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Convex and Nonconvex Formulations for Mixed
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Abstract—We consider the mixed regression problem with two
components, under adversarial and stochastic noise. We give
a convex optimization formulation that provably recovers the
true solution, as well as a nonconvex formulation that works
under more general settings and remains tractable. Upper bounds
are provided on the recovery errors for both arbitrary noise
and stochastic noise models. We also give matching minimax
lower bounds (up to log factors), showing that our algorithm is
information-theoretically optimal in a precise sense. Our results
represent the first tractable algorithm guaranteeing successful
recovery with tight bounds on recovery errors and sample
complexity. Moreover, we pinpoint the statistical cost of mixtures:
our minimax-optimal results indicate that the mixture poses a
fundamentally more difficult problem in the low-SNR regime,
where the learning rate changes.

I. INTRODUCTION

This paper considers the problem of mixed linear regression,

where each observation of the output variable comes from one

of two unknown regression vectors. Formally, we observe n
data points (xi, yi) ∈ Rp × R, which satisfies

yi =

{

〈xi,β∗
1〉+ ei, if zi = 0,

〈xi,β∗
2〉+ ei, if zi = 1,

i = 1, . . . , n,

where β∗
1 and β∗

2 are two unknown regression vectors in Rp,

ei is the noise, and zi ∈ {0, 1} can be thought of as a hidden

label determining which regression vector generates the i-th
data point. Our goal is to estimate the pair β∗

1 and β∗
2 . We

consider the setting where the covariates xi and the noise ei
are independent of the labels, and in particular, no information

about the labels can be directly inferred from them. This

setting means that predicting labels exactly is impossible, with

or without knowing β∗
1 and β∗

2 .
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If the label of each sample is known, the problem decom-

poses into two standard linear regression problems, and can

be easily solved. Without knowing the labels, however, the

problem is significantly more difficult. The main challenge of

mixture models, and in particular mixed regression falls in the

intersection of the statistical and computational constraints:

the problem is difficult when one cares both about an efficient

algorithm, and about near-optimal sample complexity and

estimation error. Exponential-effort brute force search (over

all possibilities of the labels) typically results in statistically

near-optimal estimators. On the other hand, recent tensor-

based methods give a polynomial-time algorithm, but at the

cost of an O(p6) sample size (recall β∗
1 ,β

∗
2 ∈ Rp) instead of

the optimal rate O(p).1 The Expectation Maximization (EM)

algorithm is computationally very efficient, and widely used

in practice for mixture problems. However, there has been

only limited understanding of its behavior, and in particular,

no general theoretical guarantees on global convergence are

known.

a) Our contributions and the cost of mixtures.: In this

paper, we tackle both statistical and algorithmic objectives at

once. The algorithms we give are computationally efficient,

specified by solutions of convex optimization problems as well

as a tractable nonconvex formulation, which can be solved by

polynomial-time, globally convergent procedures. In both the

noisy and noiseless settings our results provide better statistical

guarantees compared to the best known previous results. In

particular, in both the arbitrary noise and stochastic noise

regimes, we provide matching estimation error bounds and

minimax lower bounds, showing our results are statistically

optimal.

An interesting feature of our minimax results is that we

pinpoint the statistical cost of dealing with a mixture problem

compared to ordinary regression problems. As we detail below

in Theorems 3, 4 and 8, we show that in the high SNR regime,

there is (up to log factors) no loss, and one can expect to

recover the regression parameters at the parametric learning

rate (as with ordinary regression). At the low-SNR regime

(where, to the best of our knowledge, there are no previous

results on mixed regression), the rate changes from (1/n)1/2

to (1/n)1/4. It is of interest to explore to what we owe this

change in rate. On the algorithmic side, our approach is to

solve a related low-rank matrix regression problem in the lifted

1It may be possible to improve the sample requirement of tensor methods
to O(p4) for the case of Gaussian design.
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space, to estimate (something related to) the tensor product

of the two regressors. We show that the regression in this

lifted matrix space has an error that decays with (1/n)1/2. At

high SNRs, we prove a perturbation result (Theorem 4) that

shows that the top eigenvectors of this matrix inherit the same

rate. At low SNRs, however, this comes at a cost, and the

rate reduces to (1/n)1/4. Our matching lower bounds show

that this cost of converting an error bound in the lifted space

to an error bound in the regressor space is fundamental and

thus encapsulates the crux of the challenge. The lower bounds

are established by showing that at low SNR, distinguishing

one mixture of Gaussians from another is more difficult than

distinguishing one Gaussian from another, at exactly the rate

change indicated above.

Specifically, our contributions are as follows:

• In the arbitrary noise setting where the noise e =
(e1, . . . , en)

> can be adversarial, we show that under

mild technical conditions, as long as the numbers of ob-

servations for each regression vector satisfy n1, n2 & p,

our convex algorithm produces an estimator (β̂1, β̂2) that

satisfies

‖β̂b − β∗
b‖2 .

‖e‖2√
n
, for b = 1, 2.

This result immediately implies exact recovery in the

noiseless case with O(p) samples.

• In the stochastic noise setting with sub-Gaussian noise

and balanced labels (n1/n2 → 1), if we have n1, n2 & p
and a Gaussian design matrix, our convex estimator satis-

fies the following error bound (omitting polylog factors):

‖β̂b − β∗
b‖2 .







σ
√

p
n , if γ ≥ σ,

σ2

γ

√
p
n , if σ

(
p
n

) 1

4 ≤ γ ≤ σ,
σ
(
p
n

) 1

4 , if γ ≤ σ
(
p
n

) 1

4

for b = 1, 2, where γ is an lower bound of the signal

strength ‖β∗
1‖2 + ‖β∗

2‖2, and σ2 is the variance of the

noise ei.
• In the stochastic noise setting with imbalanced la-

bels, we propose a nonconvex optimization based for-

mulation along with a polynomial-time solver with

provable guarantees. Specifically, we show that when

min{n1/n2, n2/n1} is lower bounded by any constant

and γ/σ & 1, our estimator satisfies the bound

‖β̂b − β∗
b‖2 . σ

√
p

n
, for b = 1, 2.

• Finally, in both the arbitrary and stochastic noise settings,

we provide minimax lower bounds that match the above

upper bounds up to at most polylog factors, thereby show-

ing that the results obtained by the estimates produced

by our algorithms are information-theoretically optimal.

Particularly in the stochastic setting, the situation is a

bit more subtle: the minimax rates in fact depend on

the signal-to-noise ratio (SNR) γ/σ and exhibit several

phases, showing a qualitatively different behavior than in

standard regression and many other parametric problems

(for which the minimax rate is usually
√

1/n).

II. RELATED WORK

Mixture models and latent variable modeling are very

broadly used in a wide array of contexts far beyond re-

gression. Subspace clustering [19, 26, 32], Gaussian mixture

models [3, 21] and k-means/medians clustering [13] are pop-

ular examples of unsupervised learning for mixture models.

Arguably the most popular and broadly implemented approach

to mixture problems, including mixed regression, is the EM

algorithm [18, 22]. In fact, EM has been used for mixed

regression for various application domains [20, 31]. Despite

its wide use, still little is known about its performance beyond

local convergence [4, 34].

One exception is the work in [37], which studies mixed

regression in the noiseless setting. They propose an alternating

minimization approach initialized by a grid search, and show

that their algorithm recovers the regression vector with a

sample complexity of O(p log2 p). Extension to the noisy

setting is recently considered by the authors of [4]. Focusing

on the stochastic noise setting with sufficiently high SNR

(that is, when γ & σ; cf. Section I), they show that the EM

algorithm with good initialization achieves the error bound

‖β̂b − β∗
b‖2 .

√

γ2 + σ2
√

p
n . In the work [27], EM is

adapted to the high-dimensional regression setting, where the

regression vectors are known to be sparse and EM is used

to solve a penalized (for sparsity) likelihood function. This

generalized EM approach achieves support-recovery, though

once restricted to that support where the problem becomes

a standard mixed regression problem, only convergence to a

local optimum can be guaranteed. Very recently for this high-

dimensional sparse regression setting, the works in [33] and

[36] establish local convergence (that is., assuming that EM

is run from a good initialization) of truncated and regularized

EM algorithms to a statistically optimal solution.

Mixture problems have been explored using the technology

of tensors recently developed in the literature [2, 21]. The

authors of [12] consider a tensor-based approach, regressing

x
⊗3 against y3 and then using the tensor decomposition

techniques to efficiently recover each β∗
b . These methods

are not limited to the mixture of only two components, as

we are. Yet, even for two components, the tensor approach

requires O(p6) samples, compared to O(p · polylog(p)) that

our work requires. As noted in their work, the higher sampling

requirement seems to be a common difficulty for algorithms

based on high order tensors.

In this work we consider the setting with two mixture

components. Binary latent factors are common modeling tools

for many applications, as they model on/off-type relationships,

among others. We refer to the paper [31] for numerous

examples of such problems. While the extension to more

than two components is of great interest, much is unknown

even for two components. In particular, globally convergent

algorithms with even near-optimal sample complexity are, to

the best of our knowledge, unknown. In fact, in the low-SNR

regime (see below for details) we are unaware of any algorithm

able to guarantee non-trivial estimation of the parameters. As

explained above, our work shows that there may be a funda-

mental reason for this: the minimax-optimal rate, and hence
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the (statistical) difficulty of the mixed regression problem, is

different at the high-SNR and low-SNR regimes.

III. MAIN RESULTS

In this section we present this paper’s main results: our

algorithms for mixed regression and matching statistical upper

and lower bounds. In addition, we describe the precise setup

and assumptions, and introduce the basic notation we use.

A. Problem Set Up

Suppose that β∗
1 and β∗

2 are two unknown vectors in Rp.

We observe n noisy linear measurements {(xi, yi)}ni=1. Let

I1 and I2 denote the (unknown) subsets of the measurements

corresponding to β∗
1 and β∗

2 , respectively, with I1 ∪I2 = [n],
I1 ∩ I2 = φ, n1 := |I1|, n2 := |I2| and n1 + n2 = n. The

measurements satisfy the following model: for each b ∈ {1, 2}
and i ∈ Ib,

yi = 〈xi,β∗
b 〉+ ei. (1)

Given the data {(xi, yi)}ni=1, the goal is to recover β∗
1 and

β∗
2 .

To measure the estimation error, we use the following

symmetric (semi-)metric: for each pair θ = (β1,β2) and

θ′ = (β′
1,β

′
2) in Rp × Rp, define

ρ (θ,θ′) := min
{

‖β1 − β′
1‖2 + ‖β2 − β′

2‖2 ,

‖β1 − β′
2‖2 + ‖β2 − β′

1‖2
}

,
(2)

which is the total `2 distance up to permutation. For an

estimate θ̂ = (β̂1, β̂2) of the true regression vector pair

θ∗ := (β∗
1 ,β

∗
2), we are interested in bounding the symmetric

estimation error ρ(θ̂,θ∗). In the presence of noise, the correct

labels (or equivalently, the sets I1 and I2) are in general

irrecoverable.

The key insight to our optimization formulation is to utilize

a particular lifting to the space of p × p matrices, that then

allows recovering β1 and β2 with controlled perturbation,

without requiring working in the space of 3-tensors. More

concretely, defining the true quantities K∗ and g∗ as

K∗ :=
1

2

(
β∗
1β

∗>
2 + β∗

2β
∗>
1

)
∈ Rp×p,

g∗ :=
1

2
(β∗

1 + β∗
2) ∈ Rp,

(3)

we solve a linear regression in the matrix and vector variables

K and g in order to produce an approximation of K∗ and g∗.

Given the pair (K∗, g∗), the true regression vectors β∗
1 and

β∗
2 can be recovered exactly, using the identity

J∗ := g∗g∗> −K∗ =
1

4
(β∗

1 − β∗
2) (β

∗
1 − β∗

2)
>
.

Letting λ∗ and v∗ be the first eigenvalue-eigenvector pair of

J∗, we have
√
λ∗v∗ := ± 1

2 (β
∗
1 − β∗

2) and thus together

with g∗ we can recover (β∗
1 ,β

∗
2). Given an approximation,

(K̂, ĝ) of (K∗, g∗), this procedure is still well defined, and

is described fully in Algorithm 1. In fact, this estimation

procedure is stable: if K̂ and ĝ are close to true quantities

Algorithm 1 Estimate (β∗
1 ,β

∗
2) from (K, g)

Input: (K̂, ĝ) ∈ Rp×p × Rp.

Compute the matrix Ĵ = ĝĝ> − K̂, and its first eigenvalue-

eigenvector pair λ̂ and v̂.

Compute β̂1 = ĝ +
√

λ̂v̂ and β̂2 = ĝ −
√

λ̂v̂.
Output: θ̂ = (β̂1, β̂2)

K∗ and g∗, then Algorithm 1 outputs a pair (β̂1, β̂2) that is

close to the true regression vectors (β∗
1 ,β

∗
2).

Below we consider separately the settings with arbitrary

noise and stochastic noise in Sections III-B and III-C, and

give our algorithms with rigorous sample complexity and

estimation error bounds. In Section III-D we further provide

matching (up to at most a polylog factor) minimax lower

bounds.

a) Notation:: We use lower case bold letters to denote

vectors, and capital bold-face letters for matrices. For a vector

u, the notations ui and u(i) both denote its ith coordinate.

We use standard notation for matrix and vector norms, e.g.,

‖ · ‖∗ to denote the nuclear norm, ‖ · ‖F the Frobenius norm,

and ‖ · ‖ the operator/spectral norm. We define two quantities

that we use repeatedly:

α :=
‖β∗

1 − β∗
2‖22

‖β∗
1‖22 + ‖β∗

2‖2
and γ := ‖β∗

1‖2 + ‖β∗
2‖2. (4)

Note that the quantity α ∈ [0, 2] measures the angle between

β∗
1 and β∗

2 , and is strictly positive whenever β∗
1 6= β∗

2 . For a

fixed α, the parameter γ quantifies the signal strength of β∗
1

and β∗
2 . We say a number c is a numerical constant if c is

independent of the dimension p, the number of measurements

n, the quantity α and the magnitude/variance of the noise

e. For ease of parsing, we typically use c to denote a large

constant, and 1
c for a small constant.

B. Arbitrary Noise

We consider first mixed regression with arbitrary noise,

with the following specific setting. We take the covariate

vectors {xi} to have i.i.d. zero-mean and sub-Gaussian entries

with sub-Gaussian norm2 bounded by a numeric constant and

satisfy E
[
(xi(l))

2
]
= 1, E

[
(xi(l))

4
]
= µ for each i ∈ [n] and

l ∈ [p].3 We assume that the forth moment µ is a fixed constant

and independent of the parameters p, n and α. If the covariates

{xi} are standard Gaussian vectors, then these assumptions are

satisfied with unit sub-Gaussian norm and µ = 3. The only

assumption on the noise vector e = (e1, e2, . . . , en)
> is that

it is bounded in `2 norm. The noise e is otherwise arbitrary,

possibly adversarial, and even potentially depending on {xi}
and (β∗

1 ,β
∗
2).

