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Convex and Nonconvex Formulations for Mixed
Regression with Two Components: Minimax
Optimal Rates

Yudong Chen, Xinyang Yi, and Constantine Caramanis, Member, IEEE,

Abstract—We consider the mixed regression problem with two
components, under adversarial and stochastic noise. We give
a convex optimization formulation that provably recovers the
true solution, as well as a nonconvex formulation that works
under more general settings and remains tractable. Upper bounds
are provided on the recovery errors for both arbitrary noise
and stochastic noise models. We also give matching minimax
lower bounds (up to log factors), showing that our algorithm is
information-theoretically optimal in a precise sense. Qur results
represent the first tractable algorithm guaranteeing successful
recovery with tight bounds on recovery errors and sample
complexity. Moreover, we pinpoint the statistical cost of mixtures:
our minimax-optimal results indicate that the mixture poses a
fundamentally more difficult problem in the low-SNR regime,
where the learning rate changes.

I. INTRODUCTION

This paper considers the problem of mixed linear regression,
where each observation of the output variable comes from one
of two unknown regression vectors. Formally, we observe n
data points (x;,y;) € RP x R, which satisfies

if z; =0,
if Z; = ].,

(mi, BY) + e,
<m7,7/8§> + €i,

where 37 and (33 are two unknown regression vectors in R?,
e; is the noise, and z; € {0, 1} can be thought of as a hidden
label determining which regression vector generates the i-th
data point. Our goal is to estimate the pair 3] and 35. We
consider the setting where the covariates x; and the noise e;
are independent of the labels, and in particular, no information
about the labels can be directly inferred from them. This
setting means that predicting labels exactly is impossible, with
or without knowing 3] and 3;.

Yi = 1=1,...,n,
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If the label of each sample is known, the problem decom-
poses into two standard linear regression problems, and can
be easily solved. Without knowing the labels, however, the
problem is significantly more difficult. The main challenge of
mixture models, and in particular mixed regression falls in the
intersection of the statistical and computational constraints:
the problem is difficult when one cares both about an efficient
algorithm, and about near-optimal sample complexity and
estimation error. Exponential-effort brute force search (over
all possibilities of the labels) typically results in statistically
near-optimal estimators. On the other hand, recent tensor-
based methods give a polynomial-time algorithm, but at the
cost of an O(p®) sample size (recall 37,35 € RP) instead of
the optimal rate O(p).! The Expectation Maximization (EM)
algorithm is computationally very efficient, and widely used
in practice for mixture problems. However, there has been
only limited understanding of its behavior, and in particular,
no general theoretical guarantees on global convergence are
known.

a) Our contributions and the cost of mixtures.: In this
paper, we tackle both statistical and algorithmic objectives at
once. The algorithms we give are computationally efficient,
specified by solutions of convex optimization problems as well
as a tractable nonconvex formulation, which can be solved by
polynomial-time, globally convergent procedures. In both the
noisy and noiseless settings our results provide better statistical
guarantees compared to the best known previous results. In
particular, in both the arbitrary noise and stochastic noise
regimes, we provide matching estimation error bounds and
minimax lower bounds, showing our results are statistically
optimal.

An interesting feature of our minimax results is that we
pinpoint the statistical cost of dealing with a mixture problem
compared to ordinary regression problems. As we detail below
in Theorems 3, 4 and 8, we show that in the high SNR regime,
there is (up to log factors) no loss, and one can expect to
recover the regression parameters at the parametric learning
rate (as with ordinary regression). At the low-SNR regime
(where, to the best of our knowledge, there are no previous
results on mixed regression), the rate changes from (1/n)/?
to (1/n)'/%. It is of interest to explore to what we owe this
change in rate. On the algorithmic side, our approach is to
solve a related low-rank matrix regression problem in the lifted

It may be possible to improve the sample requirement of tensor methods
to O(p*) for the case of Gaussian design.
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space, to estimate (something related to) the tensor product
of the two regressors. We show that the regression in this
lifted matrix space has an error that decays with (1/n)'/2. At
high SNRs, we prove a perturbation result (Theorem 4) that
shows that the top eigenvectors of this matrix inherit the same
rate. At low SNRs, however, this comes at a cost, and the
rate reduces to (1/n)'/%. Our matching lower bounds show
that this cost of converting an error bound in the lifted space
to an error bound in the regressor space is fundamental and
thus encapsulates the crux of the challenge. The lower bounds
are established by showing that at low SNR, distinguishing
one mixture of Gaussians from another is more difficult than
distinguishing one Gaussian from another, at exactly the rate
change indicated above.
Specifically, our contributions are as follows:

o In the arbitrary noise setting where the noise e =
(e1,...,e,)" can be adversarial, we show that under
mild technical conditions, as long as the numbers of ob-
servations for each regression vector satisfy ni,ns 2 p,
our convex algorithm produces an estimator (,C:)’l, ,32) that
satisfies

18— il < 112,
vn
This result immediately implies exact recovery in the
noiseless case with O(p) samples.

o In the stochastic noise setting with sub-Gaussian noise
and balanced labels (ny/ns — 1), if we have ny,ne > p
and a Gaussian design matrix, our convex estimator satis-
fies the following error bound (omitting polylog factors):

forb=1,2.

o/E,  ify>o,
A i
18 =Bil S {5 VE ifo(k) <v<o,
1
o(B)*, ify<o(2)?

for b = 1,2, where 7 is an lower bound of the signal
strength ||3%]]2 + ||35]|2, and o2 is the variance of the
noise e;.

o In the stochastic noise setting with imbalanced la-
bels, we propose a nonconvex optimization based for-
mulation along with a polynomial-time solver with
provable guarantees. Specifically, we show that when
min{n, /na,na/n1} is lower bounded by any constant
and /o 2 1, our estimator satisfies the bound

18y — B2 < a\/g, for b=1,2.

« Finally, in both the arbitrary and stochastic noise settings,
we provide minimax lower bounds that match the above
upper bounds up to at most polylog factors, thereby show-
ing that the results obtained by the estimates produced
by our algorithms are information-theoretically optimal.
Particularly in the stochastic setting, the situation is a
bit more subtle: the minimax rates in fact depend on
the signal-to-noise ratio (SNR) +v/c and exhibit several
phases, showing a qualitatively different behavior than in
standard regression and many other parametric problems
(for which the minimax rate is usually 1/1/n).

II. RELATED WORK

Mixture models and latent variable modeling are very
broadly used in a wide array of contexts far beyond re-
gression. Subspace clustering [19, 26, 32], Gaussian mixture
models [3, 21] and k-means/medians clustering [13] are pop-
ular examples of unsupervised learning for mixture models.
Arguably the most popular and broadly implemented approach
to mixture problems, including mixed regression, is the EM
algorithm [18, 22]. In fact, EM has been used for mixed
regression for various application domains [20, 31]. Despite
its wide use, still little is known about its performance beyond
local convergence [4, 34].

One exception is the work in [37], which studies mixed
regression in the noiseless setting. They propose an alternating
minimization approach initialized by a grid search, and show
that their algorithm recovers the regression vector with a
sample complexity of O(plog2 p). Extension to the noisy
setting is recently considered by the authors of [4]. Focusing
on the stochastic noise setting with sufficiently high SNR
(that is, when v = o cf. Section I), they show that the EM
algorithm with good initialization achieves the error bound
||[3b - Bill2 S \/72—1—02\/% In the work [27], EM is
adapted to the high-dimensional regression setting, where the
regression vectors are known to be sparse and EM is used
to solve a penalized (for sparsity) likelihood function. This
generalized EM approach achieves support-recovery, though
once restricted to that support where the problem becomes
a standard mixed regression problem, only convergence to a
local optimum can be guaranteed. Very recently for this high-
dimensional sparse regression setting, the works in [33] and
[36] establish local convergence (that is., assuming that EM
is run from a good initialization) of truncated and regularized
EM algorithms to a statistically optimal solution.

Mixture problems have been explored using the technology
of tensors recently developed in the literature [2, 21]. The
authors of [12] consider a tensor-based approach, regressing
x®3 against ¥ and then using the tensor decomposition
techniques to efficiently recover each [3;. These methods
are not limited to the mixture of only two components, as
we are. Yet, even for two components, the tensor approach
requires O(p®) samples, compared to O(p - polylog(p)) that
our work requires. As noted in their work, the higher sampling
requirement seems to be a common difficulty for algorithms
based on high order tensors.

In this work we consider the setting with two mixture
components. Binary latent factors are common modeling tools
for many applications, as they model on/off-type relationships,
among others. We refer to the paper [31] for numerous
examples of such problems. While the extension to more
than two components is of great interest, much is unknown
even for two components. In particular, globally convergent
algorithms with even near-optimal sample complexity are, to
the best of our knowledge, unknown. In fact, in the low-SNR
regime (see below for details) we are unaware of any algorithm
able to guarantee non-trivial estimation of the parameters. As
explained above, our work shows that there may be a funda-
mental reason for this: the minimax-optimal rate, and hence
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the (statistical) difficulty of the mixed regression problem, is
different at the high-SNR and low-SNR regimes.

III. MAIN RESULTS

In this section we present this paper’s main results: our
algorithms for mixed regression and matching statistical upper
and lower bounds. In addition, we describe the precise setup
and assumptions, and introduce the basic notation we use.

A. Problem Set Up

Suppose that 3] and 35 are two unknown vectors in R?.
We observe n noisy linear measurements {(x;,v;)}" ;. Let
7, and Z, denote the (unknown) subsets of the measurements
corresponding to 37 and 33, respectively, with Z; UZy = [n],
Il ﬁI2 = gf), ny = |Il‘, N9 = |Ig| and ny + ng = n. The
measurements satisfy the following model: for each b € {1, 2}
and ¢ € Ty,

yi = (x4, 8;) + €. )

Given the data {(x;,y;)}",, the goal is to recover 37 and
8;.

To measure the estimation error, we use the following
symmetric (semi-)metric: for each pair 8 = (81,82) and
0’ = (B1,35) in R? x RP, define

p(6,6') i=min{ 81— Bl + 182 — Byl
181 = Bl + 182 = Bill, -

which is the total ¢y distance up to permutation. For an
estimate & = (B1,/32) of the true regression vector pair
0* := (87, 35), we are interested in bounding the symmetric
estimation error p(é7 6*). In the presence of noise, the correct
labels (or equivalently, the sets Z; and Zy) are in general

irrecoverable.

The key insight to our optimization formulation is to utilize
a particular lifting to the space of p X p matrices, that then
allows recovering B; and (B2 with controlled perturbation,
without requiring working in the space of 3-tensors. More
concretely, defining the true quantities K* and g* as

* 1 * * * *
K" = (,31 2T + 85 1T) € RP*P,
2 3)

* 1 * *
g 1—5(51 +B3) e RP,

we solve a linear regression in the matrix and vector variables
K and g in order to produce an approximation of K* and g*.
Given the pair (K*,g*), the true regression vectors 37 and
(35 can be recovered exactly, using the identity

J =g"g T-K" = 1(51 - B3)(B1 —B3) .
Letting A* and v* be the first eigenvalue-eigenvector pair of
J*, we have VA*v* := +1(B8f —33) and thus together
with g* we can recover (87,33). Given an approximation,
(K,g) of (K*,g*), this procedure is still well defined, and

is described fully in Algorithm I. In fact, this estimation
procedure is stable: if K and g are close to true quantities

Algorithm 1 Estimate (37, 33) from (K, g)

Input: (K, g) € RPXP x RP. R

Compute the matrix J = gg" — K, and its first eigenvalue-
eigenvector pair A and v.

Computeﬁ)l =g+ \/X'f) and Bg =g-— \/i'f].

Output: 0= (ﬁl,ﬂg)

K™ and g*, then Algorithm 1 outputs a pair (ﬁl, Bg) that is
close to the true regression vectors (37, 33).

Below we consider separately the settings with arbitrary
noise and stochastic noise in Sections III-B and III-C, and
give our algorithms with rigorous sample complexity and
estimation error bounds. In Section III-D we further provide
matching (up to at most a polylog factor) minimax lower
bounds.

a) Notation:: We use lower case bold letters to denote
vectors, and capital bold-face letters for matrices. For a vector
u, the notations u; and (i) both denote its i*" coordinate.
We use standard notation for matrix and vector norms, e.g.,
I - |l to denote the nuclear norm, || - || the Frobenius norm,
and || - || the operator/spectral norm. We define two quantities
that we use repeatedly:

2
187 — B5ll;

O T 18 vi= 181l + 18202 4
112 2

Note that the quantity « € [0, 2] measures the angle between
B7 and B33, and is strictly positive whenever 37 # 35. For a
fixed «, the parameter v quantifies the signal strength of 37
and (5. We say a number c is a numerical constant if c is
independent of the dimension p, the number of measurements
n, the quantity « and the magnitude/variance of the noise
e. For ease of parsing, we typically use ¢ to denote a large
constant, and % for a small constant.

B. Arbitrary Noise

We consider first mixed regression with arbitrary noise,
with the following specific setting. We take the covariate
vectors {x;} to have i.i.d. zero-mean and sub-Gaussian entries
with sub-Gaussian norm” bounded by a numeric constant and
satisfy E [(x;(1))?] = 1, E [(@;(1))*] = p for each i € [n] and
[ € [p].> We assume that the forth moment 4 is a fixed constant
and independent of the parameters p, n and «. If the covariates
{@;} are standard Gaussian vectors, then these assumptions are
satisfied with unit sub-Gaussian norm and p = 3. The only
assumption on the noise vector e = (eq, eq,. .., en) ! is that
it is bounded in /5 norm. The noise e is otherwise arbitrary,
possibly adversarial, and even potentially depending on {x;}

and (87, 83).

2The sub-Gaussian norm of a zero-mean random variable X is defined
as || X ||y, :=inf {b > 0|Eexp(tX) < exp(b?t?/2)} . The variable X is
called sub-Gaussian if || X ||, < oo.

3Recall that, as shown in the paper [37], the general mixed regression
problem with deterministic covariates is NP-hard even in the noiseless setting.
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Our algorithm is based on the following convex program:
1K, (5)

min
K.g

Z!—m K) + 2y (@i, 9) —y7| <n. (6)

The intumon is that in the noiseless setting with e = 0, if we
substitute the desired solution (K*, g*) given by equation (3)
into the above program, the LHS of the constraint (6) becomes
zero; moreover, the rank of K* is at most 2, and minimizing
the nuclear norm term in the objective (5) encourages the
optimal solution to have low rank. Our theoretical results give
a precise way to set the right hand side, 7, of the constraint.
The next two theorems summarize our results for the
arbitrary noise setting. Theorem | provides guarantees on how
close the optimal convex optimization solution (R' g) is to the
true quantities (K*, g*). Then the companion result, Theorem
2, provides quality bounds on (61, ,82) produced by applying
Algorithm 1 to the solution (K g) of the convex program.

