nonlocal inhibition,
as the time constant decreases (the spatial scale increases), the
pulse loses stability at a supercritical Hopf leading to the lurching
waves. This difference suggests that the interplay between the
temporal and spatial scales of inhibition is key in establishing these
more complicated breather-like waves.

We concluded the paper with some two-dimensional simula-
tions that showed radially symmetric waves. We described how
such waves could be analyzed in Appendix D. An alternate ap-
proach might be to use a technique used by [37] to derive a PDE
model by approximating the exponential kernel with the modified
Bessel function of the second kind of order zero. In this case, the
Fourier transforms of the spatial kernels would become simple
Hankel transforms. Based on their results, this might give an im-
provement over the long-wave approximation for estimating the
pattern forming boundaries. A similar method was used in [54]
to construct an explicit solution of a 2D stationary-pulse. These
methods might be useful for further investigation of waves in the
2D spatially distributed Wilson–Cowan model. With appropriate
initial conditions, we expect to also observe spiral and rotating
waves similar to those found in a 2D excitatory network with non-
linear synaptic depression [60] which were initiated by breaking
the rotational symmetry of pulse emitter solutions. These types
of waves have been seen in cortical slices [61] and more recently
in human cortex during sleep [62]. The analysis and simulation of
these waves remains a topic for further study.

Acknowledgment

This work was supported by NSF DMS 1219753.

Appendix A. The linearization of the 4D and 6D systems

In this section of the appendix we show that in the 4D system,
both the up and down states have a one-dimensional unstable
subspace and a three-dimensional stable subspace. We then show
that for the 6D system, there is a two-dimensional unstable space
and a four-dimensional stable space for both fixed points. We first
analyze linearizations of the 4D system at the up and down states.
Putting σe = 1, the characteristic polynomial corresponding to the
4D linearization around the up and down-states is of the form

p(λ) = λ4
+ A3 λ3

+ A2 λ2
+ A1λ + A0 ,

where

A3 =
1
η

(
1 +

(1 + bii)
τ

)
, A2 =

1
η2

(
(1 + bii)

τ
− η2

)

A1 = −
1
η

(
(1 − bee) +

(1 + bii)
τ

)
,

A0 = −
1

η2 τ
((1 − bee)(1 + bii) + bie bei) .

Note that A3 > 0, and for 0 < τ < τHB, we have that A1 ≡
Tr(0)

η
< 0 and A0 = −

D(0)
η2

< 0, where Tr(0) and D(0) denote the
trace and determinant of the space-clamped system. Now the sign
of A2 depends on the parameters τ and η. Nonetheless, there is one
sign change between the coefficients, so applying Descartes’ rule
of signs, we have exactly one positive root. Looking at p(−λ), we
have three sign changes (regardless of the sign of A2), so Descartes’
rule gives three or one negative roots.

Around the down-state, we found numerically that for the given
parameters ū = 2.1443× 10−3 and v̄ = 2.2944× 10−9. Hence the
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terms bee = aeiβv̄ (1 − v̄) and bei = aeiβv̄ (1 − v̄) are of order
O(10−1), while the terms bie = aieβv̄ (1− v̄) and bii = aiiβv̄ (1− v̄)
are of order O(10−7). Setting bie = bii = 0, a good approximation
for the characteristic polynomial is

p(λ) = λ4
+

1
η

(
1 +

1
τ

)
λ3

+
1
η2

(
1
τ

− η2
)

λ2

−
1
η

(
(1 − bee) +

1
τ

)
λ −

(1 − bee)
η2 τ

,

which has a zero at λ = −
1

η τ
< 0. We further factor to obtain,

p(λ) =

(
λ +

1
η τ

)
q(λ) ,

where q(λ) = λ3
+

1
η

λ2
− λ −

(1−bee)
η

. Since q(λ) has exactly one
positive root, then the remaining two roots are either negative or
form a complex conjugate pair. Note that q

(
−

1
η

)
=

bee
η

> 0

and q(0) = −
(1−bee)

η
< 0, so by the Intermediate Value Theorem,

there is at least one real root on the interval (− 1
η
, 0), which then

gives two negative roots of q(λ). Hence the down-state has a
three dimensional stable manifold and one dimensional unstable
manifold.

If we homotopy from the down to up-state so that the coeffi-
cients bij move (continuously) away from zero, then we can follow
(continuously) the roots of the resulting family of polynomials.
Now we want to show that the three dimensional stable manifold
is preserved under this homotopy. Around the up-state, Descartes’
rule of signs still gives a onepositive root and (at least) onenegative
root of p(λ) when 0 < τ < τHB, so we consider how the
two additional negative roots starting in the down-state can pass
through the imaginary axis. One case is through a zero eigenvalue,
which is not possible, since A0 < 0. The other is through a complex
conjugate pair passing through the imaginary axis, in which case
theremust be a pointwhen the real part is zero and the pair is of the
form λ = ±ω i with ω ∈ R. Looking at p(ω i), the imaginary terms
must cancel, so we have the necessary condition:−A3 ω2

+A1 = 0.
Since A3 > 0 and A1 < 0, this is impossible. Hence, the up-state has
a three dimensional stable manifold and one dimensional unstable
manifold.