2The sub-Gaussian norm of a zero-mean random variable X is defined
as ‖X‖ψ2

:= inf
{

b ≥ 0 |E exp(tX) ≤ exp(b2t2/2)
}

. The variable X is
called sub-Gaussian if ‖X‖ψ2

< ∞.
3Recall that, as shown in the paper [37], the general mixed regression

problem with deterministic covariates is NP-hard even in the noiseless setting.
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Our algorithm is based on the following convex program:

min
K,g

‖K‖∗ (5)

s.t.

n∑

i=1

∣
∣−〈xix>

i ,K〉+ 2yi 〈xi, g〉 − y2i
∣
∣ ≤ η. (6)

The intuition is that in the noiseless setting with e = 0, if we

substitute the desired solution (K∗, g∗) given by equation (3)

into the above program, the LHS of the constraint (6) becomes

zero; moreover, the rank of K∗ is at most 2, and minimizing

the nuclear norm term in the objective (5) encourages the

optimal solution to have low rank. Our theoretical results give

a precise way to set the right hand side, η, of the constraint.

The next two theorems summarize our results for the

arbitrary noise setting. Theorem 1 provides guarantees on how

close the optimal convex optimization solution (K̂, ĝ) is to the

true quantities (K∗, g∗). Then the companion result, Theorem

2, provides quality bounds on (β̂1, β̂2), produced by applying

Algorithm 1 to the solution (K̂, ĝ) of the convex program.

Theorem 1 (Arbitrary noise). There exist numerical positive

constants {ci}6i=0 for which the following holds. Assume that

max
{
n1

n2

, n2

n1

}

≤ c0. Suppose, moreover, that (i) µ > 1 and

α > 0, (ii) min {n1, n2} ≥ c3
1
αp, and (iii) the noise satisfies

the bound

‖e‖2 ≤
√
α

c5

√
n
(
‖β∗

1‖2 + ‖β∗
2‖2

)
.

Suppose further that we choose the tuning parameter η to

satisfy

η ≥ c4
√
n ‖e‖2 ‖β∗

2 − β∗
1‖2 .

Then, with probability at least 1− c1 exp(−c2n), any optimal

solution (K̂, ĝ) to the convex program (5)–(6) satisfies the

error bounds
∥
∥
∥K̂ −K∗

∥
∥
∥
F
≤ c6

1√
αn

η,

‖ĝ − g∗‖2 ≤ c6
1√

αn
(
‖β∗

1‖2 + ‖β∗
2‖2
)η.

Given the solution (K̂, ĝ), we then estimate θ∗ = (β∗
1 ,β

∗
2) by

using Algorithm 1, which is stable as shown by the theorem

below.

Theorem 2 (Estimating β∗
b , arbitrary noise). Suppose that the

conditions in Theorem 1 hold, and η � √n ‖e‖2 ‖β∗
2 − β∗

1‖2.

Then with probability at least 1 − c1 exp(−c2n), the output

θ̂ = (β̂1, β̂2) of Algorithm 1 satisfies the error bound

ρ(θ̂,θ∗) ≤ 1

c3
√
α

‖e‖2√
n
.

Theorem 2 immediately implies exact recovery in the noiseless

case.

Corollary 1 (Exact recovery). Suppose that e = 0, the

conditions (i) and (ii) in Theorem 1 hold, and η = 0. Then

with probability at least 1 − c1 exp(−c2n), Algorithm 1

returns the true regression vectors {β∗
1 ,β

∗
2}.

Below we provide several remarks on the above theoretical

results.

a) Discussion of assumptions:: Theorem 1 involves sev-

eral mild technical assumptions.

1) The condition µ > 1 in Theorem 1 is satisfied, for

instance, if {xi} is Gaussian (with µ = 3). Moreover,

this condition is in general necessary. To see this,

suppose that each xi(l) is a Rademacher ±1 variable,

which has forth moment µ = 1, and the true regression

vectors β∗
1 and β∗

2 are in R2. The response variable yi
must have the form

yi = ±(β∗
b )1 ± (β∗

b )2.

Consider two possibilities: β∗
1 = −β∗

2 = (1, 0)> or

β∗
1 = −β∗

2 = (0, 1)>. In both cases, the observed

data (xi, yi) takes any one of the values in {±1}2 ×
{±1} with equal probability, and hence the problem is

unidentifiable as it is impossible to distinguish the two

possibilities above.

2) The condition α > 0 holds if β∗
1 and β∗

2 are not equal.

Suppose that α is lower-bounded by a constant. The

main assumption on the noise, namely, the condition

‖e‖2 .
√
n (‖β∗

1‖2 + ‖β∗
2‖2) in Theorem 1, cannot be

substantially relaxed if we want a bound on ‖ĝ − g∗‖2.

Indeed, if |ei| & ‖β∗
b‖2 for all i, then an adversary may

choose ei such that

yi = x>
i β

∗
b + ei = 0, ∀i,

in which case the convex program (5)–(6) becomes

independent of g. That said, the case when the noise

bound condition is violated can be handled easily. Sup-

pose that ‖e‖2 ≥ c4
√
αn (‖β∗

1‖2 + ‖β∗
2‖2) for any

positive constant c4. A standard argument for ordi-

nal linear regression shows that the blind estimator

β̂ := argminβ
∑

i∈I1∪I2

∣
∣x>
i β − yi

∣
∣ satisfies w.h.p.

the bound

max
{

‖β̂ − β∗
1‖2, ‖β̂ − β∗

2‖2
}

.
‖e‖2√
n
,

and this bound is optimal (see the minimax lower

bound in Section III-D). Therefore, the condition (iv)

in Theorem 1 is not really restrictive, in the sense that

the case when it holds is precisely the interesting setting.

3) Finally, note that if n1/n2 → +∞, then a single

regression vector β∗
1 explains 100% (asymptotically) of

the observed data. Moreover, the standard least squares

solution provides an accurate estimator of this β∗
1 .

b) Optimality of sample complexity:: The sample com-

plexity bounds of Theorem 2 and Corollary 1 are optimal. The

results require the sample size n1 and n2 to be Ω(p). Since we

are estimating two p dimensional vectors without any further

structure, this result cannot be improved in general.

C. Stochastic Noise

We now turn to the stochastic noise setting. We assume that

the covariates {xi} have i.i.d. Gaussian entries with zero mean

and unit variance. For the noise, we assume that {ei} are i.i.d.,

zero-mean and sub-Gaussian with variance E
[
e2i
]
= σ2 and
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sub-Gaussian norm ‖ei‖ψ2
≤ cσ for some absolute constant

c, and are independent of {xi}.
We discuss two algorithms for consistent estimation of

(β∗
1 ,β

∗
2). First, for Gaussian covariates in the balanced setting

(that is, n1/n2 → 1), we show that by solving a simple convex

program, we have asymptotic consistency for any SNR γ/σ.

The rates we obtain match information-theoretic lower bounds

we give in Section III-D, and hence are minimax optimal.

An interesting feature we observe is the rate change in the

high- and low-SNR regimes mentioned above — a feature

that precisely identifies the cost of solving a mixture problem.

Second, in the general imbalanced setting (that is, n1/n2 6→
1), we propose a nonconvex yet tractable extension of the

above convex program, for which we establish minimax opti-

mal estimation rates under the condition γ/σ & 1.

1) Consistent Estimation with Balanced Samples: For the

stochastic noise setting, while one can use the same `1
constraint as we do in arbitrary noise case, it turns out that

the analysis is more natural by considering a Lagrangian

formulation. In particular, much like in standard regression,

the independence assumption on {ei} makes the least-squares

objective analytically convenient. We therefore consider the

following formulation, regularizing the squared loss objective

with the nuclear norm of K:

min
K,g

n∑

i=1

(
−〈xix>

i ,K〉+ 2yi 〈xi, g〉 − y2i + σ2
)2

+ λ ‖K‖∗ .

(7)

We assume that the noise variance σ2 is known and can be

estimated.4

As with the arbitrary noise case, we first provide a theorem

that bounds the distance between the optimal solution (K̂, ĝ)
of the above program and the true (K∗, g∗), and then a

companion theorem gives error bounds on estimating (β∗
1 ,β

∗
2).

Theorem 3 (Stochastic noise with nearly balanced samples).

For any constant 0 < c < 2, there exist numerical positive

constants {ci}5i=0, which might depend on c, such that the

following hold. Assume that max
{
n1

n2

, n2

n1

}

≤ c0. Suppose

moreover that (i) α ≥ c, (ii) min {n1, n2} ≥ c4p, and (iii)

{xi} are Gaussian. For any tuning parameter λ that satisfies

λ ≥ c5σ (‖β∗
1‖2 + ‖β∗

2‖2 + σ) (
√
np+ |n1 − n2|

√
p) log3 n,

with probability at least 1 − c1n
−c2 , any optimal solution

(K̂, ĝ) to the convex program (7) satisfies the error bounds

∥
∥
∥K̂ −K∗

∥
∥
∥
F
≤ c3

1

n
λ,

‖ĝ − g∗‖2 ≤ c3
1

n (‖β∗
1‖+ ‖β∗

2‖+ σ)
λ.

The bounds in the above theorem depend on the sample

size difference |n1−n2|. This dependence appears as a result

of the objective function in the formulation (7) and is not an

4We note that similar assumptions are made in the paper [12]. It is possible
to avoid the dependence on σ by using a symmetrized error term in the
objective of (7) (see, e.g., [6]).

artifact of our analysis.5 We later address how to correct for

this dependence and handle imbalanced samples. Nevertheless,

in the setting where the samples from the two components are

approximately balanced in size with |n1−n2| small, the above

result implies consistency with optimal convergence rate. In

this case, running Algorithm 1 on the optimal solution (K̂, ĝ)
of the program (7) to estimate θ∗ = (β∗

1 ,β
∗
2), we have the

following guarantees.

Theorem 4 (Estimating β∗
b , stochastic noise and

nearly balanced samples). Suppose that |n1 − n2| =
O
(√
n log n

)
, the conditions (i)–(iii) in Theorem 3 hold,

λ � σ (‖β∗
1‖+ ‖β∗

2‖+ σ)
√
np log3 n, and n ≥ c3p log

8 n.

Then with probability at least 1 − c1n
−c2 , the output

θ̂ = (β̂1, β̂2) of Algorithm 1 satisfies the error bound

ρ(θ̂,θ∗) ≤c4σ
√
p

n
log4 n

+ c4 min

{
σ2

‖β∗
1‖2+‖β∗

2‖2

√
p

n
, σ
( p

n

) 1

4

}

log4 n.

The error bound has three terms, which are proportional

to σ
√

p
n , σ2

‖β∗

b
‖2

√
p
n and σ

(
p
n

)1/4
, respectively (ignoring log

factors). We show that these three terms match well with

the information-theoretic lower bounds given in Section III-D.

They represent three phases of the error rate under different

SNR; we discuss further in Section III-D.

a) Discussion of Assumptions:: The theoretical results

above assume Gaussian covariate distribution. This Gaussian-

ity assumption can be relaxed, but using our analysis, it

comes at a cost in terms of convergence rate (and hence

sample complexity required for bounded error). It can be

shown that n = Õ(p
√
p) suffices under a general sub-Gaussian

assumption on the covariates. We believe that this additional

cost is an artifact of our analysis.

2) Consistent Estimation with Imbalanced Labels: Now

we turn to the general imbalanced setting, where the sample

sizes of the two components n1 and n2 may be different. To

account for the effect of imbalanced samples, we consider the

following “corrected” version of the optimization problem (7):

min
K,g

n∑

i=1

(
−
〈
xix

>
i ,K

〉
+ 2yi 〈xi, g〉 − y2i + σ2

)2

−
n∑

i=1

4σ2
(
yi − 〈xi, g〉

)2

s.t. ‖K‖∗ ≤ ‖K∗‖∗.

(8)

Compared to the previous formulation (7), we replace the

nuclear norm penalty in the objective function with its

constraint version, which again serves as a surrogate for the

low rank structure of K∗. More crucially, we add a negative

term in the objective function of (8), which corrects for the

impact of imbalanced samples on the resulting estimate. This

formulation is based on the following intuition: Minimizing

the first term results in a solution ĝ that is biased towards β∗
1

5Intuitively, if the majority of the observations are generated by one of the
β∗

b
, then the objective produces a solution biased toward this β∗

b
since this

solution fits more observations. In Section III-C2, we compensate for such
bias by optimizing a modified objective.
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when n1 > n2, whereas the second negative term increases

when g gets closer to β∗
1 . Simple calculation shows that in

expectation these two effects cancel out. Therefore, jointly

minimizing the two terms produces a solution ĝ that is a

consistent estimator of (β∗
1 + β∗

2)/2 even when n1 and n2

are imbalanced.

The negative term in the objective function of (8) makes

the optimization problem no longer convex. Nevertheless, one

can still apply projected gradient descent to the nonconvex

program (8). To specify the projected gradient descent iteration

and ease notation, we use the following shorthand for the

objective function:

Ln(K, g) :=

n∑

i=1

(
−〈xix>

i ,K〉+ 2yi 〈xi, g〉 − y2i + σ2
)2

−
n∑

i=1

4σ2
(
yi − 〈xi, g〉

)2
.

Let ∇KLn denote the partial gradient of Ln over K, and

∇gLn the partial gradient of Ln over g. Given any feasible

initializer
(
K(0), g(0)

)
with ‖K(0)‖∗ ≤ ‖K∗‖∗, the projected

gradient descent algorithm with step size η is given by the

update:
(
K(t+1), g(t+1)

)

← arg min
‖K‖

∗
≤‖K∗‖∗

{

〈
∇KL(t)

n ,K
〉
+
〈
∇gL(t)

n , g
〉

+
η

2

∥
∥K−K(t)

∥
∥
2

F
+
ηγ2

2

∥
∥g−g(t)

∥
∥
2

2

}

,

(9)

where L(t)
n := Ln

(
K(t), g(t)

)
. Recall that the quantity γ is

a measure of the signal strength. We need γ in the algorithm

because the smoothness constants of Ln(K, g) with respect

to K and g differ by a factor of γ2. The minimization in (9)

can be computed by two simple steps: (1) moving K and

g in the negative gradient direction with step sizes 1/η and

1/(ηγ2), respectively; (2) projecting the new K onto the

nuclear norm ball. The second projection step can be done

with a singular value decomposition (SVD) followed by

shrinking the singular values (see, e.g., [1]).

The optimization formulation (8) is non-convex. Neverthe-

less, the projected gradient descent algorithm still converges

to a statistically accurate solution, as we show below. The

intuition is that the gradient descent iterates will stay in the

directions along which the objective function is convex-like.