Theorem 1 (Arbitrary noise). There exist numerical positive
constants {czifzo for which the following holds. Assume that

ni n2

max ,
ne2’ ni

< co. Suppose, moreover, that (i) n > 1 and

a >0, (i) min {ny,ne} > c;»,ép, and (iii) the noise satisfies
the bound

lell; < \C/Ta\/ﬁ( 1871l + 18311 )-

Suppose further that we choose the tuning parameter 1 to
satisfy
n > cav/nllelly 185 — Bill, -

Then, with probability at least 1 — ¢ exp(—cqn), any optimal
solution (K ,g) to the convex program (5)—(6) satisfies the
error bounds

’K—K*

1
<
= \/&nn’
1
g —g*lls < ce . ——1
? \/an(||51”2+ Hﬂ2||2)

Given the solution (K, g), we then estimate 8* = (3%, 33) by
using Algorithm 1, which is stable as shown by the theorem
below.

Theorem 2 (Estimating 3}, arbitrary noise). Suppose that the
conditions in Theorem 1 hold, and n =< \/n e, |85 — B7 |-
Then with probability at least 1 — c1 exp(—can), the output
0= (Bl,,é'g) of Algorithm 1 satisfies the error bound

3 1 el

0,0") < —— 12
Theorem 2 immediately implies exact recovery in the noiseless
case.

Corollary 1 (Exact recovery). Suppose that e = 0, the
conditions (i) and (ii) in Theorem 1 hold, and 1 = 0. Then
with probability at least 1 — cjexp(—can), Algorithm |
returns the true regression vectors {37, 35 }.

Below we provide several remarks on the above theoretical
results.

a) Discussion of assumptions:: Theorem 1 involves sev-

eral mild technical assumptions.

1) The condition x# > 1 in Theorem 1 is satisfied, for
instance, if {x;} is Gaussian (with g = 3). Moreover,
this condition is in general necessary. To see this,
suppose that each x;(l) is a Rademacher +1 variable,
which has forth moment p = 1, and the true regression
vectors (37 and 3; are in R2. The response variable y;
must have the form

yi = £(Bp)1 £ (By)2-
Consider two possibilities: 8f = —35 = (1,0)7
B = —B3 = (0,1)T. In both cases, the observed

data (z;,7;) takes any one of the values in {+1}* x
{+£1} with equal probability, and hence the problem is
unidentifiable as it is impossible to distinguish the two
possibilities above.

2) The condition o > 0 holds if 87 and 35 are not equal.
Suppose that o is lower-bounded by a constant. The
main assumption on the noise, namely, the condition
lelly < v (1851, + 185]l,) in Theorem 1, cannot be
substantially relaxed if we want a bound on ||g — g*|,.
Indeed, if |e;| 2 ||3;]|, for all 4, then an adversary may
choose ¢; such that

[

yl:;pjﬁ;+ezzo7 VZ?

in which case the convex program (5)—(6) becomes
independent of g. That said, the case when the noise
bound condition is violated can be handled easily. Sup-
pose that [lefl, > csv/an (|ill, + 85]l,) for any
positive constant c4. A standard argument for ordi-
nal linear regression shows that the blind estimator

B = argming Y 7z, ‘a: B — y1| satisfies w.h.p.
the bound

ma {18~ B 2, 18 — B3} <

lelly

\/ﬁ )
and this bound is optimal (see the minimax lower
bound in Section III-D). Therefore, the condition (iv)
in Theorem 1 is not really restrictive, in the sense that
the case when it holds is precisely the interesting setting.

3) Finally, note that if n1/ne — +oo, then a single
regression vector 37 explains 100% (asymptotically) of
the observed data. Moreover, the standard least squares
solution provides an accurate estimator of this 3.

b) Optimality of sample complexity:: The sample com-
plexity bounds of Theorem 2 and Corollary 1 are optimal. The
results require the sample size n; and nq to be £2(p). Since we
are estimating two p dimensional vectors without any further
structure, this result cannot be improved in general.

C. Stochastic Noise

We now turn to the stochastic noise setting. We assume that
the covariates {x;} have i.i.d. Gaussian entries with zero mean
and unit variance. For the noise, we assume that {e;} are i.i.d.,
zero-mean and sub-Gaussian with variance E [e?] = o2 and
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sub-Gaussian norm |[e;||,,, < co for some absolute constant
¢, and are independent of {x;}.

We discuss two algorithms for consistent estimation of
(B, B3). First, for Gaussian covariates in the balanced setting
(that is, nq /ny — 1), we show that by solving a simple convex
program, we have asymptotic consistency for any SNR ~/o.
The rates we obtain match information-theoretic lower bounds
we give in Section III-D, and hence are minimax optimal.
An interesting feature we observe is the rate change in the
high- and low-SNR regimes mentioned above — a feature
that precisely identifies the cost of solving a mixture problem.

Second, in the general imbalanced setting (that is, ny /ng />
1), we propose a nonconvex yet tractable extension of the
above convex program, for which we establish minimax opti-
mal estimation rates under the condition v/o 2 1.

1) Consistent Estimation with Balanced Samples: For the
stochastic noise setting, while one can use the same /;
constraint as we do in arbitrary noise case, it turns out that
the analysis is more natural by considering a Lagrangian
formulation. In particular, much like in standard regression,
the independence assumption on {e;} makes the least-squares
objective analytically convenient. We therefore consider the
following formulation, regularizing the squared loss objective
with the nuclear norm of K:

. = 2
=1
(7

We assume that the noise variance o2 is known and can be
estimated.”

As with the arbitrary noise case, we first provide a theorem
that bounds the distance between the optimal solution (K ,9)
of the above program and the true (K*,g*), and then a
companion theorem gives error bounds on estimating (37, 33).

Theorem 3 (Stochastic noise with nearly balanced samples).
For any constant 0 < ¢ < 2, there exist numerical positive

constants {c;}2_,, which might depend on c, such that the
ny no

ne’ ny

following hold. Assume that max < co. Suppose

moreover that (i) a > ¢, (ii) min{ni,na} > cup, and (iii)

{x;} are Gaussian. For any tuning parameter \ that satisfies

A2 50 (181 lly + 18311, + ) (Vi + [ny — na| v/p) log? n,

with probability at least 1 — cyn™, any optimal solution

(K ,g) to the convex program (7) satisfies the error bounds

5 1
K- K*|| <ez=),
F n

! A
3 * *
n (1871l + 1851l + o)
The bounds in the above theorem depend on the sample

size difference |n; — ny|. This dependence appears as a result
of the objective function in the formulation (7) and is not an

19 —g"[l, < ¢

4We note that similar assumptions are made in the paper [12]. It is possible
to avoid the dependence on o by using a symmetrized error term in the
objective of (7) (see, e.g., [6]).

artifact of our analysis.” We later address how to correct for
this dependence and handle imbalanced samples. Nevertheless,
in the setting where the samples from the two components are
approximately balanced in size with |n; —ns| small, the above
result implies consistency with optimal convergence rate. In
this case, running Algorithm 1 on the optimal solution (K, §)
of the program (7) to estimate 68* = (37, 35), we have the
following guarantees.

Theorem 4 (Estimating (3], stochastic noise and
nearly balanced samples). Suppose that |n3 —ns| =
O(\/nlogn), the conditions (i)—(iii) in Theorem 3 hold,
A < o (|81l + 18]l + o) /aplog® n, and n > ezplog® n.
Then with probability at least 1 — cin~“, the output
0= (,él,Bz) of Algorithm 1 satisfies the error bound

p(6,07) <C40\/Elog4n
n
+ec min{ ot \/5 U(p>i}10g4n
sming o [ o (o :
1Bil2+1B502 V™~ \n

The error bound has three terms, which are proportional
to o/E, ﬁ\/g and o (%)1/4, respectively (ignoring log
factors). We show that these three terms match well with
the information-theoretic lower bounds given in Section III-D.
They represent three phases of the error rate under different
SNR; we discuss further in Section III-D.

a) Discussion of Assumptions:: The theoretical results
above assume Gaussian covariate distribution. This Gaussian-
ity assumption can be relaxed, but using our analysis, it
comes at a cost in terms of convergence rate (and hence
sample complexity required for bounded error). It can be
shown that n = O(p\/ﬁ) suffices under a general sub-Gaussian
assumption on the covariates. We believe that this additional
cost is an artifact of our analysis.

2) Consistent Estimation with Imbalanced Labels: Now
we turn to the general imbalanced setting, where the sample
sizes of the two components n; and ny may be different. To
account for the effect of imbalanced samples, we consider the
following “corrected” version of the optimization problem (7):

n

> (@] K) + 2y: (wi,g) — 42 +0%)
i=1

S 40%(y; — (wig))”
=1

st K] < K7

min
K.g

()

Compared to the previous formulation (7), we replace the
nuclear norm penalty in the objective function with its
constraint version, which again serves as a surrogate for the
low rank structure of K™*. More crucially, we add a negative
term in the objective function of (8), which corrects for the
impact of imbalanced samples on the resulting estimate. This
formulation is based on the following intuition: Minimizing
the first term results in a solution g that is biased towards 37

SIntuitively, if the majority of the observations are generated by one of the
B;;, then the objective produces a solution biased toward this 3; since this
solution fits more observations. In Section III-C2, we compensate for such
bias by optimizing a modified objective.
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when n; > ng, whereas the second negative term increases
when g gets closer to 3. Simple calculation shows that in
expectation these two effects cancel out. Therefore, jointly
minimizing the two terms produces a solution g that is a
consistent estimator of (3} + 33)/2 even when n; and ng
are imbalanced.

The negative term in the objective function of (8) makes
the optimization problem no longer convex. Nevertheless, one
can still apply projected gradient descent to the nonconvex
program (8). To specify the projected gradient descent iteration
and ease notation, we use the following shorthand for the
objective function:

n

Lo(K.g) =Y (~(@ie] , K) + 2y (xi.9) — 4} +0°)°
=1
- 2402(% - <$i,9>)2-
=1

Let Vi L, denote the partial gradient of £, over K, and
VgL, the partial gradient of £,, over g. Given any feasible
initializer (K, g(¥) with | K|, < || K*|., the projected
gradient descent algorithm with step size 7 is given by the
update:

(t41) (t4+1)
(KD, gt )

< arg min
K|, <K=l

U >
B2+ =g

{ (Vi LP, K) + (VgL g) o)

where E( ) = =L, (K ®) gt )). Recall that the quantity - is
a measure of the signal strength. We need 7 in the algorithm
because the smoothness constants of £, (K, g) with respect
to K and g differ by a factor of v2. The minimization in (9)
can be computed by two simple steps: (1) moving K and
g in the negative gradient direction with step sizes 1/n and
1/(ny?), respectively; (2) projecting the new K onto the
nuclear norm ball. The second projection step can be done
with a singular value decomposition (SVD) followed by
shrinking the singular values (see, e.g., [1]).

The optimization formulation (8) is non-convex. Neverthe-
less, the projected gradient descent algorithm still converges
to a statistically accurate solution, as we show below. The
intuition is that the gradient descent iterates will stay in the
directions along which the objective function is convex-like.
In particular, in addition to the statistical error (how close the
optimal solution of (8) is to the ground-truth quantity), we
can control the optimization error — how close we can get
to the optimal solution of (8). Accordingly, Theorem 5 below
consists of two parts. Part (a) is an analogue to Theorem 3, and
bounds the statistical error: the distance between the global
optimum (K, g) of (8) and the true pair (K*,g*). Part (b)
bounds the optimization error of the gradient descent itera-
tion (9), that is, the distance between the iterates (K, g(*))
and the global optimum (K' , g).

Theorem 5 (Stochastic noise with imbalanced samples). Sup-

pose the conditions (i)—(iii) in Theorem 3 hold for some

suitable constants. The following results hold for any (ni,ns)

that satisfies ny/ng = ©(1).

(a) (Statistical error) There exist positive constants {ci}?zl
such that if v/o > ¢, then with probability at least
1 — c3n™%, the global optimum (K’@) of program (8)

satisfies the bounds
< a0y Plog?n,
F n

. 2
lg = g"lly < cooy/ log® n.

(b) (Optimization error) Let H") := K — K and h) =
g — g be the optimization error terms at step t of
the projected gradient descent algorithm (9) for the
program (8). There exist positive constants {c;}}_, such
that if v/o > ¢ and n > czn(\/ﬁ)g’logn, then with
probability at least 1 — csn™, there holds the bound

IO + 2R3

t
c3n ~ *
< (1= (L 42 O )+ K - K

foreveryt=12,...

Part (b) establishes geometric convergence of the optimiza-
tion error. Thus, the iterate (K (t),g(t)) quickly converges
to some solution whose distance to (K ,g) is of the same
order as the statistical error. Therefore, the distance between
(K®, g®) and (K*, g*) satisfies the bound in part (a) when
t is sufficiently large by the triangle inequality. If we choose
the step size n =< n(\/ﬁ)?’logn, the contractive factor is
roughly 1—-1/((/p)* logn), hence T' < (,/p)* log n iterations
of projected gradient descent suffice. We can then apply
Algorithm 1 to the T*" iterate (K™, g(™)) to obtain an
accurate estimate of the true regression vectors 8* = (37, 35),
as shown in the theorem below.

Theorem 6 (Estimating 3;, stochastic noise with imbalanced
samples). Suppose that the projected gradient descent in (9)
is initialized with K(©) = 0 and g(©) = 0. Under the setting
of Theorem 5, there exist positive constants {c;}!_, such that
ifn>cplog®n, n> czn(\/f))g’ logn and
T > csnn™ ! max {1 — C4027_2£ log® n, 0} ,
n

then with probability at least 1 — csn™, the output 0
(B1,B2) of Algorithm 1 applied to the input (K™, g(™)
satisfies the error bound

p(0,6%) < 070\/5103’;3 n.

Remark 1 (Scalability). Both the formulations (5)—(6) and (7)
can be cast as Semidefinite Programs (SDP). In the arbitrary
noise setting, the constraint in the convex program (5)—(6)
can be rewritten as a collection of linear constraints through
the standard transformation of convex {y constraints. The
Lagrangian formulation (7) in the setting of stochastic noise,

)
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involves minimizing the sum of a trace norm term and a smooth
quadratic term. The computational complexity of solving this
regularized quadratic optimization in the matrix space has
similar complexity to problems such as matrix completion [9]
and Phaselift [10], and various first order methods can easily
be adapted, thus allowing solution of large scale instances of
the mixed regression problem.

D. Minimax Lower Bounds

We now derive minimax lower bounds on the estimation
errors for both the arbitrary and stochastic noise settings,
and show that these match our upper bounds. Recall the
error (semi)-metric p (0,60’) defined in equation (2) for a
pair 8 = (B1,82) and €' = (B1,3,) in R? x RP. It is
straightforward to verify that the metric p(-,-) satisfies the
triangle inequality. An estimator

6=0(X,y) = (6:1(X,y),8(X,y)).

of the true regression vectors 8* = (37, 35) is any measurable
function of the observed data (X, y). For each number v > 0,
we consider the following parameter class

0(y) := {9 = (B1,8,) €RP x RP :

(10)

21181 = Bl = 181, + 1821l = 7},
that is, pairs of regression vectors whose norms and separation
are lower bounded. Recall that z; € {0, 1} is the hidden label
for the ¢-th observation, that is, z; = 0 if and only if 7 € 73,
foreach i =1,2,...,n.