Now we study the 6D linearization and use similar arguments
as in the 4D linearization to show that for certain values of τ and
σ = σe/σi the up and down-states have four dimensional stable
manifolds and two dimensional unstable manifold. We write the
characteristic polynomial:

f (λ) = λ6
+ C5 λ5

+ C4λ
4
+ C3 λ3

+ C2 λ2
+ C1λ + C0 ,

where

C5 =
1

η τ
(1 + τ) , C4 = −1 −

1
σ 2 +

1
η2 τ

,

C3 = −
1
η

(
1 − bee +

1
τ

+
1
σ 2

(
1 +

1 + bii
τ

))

C2 = −
1

η2 τ

(
1 − bee +

1
σ 2

(
η2 τ + 1 + bii

))
,

C1 =
1

η σ 2

(
1 − bee +

1 + bii
τ

)
,

C0 =
1

η2 σ 2 τ
((1 − bee)(1 + bii) + bie bei.)

Note that C5 > 0. Also, for 0 < τ < τHB , C1 = −
Tr(0)
η σ2 > 0 and

C0 =
D(0)
η2 τ2

> 0. If in addition 0 < σ < 1, then C3 < 0. Independent
of the sign of C4, we have two sign changes when ordering the

coefficients. Hence, we have either two or zero positive roots. Con-
sidering f (−λ), we see that there are four sign changes,which gives
four, two, or zero negative roots. Setting bie = bii = 0 as before, we
obtain an approximation for the characteristic polynomial around
the down-state:

g(λ) =

(
λ2

−
1
σ 2

)
p(λ).

Hence, we gain two real roots: One positive and one negative.
Then the down-state has a four dimensional stable manifold and
a two dimensional unstable manifold. Using a similar homotopy
argument as in the 4D linearization, we can show this stability
structure is preserved as we move bie and bii away from zero. A
positive eigenvalue cannot be gained from a negative eigenvalue,
as C0 =

D(0)
η2 τ2

> 0. Now suppose a complex conjugate pair (with
negative real part) passes through the imaginary axis, i.e. λ = ±ω i
with ω > 0 at some point. Looking at g(ω i), we must have 0 =

C5 ω4
−C3 ω2

+C1 = C5 (ω2)2−C3 (ω2)+C1, but sinceC5 > 0,C3 < 0
and C1 > 0, there are no positive roots. Hence there is no solution
such that ω is real, and so, purely imaginary eigenvalues are not
possible. Thus, both the up and down-states have four dimensional
stable manifolds and two dimensional unstable manifolds.

Appendix B. A homotopy from local to nonlocal inhibition

Briefly, we describe our continuation methods to obtain travel-
ing wave solutions of the 6D system in Eq. (9). Let vλ := (1−λ) v+

λ q with homotopy parameter λ ∈ [0, 1]. We write the system:

η u′
= (−u + F (aee w − aei vλ − θe)) (11)

(η τ) v′
= (−v + F (aie w − aii vλ − θi))

w′
= z

z ′
= (w − u)

q′
= r

r ′
= (q − v)/σ .

When λ = 0, we have v(λ=0) = v so that the first four equations
are decoupled from the last two, and this becomes a more man-
ageable shooting problem (varying η > 0) for Eq. (6). The last
two equations ‘see’ the dynamics of v and have one dimensional
stable and unstable manifolds. Once η > 0 is fixed, the dynamics
for v are approximated and we can vary σ > 0 to solve for the
heteroclinic or homoclinic orbit in the (q, r) system.With an initial
approximation of the orbit, wemake the ‘period’ larger. In practice,
before coupling the (u, v, w, z) system by continuing λ from 0 to
1, the parameter σ > 0 may need to be decreased. In Fig. 12,
we illustrate the homotopy of heteroclinic solutions for σ = 0.9,
τ = 0.1 by plotting the trajectory in the u-v and q-r planes and
increasing the homotopy parameter λ from 0 to 1.

Appendix C. Analysis of standing waves

In Fig. 7, we see that for τ > 0 large enough the speed of the
traveling pulse goes to zero as σ > 0 increases. Analytically, these
waves correspond to η = 0 so that the time-invariant solutions
u(x), v(x) can be put in terms of (w, z, q, r)(x):

u(x) = F (aeew(x) − aeiq(x) − θe) (12)
v(x) = F (aiew(x) − aiiq(x) − θi)

where the remaining variables (w, z, q, r)(x) satisfy the boundary
value problem:

w′
= z (13)

z ′
= (w − u)

q′
= r
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Fig. 12. A homotopy of heteroclinic solutions: Increasing λ = [0, 0.2, 0.4, 0.6, 0.8, 1] to go from the localized solutions to nonlocal solutions. Compare the orbits λ = 0
to Fig. 5B(i) and λ = 1 to Fig. 6B(i).