In particular, in addition to the statistical error (how close the

optimal solution of (8) is to the ground-truth quantity), we

can control the optimization error — how close we can get

to the optimal solution of (8). Accordingly, Theorem 5 below

consists of two parts. Part (a) is an analogue to Theorem 3, and

bounds the statistical error: the distance between the global

optimum
(
K̂, ĝ

)
of (8) and the true pair

(
K∗, g∗). Part (b)

bounds the optimization error of the gradient descent itera-

tion (9), that is, the distance between the iterates
(
K(t), g(t)

)

and the global optimum
(
K̂, ĝ

)
.

Theorem 5 (Stochastic noise with imbalanced samples). Sup-

pose the conditions (i)–(iii) in Theorem 3 hold for some

suitable constants. The following results hold for any (n1, n2)
that satisfies n1/n2 = Θ(1).

(a) (Statistical error) There exist positive constants {ci}4i=1

such that if γ/σ ≥ c1, then with probability at least

1 − c3n−c4 , the global optimum
(
K̂, ĝ

)
of program (8)

satisfies the bounds

∥
∥
∥K̂ −K∗

∥
∥
∥
F
≤ c2γσ

√
p

n
log3 n,

‖ĝ − g∗‖2 ≤ c2σ
√
p

n
log3 n.

(b) (Optimization error) Let H(t) := K(t)− K̂ and h(t) :=
g(t) − ĝ be the optimization error terms at step t of

the projected gradient descent algorithm (9) for the

program (8). There exist positive constants {ci}4i=1 such

that if γ/σ ≥ c1 and η ≥ c2n(
√
p)3 log n, then with

probability at least 1− c3n−c4 , there holds the bound

‖H(t)‖2F + γ2‖h(t)‖22

≤
(

1− c3n
η

)t(

‖H(0)‖2F+γ2‖h(0)‖22
)

+c4‖K̂−K∗‖2F

for every t = 1, 2, . . .

Part (b) establishes geometric convergence of the optimiza-

tion error. Thus, the iterate (K(t), g(t)) quickly converges

to some solution whose distance to (K̂, ĝ) is of the same

order as the statistical error. Therefore, the distance between

(K(t), g(t)) and (K∗, g∗) satisfies the bound in part (a) when

t is sufficiently large by the triangle inequality. If we choose

the step size η � n(
√
p)3 log n, the contractive factor is

roughly 1−1/((√p)3 log n), hence T � (
√
p)3 log n iterations

of projected gradient descent suffice. We can then apply

Algorithm 1 to the T th iterate (K(T ), g(T )) to obtain an

accurate estimate of the true regression vectors θ∗ = (β∗
1 ,β

∗
2),

as shown in the theorem below.

Theorem 6 (Estimating β∗
b , stochastic noise with imbalanced

samples). Suppose that the projected gradient descent in (9)

is initialized with K(0) = 0 and g(0) = 0. Under the setting

of Theorem 5, there exist positive constants {ci}7i=1 such that

if n ≥ c1p log6 n, η ≥ c2n(√p)3 log n and

T ≥ c3ηn−1 max
{

1− c4σ2γ−2 p

n
log6 n, 0

}

,

then with probability at least 1 − c5n
−c6 , the output θ̂ =

(β̂1, β̂2) of Algorithm 1 applied to the input (K(T ), g(T ))
satisfies the error bound

ρ(θ̂,θ∗) ≤ c7σ
√
p

n
log3 n.

Remark 1 (Scalability). Both the formulations (5)–(6) and (7)

can be cast as Semidefinite Programs (SDP). In the arbitrary

noise setting, the constraint in the convex program (5)–(6)

can be rewritten as a collection of linear constraints through

the standard transformation of convex `1 constraints. The

Lagrangian formulation (7) in the setting of stochastic noise,
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involves minimizing the sum of a trace norm term and a smooth

quadratic term. The computational complexity of solving this

regularized quadratic optimization in the matrix space has

similar complexity to problems such as matrix completion [9]

and PhaseLift [10], and various first order methods can easily

be adapted, thus allowing solution of large scale instances of

the mixed regression problem.

D. Minimax Lower Bounds

We now derive minimax lower bounds on the estimation

errors for both the arbitrary and stochastic noise settings,

and show that these match our upper bounds. Recall the

error (semi)-metric ρ (θ,θ′) defined in equation (2) for a

pair θ = (β1,β2) and θ′ = (β′
1,β

′
2) in Rp × Rp. It is

straightforward to verify that the metric ρ(·, ·) satisfies the

triangle inequality. An estimator

θ̂ ≡ θ̂ (X,y) =
(
β̂1(X,y), β̂2(X,y)

)
.

of the true regression vectors θ∗ = (β∗
1 ,β

∗
2) is any measurable

function of the observed data (X,y). For each number γ > 0,

we consider the following parameter class

Θ(γ) :=
{

θ = (β1,β2) ∈ Rp × Rp :

2 ‖β1 − β2‖2 ≥ ‖β1‖2 + ‖β2‖2 ≥ γ
}

,
(10)

that is, pairs of regression vectors whose norms and separation

are lower bounded. Recall that zi ∈ {0, 1} is the hidden label

for the i-th observation, that is, zi = 0 if and only if i ∈ I1,

for each i = 1, 2, . . . , n.

1) Lower Bounds for Arbitrary Noise: In the arbitrary noise

setting, the noise vector e is assumed to lie in the `2-ball

B(ε) := {u ∈ Rn : ‖u‖2 ≤ ε} and otherwise arbitrary. For

this setting we have the following minimax lower bounds.

Theorem 7 (Lower bound, arbitrary noise). There exist uni-

versal positive constants c0, c1 for which the following is true.

If n ≥ c1p, then for any γ > 0 and any hidden label vector

z ∈ {0, 1}n, there holds the bound

inf
θ̂

sup
θ∗∈Θ(γ)

sup
e∈B(ε)

ρ(θ̂,θ∗) ≥ c0
ε√
n

(11)

with probability at least 1 − n−10, where the probability is

with respect to the randomness in X .

The lower bound above matches the upper bound given

in Theorem 2, thus showing that our convex formulation is

minimax optimal and order-wise unimprovable. Informally,

Theorems 2 and 7 together establish the following minimax

rate of the arbitrary noise setting

ρ(θ̂,θ∗) � ‖e‖2√
n
,

which is valid for n & p.

2) Lower Bounds for Stochastic Noise: For the stochastic

setting where the noise is i.i.d. Gaussian, we further assume

that the two components have equal mixing weights: P(zi =
0) = P(zi = 1) = 1/2 for each i = 1, 2, . . . , n. For this

setting we have the following minimax lower bounds.

Theorem 8 (Lower bound, stochastic noise). Suppose that

n ≥ p ≥ 64, X ∈ Rn×p has i.i.d. standard Gaussian entries,

e has i.i.d. zero-mean Gaussian entries with variance σ2, and

zi
iid∼ Bernoulli(1/2). The following statements hold for some

absolute constants 0 < c0, c1 < 1.

1) For each γ > σ, we have

inf
θ̂

sup
θ∗∈Θ(γ)

EX,z,e

[

ρ(θ∗, θ̂)
]

≥ c0σ
√
p

n
. (12)

2) For each c1σ
(
p
n

)1/4 ≤ γ ≤ σ, we have

inf
θ̂

sup
θ∗∈Θ(γ)

EX,z,e

[

ρ(θ∗, θ̂)
]

≥ c0
σ2

γ

√
p

n
. (13)

3) For each 0 < γ ≤ c1σ
(
p
n

)1/4
, we have

inf
θ̂

sup
θ∗∈Θ(γ)

EX,z,e

[

ρ(θ∗, θ̂)
]

≥ c0σ
( p

n

)1/4

. (14)

Here EX,z,e [·] denotes the expectation with respect to the

covariate matrix X , the hidden label vector z and the noise

vector e.

We see that the three lower bounds in the above theorem

match each of the three terms in the upper bound given in

Theorem 4 up to at most polylog factors, proving the minimax

optimality of the error bounds of our convex formulation.

Informally, Theorems 4 and 8 together establish the following

minimax error rate (up to a polylog factor) in the stochastic

noise setting:

ρ(θ∗, θ̂) �







σ
√

p
n , if γ & σ,

σ2

γ

√
p
n , if σ

(
p
n

) 1

4 . γ . σ,

σ
(
p
n

) 1

4 , if γ . σ
(
p
n

) 1

4 .

Here, γ is any lower bound on ‖β∗
1‖2+ ‖β∗

2‖2 and represents

the signal strength (recall the definition of the parameter class

in equation (10)). Notice how the scaling of the minimax

error rate exhibits three phases depending on the SNR γ/σ:

(i) In the high SNR regime with γ & σ, we see a fast

rate — proportional to 1/
√
n — that is dominated by the

error of estimating a single β∗
b and is the same as the rate

for standard linear regression. (ii) In the low SNR regime

with γ . σ
(
p
n

) 1

4 , we have a slow rate that is proportional

to 1/n
1

4 , which is associated with the demixing of the two

components β∗
1 and β∗

2 . (iii) In the medium SNR regime, the

error rate transitions between the fast and slow phases, and

depends in a precise way on the SNR. For related phenomena,

see the work in [3, 14].

The lower bounds in Theorem 8 apply to the balanced

sample setting. The error upper bound in Theorem 6 for our

nonconvex approach in the imbalanced setting, is also near-

optimal in the high SNR regime, as this bound matches (up
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to logarithmic factors) the minimax lower bound of standard

linear regression for estimating a single β∗
b (that is, when the

labels are known).

E. Implications for Phase Retrieval

As an illustration of the power of our results, we dis-

cuss an application to the Phase Retrieval problem, which

has recently received much attention (see, e.g., the work in

[6, 7, 11, 16, 23, 15]). Recall that in the real value setting,

the phase retrieval problem is essentially a regression problem

without sign information. Recent work has mostly focused on

the noiseless case. Here, the problem is as follows: we observe

(xi, yi) ∈ Rp × R, i = 1, 2, . . . n, where

yi =
∣
∣x>
i β

∗∣∣.

The goal is to recover the unknown vector β∗ ∈ Rp. The

stability of recovery algorithms has also been considered. Most

work has focused on the setting where noise is added to the

phase-less measurements, that is,

yi =
∣
∣x>
i β

∗∣∣+ ei. (15)

In many applications, however, it is also natural to consider

the setting where the measurement noise is added before the

phase is lost. This corresponds to the model

yi =
∣
∣x>
i β

∗ + ei
∣
∣. (16)

We may call formulation (16) the Noisy Phase Model, as

opposed to the Noisy Magnitude Model in (15) considered

by previous work. This problem can be reduced to a mixed

regression problem and solved by our algorithm. The reduction

is as follows. We generate n independent Rademacher random

variables εi, i = 1, . . . , n. For each i, we set y′i = εiyi.
Let si := sign

(
x>
i β

∗ + ei
)

and e′i := εisiei, where we

use the convention that sign(0) = 1. Under the noisy phase

model (16), we then have

y′i = εi ·
∣
∣x>
i β

∗ + ei
∣
∣ = εisi

(
x>
i β

∗ + ei
)
= x>

i

(
εisiβ

∗)+ e′i.

If we let β∗
1 = β∗, β∗

2 = −β∗, I1 = {i : εisi = 1} and

I2 = {i : εisi = −1}, then the model becomes

y′i = x>
i β

∗
b + e′i, ∀i ∈ Ib,

which is precisely the mixed regression model we considered.

Note that with probability at least 1 − n−3, n
2 −√

10n log n ≤ nb = |Ib| ≤ n
2 +
√
10n log n for b = 1, 2,

so |n1 − n2| = O
(√
n log n

)
. Also note that ‖e′‖2 = ‖e‖2.

Conditioned on {Ib}, the distribution of {xi} is the same as its

unconditional distribution. Therefore, applying our arbitrary-

noise result from Theorem 2, we immediately get the following

guarantees for phase retrieval under the Noisy Phase Model.

Corollary 2 (Phase retrieval, arbitrary noise). Consider the

Noisy Phase Model in (16). Suppose that the {xi} are i.i.d.,

zero-mean sub-Gaussian with bounded sub-Gaussian norm,

unit variance and fourth moment µ > 1, and that n & p,

η � c4
√
n ‖e‖2 ‖β∗‖2 and the noise is arbitrary but bounded

in magnitude: ‖e‖2 .
√
n ‖β∗‖2. Then using the reduction

described above, the output of the program (5)–(6) followed

by Algorithm 1 satisfies the error bound

min
b=1,2

∥
∥
∥β̂b − β∗

∥
∥
∥
2
.
‖e‖2√
n

with probability at least 1− n−2.

In the corollary above we assumed ‖e‖2 .
√
n ‖β∗‖2.

Similarly as before, the large noise case with

‖e‖2 ≥ c4
√
n ‖β∗‖2 can be handled easily, using the

blind estimator β̂ := minβ
∑

i∈[n]

∣
∣x>
i β − yi

∣
∣, which in this

case again satisfies the optimal error bound ‖β̂−β∗‖2 .
‖e‖

2√
n

.

Next, consider the stochastic noise case where ei is i.i.d.,

zero-mean symmetric sub-Gaussian with variance σ2. Condi-

tioned on {Ib}, the conditional distributions of {e′i} and {xi}
inherit the properties of ei and the unconditional xi, and are

independent of each other. Applying Theorem 4, we have the

following guarantee.

Corollary 3 (Phase retrieval, stochastic noise). Consider the

Noisy Phase Model in (16). Suppose that the {xi} are i.i.d.,

zero-mean Gaussian with unit variance, and that the noise ei
is i.i.d., zero-mean symmetric sub-Gaussian with sub-Gaussian

norm bounded by c3σ and variance equal to σ2. Suppose

further that n & p and λ � σ (‖β∗‖2 + σ)
√
np log4 n.

Then using the reduction described above, the output of the

program (7) followed by Algorithm 1 satisfies the error bound

min
b=1,2

∥
∥
∥β̂b − β∗

∥
∥
∥
2

. σ

√
p

n
log4 n+min

{

σ2
√

p
n

‖β∗‖2
, σ
( p

n

) 1

4

}

log4 n

with probability at least 1− n−2.

As a passing observation, we note that the error bounds

above for phase retrieval are both order-wise optimal. For

the deterministic noise setting considered in Corollary 2, we

cannot achieve a smaller error even if the phase is not lost.

For the stochastic noise setting, note that our corresponding

minimax lower bounds for mixed regression in Section III-D2

is in fact derived under the symmetric setting β∗
1 = −β∗

2 .

In this case one can reduce a mixed regression problem to

a phase retrieval problem by dropping the signs in {yi},
hence our minimax lower bounds certify the near-optimality

of Corollary 3 for phase retrieval.

IV. PROOFS

We now provide the proofs of the main Theorems. Concep-

tually, there are three parts to our results. i) Regression error

(Theorems 1, 3, 5). We prove that the lifted optimizations in

the matrix space (for deterministic noise, and balanced and

unbalanced stochastic noise) recover good approximations to

K∗ and g∗. We note that these results have no dependence

on SNR; that is, alone, they do not reveal a change in the

rate of convergence. ii) Decomposition and perturbation error

(Theorems 2, 4, 6). We prove a matrix perturbation result that

shows that a good approximation of K∗ and g∗ results in a
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good approximation of β∗
1 and β∗

2 . The change in rate in the

low-SNR setting, emerges from these decomposition results.

iii) Minimax lower bounds (Theorems 7 and 8). We prove min-

imax (information theoretic) lower bounds matching the upper

bounds. For the lower bounds, the change in rate comes from

a detection problem that involves distinguishing mixtures of

Gaussians with different separation of the component centers.