1) Lower Bounds for Arbitrary Noise: In the arbitrary noise
setting, the noise vector e is assumed to lie in the ¢5-ball
B(e) := {u € R™ : |ju|lz < €} and otherwise arbitrary. For
this setting we have the following minimax lower bounds.

Theorem 7 (Lower bound, arbitrary noise). There exist uni-
versal positive constants cg, c1 for which the following is true.
If n > c1p, then for any v > 0 and any hidden label vector
z € {0,1}", there holds the bound

sup p(0,0%) > coL

Jn

inf sup
6 6+cO(y) ecB(c)

a1
with probability at least 1 — n~'0, where the probability is
with respect to the randomness in X.

The lower bound above matches the upper bound given
in Theorem 2, thus showing that our convex formulation is
minimax optimal and order-wise unimprovable. Informally,
Theorems 2 and 7 together establish the following minimax
rate of the arbitrary noise setting

A e
pl6.67) = 192,

which is valid for n = p.

2) Lower Bounds for Stochastic Noise: For the stochastic
setting where the noise is i.i.d. Gaussian, we further assume
that the two components have equal mixing weights: P(z; =
0) = P(z; = 1) = 1/2 for each ¢ = 1,2,...,n. For this
setting we have the following minimax lower bounds.

Theorem 8 (Lower bound, stochastic noise). Suppose that
n>p>64, X € R"*P has i.id. standard Gaussian entries,
e has i.i.d. zero-mean Gaussian entries with variance o2, and
2 Bernoulli(1/2). The following statements hold for some
absolute constants 0 < ¢y, c1 < 1.

1) For each v > o, we have

inf sup Ex e {p(@’ﬂé)} > coa\/g. (12)
0 0*cO(y) n
2) For each cio (%)1/4 <7y < o, we have
A 2
inf sup Ex e [p(a*,e)} > COU\/E- (13)
0 6~cO(y) yyn
3) For each 0 <y < cio (%)1/4, we have
. py\1/4
inf sup Ex e [p(ﬂ*,@)} > coo (7> (14)
0 6+cO(y) n

Here Ex , . [-] denotes the expectation with respect to the
covariate matrix X, the hidden label vector z and the noise
vector e.

We see that the three lower bounds in the above theorem
match each of the three terms in the upper bound given in
Theorem 4 up to at most polylog factors, proving the minimax
optimality of the error bounds of our convex formulation.
Informally, Theorems 4 and 8 together establish the following
minimax error rate (up to a polylog factor) in the stochastic
noise setting:

p(6%,6) < { T/,

o ()",
Here, v is any lower bound on ||37 ||, + ||35], and represents
the signal strength (recall the definition of the parameter class
in equation (10)). Notice how the scaling of the minimax
error rate exhibits three phases depending on the SNR ~/o:
(i) In the high SNR regime with v > o, we see a fast
rate — proportional to 1/y/n — that is dominated by the
error of estimating a single B; and is the same as the rate
for standard lineiar regression. (ii) In the low SNR regime

if y 2 0o,
ito(2) s150,

ity <o (2)F.

with v S o (%)Z we have a slow rate that is proportional
to 1 /ni, which is associated with the demixing of the two
components 87 and ;. (iii) In the medium SNR regime, the
error rate transitions between the fast and slow phases, and
depends in a precise way on the SNR. For related phenomena,
see the work in [3, 14].

The lower bounds in Theorem 8 apply to the balanced
sample setting. The error upper bound in Theorem 6 for our
nonconvex approach in the imbalanced setting, is also near-
optimal in the high SNR regime, as this bound matches (up
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to logarithmic factors) the minimax lower bound of standard
linear regression for estimating a single 3; (that is, when the
labels are known).

E. Implications for Phase Retrieval

As an illustration of the power of our results, we dis-
cuss an application to the Phase Retrieval problem, which
has recently received much attention (see, e.g., the work in
[6, 7, 11, 16, 23, 15]). Recall that in the real value setting,
the phase retrieval problem is essentially a regression problem
without sign information. Recent work has mostly focused on
the noiseless case. Here, the problem is as follows: we observe
(xi,y;) ERP xR, i =1,2,...n, where

Yi = |331Tﬁ*’

The goal is to recover the unknown vector 3* € RP. The
stability of recovery algorithms has also been considered. Most
work has focused on the setting where noise is added to the
phase-less measurements, that is,

yi = |z B

In many applications, however, it is also natural to consider
the setting where the measurement noise is added before the
phase is lost. This corresponds to the model

yi = |z] B* + el (16)

We may call formulation (16) the Noisy Phase Model, as
opposed to the Noisy Magnitude Model in (15) considered
by previous work. This problem can be reduced to a mixed
regression problem and solved by our algorithm. The reduction
is as follows. We generate n independent Rademacher random
variables €;,¢ = 1,...,n. For each i, we set y. = €y;.
Let s; := sign (w;rﬁ* —Q—ei) and e := ¢;s;e;, where we
use the convention that sign(0) = 1. Under the noisy phase
model (16), we then have

Y =€ ‘a:;rﬂ* +e| = €5 (z] B* +ei) =z (€;5:.8) +e.

If welet 87 = 3%, B85 = —B*, 71 = {i : ¢s;, = 1} and
Ty = {i: €;s; = —1}, then the model becomes

Y =a] By +ei, Vie,

which is precisely the mixed regression model we considered.

Note that with probability at least 1 — n~3, 5 =
V10nlogn < ny = |Ty| < § + /10nlogn for b = 1,2,
s0 [n1 — na| = O (V/nlogn). Also note that |€/[|, = |le]|,.
Conditioned on {7}, the distribution of {«;} is the same as its
unconditional distribution. Therefore, applying our arbitrary-
noise result from Theorem 2, we immediately get the following
guarantees for phase retrieval under the Noisy Phase Model.

Corollary 2 (Phase retrieval, arbitrary noise). Consider the
Noisy Phase Model in (16). Suppose that the {x;} are i.i.d.,
zero-mean sub-Gaussian with bounded sub-Gaussian norm,
unit variance and fourth moment . > 1, and that n 2 p,
n =< ca/n||€l|, |B*||, and the noise is arbitrary but bounded
in magnitude: |le|ly S /n||B*||y. Then using the reduction

described above, the output of the program (5)—(6) followed
by Algorithm 1 satisfies the error bound

_ llell,

2™ /n

. 3 *
min —
b=1,2 Hﬁb ﬁ

with probability at least 1 — n™2.

In the corollary above we assumed |lell, < /nl|B*,.
Similarly as before, the large noise case with
lell, > cav/nl||B*|l, can be handled easily, using the
blind estimator 8 := ming ;¢ () | B — y;|, which in this

case again satisfies the optimal error bound ||3— 3% || < %

Next, consider the stochastic noise case where ¢; is i.i.d.,
zero-mean symmetric sub-Gaussian with variance o2. Condi-
tioned on {Z,}, the conditional distributions of {e}} and {x;}
inherit the properties of e; and the unconditional x;, and are
independent of each other. Applying Theorem 4, we have the
following guarantee.

Corollary 3 (Phase retrieval, stochastic noise). Consider the
Noisy Phase Model in (16). Suppose that the {x;} are i.i.d.,
zero-mean Gaussian with unit variance, and that the noise e;
is i.i.d., zero-mean symmetric sub-Gaussian with sub-Gaussian
norm bounded by czo and variance equal to o®. Suppose
further that n 2 p and X =< o (||B*|,+ o) /nplog" n.
Then using the reduction described above, the output of the
program (7) followed by Algorithm 1 satisfies the error bound

. 2 *
min —
b=1,2 ngb 5 2

2 /B 1
501/£1og4n+min 7 \!:,0(8)4 log*n
n 1Bl " \n

with probability at least 1 — n2.

As a passing observation, we note that the error bounds
above for phase retrieval are both order-wise optimal. For
the deterministic noise setting considered in Corollary 2, we
cannot achieve a smaller error even if the phase is not lost.
For the stochastic noise setting, note that our corresponding
minimax lower bounds for mixed regression in Section III-D2
is in fact derived under the symmetric setting 3] = —/3;.
In this case one can reduce a mixed regression problem to
a phase retrieval problem by dropping the signs in {y;},
hence our minimax lower bounds certify the near-optimality
of Corollary 3 for phase retrieval.

IV. PROOFS

We now provide the proofs of the main Theorems. Concep-
tually, there are three parts to our results. i) Regression error
(Theorems 1, 3, 5). We prove that the lifted optimizations in
the matrix space (for deterministic noise, and balanced and
unbalanced stochastic noise) recover good approximations to
K* and g*. We note that these results have no dependence
on SNR; that is, alone, they do not reveal a change in the
rate of convergence. ii) Decomposition and perturbation error
(Theorems 2, 4, 6). We prove a matrix perturbation result that
shows that a good approximation of K* and g* results in a
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good approximation of 37 and 33. The change in rate in the
low-SNR setting, emerges from these decomposition results.
iii) Minimax lower bounds (Theorems 7 and 8§). We prove min-
imax (information theoretic) lower bounds matching the upper
bounds. For the lower bounds, the change in rate comes from
a detection problem that involves distinguishing mixtures of
Gaussians with different separation of the component centers.

We prove these results here, and in the interest of readability,
defer the proofs of technical lemmas to the appendix.

A. Notation and Preliminaries

We use 3%, to denote 35 if b = 1 and 3] if b = 2. Let
0y = B; — B*,. Without loss of generality, we assume Z; =
{1,...,n1}and Zo = {n1 +1,...,n}. Fori=1,...,n;, we
define x; ; := «;, y1,; = ¥; and e;; = e;; correspondingly,
fori=1,...,n9, we define To; 1= Ty, 44, Y2,i := Yn,+i and
€2,n+4. For each b = 1,2, let X;, € R™*? be the matrix with
rows {z] ;i =1,...,mp}. Also let e, := [ep1 ** €pn,]' €
R™.

While the measurements in the original model are given by
X, in the lifted space, one can regard the measurements as
given by rank-one matrices that are quadratic in @ ;. Thus it
is natural to define the matrices A ; := wb,ia:;i, i € [np) and
the mapping A : RP*P — R™ given by

1 .
(AZ), = - (Api, Z), foreach i € [ny)].

Because of their quadratic nature, these measurements are
not mean-zero. As we detail below, our proofs rely on es-
tablishing a restricted isometry-like property of the measure-
ments, but as the measurements are not zero mean, this does
not hold. It is convenient, therefore, to define matrices and a
mapping that are related to A;; and A;, but with zero mean.
To this end, for b = 1,2 and j = 1,..., |[ny/2], define the
matrix By j = ®p2;®, 9; — ®b,2j-1%) 9, 1, as well as the
vector de = €p2jTh,2j — €b,2j—1Lb2j—1- For b € {1,2},
define the mapping By : RP*P 1 RL/2] by

(ByZ), = (Bp,;,Z), foreach j=1,...

= T Ll

Since yp; = mb’i,ﬁg‘ + ep,i, ¢ € [np), we have for any Z €
RP*P z € RP and for all j =1,...,|[ns],
1
—— ((By;,2Z) — 2d] ;
rog2] (B ) = 260,2)
:7L (By;, Z—2B;2z" )+ (ep2jTp2; —epaj 1Tpa;) 2

.
+ (eb,2jTb,2j — €b,2j—1%b25) Z-

= (B, (2 -28=")),

A key part of the proof is in expressing the error in terms
of the operators A; and then By, and then showing that B,
satisfies a restricted isometry property. Also key and common
to all the proofs, is to show that the optimization formulations
recover a near low-rank matrix K. For this, we need to
control the part of K that has different column and row space
from K. The following notation and definitions are standard.
Let the rank-2 SVD of K* be UXV ". Note that U and
V have the same column space, which equals span(37, 33).

Define the projection matrix Py := UU " = V'V T and the
subspace T := {PyZ + Y Py : Z,Y € RP*P}, Let T+ be
the orthogonal subspace of 7. The projections to 7" and T+
are given by

PTZ = PUZ + ZPU - PUZPU, PTLZ =27 — PTZ

Denote the optimal solution to the optimization problem of
interest (either (5) or (7)) as (K g) = (K* + H,g* + h)
Let HT = PTH and HTL =Pr . H

The optimization proofs follow a similar spirit and con-
ceptual flow. The first part of the proof asserts that the
error (compared to (K*,g*) must satisfy certain conditions
controlled by the operators By, b = 1,2. For Theorem 1 this
is a consequence of the constraints; for Theorem 3 this is a
consequence of the objective function. Essentially these results
say that the errors must lie in certain directions away from
(K*,g").

The next step comes in using properties of B;. In particular,
we show that these operators satisfy a restricted isometry-like
(RIP) condition. Together with the characterization of how
(K,g) and (K*,g*) can differ, we conclude that along all
those directions, the objective function has strong convexity,
that is, curvature bounded from below). This allows us to
provide bounds on how far (K, g) can be from (K*,g*).

B. Proof of Theorem 1

As outlined above, the proof follows from three main steps.
First, the /1 error term that in this formulation appears in
the LHS of the constraint (6) in the optimization, is naturally
related to the operators Ap. Using the definitions of A, By,
we establish a relation between e, n and the feasibility of the
optimal solution (K,g) = (K* + H,g* + h). Second, we
show that the operator B is an approximate isometry on low-
rank matrices. Finally, this allows us to obtain good upper and
lower bounds on the error terms, and hence the accuracy of
the solution.

Now for the details. Recall that ﬁT = PTﬁ and IA{TL =
Pro H. Note that H7 has rank at most 4 and ﬁTL has rank
at most p — 4. We have

e

i

= HFITL (17)

_ HHT
* *

1) Step (1): Consequence of Feasibility: For any (K ,g) =
(K*+ H,g* + h), it is easy to check that
— <£Cb,¢l‘bT,i, K) + 2y (T, 9) — yl%z

— <wb,iw;:i, H> + 2yp; (xp5, h) — €b7i$;5; — eil. (18)

Therefore, the constraint (6) is equivalent to

%

* 2
- 6b,imb,i5b — €y

—(xyazy ., H) +2 (24 .85 + ev,i) (T4, h)

<n.
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Using the notation from Section IV-A, this can be rewritten
as
> |lnuAy (—H +28;h") + 2e;, 0 (X, h)
b (19)
— ey 0 (Xpdy) — ep||; <,

where o denotes the element-wise product and e% =epoep.

First, note that K* and g* are feasible. By standard bounds
on the spectral norm of random matrices [30], we know that
with probability at least 1 — 2 exp(—cny),

[Xvzlly S Vo llz]l,, V2 € RP.