λ2
=

(1 − bee − (1 + bii) /σ ) ±

√
(1 − bee − (1 + bii) /σ )2 − 4 ((1 − bee) (1 + bii)/σ + bie bei/σ)

2

Box I.

r ′
= (q − v)/σ

lim
x→±∞

(w, z, q, r) (x) = (ū, 0, v̄, 0)1 .

This is a 4D nonlinear differential equationwith ′
=

d
dx . Since these

are time-invariant solutions, the temporal scale τ is no longer a
parameter of the system. The linearization around the down-state
and corresponding eigenvectors are⎛⎜⎜⎝

0 1 0 0
1 − bee 0 bei 0

0 0 0 1
−bie/σ 0 (1 + bii)/σ 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
bei

λ bei(
λ2

+ bee − 1
)

λ (λ2
+ bee − 1)

⎞⎟⎟⎠ ,

where the eigenvalues satisfy

λ4
− (1 − bee − (1 + bii) /σ ) λ2

+ (1 − bee) (1 + bii)/σ + bie bei/σ = 0 .

Both solutions (given in Box I) are real and positive. Hence the
eigenvalues take the form ±

√
c1 and ±

√
c2 where c1, c2 > 0, and

the down-state E1 has two positive and two negative eigenvalues.
Unfortunately, numerically obtaining a homoclinic orbit connect-
ing the two dimensional unstablemanifold to the two dimensional
stable manifold of the down-state is a difficult task, since initial
perturbations of the trajectory should be linear combinations of
the eigenvectors corresponding to the unstable directions, which
depend on the parameter σ > 0.

Appendix D. Analysis of 2D traveling waves: A reduction to 1D

A possible method for analyzing the traveling waves found in
our 2D spatial model is to exploit the radial symmetry of traveling
waves initiated by a circular-shaped stimulus located at the cen-
ter of the media. The strategy is to convert the system to polar
coordinates, wherein the convolutions become special functions
and the spatial dimension is reduced to one. Since these waves are
independent of the polar angle, we can integrate out the angle to
define the kernel

J(r, r ′) =
2π
σ 2 exp

(
−

r2

2σ 2

)
I0

(
r r ′

σ 2

) [
r ′ exp

(
−

r ′ 2

2 σ 2

)]
,

where I0(x) =
∫ π

0 exp (x cos(φ)) dφ denotes the modified Bessel
Function of the first kind. Then the 2D spatial convolution terms

become radially-dependent 1D integrals:

(K ⋆ u)(r, t) =

∫
∞

0
J(r, r ′) u(r ′, t) dr ′ .

Then one can analyze the partial integro-differential equation in
radial coordinates given by

∂u
∂t

(r, t) = −u(r, t) + F
(
aee

∫
∞

0
Je(r, r ′) u(r ′, t) dr ′

− aei

∫
∞

0
Ji(r, r ′) v(r ′, t) dr ′

− θe

)
(14)

τ
∂v

∂t
(r, t) = −v(r, t) + F

(
aie

∫
∞

0
Je(r, r ′) u(r ′, t) dr ′

− aii

∫
∞

0
Ji(r, r ′) v(r ′, t) dr ′

− θi

)
.

Appendix E. Numerical stability analysis

It is nontrivial to determine the stability of the traveling waves
for smooth nonlinearities as it is not possible to reduce the ques-
tion to a simple Evans function (which is the case when the non-
linearities are piecewise constant). Instead, we spatially discretize
the network (as we have done in the simulations), and instead of
solving in terms of x, t , we solve in terms of ξ = x−ηt and t . Hence
we have to solve the system

ut = −u + ηuξ + f (aeeKe(ξ ) ⋆ u(ξ, t) − aeiKi(ξ ) ⋆ v(ξ, t) − θe)
τvt = −v + ητvξ + f (aieKe(ξ ) ⋆ u(ξ, t) − aiiKi(ξ ) ⋆ v(ξ, t) − θi) ,

where η must be chosen so that the wave is a fixed point of this
evolution problem. Note that η will be the velocity of the traveling
wave. We discretized these equations into N = 256 bins for each
component, u and v, with ∆x = 0.1. The convolutions were done
over a periodic domain for the pulse, since the endpoints are equal
and with reflecting boundary conditions for the front. We used a
centered difference for the derivative in ξ . We fix the wave in ξ
by demanding that we also have u(ξ0) = u0 where ξ0 is chosen
to be some point in the interior of our discretized domain. We
then seek a fixed point of the resulting set of ODEs. Having found a
fixed point (that is, choosing η correctly so that the wave does not
move), we then linearize theODEs around the fixed point, compute
the eigenvalues of the resulting large (512 × 512) matrix and
search for the eigenvalues that have small real parts (other than the
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zero eigenvalue that comes from the translation invariance of the
wave). We adjust parameters by hand until we can find the values
at which the real part of an eigenvalue crosses 0. We do this both
for the pulse and the front. We note that this approach for finding
the wave speed and the stability can be used for any convolution
kernel and does not require the special case of an exponential.

Appendix F. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.physd.2017.12.011.
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