We prove these results here, and in the interest of readability,

defer the proofs of technical lemmas to the appendix.

A. Notation and Preliminaries

We use β∗
−b to denote β∗

2 if b = 1 and β∗
1 if b = 2. Let

δ∗b := β∗
b −β∗

−b. Without loss of generality, we assume I1 =
{1, . . . , n1} and I2 = {n1 + 1, . . . , n}. For i = 1, . . . , n1, we

define x1,i := xi, y1,i = yi and e1,i = ei; correspondingly,

for i = 1, . . . , n2, we define x2,i := xn1+i, y2,i := yn1+i and

e2,n+i. For each b = 1, 2, let Xb ∈ Rnb×p be the matrix with

rows {x>
b,i, i = 1, . . . , nb}. Also let eb := [eb,1 · · · eb,nb

]> ∈
Rnb .

While the measurements in the original model are given by

X , in the lifted space, one can regard the measurements as

given by rank-one matrices that are quadratic in xb,i. Thus it

is natural to define the matrices Ab,i := xb,ix
>
b,i, i ∈ [nb] and

the mapping Ab : Rp×p 7→ Rnb given by

(AbZ)i =
1

nb
〈Ab,i,Z〉 , for each i ∈ [nb].

Because of their quadratic nature, these measurements are

not mean-zero. As we detail below, our proofs rely on es-

tablishing a restricted isometry-like property of the measure-

ments, but as the measurements are not zero mean, this does

not hold. It is convenient, therefore, to define matrices and a

mapping that are related to Ab,i and Ab, but with zero mean.

To this end, for b = 1, 2 and j = 1, . . . , bnb/2c, define the

matrix Bb,j := xb,2jx
>
b,2j − xb,2j−1x

>
b,2j−1, as well as the

vector db,j = eb,2jxb,2j − eb,2j−1xb,2j−1. For b ∈ {1, 2},
define the mapping Bb : Rp×p 7→ Rbnb/2c by

(BbZ)j =
1

bnb/2c
〈Bb,j ,Z〉 , for each j = 1, . . . , bnbc .

Since yb,i = x>
b,iβ

∗
b + eb,i, i ∈ [nb], we have for any Z ∈

Rp×p, z ∈ Rp and for all j = 1, . . . , bnbc,
1

bnb/2c
(
〈Bb,j ,Z〉 − 2d>

b,jz
)

=
1

bnb/2c
〈
Bb,j ,Z−2β∗

bz
>〉+(eb,2jxb,2j−eb,2j−1xb,2j)

>
z

=
(
Bb
(
Z − 2β∗

bz
>))

j
+ (eb,2jxb,2j − eb,2j−1xb,2j)

>
z.

A key part of the proof is in expressing the error in terms

of the operators Ab and then Bb, and then showing that Bb
satisfies a restricted isometry property. Also key and common

to all the proofs, is to show that the optimization formulations

recover a near low-rank matrix K̂. For this, we need to

control the part of K̂ that has different column and row space

from K∗. The following notation and definitions are standard.

Let the rank-2 SVD of K∗ be UΣV >. Note that U and

V have the same column space, which equals span(β∗
1 ,β

∗
2).

Define the projection matrix PU := UU> = V V > and the

subspace T := {PUZ + Y PU : Z,Y ∈ Rp×p}. Let T⊥ be

the orthogonal subspace of T . The projections to T and T⊥

are given by

PTZ := PUZ +ZPU − PUZPU , PT⊥Z := Z − PTZ.

Denote the optimal solution to the optimization problem of

interest (either (5) or (7)) as (K̂, ĝ) = (K∗ + Ĥ, g∗ + ĥ).
Let ĤT := PT Ĥ and ĤT⊥ := PT⊥Ĥ .

The optimization proofs follow a similar spirit and con-

ceptual flow. The first part of the proof asserts that the

error (compared to (K∗, g∗) must satisfy certain conditions

controlled by the operators Bb, b = 1, 2. For Theorem 1 this

is a consequence of the constraints; for Theorem 3 this is a

consequence of the objective function. Essentially these results

say that the errors must lie in certain directions away from

(K∗, g∗).
The next step comes in using properties of Bb. In particular,

we show that these operators satisfy a restricted isometry-like

(RIP) condition. Together with the characterization of how

(K̂, ĝ) and (K∗, g∗) can differ, we conclude that along all

those directions, the objective function has strong convexity,

that is, curvature bounded from below). This allows us to

provide bounds on how far (K̂, ĝ) can be from (K∗, g∗).

B. Proof of Theorem 1

As outlined above, the proof follows from three main steps.

First, the `1 error term that in this formulation appears in

the LHS of the constraint (6) in the optimization, is naturally

related to the operators Ab. Using the definitions of Ab, Bb,
we establish a relation between e, η and the feasibility of the

optimal solution (K̂, ĝ) = (K∗ + Ĥ, g∗ + ĥ). Second, we

show that the operator B is an approximate isometry on low-

rank matrices. Finally, this allows us to obtain good upper and

lower bounds on the error terms, and hence the accuracy of

the solution.

Now for the details. Recall that ĤT := PT Ĥ and ĤT⊥ :=
PT⊥Ĥ . Note that ĤT has rank at most 4 and ĤT⊥ has rank

at most p− 4. We have
∥
∥
∥K̂

∥
∥
∥
∗
− ‖K∗‖∗ ≥

∥
∥
∥K

∗ + ĤT⊥

∥
∥
∥
∗
−
∥
∥
∥ĤT

∥
∥
∥
∗
− ‖K∗‖∗

=
∥
∥
∥ĤT⊥

∥
∥
∥
∗
−
∥
∥
∥ĤT

∥
∥
∥
∗
. (17)

1) Step (1): Consequence of Feasibility: For any (K, g) =
(K∗ +H, g∗ + h), it is easy to check that

−
〈
xb,ix

>
b,i,K

〉
+ 2yb,i 〈xb,i, g〉 − y2b,i

=−
〈
xb,ix

>
b,i,H

〉
+ 2yb,i 〈xb,i,h〉 − eb,ix>

b,iδ
∗
b − e2b,i. (18)

Therefore, the constraint (6) is equivalent to

2∑

b=1

nb∑

i=1

∣
∣
∣−
〈
xb,ix

>
b,i,H

〉
+ 2

(
x>
b,iβ

∗
b + eb,i

)
〈xb,i,h〉

− eb,ix>
b,iδ

∗
b − e2b,i

∣
∣
∣ ≤ η.
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Using the notation from Section IV-A, this can be rewritten

as ∑

b

∥
∥nbAb

(
−H + 2β∗

bh
>)+ 2eb ◦ (Xbh)

− eb ◦ (Xbδ
∗
b )− e2b

∥
∥
1
≤ η,

(19)

where ◦ denotes the element-wise product and e2b = eb ◦ eb.
First, note that K∗ and g∗ are feasible. By standard bounds

on the spectral norm of random matrices [30], we know that

with probability at least 1− 2 exp(−cnb),
‖Xbz‖2 .

√
nb ‖z‖2 , ∀z ∈ Rp.

We thus have
∥
∥−eb ◦ (Xbδ

∗
b )− e2b

∥
∥
1
≤ c1

(√
nb ‖eb‖2 ‖δ∗b‖2 + ‖e‖

2
2

)

(a)

≤ c1
√
nb ‖e‖2 ‖β∗

1 − β∗
2‖2

(b)

≤ η,

where we use the assumptions on e and η in the steps (a)

and (b), respectively. The inequality above implies that (19)

holds with H = 0 and h = 0, thus showing the feasibility of

(K∗, g∗).

Since
(

K̂, ĝ
)

is feasible by assumption, combining the last

two displayed equations and (19), we further have

∑

b

∥
∥
∥nbAb

(

−Ĥ + 2β∗
b ĥ

>
)∥
∥
∥
1

≤
∑

b

∥
∥
∥2eb ◦

(

Xbĥ
)∥
∥
∥
1
+
∑

b

∥
∥−2eb ◦ (Xbδ

∗
b )− e2b

∥
∥
1
+ η

≤c2
∑

b

√
nb ‖eb‖2 ‖ĥ‖2 + 2η. (20)

Now from the definition of Ab and Bb, we have

bnb/2c
∥
∥
∥Bb

(

−Ĥ + 2β∗
b ĥ

>
)∥
∥
∥
1

≤
bnb/2c∑

j=1

∥
∥
∥

〈

Ab,2j ,−Ĥ + 2β∗
b ĥ

>
〉∥
∥
∥
1

+
∥
∥
∥

〈

Ab,2j−1,−Ĥ + 2β∗
b ĥ

>
〉∥
∥
∥
1

≤nb
∥
∥
∥Ab

(

−Ĥ + 2β∗
b ĥ

>
)∥
∥
∥
1
.

It follows from (20) and n1 � n2 � n that
∑

b

n
∥
∥
∥Bb

(

−Ĥ + 2β∗
b ĥ

>
)∥
∥
∥
1
− c2

∑

b

√
n ‖eb‖2 ‖ĥ‖2 ≤ 2η.

(21)

This concludes Step (1) of the proof.

2) Step (2): RIP and Lower Bounds: The bound in (21)

relates the `1-norm of B and η. Since we want a bound on

the `2 and Frobenius norms of ĥ and Ĥ respectively, a major

step is the proof of an RIP-like property for B:

Lemma 1. The following holds for some numerical constants

c, δ, δ̄. For b = 1, 2, if µ > 1 and nb ≥ cρp, then with

probability 1− exp(−nb), we have

δ ‖Z‖F ≤ ‖BbZ‖1 ≤ δ̄ ‖Z‖F

simultaneously for all Z ∈ Rp×p with rank(Z) ≤ ρ.
This lemma follows from the more general Lemma 5 that

appears in the proof of Theorem 3, by setting σ = 0.

We now turn to the implications of Lemma 1, in order to

get lower bounds on the term

∥
∥
∥Bb

(

−Ĥ + 2β∗
bh

>
)∥
∥
∥
1

from

the first term in (21), in terms of ‖ĥ‖2 and ‖Ĥ‖F .

Since we have proved that (K∗, g∗) is feasible, we have∥
∥
∥K̂

∥
∥
∥
∗
≤ ‖K∗‖∗ by optimality. It follows from (17) that

∥
∥
∥ĤT⊥

∥
∥
∥
∗
≤
∥
∥
∥ĤT

∥
∥
∥
∗
. (22)

Let K = c 1
α for c some numeric constant to be chosen

later. We can partition ĤT⊥ into a sum of M := p−4
K

matrices Ĥ1, . . . , ĤM according to the SVD of ĤT⊥ , such

that rank(Ĥi) ≤ K and the smallest singular value of Ĥi is

larger than the largest singular value of Ĥi+1 (cf. [24]). By

Lemma 1, we get that for each b = 1, 2,

M∑

i=2

∥
∥
∥Bb(Ĥi)

∥
∥
∥
1
≤δ̄

M∑

i=2

∥
∥
∥Ĥi

∥
∥
∥
F
≤ δ̄

M∑

i=2

1√
K

∥
∥
∥Ĥi−1

∥
∥
∥
∗

≤ δ̄√
K

∥
∥
∥ĤT⊥

∥
∥
∥
∗

(a)

≤ δ̄√
K

√
4
∥
∥
∥ĤT

∥
∥
∥
F
, (23)

where (a) follows from (22) and the rank of ĤT . It follows

that for b = 1, 2,
∥
∥
∥Bb

(

Ĥ − 2β∗
b ĥ

>
)∥
∥
∥
1

(a)

≥
∥
∥
∥Bb

(

ĤT + Ĥ1 − 2β∗
b ĥ

>
)∥
∥
∥
1
−

M∑

i=2

∥
∥
∥B(Ĥi)

∥
∥
∥
1

(b)

≥ δ
∥
∥
∥ĤT + Ĥ1 − 2β∗

b ĥ
>
∥
∥
∥
F
− 2δ̄

√

1

K

∥
∥
∥ĤT

∥
∥
∥
F

(c)

≥ δ
∥
∥
∥ĤT − 2β∗

b ĥ
>
∥
∥
∥
F
+
∥
∥
∥Ĥ1

∥
∥
∥
F
− 2δ̄

√

1

K

∥
∥
∥ĤT

∥
∥
∥
F

≥ δ
∥
∥
∥ĤT − 2β∗

b ĥ
>
∥
∥
∥
F
− 2δ̄

√

1

K

∥
∥
∥ĤT

∥
∥
∥
F
,

where (a) follows from the triangle inequality, (b) follows

from Lemma 1 and (23), and (c) follows from the fact that

ĤT − βbĥ
> ∈ T and Ĥ1 ∈ T⊥. Summing the above

inequality for b = 1, 2, we obtain

∑

b

∥
∥
∥Bb

(

Ĥ − 2β∗
b ĥ

>
)∥
∥
∥
1

≥ δ
∑

b

∥
∥
∥ĤT − 2β∗

b ĥ
>
∥
∥
∥
F
− 4δ̄

√

1

K

∥
∥
∥ĤT

∥
∥
∥
F
.

(24)

The first term in the RHS of (24) can be bounded using the

following lemma, whose proof is deferred to Appendix F-A.

Lemma 2. We have
∑

b

∥
∥
∥ĤT − 2β∗

b ĥ
>
∥
∥
∥
F
≥ √α

∥
∥
∥ĤT

∥
∥
∥
F
,

∑

b

∥
∥
∥ĤT − 2β∗

b ĥ
>
∥
∥
∥
F
≥ √α (‖β∗

1‖2 + ‖β∗
2‖2) ‖ĥ‖2.
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Combining (24) and the lemma, we obtain

∑

b

∥
∥
∥Bb

(

Ĥ − 2β∗
b ĥ

>
)∥
∥
∥
1
≥
(

δ
√
α− 4δ̄

√

1

K

)
∥
∥
∥ĤT

∥
∥
∥
F

and
∑

b

∥
∥
∥Bb

(

Ĥ − 2β∗
b ĥ

>
)∥
∥
∥
1

≥
(

δ − 4δ̄

√

1

αK

)
∑

b

∥
∥
∥ĤT − βbĥ

>
∥
∥
∥
F

≥
(

δ − 4δ̄

√

1

αK

)

√
α (‖β∗

1‖2 + ‖β∗
2‖2) ‖ĥ‖2.