We thus have
* * 2
s (Xu87) — €dll, < e1 (Vs llesll 1 1 + llell3)

(@) .
< cvne llelly 187 — Bsll,

()
<

where we use the assumptions on e and 7 in the steps (a)
and (b), respectively. The inequality above implies that (19)
holds with H = 0 and h = 0, thus showing the feasibility of
(K*,g").

Since ( K , g) is feasible by assumption, combining the last
two displayed equations and (19), we further have

> [fmes (=7 + 28527 |
b
<" |jzes o (Xoh) | + D7 [ 2en o (X07) — e, +
b b

<ea Yy Vs llesly 1Az + 2. (20)
b

Now from the definition of A, and 15;, we have

/2] stb (fﬂJrQBg‘ﬁT)Hl

[ny /2] . .
S )|
j=1

]
<np HAb (*ﬁ + 25;fLT) Hl :
It follows from (20) and n; < ny < n that
S8y (~F +2607) | - 3 valenl Il < 20,
b b

21

This concludes Step (1) of the proof.

2) Step (2): RIP and Lower Bounds: The bound in (21)
relates the ¢;-norm of B and 7. Since we want a bound on
the ¢5 and Frobenius norms of h and H respectively, a major
step is the proof of an RIP-like property for B:

Lemma 1. The following holds for some numerical constants

¢,0,0. For b = 1,2, if p > 1 and ny > cpp, then with
probability 1 — exp(—ny), we have

8112l < 1BvZ, <6112l

simultaneously for all Z € RP*P with rank(Z) < p.

This lemma follows from the more general Lemma 5 that
appears in the proof of Theorem 3, by setting o = 0.
We now turn to the implications of Lemma 1, in order to

get lower bounds on the term HBb (fI;[ + 2ﬁl’§hT) H from
| A 1
the first term in (21), in terms of ||h||2 and || H || f.
Since we have proved that (K*,g*) is feasible, we have
HKH < |[K*||, by optimality. It follows from (17) that

Hﬂp (22)

< HI:IT
*

*

Let K = cé for ¢ some numeric constant to be chosen
later. We can partition ﬁTL into a sum of M := pK;4
matrices I:11, ceey Hy according to the SVD of ﬂTL, such
that rank(ﬁi) < K and the smallest singular value of H; is
larger than the largest singular value of I:Ii+1 (cf. [24]). By
Lemma 1, we get that for each b =1, 2,

M M
Z HBb(ﬁi) ) ng Hﬁz

*

M 1
<5 —HH%

2 vl

‘EITL

5
< —
VK
where (a) follows from (22) and the rank of Hry. It follows
that for b =1, 2,

| (7 28587}

(@)
>

*

53 (£ + 1 — 27 | e

. . . 1

-] -
F K F

. . . = [1

8 |fr —20h7]| -+ |, - 28y | e |
F F K F

N ~ - 1 A
5’H —9 *hTH 725\/—HH H :
d||Hr — 28, . 7 |1H7| .
where (a) follows from the triangle inequality, (b) follows
from Lemma 1 and (23), and (c) follows from the fact that

H; — BhT € T and H; € T*. Summing the above
inequality for b = 1,2, we obtain

5 11 2507)
b
e

The first term in the RHS of (24) can be bounded using the
following lemma, whose proof is deferred to Appendix F-A.

1

A
V=

—
Vo

Y

(24)

],

Lemma 2. We have
> | =27 > vaf
b

> | Er —28m7| = vadisil, + 18511 Il
b
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Combining (24) and the lemma, we obtain

e (1 -2 > (v - ) ]

and

> |[Ba (7 = 20507

b

> (6—46\/g>
b

> (5— 45\/3() Va (Bl + 1851) 1Rl

Recall that K = cé. When c is sufficiently large, the above
inequalities imply that for some numeric constant ¢/,

> (11 - 2817) | = %

o,

4

F F’
(25)

> (s - 2037 = V1811, + 185 1) 1l
(26)

where the inequality (d) follows from (22) and rank(lfI ) <A4.
This concludes the proof of Step (2).

3) Step (3): Producing Error Bounds: We now combine
the results from the above steps, in order to obtain bounds on
|h|2 and ||H| f in terms of 7, and the other parameters of
the problem, hence concluding the proof of Theorem 1.

From Step (1), we concluded the bound (21), which we
reproduce:

| (B 2887 | -2 3 Vil Il < 20,
b b
Applying (26) to the LHS above, we get

vy (VavallBly = llesls) ]2 < 2n.

Under the assumption e[|, < -=v/av/n ([|B7]l, + [|85]|,) for
some c5 sufficiently large, we obtain the following bound for

IAa|2:
1

<
N AR ABK

To obtain a bound on HIEI H , we note that
F

2

A 1 N N
> lleslls lIAll2 Sg\/ﬁz VallBglly IRl
b b

)

L s (1)

where we use the assumption on ||e|| and (26) in the two
inequalities, respectively. When c5 is large, we combine the
last displayed equation with (21) to obtain
)H < 20,
1

o], 05 o (11
b

where we use (25) in the last inequality. This implies
N Lﬂ,
F ™ nya

completing the proof of Step (3) and thus Theorem 1.

C. Proof of Theorem 3

We now turn to Theorem 3 for the stochastic noise setting.
The main conceptual flow of the proof is quite similar to the
deterministic noise case, though some significant additional
steps are required. For the deterministic case, the starting point
is the constraint, which allows us to bound A, and B, in terms
of 7 using feasibility of (K*,g*) and (K* + H,g* + h).
In the stochastic setup we have a Lagrangian (regularized)
formulation, and hence we obtain the analogous result from
optimality. Thus, the first step here involves showing that as
a consequence of optimality, the solution (K, g) = (K* +
H ,g" + iz) satisfies inequality (29) below, which implies that
H and h must live in a certain cone. The RIP-like condition
for B, in the stochastic case is more demanding. We prove a
second RIP-like condition (Lemma 5). We then bound A by
terms involving B, and then invoke the RIP condition and the
cone constraint.

Now we turn to each step of the proof. We continue
to use the notation given in Section IV-A. We let D, :=
(lno/2)) ™" [dots - i nyy2)] € RI/2XP. Recall that
we defined

=181l + 118215 -

Since the {x;} are assumed to be Gaussian with i.i.d. en-
tries, the statement of the theorem is invariant under rotation of
the B;’s. Therefore, it suffices to prove the theorem assuming
B7 — 35 is supported on the first coordinate. The follow lemma
shows that we can further assume {«;} and e have bounded
entries, since we are interested in results that hold with high
probability. This simplifies the subsequent analysis.

Lemma 3. There exists an absolute constant ¢ > 0 such that,
if the conclusion of Theorem 3 holds w.h.p. with the additional
assumption that

l) < ey/logn, Vi € [n],1 € [p],
e; < cov/logn,Vi € [n],

then it also holds w.h.p. without this assumption.

We prove this lemma in Appendix F-B. In the sequel, we
therefore assume support(3; — 33) = {1}, and the {x;} and
{e;} satisfy the bounds in the above lemma.

1) Step (1): Consequence of Optimality: This step uses
optimality of the solution (K,g) = (K* + H,g* + h), to
get a bound on A. By optimality, we have

> (—<wiwiT,I?>+2yi <ccué>—yi2+02)2

b i€y

<22

b €Ty

2
(wiz], K*)+2y; (@i, g")—yi +0°) + A | K", -
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Using the expression (18), we have

>0 (— <waH> 2] B + i) <wh>

b €Ly

2
—ei:c;réf: — (e? —02)) —1—)\)

N (e & — (2 - 0%)" + MK

K

b €T,
Defining the noise vectors w1 := —ep o (Xp0)), wayp =
— (ef —0°1) and w, = wip — way, We can rewrite the

inequality above as

*

N o ~ 2 N
> [[ree (~Fr+28;RT ) +2, 0 (th)+wbH2+A |&
b

2
<> welly + MK, -
b=1,2

Expanding the squares and rearranging terms, we obtain
’2

2

Z Hnb-Ab (—ﬁ + QﬁszlT) + 2e; 0 (X,h)
b
<Y 2 <FI—2ﬁ§sz, nbAgwb> —Z<iz, 4XJdiag(eb)wb>
b b
(1K) - | &
(%)(
(1K) - &
(2)(

+(

)

o

+ HIAJTJ_

)P +libll-Q

)

)P +liRll-Q

)

where A} is the adjoint operator of A4;, in (a) we have defined

P=23 |lnp Ay,
b

o

+ HIAJTJ.

Hp.

e

(28)

Y

Q=4 118515 lInpAjws| +/p
b

Z 4X, diag(ep)wy
b

and (b) follows from (17). We need the following lemma,
which bounds the noise terms P and . Its proof is a
substantial part of the proof to the main result, but quite
lengthy. We therefore defer it to Appendix A.

Lemma 4. Under the assumptions of the theorem, we have
A>2P and \ > ﬁ@ with high probability.

Applying the lemma, we get
2

Z Hnb.Ab (—ﬁ + Q,GZiLT> + 2¢p 0 (XbiL)H2
b

3| 4 1)
<A <2HHT g |E

) EAaE )l @)

Since the left hand side of (29) is non-negative, we obtain the
following cone constraint for the optimal solution:

R 50 A R
Hr.| <2 |Bx|| +(+0) s

(30)

This concludes the proof of Step (1) of the proof.

2) Step (2): RIP and Lower Bounds: We can get a lower
bound to the expression in the LHS of (29) using B, as follows.
Similarly as before, let K be some numeric constant to be
chosen later. We partition IA{TL into a sum of M := pK;4
matrices I—AIl7 ceey Hy according to the SVD of ﬂTL, such
that rank(ﬁi) < K and the smallest singular value of H; is
larger than the largest singular value of I:Ii+1. Then we have
the following chain of inequalities:

> frut
b
(a)

(—EI + 2(3;;}?) +2e, 0 (th) Hz
>y H”bB” (—EI n 2ﬁ;;iﬁ) n 2an,,ﬁHz
b
(,

() N N N2
S B, (—H +2 *hT) 2D hH
> Zb:nb ‘ b +28; + vh||

on (zb: B (
9%(2 (

b

- Zi HBb(ﬁi)
b =2

2
“H+ 25;;}?) + 2DbﬁH1>

’Bb ﬂT+2,3;ilT+ﬁ1> +2Db’:LH1

2
1) '
Here (a) follows from the definitions of A, and B and the
triangle inequality, (b) follows from ||u||§ > n%, ||u||? for all

u € R™, (c) follows from nq = no, and (d) follows from the
triangle inequality.

3D

We see that in order to obtain lower bounds on (31) in terms
of ||h||2 and || H ||, we need an extension of the previous RIP-
like result from Lemma 1, in order to deal with the first term
in (31). The following lemma is proved in Appendix B.

Lemma 5. The following holds for some numerical constants

¢,8,0. For b = 1,2, if u > 1 and ny > cpr, then with
probability 1 — exp(—ny), we have the following RIP-2:

5(I1Z]| p+ollzlly) < [1BoZ — Doz|l; <6 (| 2] p+0 12[l,) .
Vz € RPVZ € RP*P with rank(Z) < r.

Using this we can now bound the last inequality in (31)
above. First, note that for each b =1, 2,

M ) @ M Moy )
) < ) < _ .
§ Hz’j’b(H,,)‘1 _52 jHHz F_JE — [ A
1=2 17:2 1=2
<0 |lg (32)
—VE I T

where (a) follows from the upper bound in Lemma 5 with o
set to 0. Then, applying the lower-bound in Lemma 5 to the
first term in the parentheses in (31), and (32) to the second
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term, we obtain

ot (12507 <20 ()

>n (Za HﬁT—2ﬁ;iﬁHF+zéa||ﬁ|2—6\@ [peem

>n<z<s2HHT 26;‘hTH 18202 ||R2 - 5LHHTL

)
).

Choosing K to be sufficiently large, and applying Lemma 2,
we obtain

3 () e ()

N 2 o ~ ~
2 ([ [+ 220018 + o2 - 15 -

2
) . (33)

2

- ‘
USlng (30), we further get

)+ ()

S HnbAb (,g +oBhT
b

zn“lmu 2RI+ o — ¢ [ e
5 (070 I3
25 2
H hlls)’ 34
(B + 6+ 1Al (34)

This completes Step (2), and we are ready to combine the
results to obtain error bounds, as promised in Step (3) and by
the theorem.

3) Step (3): Producing Error bounds:
and (34), we get

([l +

which implies HHTH
F

Combining (29)

~ 2 A
(v+0) IRll2)” S AHrll e+ ACy + o) ]l2,

+(y+0) |2 < 2Tt follows that

Iz < "oy and
|, < 2]
(a) 7

+ HI?ITL
*

\HTH (7 +0) [|All2
Aa o

A,

(b) ~
S (v + ) [[h]2

A
3\*—‘1\3\

where we use (30) in (a) and rank I:IT> < 4 in (b). This
completes Step (3) and the proof of the theorem.

D. Proof of Theorem 5

In this section we prove the error bounds in Theorem 5 for
our nonconvex approach.

1) Statistical Error: The proof of part (a) of Theorem 5
follows along the same lines as the proof of Theorem 3. In ad-
dition, we need to derive RIP and error bounds of the negative
term. For the optimal solution (K ,g) = (K* + H,g* + h),
from the constraint we have that

1K + H[ < [[K]..

Using the decomposition H = Hp+ Hypo, we have || K* +
H|. = |K* + Hpll. + [|[Hy [« = [|K*[l. — [[H7[. +
[ Hpo ||« We thus have

| Hopo | < || Hr|.. (35)

Following similar calculations as those in Section IV-CI,
one can obtain the consequence of optimality as
.2
) + 261, o (th) ‘

2

Z Hnb.Ab (—ﬁ + QﬁZﬁT
b

— Z 402Ab(iLilT
b
Ss

Z2<H 28;h7T nbAbwb> Z<ﬁ,4X§diag(eb)wb>
b

b
— > 4% A (8;h ) =Y 80 (en, Xyh)
b b

(36)

Se St

Compared to (27), the above equality does not have the nuclear
norm term since we remove the regularization term. The
additional terms S5, Sg and S7 come from the negative term
=i 40y — (i, 9))*

By standard concentration result, when n 2 p/e with
probability at least 1 — exp(—p), |2 30, @z — I|| < e
Choosing ¢ = 0.1, we have w.h.p.

@] —I,hh") +4nc?||h|2 < 4.4n02| k3.

Using the above result and (34), we obtain
2

3 HnbAb (~F +28;h7) + 210 (bez)H
b

2

—> 40’ Ay(hhT)

b
(], +

N N 2
(], r180)".

where the second inequality follows from the assumption
v/o > c for sufficiently large constant c.

Now we turn to the right hand side of (36). By the Cauchy-
Schwarz inequality, it is upper bounded by

~ 2 A
(v+ ) IAllz)” = no?lal3

(37

(1) + B ) - P+ 1ALl - @
where P is given in (28), and we defined

Q =4yP+W
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and
w ::\/[)H Z X, diag(ep)wy, + Z 2 X, X,,6;
b b
+ Z 202XJebH
b o0
Using Lemma 4, we obtain P < oy,/nplog® n. The following

lemma gives an upper bound of the term W; see Appendix F-C
for the proof.