Recall that K = c 1
α . When c is sufficiently large, the above

inequalities imply that for some numeric constant c′,

∑

b

∥
∥
∥Bb

(

Ĥ − 2β∗
b ĥ

>
)∥
∥
∥
1
≥
√
α

c′′

∥
∥
∥ĤT

∥
∥
∥
F

(d)

≥
√
α

c′

∥
∥
∥Ĥ

∥
∥
∥
F
,

(25)

∑

b

∥
∥
∥Bb

(

Ĥ − 2β∗
b ĥ

>
)∥
∥
∥
1
≥
√
α

c′
(‖β∗

1‖2 + ‖β∗
2‖2) ‖ĥ‖2,

(26)

where the inequality (d) follows from (22) and rank(ĤT ) ≤ 4.

This concludes the proof of Step (2).

3) Step (3): Producing Error Bounds: We now combine

the results from the above steps, in order to obtain bounds on

‖ĥ‖2 and ‖Ĥ‖F in terms of η, and the other parameters of

the problem, hence concluding the proof of Theorem 1.

From Step (1), we concluded the bound (21), which we

reproduce:

∑

b

n
∥
∥
∥Bb

(

−Ĥ + 2β∗
b ĥ

>
)∥
∥
∥
1
− c2

∑

b

√
n ‖eb‖2 ‖ĥ‖2 ≤ 2η.

Applying (26) to the LHS above, we get

√
n
∑

b

(√
α
√
n ‖β∗

b‖2 − ‖eb‖2
)
‖ĥ‖2 . 2η.

Under the assumption ‖e‖2 ≤ 1
c5

√
α
√
n (‖β∗

1‖2 + ‖β∗
2‖2) for

some c5 sufficiently large, we obtain the following bound for

‖ĥ‖2:

‖ĥ‖2 .
1√

αn
(
‖β∗

1‖2 + ‖β∗
2‖2
)η.

To obtain a bound on

∥
∥
∥Ĥ

∥
∥
∥
F

, we note that

∑

b

‖eb‖2 ‖ĥ‖2 ≤
1

c5

√
n
∑

b

√
α ‖β∗

b‖2 ‖ĥ‖2

≤ c
′

c5

√
n
∑

b

∥
∥
∥Bb

(

Ĥ − 2β∗
b ĥ

>
)∥
∥
∥
1
,

where we use the assumption on ‖e‖ and (26) in the two

inequalities, respectively. When c5 is large, we combine the

last displayed equation with (21) to obtain

n
√
α
∥
∥
∥Ĥ

∥
∥
∥
F
. n

∑

b

∥
∥
∥Bb

(

ĤT − 2β∗
b ĥ

>
)∥
∥
∥
1
. 2η,

where we use (25) in the last inequality. This implies

∥
∥
∥Ĥ

∥
∥
∥
F
.

1

n
√
α
η,

completing the proof of Step (3) and thus Theorem 1.

C. Proof of Theorem 3

We now turn to Theorem 3 for the stochastic noise setting.

The main conceptual flow of the proof is quite similar to the

deterministic noise case, though some significant additional

steps are required. For the deterministic case, the starting point

is the constraint, which allows us to bound Ab and Bb in terms

of η using feasibility of (K∗, g∗) and (K∗ + Ĥ, g∗ + ĥ).
In the stochastic setup we have a Lagrangian (regularized)

formulation, and hence we obtain the analogous result from

optimality. Thus, the first step here involves showing that as

a consequence of optimality, the solution (K̂, ĝ) = (K∗ +
Ĥ, g∗+ ĥ) satisfies inequality (29) below, which implies that

Ĥ and ĥ must live in a certain cone. The RIP-like condition

for Bb in the stochastic case is more demanding. We prove a

second RIP-like condition (Lemma 5). We then bound A by

terms involving B, and then invoke the RIP condition and the

cone constraint.

Now we turn to each step of the proof. We continue

to use the notation given in Section IV-A. We let Db :=

(bnb/2c)−1 [
db,1, . . . ,db,bnb/2c

]> ∈ Rbnb/2c×p. Recall that

we defined

γ := ‖β∗
1‖2 + ‖β∗

2‖2 .

Since the {xi} are assumed to be Gaussian with i.i.d. en-

tries, the statement of the theorem is invariant under rotation of

the β∗
b ’s. Therefore, it suffices to prove the theorem assuming

β∗
1−β∗

2 is supported on the first coordinate. The follow lemma

shows that we can further assume {xi} and e have bounded

entries, since we are interested in results that hold with high

probability. This simplifies the subsequent analysis.

Lemma 3. There exists an absolute constant c > 0 such that,

if the conclusion of Theorem 3 holds w.h.p. with the additional

assumption that

xi(l) ≤ c
√

log n, ∀i ∈ [n], l ∈ [p],

ei ≤ cσ
√

log n, ∀i ∈ [n],

then it also holds w.h.p. without this assumption.

We prove this lemma in Appendix F-B. In the sequel, we

therefore assume support(β∗
1 − β∗

2) = {1}, and the {xi} and

{ei} satisfy the bounds in the above lemma.

1) Step (1): Consequence of Optimality: This step uses

optimality of the solution (K̂, ĝ) = (K∗ + Ĥ, g∗ + ĥ), to

get a bound on A. By optimality, we have

∑

b

∑

i∈Ib

(

−
〈

xix
>
i , K̂

〉

+2yi 〈xi, ĝ〉−y2i +σ2
)2

+λ
∥
∥
∥K̂

∥
∥
∥
∗

≤
∑

b

∑

i∈Ib

(
−
〈
xix

>
i ,K

∗〉+2yi 〈xi, g∗〉−y2i +σ2
)2
+λ ‖K∗‖∗ .



IEEE TRANSACTIONS OF INFORMATION THEORY, VOL. XX, NO. XX, JANUARY 20XX 12

Using the expression (18), we have
∑

b

∑

i∈Ib

(

−
〈

xix
>
i , Ĥ

〉

+ 2(x>
i β

∗
b + ei)

〈

xi, ĥ
〉

− eix>
i δ

∗
b − (e2i − σ2)

)2

+ λ
∥
∥
∥K̂

∥
∥
∥
∗

≤
∑

b

∑

i∈Ib

(
−eix>

i δ
∗
b − (e2i − σ2)

)2
+ λ ‖K∗‖∗ .

Defining the noise vectors w1,b := −eb ◦ (Xbδ
∗
b ), w2,b :=

−
(
e2b − σ2

1
)

and wb = w1,b − w2,b, we can rewrite the

inequality above as

∑

b

∥
∥
∥nbAb

(

−Ĥ+2β∗
b ĥ

>
)

+2eb ◦ (Xbĥ)+wb

∥
∥
∥

2

2
+λ

∥
∥
∥K̂

∥
∥
∥
∗

≤
∑

b=1,2

‖wb‖22 + λ ‖K∗‖∗ .

Expanding the squares and rearranging terms, we obtain

∑

b

∥
∥
∥nbAb

(

−Ĥ + 2β∗
b ĥ

>
)

+ 2eb ◦ (Xbĥ)
∥
∥
∥

2

2

≤
∑

b

2
〈

Ĥ−2β∗
b ĥ

>, nbA∗
bwb

〉

−
∑

b

〈

ĥ, 4X>
b diag(eb)wb

〉

+ λ
(

‖K∗‖∗ −
∥
∥
∥K̂

∥
∥
∥
∗

)

(27)

(a)

≤
(∥
∥
∥ĤT

∥
∥
∥
∗
+
∥
∥
∥ĤT⊥

∥
∥
∥
∗

)

· P + ‖ĥ‖2 ·Q

+ λ
(

‖K∗‖∗ −
∥
∥
∥K̂

∥
∥
∥
∗

)

(b)

≤
(∥
∥
∥ĤT

∥
∥
∥
∗
+
∥
∥
∥ĤT⊥

∥
∥
∥
∗

)

· P + ‖ĥ‖2 ·Q

+ λ
(∥
∥
∥ĤT

∥
∥
∥
∗
−
∥
∥
∥ĤT⊥

∥
∥
∥
∗

)

,

where A∗
b is the adjoint operator of Ab, in (a) we have defined

P := 2
∑

b

‖nbA∗
bwb‖ , (28)

Q := 4
∑

b

‖β∗
b‖2 ‖nbA∗

bwb‖+
√
p

∥
∥
∥
∥
∥

∑

b

4X>
b diag(eb)wb

∥
∥
∥
∥
∥
∞
,

and (b) follows from (17). We need the following lemma,

which bounds the noise terms P and Q. Its proof is a

substantial part of the proof to the main result, but quite

lengthy. We therefore defer it to Appendix A.

Lemma 4. Under the assumptions of the theorem, we have

λ ≥ 2P and λ ≥ 1
σ+γQ with high probability.

Applying the lemma, we get

∑

b

∥
∥
∥nbAb

(

−Ĥ + 2β∗
b ĥ

>
)

+ 2eb ◦ (Xbĥ)
∥
∥
∥

2

2

≤λ
(
3

2

∥
∥
∥ĤT

∥
∥
∥
∗
− 1

2

∥
∥
∥ĤT⊥

∥
∥
∥
∗

)

+ λ (γ + σ) ‖ĥ‖2. (29)

Since the left hand side of (29) is non-negative, we obtain the

following cone constraint for the optimal solution:
∥
∥
∥ĤT⊥

∥
∥
∥
∗
≤ 5

2

∥
∥
∥ĤT

∥
∥
∥
∗
+ (γ + σ) ‖ĥ‖2. (30)

This concludes the proof of Step (1) of the proof.

2) Step (2): RIP and Lower Bounds: We can get a lower

bound to the expression in the LHS of (29) using B, as follows.

Similarly as before, let K be some numeric constant to be

chosen later. We partition ĤT⊥ into a sum of M := p−4
K

matrices Ĥ1, . . . , ĤM according to the SVD of ĤT⊥ , such

that rank(Ĥi) ≤ K and the smallest singular value of Ĥi is

larger than the largest singular value of Ĥi+1. Then we have

the following chain of inequalities:

∑

b

∥
∥
∥nbAb

(

−Ĥ + 2β∗
b ĥ

>
)

+ 2eb ◦
(

Xbĥ
)∥
∥
∥

2

2

(a)

≥
∑

b

∥
∥
∥nbBb

(

−Ĥ + 2β∗
b ĥ

>
)

+ 2nbDbĥ
∥
∥
∥

2

2

(b)

≥
∑

b

nb

∥
∥
∥Bb

(

−Ĥ + 2β∗
b ĥ

>
)

+ 2Dbĥ
∥
∥
∥

2

1

(c)

&n

(
∑

b

∥
∥
∥Bb

(

−Ĥ + 2β∗
b ĥ

>
)

+ 2Dbĥ
∥
∥
∥
1

)2

(d)

≥n
(
∑

b

∥
∥
∥Bb

(

−ĤT + 2β∗
b ĥ

> + Ĥ1

)

+ 2Dbĥ

∥
∥
∥
1

−
∑

b

M∑

i=2

∥
∥
∥Bb(Ĥi)

∥
∥
∥
1

)2

. (31)

Here (a) follows from the definitions of Ab and Bb and the

triangle inequality, (b) follows from ‖u‖22 ≥ 1
nb
‖u‖21 for all

u ∈ Rnb , (c) follows from n1 ≈ n2, and (d) follows from the

triangle inequality.

We see that in order to obtain lower bounds on (31) in terms

of ‖ĥ‖2 and ‖Ĥ‖F , we need an extension of the previous RIP-

like result from Lemma 1, in order to deal with the first term

in (31). The following lemma is proved in Appendix B.

Lemma 5. The following holds for some numerical constants

c, δ, δ̄. For b = 1, 2, if µ > 1 and nb ≥ cpr, then with

probability 1− exp(−nb), we have the following RIP-2:

δ (‖Z‖F+σ ‖z‖2) ≤ ‖BbZ −Dbz‖1 ≤ δ̄ (‖Z‖F+σ ‖z‖2) ,
∀z ∈ Rp, ∀Z ∈ Rp×p with rank(Z) ≤ r.

Using this we can now bound the last inequality in (31)

above. First, note that for each b = 1, 2,

M∑

i=2

∥
∥
∥Bb(Ĥi)

∥
∥
∥
1

(a)

≤ δ̄
M∑

i=2

∥
∥
∥Ĥi

∥
∥
∥
F
≤ δ̄

M∑

i=2

1√
K

∥
∥
∥Ĥi−1

∥
∥
∥
∗

≤ δ̄√
K

∥
∥
∥ĤT⊥

∥
∥
∥
∗
, (32)

where (a) follows from the upper bound in Lemma 5 with σ
set to 0. Then, applying the lower-bound in Lemma 5 to the

first term in the parentheses in (31), and (32) to the second



IEEE TRANSACTIONS OF INFORMATION THEORY, VOL. XX, NO. XX, JANUARY 20XX 13

term, we obtain

∑

b

∥
∥
∥nbAb

(

−Ĥ + 2β∗
b ĥ

>
)

+ 2eb ◦
(

Xbĥ
)∥
∥
∥

2

2

≥n
(
∑

b

δ
∥
∥
∥ĤT−2β∗

b ĥ
>
∥
∥
∥
F
+2δσ‖ĥ‖2−δ̄

√

1

K

∥
∥
∥ĤT⊥

∥
∥
∥
∗

)2

&n

(
∑

b

δ2
∥
∥
∥ĤT−2β∗

b ĥ
>
∥
∥
∥

2

F
+δ2σ2‖ĥ‖22−δ̄2

1

K

∥
∥
∥ĤT⊥

∥
∥
∥

2

∗

)

.

Choosing K to be sufficiently large, and applying Lemma 2,

we obtain

∑

b

∥
∥
∥nbAb

(

−Ĥ + 2β∗
b ĥ

>
)

+ 2eb ◦
(

Xbĥ
)∥
∥
∥

2

2

&n

(∥
∥
∥ĤT

∥
∥
∥

2

F
+ γ2‖ĥ‖22 + σ2‖ĥ‖22 −

1

100

∥
∥
∥ĤT⊥

∥
∥
∥

2

∗

)

. (33)

Using (30), we further get

∑

b

∥
∥
∥nbAb

(

−Ĥ + 2β∗
b ĥ

>
)

+ 2eb ◦
(

Xbĥ
)∥
∥
∥

2

2

&n

[
∥
∥
∥ĤT

∥
∥
∥

2

F
+ γ2‖ĥ‖22 + σ2‖ĥ‖22 −

1

8

∥
∥
∥ĤT

∥
∥
∥

2

∗

− 1

25

(
γ2 + σ2

)
‖ĥ‖22

]

&
1

8
n
(∥
∥
∥ĤT

∥
∥
∥
F
+ (γ + σ) ‖ĥ‖2

)2

. (34)

This completes Step (2), and we are ready to combine the

results to obtain error bounds, as promised in Step (3) and by

the theorem.

3) Step (3): Producing Error bounds: Combining (29)

and (34), we get

n
(∥
∥
∥ĤT

∥
∥
∥
F
+ (γ + σ) ‖ĥ‖2

)2

. λ ‖HT ‖F + λ(γ + σ)‖ĥ‖2,

which implies

∥
∥
∥ĤT

∥
∥
∥
F
+ (γ + σ) ‖ĥ‖2 . λ

n . It follows that

‖ĥ‖2 . 1
n(γ+σ)λ and

∥
∥
∥Ĥ

∥
∥
∥
F
≤
∥
∥
∥ĤT

∥
∥
∥
∗
+
∥
∥
∥ĤT⊥

∥
∥
∥
∗

(a)

≤ 7

2

∥
∥
∥ĤT

∥
∥
∥
∗
+ (γ + σ) ‖ĥ‖2

(b)

≤ 7

2
·
√
4
∥
∥
∥ĤT

∥
∥
∥
F
+ (γ + σ) ‖ĥ‖2

.
1

n
λ,

where we use (30) in (a) and rank
(

ĤT

)

≤ 4 in (b). This

completes Step (3) and the proof of the theorem.

D. Proof of Theorem 5

In this section we prove the error bounds in Theorem 5 for

our nonconvex approach.

1) Statistical Error: The proof of part (a) of Theorem 5

follows along the same lines as the proof of Theorem 3. In ad-

dition, we need to derive RIP and error bounds of the negative

term. For the optimal solution (K̂, ĝ) = (K∗ + Ĥ, g∗ + ĥ),
from the constraint we have that

‖K∗ + Ĥ‖∗ ≤ ‖K∗‖∗.

Using the decomposition Ĥ = ĤT + ĤT⊥ , we have ‖K∗ +
Ĥ‖∗ = ‖K∗ + ĤT ‖∗ + ‖ĤT⊥‖∗ ≥ ‖K∗‖∗ − ‖ĤT ‖∗ +
‖ĤT⊥‖∗. We thus have

‖ĤT⊥‖∗ ≤ ‖ĤT ‖∗. (35)

Following similar calculations as those in Section IV-C1,

one can obtain the consequence of optimality as

∑

b

∥
∥
∥nbAb

(

−Ĥ + 2β∗
b ĥ

>
)

+ 2eb ◦ (Xbĥ)
∥
∥
∥

2

2

−
∑

b

4σ2Ab(ĥĥ>)

︸ ︷︷ ︸

S5

≤
∑

b

2
〈

Ĥ−2β∗
b ĥ

>, nbA∗
bwb

〉

−
∑

b

〈

ĥ, 4X>
b diag(eb)wb

〉

−
∑

b

4σ2Ab(δ∗b ĥ>)

︸ ︷︷ ︸

S6

−
∑

b

8σ2〈eb,Xbĥ〉
︸ ︷︷ ︸

S7

. (36)

Compared to (27), the above equality does not have the nuclear

norm term since we remove the regularization term. The

additional terms S5, S6 and S7 come from the negative term

−∑n
i=1 4σ

2(yi − 〈xi, g〉)2.

By standard concentration result, when n & p/ε2, with

probability at least 1 − exp(−p), ‖ 1n
∑n
i=1 xix

>
i − I‖ ≤ ε.

Choosing ε = 0.1, we have w.h.p.

S5 = 4σ2
n∑

i=1

〈xix>
i − I, ĥĥ>〉+ 4nσ2‖ĥ‖22 ≤ 4.4nσ2‖ĥ‖22.

Using the above result and (34), we obtain

∑

b

∥
∥
∥nbAb

(

−Ĥ + 2β∗
b ĥ

>
)

+ 2eb ◦ (Xbĥ)
∥
∥
∥

2

2

−
∑

b

4σ2Ab(ĥĥ>)

&n
(∥
∥
∥ĤT

∥
∥
∥
F
+ (γ + σ) ‖ĥ‖2

)2

− nσ2‖ĥ‖22

&n
(∥
∥
∥ĤT

∥
∥
∥
F
+ γ‖ĥ‖2

)2

, (37)

where the second inequality follows from the assumption

γ/σ ≥ c for sufficiently large constant c.
Now we turn to the right hand side of (36). By the Cauchy-

Schwarz inequality, it is upper bounded by
(

‖ĤT ‖∗ + ‖ĤT⊥‖∗
)

· P + ‖ĥ‖2 ·Q′,

where P is given in (28), and we defined

Q′ := 4γP +W
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and

W :=
√
p
∥
∥
∥

∑

b

X>
b diag(eb)wb +

∑

b

σ2X>
b Xbδ

∗
b

+
∑

b

2σ2X>
b eb

∥
∥
∥
∞
.

(38)

Using Lemma 4, we obtain P . σγ
√
np log3 n. The following

lemma gives an upper bound of the term W ; see Appendix F-C

for the proof.

Lemma 6. Under the assumptions of the Theorem 5, we have

that w.h.p.,

W . σ2γ
√
np log2 n.

We therefore conclude that the right hand side of (36) is at

most on the order of

σγ
√
np log3 n

(

‖ĤT ‖∗ + ‖ĤT⊥‖∗
)

+ σγ2
√
np log3 n‖ĥ‖2.

(39)

Putting (37) and (39) together, we finish our proof by showing

n
(∥
∥
∥ĤT

∥
∥
∥
F
+ γ‖ĥ‖2

)2

.σγ
√
np log3 n

(

‖ĤT ‖∗+‖ĤT⊥‖∗
)

+ σγ2
√
np log3 n‖ĥ‖2

.σγ
√
np log3 n‖ĤT ‖F + σγ2

√
np log3 n‖ĥ‖2,

where the second inequality follows from the conic constraint

(35) and ‖ĤT ‖∗ ≤ 2‖ĤT ‖F .

2) Optimization Error: Recall that H(t) := K(t)− K̂ and

h(t) := g(t) − ĝ, which represent the optimization error, and

Ĥ := K̂−K∗ and ĥ := ĝ−g∗, which represent the statistical

error. We need several auxiliary lemmas for the proof. First,

we establish a result that shows that H(t) belongs to a cone-

like set. See Appendix F-D for the proof.

Lemma 7. From program (8), due to the nuclear norm

constraint, we have that for any t = 0, 1, . . .,
∥
∥
∥H

(t)

T⊥

∥
∥
∥
∗
≤ 3

∥
∥
∥H

(t)
T

∥
∥
∥
∗
+ 4

∥
∥
∥ĤT

∥
∥
∥
∗
.

Next, we characterize the curvature of Ln. To ease notation,

for any K,K ′ ∈ Rp×p and g, g′ ∈ Rp, we define

Qn (K
′, g′;K, g)

:= Ln(K ′, g′)− Ln(K, g)− 〈∇KLn(K, g),K ′ −K〉
− 〈∇gLn(K, g), g′ − g〉

=
∑

b

∥
∥
∥nbAb

(

− (K ′ −K) + 2β∗
b (g

′ − g)
>
)

+ 2eb ◦ (Xb (g
′ − g))

∥
∥
∥

2

2
−

n∑

i=1

4σ2〈xi, g′ − g〉2. (40)

The next lemma shows the smoothness of Ln. Its proof is

given in Appendix C.

Lemma 8. Given Qn(K
′, g′;K, g) that is defined in (40),

we have that there exist constants {ci}2i=1 such that with

probability at least 1− c2/n, the inequality

Qn(K
′, g′;K, g)

≤ c1n
√
p
3
log n‖K ′ −K‖2F + c1n log nγ

2‖g′ − g‖22
(41)

holds for any K,K ′ ∈ Rp×p and g, g′ ∈ Rp.

Next we turn to the lower bound of Q. We first let K ′ =
K(t), g′ = g(t), K = K̂, g = ĝ. Then we have

Qn(K̂, ĝ;K(t), g(t))

=
∑

b

∥
∥
∥nbAb

(

−H(t) + 2β∗
bh

(t)>
)

+ 2eb ◦
(

Xbh
(t)
)∥
∥
∥

2

2

−
n∑

i=1

4σ2〈xi,h(t)〉2

& n

(∥
∥
∥H

(t)
T

∥
∥
∥

2

F
+ γ2‖h(t)‖22 + σ2‖h(t)‖22 −

1

100

∥
∥
∥H

(t)

T⊥

∥
∥
∥

2

∗

)

−
∑

b

4σ2Ab(ĥĥ>)

& n

(∥
∥
∥H

(t)
T

∥
∥
∥

2

F
+ γ2‖h(t)‖22 + σ2‖h(t)‖22 −

1

100

∥
∥
∥H

(t)

T⊥

∥
∥
∥

2

∗

)

− nσ2‖h(t)‖22,
where the first inequality follows from (33) by replacing the

(Ĥ, ĥ) there by (H(t),h(t)); the second inequality is from

the concentration property of operator Ab as in the proof of

part (a). Using Lemma 7 to bound ‖H(t)

T⊥‖2∗, we further have

Qn(K̂, ĝ;K(t), g(t))

& n

(

0.38
∥
∥
∥H

(t)
T

∥
∥
∥

2

F
+γ2‖h(t)‖22 +σ2‖h(t)‖22−0.32

∥
∥
∥ĤT

∥
∥
∥

2

∗

)

− nσ2‖h(t)‖22
& n

∥
∥
∥H

(t)
∥
∥
∥

2

F
+ nγ2‖h(t)‖22 − n

∥
∥
∥Ĥ

∥
∥
∥

2

F
. (42)

We need the following the result to connect the established

curvature property to the optimization error. Its proof is given

in Appendix F-E.

Lemma 9. Suppose function Qn satisfies the following two

conditions with functions Qn and Q
n

that map Rp×p×Rp to

R:

• For (K̂, ĝ) and every (K(t), g(t)),
Qn(K

(t), g(t); K̂, ĝ) ≥ Q
n
(H(t),h(t));

• For any K,K ′ ∈ Rp×p and g, g′ ∈ Rp,

Qn(K
′, g′;K, g) ≤ Qn(K ′ −K, g′ − g).

Then we have

‖H(t+1)‖2F + γ2‖h(t+1)‖22
≤ ‖H(t)‖2F + γ2‖h(t)‖22 −

2

η
Q
n

(

H(t),h(t)
)

− ‖∆(t)‖2F

− γ2‖δ(t)‖22 +
2

η
Qn

(

∆
(t), δ(t)

)

,

where we let ∆(t) := K(t+1)−K(t) and δ(t) := g(t+1)−g(t).

Now we are ready to prove Theorem 5 part (b). Plugging

the established bounds of the function Qn, (41) and (42), into

Lemma 9, we obtain that for some constants c1, c2,

‖H(t+1)‖2F + γ2‖h(t+1)‖22
≤
(

1− c1n

η

)(

‖H(t)‖2F + γ2‖h(t)‖22
)

+
c1n

η
‖Ĥ‖2F

+

(
c2n log n

η
−1
)

‖δ(t)‖22 +
c2n
√
p3 log n

η
‖∆(t)‖2F−‖∆(t)‖2F .
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Therefore by setting η > c3n
√
p3 log n for sufficiently large

constant c3, we have

‖H(t+1)‖2F + γ2‖h(t+1)‖22
≤
(

1− c1n

η

)(

‖H(t)‖2F + γ2‖h(t)‖22
)

+
c1n

η
‖Ĥ‖2F .

Applying this bound recursively to t = 0, 1, 2, . . . proves our

result.

E. Proofs of Theorems 2, 4 and 6

In this section, we show that an error bound on the input

(K̂, ĝ) of Algorithm 1 implies an error bound on its output

(β̂1, β̂2). Recall the quantities Ĵ , J∗, λ̂, λ∗,v̂ and v∗ defined

in Section III-A and in Algorithm 1.

The main component of the proof is a general perturbation

bound. We prove these in the first section below, and then use

them to prove Theorems 2, 4 and 6 in the three subsequent

sections.

1) Perturbation Bound: We require the following perturba-

tion bound.

Lemma 10. If

∥
∥
∥Ĵ − J∗

∥
∥
∥
F
≤ δ, then

∥
∥
∥

√

λ̂v̂ −
√
λ∗v∗

∥
∥
∥
2
≤ 10min

{

δ
√

‖J∗‖
,
√
δ

}

.

Proof. By Weyl’s inequality, we have

∣
∣
∣λ̂− λ∗

∣
∣
∣ ≤

∥
∥
∥Ĵ − J∗

∥
∥
∥ ≤ δ.

This implies

∣
∣
∣

√

λ̂−
√
λ∗
∣
∣
∣ =

∣
∣
∣
∣
∣

λ̂− λ∗
√

λ̂+
√
λ∗

∣
∣
∣
∣
∣
≤ 2min

{
δ√
λ∗
,
√
δ

}

. (43)

Using Weyl’s inequality and the Davis-Kahan sine theorem,

we obtain

|sin∠(v̂,v∗)| ≤ min

{

2‖K̂ −K∗‖
‖K∗‖ , 1

}

≤ min

{
2δ

λ∗
, 1

}

.

(44)

On the other hand, we have

∥
∥
∥v̂
√

λ̂− v∗√λ∗
∥
∥
∥
2

≤
∥
∥
∥v̂
√

λ̂− v∗
√

λ̂
∥
∥
∥
2
+
∥
∥
∥v

∗
√

λ̂− v∗√λ∗
∥
∥
∥
2

=
√

λ̂ ‖v̂ − v∗‖2 + ‖v∗‖2
∣
∣
∣

√

λ̂−
√
λ∗
∣
∣
∣

=
(√

λ∗ +
√

λ̂−
√
λ∗
)

‖v̂ − v∗‖2 + ‖v∗‖2
∣
∣
∣

√

λ̂−
√
λ∗
∣
∣
∣

≤
√
λ∗ ‖v̂ − v∗‖2 + 3

∣
∣
∣

√

λ̂−
√
λ∗
∣
∣
∣ ,

where in the last inequality we use the fact that ‖v∗‖ = ‖v̂‖ =
1. Elementary calculation shows that

‖v̂ − v∗‖2 = 2

∣
∣
∣
∣
sin

1

2
∠(v̂,v∗)

∣
∣
∣
∣
≤
√
2 |sin∠(v̂,v∗)| .

It follows that
∥
∥
∥v̂
√

λ̂− v∗√λ∗
∥
∥
∥
2

≤
√
2
√
λ∗ |sin∠(v̂,v∗)|+ 3

∣
∣
∣

√

λ̂−
√
λ∗
∣
∣
∣

≤
√
2min

{
2δ√
λ∗
,
√
λ∗
}

+ 6min

{
δ√
λ∗
,
√
δ

}

≤ 10min

{
δ√
λ∗
,
√
δ

}

,

where we use (43) and (44) in the second inequality. This

concludes the proof.

We can now use this perturbation result to provide guaran-

tees on recovering β∗
1 and β∗

2 given noisy versions of g∗ and

K∗. To this end, suppose we are given K̂ and ĝ which satisfy
∥
∥
∥K̂ −K∗

∥
∥
∥
F
≤ δK , ‖ĝ − g∗‖2 ≤ δg.

Then by the triangle inequality we have
∥
∥
∥Ĵ − J∗

∥
∥
∥
F
≤ δK + 2δg ‖g∗‖2 + δ2g .