(38)

Lemma 6. Under the assumptions of the Theorem 5, we have
that w.h.p.,

W < o2y /nplog®n.

We therefore conclude that the right hand side of (36) is at
most on the order of

oyv/aplog' n (| Hrl. + | Hy . ) +ov?/iplog nl|hllz.
(39
Putting (37) and (39) together, we finish our proof by showing

. N2

(o], 1)
Sovviplog®n (I Hrll.+] Hr: |l ) + 092 /aplog® nllhl
Sovv/mplog® n|| Hr | p + 0y /aplog® n|hll2,
where the second inequality follows from the conic constraint
(35) and |Hr |« < 2|[Hr||F- R

2) Optimization Error: Recall that H®) := K) — K and
h(t) = g(t) — g, which represent the optlmlzatlon error, and
H:=K-K*andh := g—g*, which represent the statistical
error. We need several auxiliary lemmas for the proof. First,

we establish a result that shows that H () belongs to a cone-
like set. See Appendix F-D for the proof.

Lemma 7. From program (8), due to the nuclear norm
constraint, we have that for any t = 0,1, ...,

Z

<ol

Next, we characterize the curvature of £,,. To ease notation,
for any K, K’ € RP*?P and g,g’ € R?, we define

Qn (K/agl; Kvg)
= £71(K/ag/) - En(Kag) -
—(VgLn(K,9),9' — g)

= Hnb/lb (— - K)+28; (g’ — g)T)
b

+2e,0(X, (g~ 9) | -

(VkL,(K,g),K' — K)

> 4o*(xi g’ —g)*. (40)

The next lemma shows the smoothness of £,,
given in Appendix C.

Lemma 8. Given Q,(K',g';K,g) that is defined in (40),
we have that there exist constants {c;}?_, such that with
probability at least 1 — co/n, the inequality

Qu(K',9': K. g) an
< ciny/p’ logn| K’ — K| + cinlogny?||g’ — g3

. Its proof is

holds for any K, K' € RP*? and g, g’ € RP.

Next we turn to the lower bound of Q. We first let K "=
KW g =g% K=K, g=g. Then we have

Qn(K.g; K" g")
- Z Hnb.Ab (—H(” n 2ﬁ;‘h(t)T) 4 2y 0 (th“)) Hz

—240

2n <HH¥)HF 2RO + o2 B3 -

h(t)

)

100 H

S 4 A ()
b
2 2
> (t)H 214 (£) 12 2117, (1) 2_7” (t)
2 ([[E2]+ 21018 + 01O - g5 |2

—na® (|3,

where the first inequality follows from (33) by replacing the
(H,h) there by (H® h(®); the second inequality is from
the concentration property of operator A; as in the proof of
part (a). Using Lemma 7 to bound ||H§3 |2, we further have

Qn(K,g; K", g")

> o||? 2111 ()12 LITRONE 4 |17

2 n (038 || HY|| 4421001 +0* 1RO 3 -0.32 | Frr||
—no®||h ™3

(42)

> o N O+ m2in®12 — 7l
2 ul|[HO| +nr?IBO - o]

We need the following the result to connect the established
curvature property to the optimization error. Its proof is given
in Appendix F-E.

Lemma 9. Suppose function Q) satisfies the following two
conditions with functions @),, and Qn that map RP*P x RP to
R:

o For (K,§) and every (KW g®),
Qn(K® g ()f{ )ZQ( (t) p(0);

e For any K,K' € RP<P  and g,.9 € RP
Qn(K'.g K,g) <Q,(K' - K,g' —g).

Then we have
|H D) + 42 A0 13

< |HOE+92[hO)3 - 2@, (HO,h0) — A

2__
_ '72H6(t)”§ + 5Qn (A(t)75(t)> ,

where we let A1) .= KD K apd §*) .= g(t+1) —g®),

Now we are ready to prove Theorem 5 part (b). Plugging
the established bounds of the function @,,, (41) and (42), into
Lemma 9, we obtain that for some constants ¢y, ca,

I D3+~ [R )3

)

3
conlogn can,/p” logn
+(77 —1)||6<'f>%+77 JAOZ - |A®]|2.

c1n
O+ IBOE) + 5 I
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Therefore by setting 7 > c;;n\/;BB log n for sufficiently large
constant c3, we have

[P Sl R LA

c1n c1n, -
< (122 (1EOR + 2IAOIR) + 2
Ui Ui
Applying this bound recursively to ¢ = 0,1,2,..
result.

. proves our

E. Proofs of Theorems 2, 4 and 6

In this section, we show that an error bound on the input
(K ,g) of Algorithm 1 implies an error bound on its output
(Bl,ﬁg). Recall the quantities J, J*, \, \*,9 and v* defined
in Section III-A and in Algorithm 1.

The main component of the proof is a general perturbation
bound. We prove these in the first section below, and then use
them to prove Theorems 2, 4 and 6 in the three subsequent
sections.

1) Perturbation Bound: We require the following perturba-
tion bound.

Lemma 10. [f HJ —J

<4, then
F

§10min{5,\/5}.
2 ([Tl

Proof. By Weyl’s inequality, we have

[ Vo - v

’5\—)\* gHj—J* <.
This implies
VA = V| = AN <2min{5,\/5}. 43)
’ VAV Vax

Using Weyl’s inequality and the Davis-Kahan sine theorem,
we obtain

o . |21k - K*| . [26
|sin Z(9, v")| <min § ————————,1p <minq~—,1¢.
Bl A

(44)
On the other hand, we have

[6VA -0V
< Hﬁ\fﬂ—v*\/iHQ + ‘ v VA= vV
= VA6 = 0"y + 0"l | VA - VAF
= (VW VA= V) 6= 07l + o7, [ VA = VA
< VX6 = vy +3[VA- Ve

2

b

where in the last inequality we use the fact that ||v*|| = ||0] =
1. Elementary calculation shows that

N
sin §Z(U, v")

|lo —v*|, =2 < V2[sin Z(9,v)].

It follows that
Hﬁ\f;\ —v*VA* ,
< V2V* |sin Z(6,v")| + 3 ’\5 VT

<\/§min{j%,\/)\7*}+6min{\/(;*,\/5}
<10min{\/(;7,ﬁ},

where we use (43) and (44) in the second inequality. This
concludes the proof.

We can now use this perturbation result to provide guaran-
tees on recovering 37 and B35 given noisy versions of g* and
K. To this end, suppose we are given K and g which satisfy

K- K*

<é g—g*ll, < 9d,.
= 0K 19 —g"ll, < dg
Then by the triangle inequality we have

Hj—J*

LSOk 2,g"; + 2.
Therefore, up to relabeling b, we have

Jo.- s,

<llg—g'llo + || V3o - VArr|

Sk 4204 |lg*Il,+02
18 — B3,

Ség—l-min{ ,\/5K+259 ||g*||2+63}’

(45)

where the second inequality follows from Lemma 10 and \* =
i85 — 8513

2) Proof of Theorem 2 (Arbitrary Noise): In the case of
arbitrary noise, as set up above, Theorem 1 guarantees the
following:

* * 2
5o = Vllell 18 — Bill +llell; o 1l
K —~ =

* %
\/an ~ \/a \/ﬁ ||161 /62”’
* * 2
5.« Ynllels 185 — Billy +llell;  llelly
g = ~ .
van (1871, + 118511,) a
where ~ we use the  assumption |le||, <

YOV (I8 ll; + 11851l,) = EvmllBf — Bslly- Using (45,
we get that up to relabeling b,

|8, - 8
2
lell, [ 1 Jlell lell3
57+m1n = + * * )
\/ﬁ \/a \/ﬁ n||,61 752“2
1 elly o aey . lells
\/a \/ﬁ ”161 182||Q+ n
1 el , . lell3 1 el
<=1k ymind 2 [ [Pl g5 gy
Ja /n n BBl \ va m 17202
<L lelly
~ Va n



IEEE TRANSACTIONS OF INFORMATION THEORY, VOL. XX, NO. XX, JANUARY 20XX 16

3) Proof of Theorem 4 (Stochastic Noise): Next consider
the setting with stochastic noise. Under the assumptions of
Theorem 4, Theorem 3 guarantees the following bounds on
the errors in recovering K* and g*:

* * p
i = o (1811 + 1951 + )L log'

0g =<0 g1og4n.
V' n

If we let v = || 37 |2 + || 85 ]|2, then this means

Orc + 204]lg™ 12 + 5

xa*y\/glog4 n+ o2 P 1og4 n+ 028 log8 n
n V' n n
Sovq/ L log*n + 021 / P log* n,

n n

where the last inequality follows from the assumption that
n>cp 1og8 n for some ¢ > 1. Combining these with (45), we
obtain that up to relabeling of b,

o s,

50\/5103;411

n

NEEPVE oy [P 4 o2 [P
Vary ’ n n

2 /P
02./E
§0\/Elog4n—|—min \/:, U'y\/g—l—az\/5 log* n,
n ~ n n

where the last inequality follows from « being lower-bounded
by a constant. Observe that the minimization in the last
RHS is no larger than a\/g if v > o, and equals

2 ya
min{o ﬁ,a(p)l/‘l} if v < o. It follows that

+ min log* n

5 n
|6 - 5],

0‘2 1/4
go\/glogfn—i—min{ , O (8) log* n.
n ~y n

4) Proof of Theorem 6 (Nonconvex Formulation): Under
our assumption, we have |[KT) — K| < || H|F,|lg" —

~

dll2 < ||h]|2. From the triangle inequality, we have

3

KD — K*|p < |[KD ~ K|p + | H]||r
* * p
< o (191l + 1851 2 og

and

. X . p
19 = 57l < lg™ = gl + ll < o,/ log* .

From here the proof follows along the lines of Section IV-E3.
We omit the details.

F. Proof Outlines of Theorems 7 and 8

Next, we provide the main steps of proving the minimax
lower bounds in Theorems 7 and 8, and postpone the full
proofs to Appendix D and E. The high-level ideas in the
proofs of Theorems 7 and 8 are similar: we use a standard
argument [5, 38, 35] to convert the estimation problem into a
hypothesis testing problem, and then use information-theoretic
inequalities to lower bound the error probability in hypothesis
testing. In particular, recall the definition of the set O(«y)
of regression vector pairs in (10); we construct a d-packing
O = {01,...,0)} of ©(7) in the metric p, and use the
following inequality: B

ir;fe*se%p@E [p(é, 9*)} > Sinf P (é ” 0*) ,

(40)

where on the RHS 6* is assumed to be sampled uniformly at
random from ©. To lower-bound the minimax expected error
by %5, it suffices to show that the probability on the last RHS
is at least % By Fano’s inequality [17], we have

I(y,X;0%)+log2
log M '

It remains to construct a packing set © with the appropriate
separation ¢ and cardinality M, and to upper-bound the
mutual information I (y, X;0*). We show how to do this
for Part 2 of Theorem 8, for which the desired separation
is § = 200%2\/% where Kk = % Let {&,...,&m} be a
p1—61 -packing of {0, 1}?~! in Hamming distance with log M >
(p—1)/16, which exists by the Varshamov-Gilbert bound [29].
We construct © by setting 8; := (8;,—3;) fori=1,....M
with

]P’(é;éa*)zl— 47)

p—1
Bi = Ko€p + Z (26i(J) — 1) ey,

Jj=1

where 7 = 4‘i1, kE = k? — (p—1)72%, and €; is the j"

standard basis in RP. We verify that this © indeed defines a
§-packing of ©(7), and moreover satisfies || 3; — By ||> < 1662
for all ¢ # 4. To bound the mutual information, we observe
that by independence between X and 0%, we have

N 1
1(0 ;X,y) §W Z D(Pillﬂ%')
1<i,i’ <M

LY Sk [ (PO IREY)].

1<i,i’ <M j=1

where IP’Ej ;( denotes the distribution of ¥; conditioned on X
and 6* = 6,. The remaining and crucial step is to obtain
sharp upper bounds on the above KL-divergence between
two mixtures of one-dimensional Gaussian distributions. This

requires some technical calculations, from which we obtain

2 2
G) | p) 1B — Bul” w
ExD (]Pi,jXHPi’J7X> S— 1
We conclude that 1(6*;X,y) < +logM. Combining
with (46) and (47) proves Part 2 of Theorem 8. Theorem 7
and the remaining part of Theorem 8 are proved in a similar
manner.
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V. CONCLUSION

This paper provides a computationally and statistically
efficient algorithm for mixed regression with two components.
To the best of our knowledge, the is the first efficient algorithm
that can provide O(p) sample complexity guarantees. Under
certain conditions, we prove matching lower bounds, thus
demonstrating our algorithm achieves the minimax optimal
rates. There are several interesting open questions that remain.
Most immediate is the issue of understanding the degree
to which the assumptions currently required for minimax
optimality can be removed or relaxed. The extension to more
than two components is important, though how to do this
within the current framework is not obvious.

At its core, the approach here is a method of moments, as
the convex optimization formulation produces an estimate of
the cross moments, (3733 " + 8367 ). An interesting aspect
of these results is the significant improvement in sample com-
plexity guarantees this tailored approach brings, compared to
a more generic implementation of the tensor machinery which
requires use of third order moments. Given the statistical and
also computational challenges related to third order tensors,
understanding the connections more carefully seems to be an
important future direction.

APPENDIX A
PROOF OF LEMMA 4

We now move to the proof of Lemma 4, which bounds the
noise terms P and (). Note that

P=2% |lnpAjws|
b

<2 Agw b 42 s Aswa s,
b b

S1 Sa

and

Q=Y _41Blly lInsAgwsl + /b || > 4X, diag(es)wy,
b b

oo

<4yP+ /p Z 4X;rdiag(eb)w17b

b

o0

Ss

+D Z4X;)Tdiag(eb)w27b
b

o0

Sa
Therefore, the lemma is implied if we can show

51+52S57

5 S3+ 54 <o),

w.h.p.

But A 2 o (v +0) (y/np + |1 — na| \/p) log® n by assump-
tion of Theorem 3. Therefore, the lemma follows if each of
the following bounds holds w.h.p.

S S oyy/aplog’ n,
Sy < o?y/mplog® n,
S3 S 0%y (Vap + |1 — na| \/p) log” n,
Sy < o3y/mplog? n.
We now prove these bounds.
a) Term Sy:: Note that v > ||3] — B3 |5, so the desired

bound on S; follows from the lemma below, which is proved
in Section F-F.

Lemma 11. Suppose (37 — B is supported on the first
coordinate. Then w.h.p.