Therefore, up to relabeling b, we have
∥
∥
∥β̂b − β∗

b

∥
∥
∥
2

≤ ‖ĝ − g∗‖2 +
∥
∥
∥

√

λ̂v̂ −
√
λ∗v∗

∥
∥
∥
2

. δg+min

{

δK+2δg ‖g∗‖2+δ2g
‖β∗

1 − β∗
2‖2

,
√

δK+2δg ‖g∗‖2+δ2g

}

,

(45)

where the second inequality follows from Lemma 10 and λ∗ =
1
4‖β∗

1 − β∗
2‖22.

2) Proof of Theorem 2 (Arbitrary Noise): In the case of

arbitrary noise, as set up above, Theorem 1 guarantees the

following:

δK �
√
n ‖e‖2 ‖β∗

2 − β∗
1‖2 + ‖e‖

2
2√

αn
.

1√
α

‖e‖2√
n
‖β∗

1 − β∗
2‖ ,

δg �
√
n ‖e‖2 ‖β∗

2 − β∗
1‖2 + ‖e‖

2
2√

αn
(
‖β∗

1‖2 + ‖β∗
2‖2
) .

‖e‖2√
n
.

where we use the assumption ‖e‖2 ≤√
α
c4

√
n (‖β∗

1‖2 + ‖β∗
2‖2) � 1

c4

√
n ‖β∗

1 − β∗
2‖2. Using (45),

we get that up to relabeling b,
∥
∥
∥β̂b − β∗

b

∥
∥
∥
2

.
‖e‖2√
n

+min

{

1√
α

‖e‖2√
n

+
‖e‖22

n ‖β∗
1 − β∗

2‖2
,

√

1√
α

‖e‖2√
n
‖β∗

1 − β∗
2‖2 +

‖e‖22
n

}

.
1√
α

‖e‖2√
n

+min

{

‖e‖22
n ‖β∗

1−β∗
2‖2

,

√

1√
α

‖e‖2√
n
‖β∗

1−β∗
2‖2

}

≤ 1√
α

‖e‖2√
n
.
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3) Proof of Theorem 4 (Stochastic Noise): Next consider

the setting with stochastic noise. Under the assumptions of

Theorem 4, Theorem 3 guarantees the following bounds on

the errors in recovering K∗ and g∗:

δK � σ (‖β∗
1‖2 + ‖β∗

2‖2 + σ)

√
p

n
log4 n,

δg � σ
√
p

n
log4 n.

If we let γ = ‖β∗
1‖2 + ‖β∗

2‖2, then this means

δK + 2δg‖g∗‖2 + δ2g

�σγ
√
p

n
log4 n+ σ2

√
p

n
log4 n+ σ2 p

n
log8 n

.σγ

√
p

n
log4 n+ σ2

√
p

n
log4 n,

where the last inequality follows from the assumption that

n ≥ cp log8 n for some c > 1. Combining these with (45), we

obtain that up to relabeling of b,

∥
∥
∥β̂b − β∗

b

∥
∥
∥
2

. σ

√
p

n
log4 n

+min







σγ
√

p
n + σ2

√
p
n√

αγ
,

√

σγ

√
p

n
+ σ2

√
p

n






log4 n

. σ

√
p

n
log4 n+min







σ2
√

p
n

γ
,

√

σγ

√
p

n
+σ2

√
p

n






log4 n,

where the last inequality follows from α being lower-bounded

by a constant. Observe that the minimization in the last

RHS is no larger than σ
√

p
n if γ ≥ σ, and equals

min

{
σ2
√

p

n

γ , σ
(
p
n

)1/4
}

if γ < σ. It follows that

∥
∥
∥β̂b − β∗

b

∥
∥
∥
2

. σ

√
p

n
log4 n+min

{

σ2
√

p
n

γ
, σ
( p

n

)1/4
}

log4 n.

4) Proof of Theorem 6 (Nonconvex Formulation): Under

our assumption, we have ‖K(T ) − K̂‖F . ‖Ĥ‖F , ‖g(T ) −
ĝ‖2 . ‖ĥ‖2. From the triangle inequality, we have

‖K(T ) −K∗‖F ≤ ‖K(T ) − K̂‖F + ‖Ĥ‖F

. σ (‖β∗
1‖2 + ‖β∗

2‖2)
√
p

n
log3 n,

and

‖g(T ) − g∗‖2 ≤ ‖g(T ) − ĝ‖2 + ‖ĥ‖2 . σ

√
p

n
log3 n.

From here the proof follows along the lines of Section IV-E3.

We omit the details.

F. Proof Outlines of Theorems 7 and 8

Next, we provide the main steps of proving the minimax

lower bounds in Theorems 7 and 8, and postpone the full

proofs to Appendix D and E. The high-level ideas in the

proofs of Theorems 7 and 8 are similar: we use a standard

argument [5, 38, 35] to convert the estimation problem into a

hypothesis testing problem, and then use information-theoretic

inequalities to lower bound the error probability in hypothesis

testing. In particular, recall the definition of the set Θ(γ)
of regression vector pairs in (10); we construct a δ-packing

Θ = {θ1, . . . ,θM} of Θ(γ) in the metric ρ, and use the

following inequality:

inf
θ̂

sup
θ∗∈Θ(γ)

E

[

ρ(θ̂,θ∗)
]

≥ δ inf
θ̃

P

(

θ̃ 6= θ∗
)

, (46)

where on the RHS θ∗ is assumed to be sampled uniformly at

random from Θ. To lower-bound the minimax expected error

by 1
2δ, it suffices to show that the probability on the last RHS

is at least 1
2 . By Fano’s inequality [17], we have

P

(

θ̃ 6= θ∗
)

≥ 1− I (y,X;θ∗) + log 2

logM
. (47)

It remains to construct a packing set Θ with the appropriate

separation δ and cardinality M , and to upper-bound the

mutual information I (y,X;θ∗). We show how to do this

for Part 2 of Theorem 8, for which the desired separation

is δ = 2c0
σ2

κ

√
p
n , where κ =

γ

2 . Let {ξ1, . . . , ξM} be a
p−1
16 -packing of {0, 1}p−1 in Hamming distance with logM ≥
(p−1)/16, which exists by the Varshamov-Gilbert bound [29].

We construct Θ by setting θi := (βi,−βi) for i = 1, . . . ,M
with

βi = κ0εp +

p−1
∑

j=1

(2ξi(j)− 1) τεj ,

where τ = 4δ√
p−1

, κ20 = κ2 − (p − 1)τ2, and εj is the jth

standard basis in Rp. We verify that this Θ indeed defines a

δ-packing of Θ(γ), and moreover satisfies ‖βi − βi′‖2 ≤ 16δ2

for all i 6= i′. To bound the mutual information, we observe

that by independence between X and θ∗, we have

I (θ∗;X,y) ≤ 1

M2

∑

1≤i,i′≤M
D (Pi‖Pi′)

=
1

M

∑

1≤i,i′≤M

n∑

j=1

EX

[

D
(

P
(j)
i,X‖P

(j)
i′,X

)]

,

where P
(j)
i,X denotes the distribution of yj conditioned on X

and θ∗ = θi. The remaining and crucial step is to obtain

sharp upper bounds on the above KL-divergence between

two mixtures of one-dimensional Gaussian distributions. This

requires some technical calculations, from which we obtain

EXD
(

P
(j)
i,X‖P

(j)
i′,X

)

≤ c′ ‖βi − βi′‖2 κ2
σ4

.

We conclude that I(θ∗;X,y) ≤ 1
4 logM . Combining

with (46) and (47) proves Part 2 of Theorem 8. Theorem 7

and the remaining part of Theorem 8 are proved in a similar

manner.
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V. CONCLUSION

This paper provides a computationally and statistically

efficient algorithm for mixed regression with two components.

To the best of our knowledge, the is the first efficient algorithm

that can provide O(p) sample complexity guarantees. Under

certain conditions, we prove matching lower bounds, thus

demonstrating our algorithm achieves the minimax optimal

rates. There are several interesting open questions that remain.

Most immediate is the issue of understanding the degree

to which the assumptions currently required for minimax

optimality can be removed or relaxed. The extension to more

than two components is important, though how to do this

within the current framework is not obvious.

At its core, the approach here is a method of moments, as

the convex optimization formulation produces an estimate of

the cross moments, (β∗
1β

∗>
2 +β∗

2β
∗>
1 ). An interesting aspect

of these results is the significant improvement in sample com-

plexity guarantees this tailored approach brings, compared to

a more generic implementation of the tensor machinery which

requires use of third order moments. Given the statistical and

also computational challenges related to third order tensors,

understanding the connections more carefully seems to be an

important future direction.

APPENDIX A

PROOF OF LEMMA 4

We now move to the proof of Lemma 4, which bounds the

noise terms P and Q. Note that

P = 2
∑

b

‖nbA∗
bwb‖

≤ 2
∑

b

‖nbA∗
bw1,b‖

︸ ︷︷ ︸

S1

+2
∑

b

‖nbA∗
bw2,b‖

︸ ︷︷ ︸

S2

,

and

Q =
∑

b

4 ‖β∗
b‖2 ‖nbA∗

bwb‖+
√
p

∥
∥
∥
∥
∥

∑

b

4X>
b diag(eb)wb

∥
∥
∥
∥
∥
∞

≤ 4γP +
√
p

∥
∥
∥
∥
∥

∑

b

4X>
b diag(eb)w1,b

∥
∥
∥
∥
∥
∞

︸ ︷︷ ︸

S3

+
√
p

∥
∥
∥
∥
∥

∑

b

4X>
b diag(eb)w2,b

∥
∥
∥
∥
∥
∞

︸ ︷︷ ︸

S4

.

Therefore, the lemma is implied if we can show

S1 + S2 ≤
λ

2
, S3 + S4 ≤ σλ, w.h.p.

But λ & σ (γ + σ)
(√
np+ |n1 − n2| √p

)
log3 n by assump-

tion of Theorem 3. Therefore, the lemma follows if each of

the following bounds holds w.h.p.

S1 . σγ
√
np log3 n,

S2 . σ2√np log3 n,
S3 . σ2γ (

√
np+ |n1 − n2|

√
p) log2 n,

S4 . σ3√np log2 n.

We now prove these bounds.

a) Term S1:: Note that γ ≥ ‖β∗
1 − β∗

2‖2, so the desired

bound on S1 follows from the lemma below, which is proved

in Section F-F.

Lemma 11. Suppose β∗
1 − β∗

2 is supported on the first

coordinate. Then w.h.p.

S1 . ‖β∗
1 − β∗

2‖2 σ
√
np log3 n.

b) Term S2:: By definition, we have

S2 = 2
∑

b

∥
∥
∥
∥
∥

nb∑

i=1

(
e2b,i − σ2

)
xb,ix

>
b,i

∥
∥
∥
∥
∥
.

Here each e2b,i − σ2 is zero-mean, . σ2 log n almost surely,

and has variance . σ4. The quantity inside the spectral norm

is the sum of independent zero-mean bounded matrices. An

application of the Matrix Bernstein inequality [28] gives

∥
∥
∥
∥
∥

nb∑

i=1

(
e2b,i − σ2

)
xb,ix

>
b,i

∥
∥
∥
∥
∥
. σ2√nbp log3 nb,

for each b = 1, 2. The desired bound follows.

c) Term S3:: We have

S3/4 =
√
p

∥
∥
∥
∥
∥

∑

b

X>
b diag (eb) (−eb ◦ (Xbδ

∗
b ))

∥
∥
∥
∥
∥
∞

=
√
p

∥
∥
∥
∥
∥

∑

b

X>
b diag

(
e2b
)
Xbδ

∗
b

∥
∥
∥
∥
∥
∞

=
√
pmax
l∈[p]

∣
∣
∣
∣
∣

∑

b

(
e2b ◦Xb,l

)>
Xbδ

∗
b

∣
∣
∣
∣
∣
,

where Xb,l is the lth column of Xb. WLOG, we assume n1 ≥
n2. Observe that for each l ∈ [p],

∑

b

(
e2b ◦Xb,l

)>
Xbδ

∗
b

=

n2∑

i=1

(
e21,ix1,i(l)x

>
1,i − e22,ix2,i(l)x

>
2,i

)
δ∗1

︸ ︷︷ ︸

S3,1,l

+

n1∑

i=n2+1

e21,ix1,i(l)x
>
1,iδ

∗
1

︸ ︷︷ ︸

S3,2,l

.
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Let εi be the ith standard basis vector in Rn. The term S3,1,l

can be written as

S3,1,l =

n2∑

i=1

(
x>
1,i

(
e21,iεlδ

∗>
1

)
x1,i − x>

2,i

(
e22,iεlδ

∗>
1

)
x2,i

)

=χ>Gχ,

where we defined

χ> :=
[
e1,1x

>
1,1 e1,2x

>
1,2 · · · e1,n2

x>
1,n2

e2,1x
>
2,1 e2,2x

>
2,2 · · · e2,n2

x>
2,n2

]
∈ R2n2p

and

G :=diag
(
εlδ

∗>
1 , εlδ

∗>
1 , . . . , εlδ

∗>
1 ,

− εlδ
∗>
1 ,−εlδ∗>1 , . . . ,−εlδ∗>1

)
∈ R2n2p×2n2p;

in other words, G is the block-diagonal matrix with
{
±εlδ∗>1

}

on its diagonal. Note that ES3,1,l = 0, and the entries of χ

are i.i.d. sub-Gaussian with parameter bounded by σ
√
log n.

Using the Hanson-Wright inequality (e.g., [25]), we obtain

w.h.p.

max
l∈[p]
|S3,1,l| . ‖G‖F σ2 log2 n ≤ σ2

√
2nγ log2 n.

Since δ∗1 is supported on the first coordinate, the term S3,2,l

can be bounded w.h.p. by

max
l∈[p]
|S3,2,l| =max

l∈[p]

∣
∣
∣
∣
∣

n1∑

i=n2+1

e21,ix1,i(l)x1,i(1)δ
∗
1(1)

∣
∣
∣
∣
∣

. (n1 − n2)σ2γ log2 n

using Hoeffding’s inequality. It follows that w.h.p.,

S3 .
√
pmax
l∈[p]

(|S3,1,l|+ |S3,2,l|)

. σ2γ (
√
np+ |n1 − n2|

√
p) log2 n.

d) Term S4:: We have w.h.p.

S4/4 ≤
√
p
∑

b

∥
∥X> (eb ◦w2,b)

∥
∥
∞

(a)

.
√

p log n
∑

b

‖eb ◦w2,b‖2

=
√

p log n
∑

b

∥
∥e3b − σ2eb

∥
∥
2

(b)

.σ3√np log2 n,
where in (a) we use the independence between X and eb◦w2,b

and the standard sub-Gaussian concentration inequality (e.g.,

[30]), and (b) follows from the boundedness of e.