S1 5 1181 = Bslly ov/mplog® n.

b) Term Sy:: By definition, we have

Sp=2)
b

2

np

Z (612:,1' — 02) wbyiw;’i

i=1

Here each eg , — 0 is zero-mean, < o2 log n almost surely,
and has variance < o*. The quantity inside the spectral norm
is the sum of independent zero-mean bounded matrices. An

application of the Matrix Bernstein inequality [28] gives

< o2\ /mpp log3 g,

Z (6§)i - 02) CEb)Z:BIIZ

i=1

for each b = 1, 2. The desired bound follows.
c) Term Ss3:: We have

S3/4 =/p

> X, diag (e}) (—ey o (X3,57))
b

oo

=Vp

Z X, diag (e7) X,0;
b

(oo}

= max
VP le[p]

)

Z (6% e} Xb,l)—r Xb6g‘
b

where X, ; is the 1t" column of X,. WLOG, we assume n; >
ng. Observe that for each [ € [p],

Z (eg o XbJ)T Xbé;

b
no

=" (& (D] — 3 @ai(l)a],) 8

i=1
S3,1,1
ny
2 T g%
+ E ey x1i(l)xq ;07 .
i=ngo—+1

S3,2,1
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Let €; be the it standard basis vector in R". The term S3.1,1
can be written as

na
T (.2 «T T (.2 «T
Ss1,0 = E (5'311 (61,716151 ) L1, — Lo, (62,1'5151 )m2z)

i=1
T

=x Gx,

where we defined

T._ T T T
X .—[61’1{131’1 €1,2%1 o €1,n2%1 n,

T T T 2n
€2,1To 1 €22Lgo - 627n2w2,n2] € R

and
G ::diag(el(ﬁ‘—r, €0, ... ed T,
—eléfT) S

— Gl(sik—r, —eldfT, ey
in other words, G is the block-diagonal matrix with {:l:elts TT}
on its diagonal. Note that ES5;; = 0, and the entries of x
are i.i.d. sub-Gaussian with parameter bounded by o+/logn.
Using the Hanson-Wright inequality (e.g., [25]), we obtain
w.h.p.

2naepX2na2p.
R ;

?12[1)]( 1311 S |G g o*log? n < 02V 2nylog? n.
€lp

Since 87 is supported on the first coordinate, the term S5 2
can be bounded w.h.p. by

Enax|5321|—max Z el w1i(D)xy,:(1)87(1)
E[ i1=no+1

< (ny —no) o?ylog?n
using Hoeffding’s inequality. It follows that w.h.p.,
Sy < \/]312?5 (1S3,00] + 193,2,10)
< oy (Vap + [ — no| /p) log” n.
d) Term Sy::
S1/4 <P Y[ X T (en o way)||
b

We have w.h.p.

(a)

SVplogn ) ey 0wy,
b

zw/plognz |es — e,
b

® 3 2
<o’y/nplog”n,
where in (a) we use the independence between X and epows

and the standard sub-Gaussian concentration inequality (e.g.,
[30]), and (b) follows from the boundedness of e.

APPENDIX B
PROOF OF LEMMA 5

The proofs for b = 1 and 2 are identical, so we omit
the subscript b. WLOG we may assume o = 1. Our proof
generalizes the proof of an RIP-type result in [16]

Fix Z and z. Let & := (B;,Z) and v := ||Z||. We
already know that {; is a sub-exponential random variable
with [[&, ], < crv and [}&; — E[g,]]],,, < 2e1v.

Let v; = (dj,z) and w = |/z||,. It is easy to check
that v; is sub-Gaussian with ||v;l|,,, < cip. It follows that

I =il <1 (vt w).
Note that

n/2
2
IBZ - Dz, =) & =l
j=1
Therefore, applying the Bernstein-type inequality for the sum
of sub-exponential variables [30], we obtain

PIBZ — Dz||, —E[§; =l > 1]

<2exp {—c min {

t2 t H
o +p)?/n’ cov+p)/n)l
Setting t = (v + ow)/c3 for any c3 > 1, we get

V4w
— ]l > c] < 2exp[—eyn].
3

(48)

P [mrsz Dz, ~Elg

But sub-exponentiality implies
E(1&5 =l <& = illy, <eca(v+p),

and
1
P {HBZ — Dz, > <62 + c> (v +w)} < 2exp[—eqn].
3
Now, note that
El& =%))”
E[(& =)
the numerator and denominator. By sub-
} < ¢5(v +w)?*. On the

E[|§ — vl =

We bound
exponentiality, we have E [(«fj v;)
other hand, note that

E (& —)°
((Bj, Z) —
(B;. 2)*
( >

(d;, z))”
+E(d;, z) —-2E[(B
B;,Z)" +E(d;d] zz")
—2E[(Bj, Z) (e2j@2; — €2j-122j-1, 2)]
=E(B;, > E(d;d} ,zz")—2E [e;] E[(B;, Z)(ws;, z)]

—2E [e2; 1] E[(Bj_1, Z) (x2j-1,2)]
=E(B;,Z2)’ +E(d;d] ,zz"),

Z> <dj7 z)]

Il
& B &

where in the last equality we use the fact that {e;} are
independent of {x;} and E[e;] = 0 for all 7. We already
know

E(B;,Z)" = (E[(B;, Z) B;], Z)
=41 Z|[% +2(u - 3) ||diag (2)]7
> 2= 1) |1 2|7
Some calculation shows that

E <djdjT, zzT> = <IE [egjccgjm;j + egjmgjzc;j] ,zzT>
=2(I,zz") =2|z|*.
It follows that

E(&—7)® 2 2= D25+ 2217 2 e (v + 7).
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where the inequality holds when ;2 > 1. We therefore obtain

(2 + )’
(v +w)?
Substituting back to (48), we get

P [||BZ _ Dz, < (CS _ 613) (v +w)] < 2exp [—can] .

Efl& — vl > er > cg(v+w).

To complete the proof of the lemma, we use an e-net
argument. Let S, be the set

2 2
{(2,2) e R7 < RY xank(2) <7, |1 21} + 1213 = 1}
We need the following lemma, which is proved in Section F-G.

Lemma 12. For each ¢ >100 and r > 1, there exists a set
N (€) with |Ny.(e)| < (22) ™" which is an e-covering of S,,
meaning that for all (Z, z) € S,, there exists (Z, 2) € N.(e)
such that

B 2 R )
HZ—ZH +2—-z|; <e
F

Note that < JIZlE+ =12 <
|Z||z + |||y for all Z and z. Therefore, up to a change
of constant, it suffices to prove Lemma 5 for all (Z, z) in S,.
By the union bound and Lemma 12, we have

P ((Z ZH)IS\(/ © ‘BZ DZH <2 <Cg + L ))
>1 —[Ne(e)| - exp (—can) > 1 — exp(—can/2),

7 UZlp+1=l,) <

when n > (2/c4) - 10prlog(40/€). On this event, we have

M:= sup |BZ - Dz|,
(Z,z)€S,
< max ‘BZ DzH
(Z z)EN
+ sup HB(Z ~Z)-D(z - E)H
(Z,z)€S, 1
<2(cz+ ) + sup \/HZ ZH +||z—z||2
ZeS,
x sup ||[BZ'—-DZ|,
(Z',2")ESa,
1
§2(62+> +e sup ||BZ'-DZ|,.
c3 (Z',2')€Szr

Note that for (Z’,
such that Zj, Z, both have rank r and 1 =
max {[|Z{]|y, |25 p}- So

z') € Sy, we can write Z' = Z{ + Z}
12"l ¢

sup ||BZ' - DZ'||,
(Z',2')€S2,
< sup |BZ; - DZ'|, + S 1BZsl, (49
Z/es2r Z'eS 2r
<2M.
Combining the last two displayed equations and choosing € =
4, we obtain

MSS::

2 1
1—2.\?" & )

with probability at least 1 — exp(—con). Note that  is a
constant independent of p and r (but it might depend on
wi=E [(mz)? ).

For a possibly different ¢/, we have

inf ||BZ - Dz|,

(Z,2)€S,

> min
(Z,i)e./\/r(e)

By the union bound, we have

]P’( min ‘BZ—ZH ><C7—1)>
(2,2)eN: (o) 1 c3

> 1 —exp (—cyn + 10prlog(40/€’))
>1—exp(—cyn/2),

provided n > (2/c4) - 10pr log(40/€’). On this event, we have

(a) 1 , -
|\BZ — Dz|, > 1= — —2¢M
3

®) 1 =
> <C7 - ) - 26/5,
c3

where (a) follow§ from (49) and (b) follows from the the
upper-bound on M we just established. We complete the proof
by choosing € to be a sufficiently small constant such that

é::( )—26'5>0.

m
(Z,z)eS,

1
C7_?3

APPENDIX C
PROOF OF LEMMA 8

Let H= K’ — g’ and h = g’ — g. We observe that
Qn(K’,g"K 9)

= Z 240 x;, h
< Z2<wiwi,H>2 + 8?&?5]({%2} <Z<wi~h>2>
=1

=1

(zixi, H) + 2y; (x;, h

results, we have
c1 exp(—cop) for any

By standard concentration
Pr (3 (=i, h)® > L1[AJ3) <
h € RP. We thus obtain that w.h.p.

Qn(K’ 9 K,qg)

< Z x; xz,H> +9n - max{yl} -||h|3.
=1
We need the following lemma, which is proved in Section F-H,
to bound the first term on the right hand side of the above
inequality.

Lemma 13. Suppose {x;}! | are iid. p-dimensional cen-
tered sub-Gaussian random vectors with norm il w, < cfor
some constant c and identity covariance matrix E(xz;x; ) = I.
There exist constants c; such that for any matrix H € RP*P,
we have

1 & 2
=S (] H)' < cplogn- [HI. - | H]lr,
=1
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with probability at least 1 — con ™!

Note that ||H|,. < \fHHHF for any H. We have that
> ien) (ziz]  H)? < n\f log n||H ||%. Also note that

under condition n > c3p.

Pr (m?)]<|yb| > t) <nexp(1—t*/(v*+0%)).
1€|n

Setting ¢ =< (y+0)+/logn in the above inequality leads to our
result.

APPENDIX D
PROOF OF THEOREM 7
We need some additional notation. Let =z =
(21,22,...,2n) € {0,1}" be the vector of hidden labels

with z; = 1 if and only if ¢ € Z;. We use y(0*, X, e, z) to
denote the value of the response vector y given 6%, X, e
and z, that is,

y (0", X, e,2)=z0(XB7)+(1-2)0(X0B;) +e,

where 1 is the all-ones vector in R™ and o denotes element-
wise product.
By standard results, we know that with probability at least

—10
1—n""",

[ Xal, <2vnlal,, Vo € RP. (50)

Hence it suffices to prove (11) in the theorem statement
assuming (50) holds.

Let v be an arbitrary unit vector in RP. We de-
fine § = Coﬁ, 0, = (%lv,—%lv) and 6 =
(37v + 6v, —3yv — 6v). Note that 6;,0; € O(7) as long
as co is sufficiently small, and p (6;,03) = 26. We further
define e; := 0 and e; := —§ (22 — 1) o (Xv). Note that
lezll < 24/nd < € by (50), so e1,es € B(e). If we set
v, =y (0;,X,e;,z) for i = 1,2, then we have

Y2 = z0 <X(;7v+5v)) +(1-2)o (X(;w — 5v)> +es

=(2z—-1)o (X(;fy'u—kdv)) —0(2z—1)0(Xv)

=(2z-1)o (X(;w)) +er

= Y1,

which holds for any X and z. Therefore, for any é, we have

sup  sup p(é(X,y)ﬁ*)
0*cO(y) ecB(e)

> 50 (00X,91),01) + 50 (0(X, 1), 02)

2
= % (é(X,yl),91> + %p (é(X,y1),02)
%P(91792)
=4

)

where the second inequality holds because p is a metric and
satisfies the triangle inequality. Taking the infimum over 6
proves the theorem.

APPENDIX E
PROOF OF THEOREM 8

Throughout the proof we set £ := 2.

A. Part 1 of the Theorem
We prove the first part of the theorem by estab-
lishing a lower-bound for standard linear regression. Set

81 = cooy/E=L, and define the (semi)-metric p1 () by

p1(B8,8") = min (|8 —F'||, |8+ B'l|}. We begin by con-
structing a d; —packing set &1 := {31,...,8m} of GP (k) :=
{B €R? :||B| > «} in the metric p;. We need a packing set
of the hypercube {0,1}?~! in the Hamming distance.

Lemma 14 For p > 16, there exists {&1,..
{0,137 such that M > 20=1/16 gng

min{||§i

LEum} C

p—1 o
—&llgs &+ &yt = BT ViI<i<j<M.

See Section F-I for the proof. Let 7 := 2600’\/% for some

absolute constant cg > 0 that is sufficiently small, and m% =

% —(p—1)72. Note that xo > 0 since ¥ > o by assumption.

Fori=1,..., M, we set
p—1
Bi —HQGP—I—Z 2¢6,(5) — 1) 7ey,
Jj=1

where €; is the j standard basis in R? and &;(3) is the j*"
coordinate of &;. Note that ||3;||, = k,Vi € [M], so ®; =

{B1,...,Bm} C GP(k). We also have that for all 1 <4 <
JS M»
ai(p—1
18- B2 < p- 172 =137 =D )
Moreover, we have
. 2 2
o (81, 8;) = min {118 = B3, 18; + B3}
> 4r? min {[|& — &y 1€ + &l }
2
-1
>4.437 P22 52
= c(] n 16 1> ( )
so &, = {B1,...,8m} is a §;-packing of GP(k) in the
metric p;.

Suppose 3* is sampled uniformly at random from the set
®q. For ¢« = 1,..., M, let P; x denote the distribution of
y conditioned on B* = B; and X, and P; denote the joint
distribution of X and y conditioned on 8* = 3;. Because X
is independent of z,e and 3*, we have

D (P;||Pyr) = Ep, (x4 log ((X Z))
pz(y\ )

= ]E[p (X ,y) log

pir (Y| X)
= Ep(x) []E]P’ (y]X) [log
=Ex [D (Pi x [P, x)] .

)
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Using the above equality and the convexity of the mutual
information, we get that

I8 X.y)< 55 D (P|[Pir)

>

1<i i <M
1
=2 Z Ex [D (P; x|[Pir,x)]
1<i, i <M
2
Z ]EXHX@'—X@’”
2
1<i, i< M 20
1
S
1<i, i <M

It follows from (51) that

Bl

202

n|Bi — Bull’

1
(B X,y) <8cp< 5 (logz M)/ (logy e) = 7 log M,

provided cq is sufficiently small. Following a standard argu-
ment [5, 35, 38] to transform the estimation problem into a
hypothesis testing problem (cf. Eq. (46) and (47)), we obtain

inf sup Ex_.e [Pl (Baﬁ*>:|
B B*e€GP (k)
> 5, (1 (8 ;X,y)+log2>
log M
,51

1 D
> —Ccooy [ —.
2 2 n

This establishes a minimax lower bound for standard linear
regression. Now observe that given any standard linear re-
gression problem with regression vector 3* € GP (k), we
can reduce it to a mixed regression problem with 6* =
(B*, —B*) € O©(y) by multiplying each y; by a Rademacher
+1 variable. Part 1 of the theorem hence follows.

B. Part 2 of the Theorem

Let 65 := 200%2 %. We first construct a d—packing
set Oy := {61,...,0y} of O(y) in the metric p(-,-). Set
T = 200%2\/2 and k2 := k% — (p — 1)72. Note that r¢ > 0

under the assumption £ > cy0 (2) 14 brovided that ¢ is small
enough. For i =1,..., M, we set 8, := (3;, —3;) with

p—1
Bi = Ko€p + Z (2&:(5) — 1) 7ej,
Jj=1
where {&;} are the vectors in Lemma 14. Note that ||3;] = &
for all 4, so ©y = {61,02,...,0)} C O(y). We also have
that forall 1 <7< ¢ <M,

4
g
18: — Bu|* < pr* = 42 ZE. (53)
RN
Moreover, we have
o (8:,0v) = 4min {118; — By |I” 18 + Bu I}
> 167° min {||& — & |y, [1& + &l }
4
-1
>16- 42— . % = 2, (54)

SO @2 = {017...,
metric p.

01} forms a dy-packing of ©(y) in the

Suppose 0* is sampled uniformly at random from the set
Os. Fori=1,..., M, let ]P’(J ) denote the distribution of Y;
conditioned on 0* =0, and X IP; x denote the distribution
of y conditioned on 8* = @; and X and P; denote the joint
distribution of X and y conditioned on 8* = 6;. We need the
following bound on the KL divergence between two mixtures
of univariate Gaussians. For any a > 0, we use Q, to denote
the distribution of the equal-weighted mixture of two Gaussian
distributions N (a,0?) and N (—a, o?).

Lemma 15. The following bound holds for any u,v > 0:

D (QuQu)
u? —v? 5 v¥max{0,v—u} , , 9 9 4
< 951 u 955 (u + 6u“o +3U).

See Section F-J for the proof. Note that P’ X = leT 8i"

Using P; x = lePl(-f))( and the above lemma, we have

ExD (P; x[|Pir x)

=Y ExD (PU) PV )
j=1

T3.1%2 _ |73, 12
E|w1 181| 20-4}:E1 ﬁz }w;r61|2
x! By ’ x{ By x! B }
L oS ~ =15

X (|a31T,6i|4 +6 |w?ﬁi|2 o + 30’4> .

To bound the expectations in the last RHS, we need a simple
technical lemma proved in Section F-K.

Lemma 16. Suppose x € RP has i.i.d. standard Gaussian
components, and o, (3 € R? are any fixed vectors with ||a|, =
|18l5- There exists an absolute constant ¢ such that for any
non-negative integers k,l with k +1 < 8§,

k l _ k l
Elzlal [« 8] <clal" |l
Moreover, we have

Ex [(Je"a* - |28 ) ["af*] <2l o - 8.

2 2\ 2
E <|:cTa| - |scT[)'| > <|la—8|".
Using the above lemma and the fact that ||3;]], = ||Bi||, =
k for all 1 <37 <4 < M, we have

- |w1Tﬁi'|2

204

Ex |931r/31’2

K28 — Bl

’wlT/@z‘z < Gy
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and for some universal constant ¢ > 0,

|"’1 52|}

max {O |a:1 Bir| —
208

X (|:c1rﬁi|4 +6 ‘x?ﬂilz o? + 304)

~ |l B[ } o] B[

(‘xl ,@! +6‘xfﬂ1’ 0?4+ 30 )
(@ 1 2
L Ex (jaTaf - oTaf)

X\/(’.’I:l ﬁz| —l—6|wIBl‘ 02+3o4)
() 1
S9,1

Ex |:E1 Bz’

1
72—EX max {0 ’wl ﬁl/

1 4
*S]EX | Bi

C 2 9
VIB: =Bl 2 180 = o 18: — Bl s
where (a) follows from the Cauchy-Schwarz inequality, and
(b) follows from the first and third inequalities in Lemma 16
as well as ||3;|| = ||Bi|| = ~ < o. It follows that
< IBi — /61’” K2

ExD (P; x||Pi.x) <n =

where the last inequality follows from (53) and ¢”’ can be made
sufficiently small by choosing cg small enough. We therefore
obtain

1(65X,y)<— > D(Pi|Py)
1<4,9' <M
1 1
:M Z ]EX [D (Pi,X”Pi',X)] S C//p S 1 IOgM
1<4,9' <M

using M > 2—1/16_ Following a standard argument [38,
35, 5] to transform the estimation problem into a hypothesis
testing problem (cf. Eq. (46) and (47)), we obtain

inf sup Ex e [P(é’a*)]

0 6+cO(y)
1(60*; X log 2
2 52 <1 _ ( ) ﬂy) + Og )
log M
1 2
2 ,62 — Coi B
2 K \n

C. Part 3 of the Theorem

The proof follows similar lines as Part 2. Let d3 :=
2¢co0 (%)1/ *, Again we first construct a Jd3—packing set

O3 = (01,...,0y) of O(y) in the metric p(-,-). Set
7= \2/% (%)1/4. Fori=1,...,M, we set 8; = (B3, —3;)
with
p—1
Bi=> (2&(j) - 1) e,
j=1

where {¢;} are the vectors from Lemma 14. Note that || 3; ||, =
Vp—1r = 2000( ) 1/4 > ¢ (p)1/4 > k provided c; is

sufficiently small, so ©3 = {64, ...,

have forall 1 <¢ < < M,
. 2 2
0° (Bi, Bir) = 4m1n{||,6i — B ll5 18: + 5i'||2}
> 167> min {[|&; — & [ly . 1€ + &irllo}
4c20? [p p—1
SV > 03,
p—1Vn 16

O} is a d3-packing of O(y) in the

Or} C O(y). We also

=16-

{0,...,

(55)

so O3
metric p.

Suppose 0% is sampled uniformly at random from the set
O3. Define P; x,P; JX and P; as in the proof of Part 2 of the
theorem. We have

ExD (P; x|Pv x)

=Y ExD (PUx P )

j=1
T3, 12
<’I’LE |Zl31 ﬁZ’ o 4|Il71 /61} ’w;—ﬂlf
|:cTﬂv % max {O, ’azTﬁ»/ — |mT,84|}
+nEx 1= 2081 ‘ L

< (o7 8" + 6]l 8] o +3a)
§74EX |.’131 ,61| +7Ex‘$1 ﬂi’

(‘:1:1,81’ +6fw1r,82| o +3J>

®) n
<-—¢
2 clB* +

©
<c'p,

_ 4 4 2
sese Bl (181 + 602 18:]* +90*)

where (a) follows from Lemma 15, (b) follows from
Lemma 16, (c) follows from ||3;|| = 2coo (%)1/4 < o,Vi,
and ¢’ is a sufficiently small absolute constant. It follows that

1
[0 X.y) <5 >, ExD(Ei|Py)<cp< logh,
1<i,i' <M
since M > 2(P=1/8  Again transforming the estimation

problem into a hypothesis testing problem, we obtain
inf sup Ex e [p (é, 0*)}
0 6+cO(y)
I(0%;X,y)+log2
03 (1—
log M

03 = coo (%)1/4.

v

v

1

2
APPENDIX F

PROOFS OF AUXILIARY RESULTS

A. Proof of Lemma 2
Simple algebra shows that

. “ 2
> | 2]
b F

& * *\ 7. 2 * *(12 1|1,
= 2| Hr— (8 + BORT||_+2187 - B3I I3
> 21187 — G312 A3 > o (1851, + 11831)° 13
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and
~ ~ 112
> e 263
F
(8 +8)
%2 %112
21183115 + 211851
* 2 * 2 & 2 & * * 2
2 (18515 + 1851 || 2o | — || (87 + 85)||
%12 (12
18115 + 11851
.2 .2 2 | CTIS—
w2 (I8l + 1851°) £ — [P ] 167 + 51
- x(|2 (12
18115 + 11851
2
HF’

where the inequality (a) follows from Hy

=4 (II81115 + 18311

=

< |fz],
Combining the last two displayed equations w1th the 31mple
inequality

. R N 2
S ] =[5 ]
we obtain

S| - 285k = va (8l + 1831,) Il
b

> | 2] 2 vel |
5 F F

B. Proof of Lemma 3

Without loss of generality, we may assume o = 1. Set L :=
Vclogn for some ¢ sufficiently large. For each i € [n], we
define the event & = {|e;| < L} and the truncated random
variables

e =e1(&),

where 1(-) is the indicator function and c¢ is some suffi-
ciently large numeric constant. Let m; := E[e;1(EF)] and
si = E[e?1(EF)]. WLOG we assume m; > 0. Note that
the following equation holds almost surely:

ef1(E7) = leil - les| 1(EF) = L~ |ei| 1(EF) > L ei1 (&)

Taking the expectation of both sides gives s? > Lm;. We
further define

€; == €; + Le;." — Lei_

)

where e and ¢€; are independent random variables distributed
as Ber(y:r ) and Ber(v; ), respectively, with

.1 /my s2 1 m 52
vi=g\T te) v Tl )

Note that m; >0 and 52 > Lm; implies that 1/+, v, 2> 0 We

show below that v;", v~ < 1 so the random varlables ¢ and

e; are well-defined.
With this setup, we now characterize the distribution of ¢;.

Note that
E [Le:r — Le;] =m;,
E[(Lef)? + (Ley)?] = 52

Rl

which means

Ele;] =Elei] + Eles1(£7)] =
Var [¢] =B [62] + E 71 €] =

E[e;] = 0.
[eﬂ =1.
Moreover, €; is bounded by 3L almost surely, which means

it is sub-Gaussian with sub-Gaussian norm at most 3L. Also
note that

m; <E[le;1(&)]]
:/ P (je;1 (EF)| > t) dt
0
=L -P(le;| > L) + / P(lei| > t)dt
\/mijL/ e dt <

for some large constant ¢; and ¢y by sub-Gaussianity of e;. A
similar calculation gives

nez

1

nez’

s; =E[ef1(£9] S

This implies 1/;' v S n12 , or equivalently Le;F —Le; =0
w.h.p. We also have e; = e; w.h.p. by sub-Gaussianity of e;.
It follows that é; = &; + Le;” — Le; = e; w.h.p. Moreover, é;
and e; have the same mean and variance.

We define the variables {(&;);,7 € [n],! € [p]} in a similar
manner. Each (Z;), is sub-Gaussian, bounded by L a.s., has
mean 0 and variance 1, and equals (x;), w.h.p.

Now suppose the conclusion of Theorem 3 holds w.h.p.
for the program (7) with {(&;,9;)} as the input, where ; =
5:;,8;;+é¢ for all i € 7, and b = 1, 2. We know that e = € and
x; = &;, Vi with high probability. On this event, the program
above is identical to the original program with {(x;,y;)} as
the input. Therefore, the conclusion of the theorem also holds
w.h.p. for the original program.

C. Proof of Lemma 6
We need to bound

W=yp

> X, diag(ep)wy, + Y o’ X, X5
b b

+ZQO’2XJ617
<fz Z o? —e Wi, 0p ), +Z €; 240 )elwl
i€Ly 1€y o
<VPY | S - et 5
1€Ly 00
So
—1—\/132 Z(e?—i—aQ)eiwi
b llieT, o
S10

Lemma 3 makes it possible to assume the boundedness
of e; with the loss of only small probability, we thus have
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that (e? + 0?)e;x; is sub-Gaussian random vector with Orlicz
norm O(c3 \/@3). Therefore the standard sub-Gaussian
concentration result leads to that the following inequality holds
with high probability

S0 < 0®y/nylog?ny + 0y/nzlog® ny < o®v/nlog®n,

where the last inequality follows from min{n; /ns,na/n1} =
Q(1).
Since (x;, d;) is sub-Gaussian random variable with Or-

licz norm O(v) and (0% — e?)x; is sub-Gaussian random

vector with Orlicz norm O(o?logn), their product (o2 —
e2)(xz;, 8;)x; is centered sub-exponential random vector with
Orlicz norm O(yo? logn). By standard concentration inequal-
ity of sub-exponential random variables (see, e.g., Corollary
5.17 in [30]), we obtain that for every ¢ > 0 and K =

~o?logn,

Pr > eny

D (=€) (@i 6)mi+ Y (€] + 0%)esa;

i€y i€Ty

< 2pexp | —cmin ii n
= 4P P KQ,K b ) -

For each b = 1,2, by setting ¢ = ¢1 K+/logp/ny, we have
that when n;, 2 log p, with probability at least 1 — 1/p,

Sy < yo?(y/n1 4+ n2)y/logplogn < voy/nlog? n.

Putting all ingredients together, we have that W <
~vo2,/pnlog® n with high probability.

oo

D. Proof of Lemma 7

Using the inequalities |K*)|| < |[K*||, and HKH

IA

*
[l K*]|,, we have

(=), = (2 - )

g’ , and
]ﬁp < ]ﬁT
*

* (56)

T

*

For the term H® we have

H

HH(t)

< ‘K(t)—K*

_|_

*

o )

+ HISITL

*

o)

—

T+ T

* *

+ H-E[T

V()

*

+2HI§IT

T

*

9
*

©)
22

+4HI§IT

where the inequality (b) follows from (56); (a) and (c) are
from the triangle inequality.

Also note that ||H(t)||* > HHQ(,?H —HH}”H . Putting the

lower and upper bounds of | H®||, together, we complete our
proof.

E. Proof of Lemma 9
Let

\I/t(Kag)

— <VK£§f),K> + <Vg£5f’,g> + 3 HK - K(t)H2

F
2

2
Y
5 o9l
2

From the optimality of (K (**1), g(*), we have
<VK\I't(K(t+1),g(t“)), K K(t+1)>
+ (VW (KD, g+1) g — g+ > 0.
We thus have
<VK££P, K K(t+1)> I <Vg££f>,g _ g<t+1>>
> <K<t) _ K K K(t+1)>

. <g(t) _gt+h g g(t+1)> ‘

Using the first condition (lower bound), we have

(57)

> L0+ (Vi K = KO) + (9,0, - ")
+Q,(HY, hY)

(@)

> L0y <VK£§P,K“+” _ K(t)>
+ <vg£§f>,g(t+1> _ g<t>> +Q (HV, h®)
. <K(t) KUY K K(t+1)>
+1172 (g — gV, - gtV

Now applying the second condition (upper bound), we have

L, (K.9)
> LY - QA" 6M) + @ (H, h)
+1 <K<t> K0 K K(t+1>>

+m2 (g — g, g — gV

Applying £ >, (K, g) and rearranging terms yield

n <K<t> _KD) K—K(t)> . <g<t) 7g<t+1>7gfg<t>>
<@, (AW, 6M) - (HY, h) —y|AD|F
=2 [6]3. (58)
Finally, by expanding ||H“+1||2 and ||h(**Y |2 through
[z Sl A 1Al
<IHOIG+ 7RO +2 (KO~ K¢ K - K©)
+ 29 <g(” — gt g - g(t)> +IAD]5 + 471693

and applying (58), we complete the proof.
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FE. Proof of Lemma 11
We need to bound

51_22

where 3; — 3%, is supported on the first coordinate. Because
ny <X ng < n and {(ep;, ®p,;)} are identically distributed, it
suffices to prove w.h.p.

Zeb zwbzmbz mbz (ﬁb 16 )

1€y

n

E e,:c:c

i=1

|E| = x] 87| S o |65, v/nplog® n. (59)

Let &; € R! and x, € RP~1 be the subvectors of x;
corresponding to the first and the last p — 1 coordinates,
respectively. We define 7 similarly; note that 6511 = 1831l

Note that E := Y, e;z;x; - &} 6] due to the support of
d;7. We partition E € RP*P ag

El E12
E =
5w

where By € RV, B, € Re-D>x#=1 and Ey, € R*P. We
have
£ < Bl + [|B2l + 2| Er2]l-

We bound each term separately.

Consider By = Y, e;&;&; -, 8;. We condition on {Z;}.
Note that || Z;]|, < vlogn and ’wT5*| < |07] Viogn a.s. by
boundedness of x;. Since {e;} are independent of {Z,}, we
have

P[| Bl < o l|&7]| vilog® n| {z:}] = 1 —n~"7,

w.h.p. using Hoeffding’s inequality. Integrating over {Z;}
proves || E1|| < o ||6%] v/nlog® n, w.h.p.

Consider E> = Y, e;z;x; - &/ 6;. We condition on the
event F := {Vi : |z 67| < |67 Iogn}, which occurs with
high probability and is independent of e; and x,. We shall
apply the matrix Bernstein inequality [28]; to this end, we
compute:

ez - ] 67 “Ilog?n, as.

by boundedness, and

<no’max|a] 5’ [E (2,
7

<npo® |87 log .
Applying the Matrix Bernstein inequality then gives
| Ball S o 1|85 (0 + vip) log? n < o || 67| /aplog® n,

w.h.p., where we use n 2 p in the last inequality.

Consider E1p = Y, ¢;Z;x; - &, 8;. We again condition on
the event F and use the matrix Bernstein inequality. Observe
that

Heia’:i@;r ~:I:T5f|| < oyp|6f]log®n, as.

by boundedness. Moreover, we have

ZE@ x, 5;, (a:a: )(a’:,@?)

|z:))? | Ezz] |

< no? max ]:z]él
3
S no® |87 og” n
and

(2/8) (zi2]) (z:2])

ZEe

< no? max ‘:E;r51| H:E@ZTH E [@;FEJ
(2

< npo” |87 *log? n.
Applying the Matrix Bernstein inequality then gives
1Bw|l < o 185 vrplog® n.

Combining these bounds on || E;||, i = 1,2,3, we conclude
that (59) holds w.h.p., which completes the proves of the
lemma.

G. Proof of Lemma 12
Define the sphere

Tr(b) :={Z € RP*? :rank(Z) < r,|| Z||, = b} .

Let M,.(¢/2,1) be the smallest €¢/2-net of 7,/(1). We know
M, (6/2,1)] < (2)™ by [8]. For any 0 < b < 1, we
know M, (e/2,b) := {bZ : Z € M(e/2,1)} is an €/2-net
of 7;’(1)), with [M,(e/2,b)] = |M,(e/2,1)] < ()"
Let k := |2/e|] < 2/e. Consider the set M,(e) = {0} U
UL 1M (e /2 i€/2). We claim that M,(e) is an e-net of
the ball 7, := {Z € RP*? :rank(Z) < r, || Z| < 1}, with
the additional property that every Z’s nearest neighbor Z in
M,.(¢€) satisfies ‘fZHF < |[Z]|p. To see this, note that for

any Z € T (r), there must be some 0 < i < k such that
ie/2 < ||Z||p < (i + 1)¢/2. DefineZ’ := ieZ/(2||Z|| ),
which is in 7;(ie/2). We choose Z to be the point in
M.,.(€/2,i€/2) that is closest to Z’. We have

Z—ZH < ’Z—Z’ +1Z' - Z|| 5
F F
<e/2+([|1Z]lp —ie/2) <,
and HZ~HF = i¢/2 < ||Z||. The cardinality of M, (e)

satisfies

k
)’ < 1+Z|Mr(€/2vk€/2)|

i=1

1 (20)6” (20)7”
<l+-|— <|— .
€ € €
We know that the smallest ¢/2-net M’ (¢/2, 1) of the sphere
T'(1) :={z € RP : ||z|| = 1} satisfies [M'(e/2,1)| < (2)".
It follows from an argument similar to above that there is an
e-covering M’ (¢) of the ball T = {z € RP:|z| <1} with

cardinality |M’ | < ( 7%0) and the property that every z’s
nearest neighbor Z in M/ (¢) satisfies ||Z||, < [|z]|,.

’/\;IT(E
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Let S, be the set

{(Z,z) € RP*P x RP : rank(Z) <, | Z|% + ||2||? < 1} .

(€)) NS, is an v/2e-
- CT(r)x T, we
(e

), resp.) closest

We claim that NV;.(v/2€) := (M,.(€) x M’ (e
net of S,.. To see this, for any (Z,z) €
let Z (%, resp.) be the point in M,.(¢) (M
to Z (z, resp.) We have

~ 2
\/HZ - zHF tllz—z2 < Ve + e = V2,

=112 ~112 2 2
and || Z|| +11215 < 1215 + =13 < 1.

Let V,.(v/2¢) be the projection of the set \;.(1/2¢) onto the
sphere S,.. Since projection does not increase distance, we are
guaranteed that Nr(\/ﬁe) is an v/2e-net of S,. Moreover,

’Nr(ﬁE)

‘./\7 (V2€)| < [M(e)| x |[M(e)] < <20)1Opr.

€

H. Proof of Lemma 13

For simplicity, let’s assume H is symmetric. Later on one
can check our proof works for any general matrix H as well.
Suppose H = 37, aj.uju;:r, where o is j* eigenvalue
and u; is the corresponding eigenvector with unit Euclidean
norm. We have

fz :cw H

i€[n]
2
1 2
= > o (@iyuy)
i€[n] \j€lp]
1 2 2
= Y gion (@i ug)” (@i up)
i€[n] \Jj,k€[p]
1
< —
S P! D IAERER RS oA

J€Elp] ke[p]

18} 1A

By using standard concentration result, for some constants
e, ¢’ ||n=! 32, e ®iwi — 1| < 0.1 with probability at least
1 — cexp(—c'p) under assumption n > ¢’p. We thus have
that wh.p. = 37, (i, uy)® < 1.1 for all j € [p]. Using this
result, we continue (60) with

—Z mwTH

1€[n]
<1. 1max{|m2|2} |H| ¢ Z |0
J€lp]

1 1%{@15} N H - |H].

2

i€[n]

Z |0 (@i, uz)?

J€lp]

A
\
=
5
»
-
B
e

(60)

For each j € [p], let x;; denote the jth coordinate of x;. By
union bound, for some constant ¢y, cs,

Pr ( max |zi;| > t) < np-exp(l — cot?).
i€[nl,5€[p]

Choosing ¢ =< /log(np), we thus have w.h.p.

max{nwz-n%} < p-log(np),

i€[n]

which completes our proof.

1. Proof of Lemma 14

We need a standard result on packing the unit hypercube.

Lemma 17 (Varshamov-Gilbert Bound, [29]). For p > 15,
there exists a set Qo = {€1,...,&x,} C {0,177 such that
M >20=D/8 and 1€ — &, > Bt V1 < i < j < My

We claim that for i € [Mo], there is at most one i € [Mj]
with ¢ # 4 such that

p—1

i~ (=&l < 61

e~ (~&lly < P o)

otherwise if there are two distinct i1, io that satisfy the above
inequality, then they also satisfy

€, — €l < Wi — (~Ell + s — (~E0llo < 257,
which contradicts Lemma 17. Consequently, for each ¢ €
[My], we use i to denote the unique index in [M;] that
satisfies (61) if such an index exists.

We construct a new set 2 C {2y by deleting elements from
Qo: Sequentially for ¢ = 1,2,..., M, we delete & from €
if 4 exists and both &; and &; have not been deleted. Note
that at most half of the elements in Q are deleted in this
procedure. The resulting Q2 = {&1,&s,...,&} thus satisfies
M > 2(p=1)/16 gpq

min {[|&; — &l 1€ + &1l }> Lvi<icj<um

J. Proof of Lemma 15

By rescaling, it suffices to prove the lemma for o = 1.
Let ¢(x) := \/% exp (7%) be the density function of the
standard Normal distribution. The density function of @Q,, is

fule) = 30— u) + 360+ ),
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and the density of @Q, is given similarly. We compute

D(QuIQ,)
fula) |
/ fulz @) dx
—5[m[w<x—u>+w<x—u>1
exp (25 - xp (o)

i _exp( M)+exp< (IH)Q)
:1/ [ (& — u) + o (& — u)]

exp (mu — "72) + exp (—mu — “72) p

x log

lo 2 2 g
it | o (0= ) +exp (—av - )
- B u2 _ ’U2 exp (:L’U) + €xXp ( ) T
x log _exp ( 9 > exp (zv) + exp (— )} !

=3[ We-wrE-w)

u? —v? cosh (zu)
x [_ 2 ! cosh (xv)] d
u? — v?
2
1 [ cosh (zu)
+ 3 LOC [t (x —u) + ¢ (x —u)]log cosh (z0) dx.
(62)

By Taylor’s Theorem, the expansion of log cosh(y) at the point
a satisfies

log cosh(y)

=logcosh(a) + (y — a) tanh(a) + %(y — a)?sech?(u)

1
~3 (y — a)3 tanh(¢) sech?(¢)
for some number £ between a and y. Let w := “7“’ We
expand log cosh(zu) and logcosh(zv) separately using the
above equation, which gives that for some &; between v and

w, and some & between v and w,

log cosh (zu) — log cosh (zv)

2

2

2?[(u—w)?—(v-w)’]

=z(u—v) tanh (zw) + sech? (zw)
2 (u — w)® 2

e tanh(z&1) sech” (1)
23 (v —w)® 2

+ — tanh(z&s) sech®(x&,

u+v))+ —;; (u;v)3
3

—2(u — v) tanh ("T(

)
3
2
x [tanh(z&;) sech?(z£;) + tanh(z&y) sechQ(mﬁg)} , (63)

u—v
5 -

where the last equality follows from v —w =w —v =
We bound the RHS of (63) by distinguishing two cases.

Case 1: uw > v > 0.: Because tanh(z¢;) and tanh(z&s)
have the same sign as 23, the second term in (63) is negative.
Moreover, we have x tanh (W) <z z(";”) since “E% >
0. It follows that
2%(u —v)(u+v)

log cosh (zu) — log cosh (zv) < 5 ,
Substituting back to (62), we obtain
D (Qu]Qu)
< [ el 2 e
*UQQUQ N uzgvz(u2+1) _ uzgvzuz

Case 2: v > u > 0.: Let h(y) := tanh(y) —y + %
Taking the first order Taylor’s expansion at the origin, we
know that for any y > 0 and some 0 < ¢ < y, h(y) =
—2 (tanh(¢) sech?(€) — €) y* > 0 since tanh(¢) sech?(¢) <
€12 for all £ > 0. This means tanh(y) > y — %,Vy > 0.
Since u — v < 0 and tanh(-) is an odd function, we have

2(u — v) tanh (z(u 4 v))

<z(u—v)|z(ut+v)— é (zz(u+v))*| .

On the other hand, we have
x [tanh(z&;) sech?(z&;) + tanh(x€y) sech? (z&2)]
(a) (b)
< z(zé + x62) < x - 2z,

where (a) follows from sech?(y) < 1 and 0 < y tanh(y) < y?
for all y, and (b) follows from &;,&; < v since v > w > u >
0. Combining the last two displayed equations with (63), we
obtain

log cosh (zu) — log cosh (zv)
utv) 1 (zu+v)\?] 22 fo—u)®
< _ _Z hadll
<z(u—w) 5 3 ( 5 + 3 5 (2vz)
When v < v, we get
D (Qu[Qw)
2 _ 2 1 o]
< [ wemu v
u?—v? 5 v—u [utv s 4, 2v (v—u 8 4
x[2x+3(2>x+3<2>xdx
u?—v?  w?—0? (v—u)(utv)® v(w—u)’
=T g WD s
></ [(z—u) + p(x+u)] ztde
o, [e—w@r)?  200-w?] .,
= 54 51 (u*+6u”+3)
@ 0? 20 200, 4 .
u2—v2 3

%(u4—|—6u2+3).
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Combining the two cases, we conclude that

u? — v? v3max {0,v — u
D(@u0,) < 5 L TV 2 a2

K. Proof of Lemma 16

We recall that for any standard Gaussian variable z ~
N(0,1), there exists a universal constant ¢ such that

E |Z|k < ¢ for all k < 16. Now observe that p :=

x o~ N(0,|al?) and v :=x T8 ~ N(0, ||8]|*). Because
z'a/|al| ~N(0,1) and "B/ |8 ~ N (0,1), it follows
from the Cauchy-Schwarz inequality,

E[[27a|" |« 8] ]

< el 18] \/

I8II".

This proves the first inequality in the lemma.
For the second inequality in the lemma, note that

E[(Je"al* - [a78") [2Taf’]
~Elz"al |« 8"
=3|a|*-E ‘wTa‘Q ’J!T,G’2 :

21

k CIZTﬂ

aza

<é|al*

:]E‘a:Ta|4

But

Elz o) |27 8[°

:E(Oélxl + +a,8)°

:E2x4a2ﬁ2+EZx2 2a? 2+2EZx xs alajﬁlﬂj
i#] i#]

= 32@262 + ZQQBQ + 22041%62@

i#] i#j
= 22&262 + ZaZBQ + QZaZa]BZﬁJ
i#]
— ol 18 +zzaiajm/aj

i,J

2 2
= llel* 18] + 2 (e

It follows that

+ Olpx;v)2 (11 +---

B (64)

E[(j"of -~ [¢76]") [ 7ol
=3al* — [lal” |8]* — 2 (v, B)°
=2|al* - 2(a, B)°

<2 +2 (o~ {e.8)) "~ 2 (e, )
e’ - 4fal (. 8)

=2ja)* (Jledl* = 2 (e, 8) + 18]
<2af* o = BII°.

28

For the third inequality in the lemma, we use the equal-
ity (64) to obtain

]E(‘J:Ta|2—

28’

—Elz"a|' —2E|zTa|’ |28  +E|="4|"

4
=6 [|ex]

—2|a]*18]7 ~ 4{e, 8)* = 4" — 4(a, )

<t ~ 4 (o8 +2 (lal ~2(.8)

=5 all’ +4(a
<4 [lal’ + (a

= (2)le?
= (Jlal® =2 (e

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[11]

8)* =3l (. 8)
B =2l (o, B)]

2(e.6))
B)+181°) = lla— 8"
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