APPENDIX B

PROOF OF LEMMA 5

The proofs for b = 1 and 2 are identical, so we omit

the subscript b. WLOG we may assume σ = 1. Our proof

generalizes the proof of an RIP-type result in [16]

Fix Z and z. Let ξj := 〈Bj ,Z〉 and ν := ‖Z‖F . We

already know that ξj is a sub-exponential random variable

with ‖ξj‖ψ1
≤ c1ν and ‖ξj − E [ξj ]‖ψ1

≤ 2c1ν.

Let γj = 〈dj , z〉 and ω := ‖z‖2. It is easy to check

that γj is sub-Gaussian with ‖γj‖ψ2
≤ c1µ. It follows that

‖ξj − γj‖ψ1
≤ c1 (ν + ω) .

Note that

‖BZ −Dz‖1 =

n/2
∑

j=1

2

n
|ξj − γj | .

Therefore, applying the Bernstein-type inequality for the sum

of sub-exponential variables [30], we obtain

P [|‖BZ −Dz‖1 − E |ξj − γj || ≥ t]

≤2 exp
[

−cmin

{
t2

c2(ν + µ)2/n
,

t

c2(ν + µ)/n

}]

.

Setting t = (ν + σω)/c3 for any c3 > 1, we get

P

[

|‖BZ −Dz‖1 − E |ξj − γj || ≥
ν + ω

c3

]

≤ 2 exp [−c4n] .
(48)

But sub-exponentiality implies

E [|ξj − γj |] ≤ ‖ξj − γj‖ψ1
≤ c2 (ν + µ) ,

and

P

[

‖BZ −Dz‖1 ≥
(

c2 +
1

c3

)

(ν + ω)

]

≤ 2 exp [−c4n] .

Now, note that

E [|ξj − γj |] ≥
√

(E [(ξj − γj)2])3
E [(ξj − γj)4]

.

We bound the numerator and denominator. By sub-

exponentiality, we have E

[

(ξj − γj)4
]

≤ c5(ν + ω)4. On the

other hand, note that

E (ξj − γj) 2

= E (〈Bj ,Z〉 − 〈dj , z〉)2

= E 〈Bj ,Z〉2 + E 〈dj , z〉2 − 2E [〈Bj ,Z〉 〈dj , z〉]
= E 〈Bj ,Z〉2 + E

〈
djd

>
j , zz

>〉

− 2E [〈Bj ,Z〉 〈e2jx2j − e2j−1x2j−1, z〉]
= E 〈Bj ,Z〉2+E〈djd>

j , zz
>〉−2E [e2j ]E [〈Bj ,Z〉〈x2j , z〉]

− 2E [e2j−1]E [〈Bj−1,Z〉 〈x2j−1, z〉]
= E 〈Bj ,Z〉2 + E

〈
djd

>
j , zz

>〉 ,

where in the last equality we use the fact that {ei} are

independent of {xi} and E [ei] = 0 for all i. We already

know

E 〈Bj ,Z〉2 = 〈E [〈Bj ,Z〉Bj ] ,Z〉
= 4 ‖Z‖2F + 2(µ− 3) ‖diag (Z)‖2F
≥ 2(µ− 1) ‖Z‖2F .

Some calculation shows that

E
〈
djd

>
j , zz

>〉 =
〈
E
[
e22jx2jx

>
2j + e22jx2jx

>
2j

]
, zz>〉

=2
〈
I, zz>〉 = 2 ‖z‖2 .

It follows that

E (ξj − γj) 2 ≥ 2(µ− 1) ‖Z‖2F + 2 ‖z‖2 ≥ c6
(
ν2 + ω2

)
,
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where the inequality holds when µ > 1. We therefore obtain

E [|ξj − γj |] ≥ c7

√

(ν2 + ω2)
3

(ν + ω)2
≥ c8(ν + ω).

Substituting back to (48), we get

P

[

‖BZ −Dz‖1 ≤
(

c8 −
1

c3

)

(ν + ω)

]

≤ 2 exp [−c4n] .

To complete the proof of the lemma, we use an ε-net

argument. Let Sr be the set
{

(Z, z) ∈ Rp×p × Rp : rank(Z) ≤ r, ‖Z‖2F + ‖z‖22 = 1
}

.

We need the following lemma, which is proved in Section F-G.

Lemma 12. For each ε > 0 and r ≥ 1, there exists a set

Nr(ε) with |Nr(ε)| ≤
(
40
ε

)10pr
which is an ε-covering of Sr,

meaning that for all (Z, z) ∈ Sr, there exists
(

Z̃, z̃
)

∈ Nr(ε)
such that √

∥
∥
∥Z̃ −Z

∥
∥
∥

2

F
+ ‖z̃ − z‖22 ≤ ε.

Note that 1√
2
(‖Z‖F + ‖z‖2) ≤

√

‖Z‖2F + ‖z‖22 ≤
‖Z‖F + ‖z‖2 for all Z and z. Therefore, up to a change

of constant, it suffices to prove Lemma 5 for all (Z, z) in Sr.
By the union bound and Lemma 12, we have

P

(

max
(Z̃,z̃)∈Nr(ε)

∥
∥
∥BZ̃ −Dz̃

∥
∥
∥
1
≤ 2

(

c2 +
1

c3

))

≥1− |Nr(ε)| · exp (−c4n) ≥ 1− exp(−c4n/2),
when n ≥ (2/c4) · 10pr log(40/ε). On this event, we have

M̄ := sup
(Z,z)∈Sr

‖BZ −Dz‖1

≤ max
(Z̃,z̃)∈Nr(ε)

∥
∥
∥BZ̃ −Dz̃

∥
∥
∥
1

+ sup
(Z,z)∈Sr

∥
∥
∥B(Z − Z̃)−D(z − z̃)

∥
∥
∥
1

≤ 2

(

c2 +
1

c3

)

+ sup
Z∈Sr

√
∥
∥
∥Z − Z̃

∥
∥
∥

2

F
+ ‖z − z̃‖22

× sup
(Z′,z′)∈S2r

‖BZ ′ −Dz′‖1

≤ 2

(

c2 +
1

c3

)

+ ε sup
(Z′,z′)∈S2r

‖BZ ′ −Dz′‖1 .

Note that for (Z ′, z′) ∈ S2r, we can write Z ′ = Z ′
1 + Z ′

2

such that Z ′
1,Z

′
2 both have rank r and 1 = ‖Z ′‖F ≥

max {‖Z ′
1‖F , ‖Z ′

2‖F }. So

sup
(Z′,z′)∈S2r

‖BZ ′ −Dz′‖1

≤ sup
Z′∈S2r

‖BZ ′
1 −Dz′‖1 + sup

Z′∈S2r

‖BZ ′
2‖1

≤ 2M̄.

(49)

Combining the last two displayed equations and choosing ε =
1
4 , we obtain

M̄ ≤ δ̄ := 2

1− 2ε

(

c2 +
1

c3

)

,

with probability at least 1 − exp(−c9n). Note that δ̄ is a

constant independent of p and r (but it might depend on

µ := E

[

(xi)
4
l

]

).

For a possibly different ε′, we have

inf
(Z,z)∈Sr

‖BZ −Dz‖1

≥ min
(Z̃,z̃)∈Nr(ε)

∥
∥
∥BZ̃ − z̃

∥
∥
∥
1

− sup
(Z,z)∈Sr

∥
∥
∥B(Z − Z̃)−D(z − z̃)

∥
∥
∥
1
.

By the union bound, we have

P

(

min
(Z̃,z̃)∈Nr(ε)

∥
∥
∥BZ̃ − z̃

∥
∥
∥
1
≥
(

c7 −
1

c3

))

≥ 1− exp (−c4n+ 10pr log(40/ε′))

≥ 1− exp(−c4n/2),
provided n ≥ (2/c4) ·10pr log(40/ε′). On this event, we have

inf
(Z,z)∈Sr

‖BZ −Dz‖1
(a)

≥
(

c7 −
1

c3

)

− 2ε′M̄

(b)

≥
(

c7 −
1

c3

)

− 2ε′δ̄,

where (a) follows from (49) and (b) follows from the the

upper-bound on M̄ we just established. We complete the proof

by choosing ε′ to be a sufficiently small constant such that

δ :=
(

c7 − 1
c3

)

− 2ε′δ̄ > 0.

APPENDIX C

PROOF OF LEMMA 8

Let H = K ′ − g′ and h = g′ − g. We observe that

Qn(K
′, g′;K, g)

=

n∑

i=1

(
−
〈
xixi,H

〉
+ 2yi 〈xi,h〉

)2 −
n∑

i=1

4σ2〈xi,h〉2.

≤
n∑

i=1

2
〈
xixi,H

〉2
+ 8max

i∈[n]
{y2i }

(
n∑

i=1

〈xi.h〉2
)

By standard concentration results, we have

Pr
(∑n

i=1〈xi,h〉2 ≥ 1.1‖h‖22
)
≤ c1 exp(−c2p) for any

h ∈ Rp. We thus obtain that w.h.p.

Qn(K
′, g′;K, g)

≤
n∑

i=1

2
〈
xixi,H

〉2
+ 9n ·max

i∈[n]
{y2i } · ‖h‖22.

We need the following lemma, which is proved in Section F-H,

to bound the first term on the right hand side of the above

inequality.

Lemma 13. Suppose {xi}ni=1 are i.i.d. p-dimensional cen-

tered sub-Gaussian random vectors with norm ‖xi‖ψ2
≤ c for

some constant c and identity covariance matrix E(xix
>
i ) = I .

There exist constants ci such that for any matrix H ∈ Rp×p,

we have

1

n

n∑

i=1

〈
xix

>
i ,H

〉2 ≤ c1p log n · ‖H‖∗ · ‖H‖F ,
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with probability at least 1− c2n−1 under condition n ≥ c3p.

Note that ‖H‖∗ ≤ √p‖H‖F for any H . We have that
∑

i∈[n]〈xix>
i ,H〉2 . n

√
p3 log n‖H‖2F . Also note that

Pr

(

max
i∈[n]
|yi| > t

)

≤ n exp
(
1− t2/(γ2 + σ2)

)
.

Setting t � (γ+σ)
√
log n in the above inequality leads to our

result.

APPENDIX D

PROOF OF THEOREM 7

We need some additional notation. Let z :=
(z1, z2, . . . , zn)

> ∈ {0, 1}n be the vector of hidden labels

with zi = 1 if and only if i ∈ I1. We use y(θ∗,X, e, z) to

denote the value of the response vector y given θ∗, X , e

and z, that is,

y (θ∗,X, e, z) = z ◦ (Xβ∗
1) + (1− z) ◦ (Xβ∗

2) + e,

where 1 is the all-ones vector in Rn and ◦ denotes element-

wise product.

By standard results, we know that with probability at least

1− n−10,

‖Xα‖2 ≤ 2
√
n ‖α‖2 , ∀α ∈ Rp. (50)

Hence it suffices to prove (11) in the theorem statement

assuming (50) holds.

Let v be an arbitrary unit vector in Rp. We de-

fine δ := c0
ε√
n

, θ1 :=
(
1
2γv,− 1

2γv
)

and θ2 =
(
1
2γv + δv,− 1

2γv − δv
)
. Note that θ1,θ2 ∈ Θ(γ) as long

as c0 is sufficiently small, and ρ (θ1,θ2) = 2δ. We further

define e1 := 0 and e2 := −δ (2z − 1) ◦ (Xv). Note that

‖e2‖ ≤ 2
√
nδ ≤ ε by (50), so e1, e2 ∈ B(ε). If we set

yi = y (θi,X, ei, z) for i = 1, 2, then we have

y2 = z◦
(

X(
1

2
γv+δv)

)

+(1−z)◦
(

X(−1

2
γv − δv)

)

+e2

= (2z − 1) ◦
(

X(
1

2
γv + δv)

)

− δ (2z − 1) ◦ (Xv)

= (2z − 1) ◦
(

X(
1

2
γv)

)

+ e1

= y1,

which holds for any X and z. Therefore, for any θ̂, we have

sup
θ∗∈Θ(γ)

sup
e∈B(ε)

ρ
(

θ̂(X,y),θ∗
)

≥ 1

2
ρ
(

θ̂ (X,y1) ,θ1

)

+
1

2
ρ
(

θ̂ (X,y2) ,θ2

)

=
1

2
ρ
(

θ̂ (X,y1) ,θ1

)

+
1

2
ρ
(

θ̂ (X,y1) ,θ2

)

≥ 1

2
ρ (θ1,θ2)

= δ,

where the second inequality holds because ρ is a metric and

satisfies the triangle inequality. Taking the infimum over θ̂

proves the theorem.

APPENDIX E

PROOF OF THEOREM 8

Throughout the proof we set κ := 1
2γ.

A. Part 1 of the Theorem

We prove the first part of the theorem by estab-

lishing a lower-bound for standard linear regression. Set

δ1 := c0σ
√

p−1
n , and define the (semi)-metric ρ1 (·, ·) by

ρ1(β,β
′) = min {‖β − β′‖ , ‖β + β′‖}. We begin by con-

structing a δ1−packing set Φ1 := {β1, . . . ,βM} of Gp (κ) :=
{β ∈ Rp : ‖β‖ ≥ κ} in the metric ρ1. We need a packing set

of the hypercube {0, 1}p−1 in the Hamming distance.

Lemma 14. For p ≥ 16, there exists {ξ1, . . . , ξM} ⊂
{0, 1}p−1

such that M ≥ 2(p−1)/16 and

min
{
‖ξi − ξj‖0 , ‖ξi + ξj‖0

}
≥ p− 1

16
, ∀1 ≤ i < j ≤M.

See Section F-I for the proof. Let τ := 2c0σ
√

1
n for some

absolute constant c0 > 0 that is sufficiently small, and κ20 :=
κ2− (p− 1)τ2. Note that κ0 ≥ 0 since γ ≥ σ by assumption.

For i = 1, . . . ,M , we set

βi = κ0εp +

p−1
∑

j=1

(2ξi(j)− 1) τεj ,

where εj is the jth standard basis in Rp and ξi(j) is the jth

coordinate of ξi. Note that ‖βi‖2 = κ, ∀i ∈ [M ], so Φ1 =
{β1, . . . ,βM} ⊂ Gp(κ). We also have that for all 1 ≤ i <
j ≤M ,

‖βi − βj‖22 ≤ (p− 1)τ2 = 4c20
σ2(p− 1)

n
. (51)

Moreover, we have

ρ2 (βi,βj) = min
{

‖βi − βj‖22 , ‖βi + βj‖22
}

≥ 4τ2 min
{
‖ξi − ξj‖0 , ‖ξi + ξj‖0

}

≥ 4 · 4c20
σ2

n
· p− 1

16
= δ21 , (52)

so Φ1 = {β1, . . . ,βM} is a δ1-packing of Gp(κ) in the

metric ρ1.

Suppose β∗ is sampled uniformly at random from the set

Φ1. For i = 1, . . . ,M , let Pi,X denote the distribution of

y conditioned on β∗ = βi and X , and Pi denote the joint

distribution of X and y conditioned on β∗ = βi. Because X

is independent of z,e and β∗, we have

D (Pi‖Pi′) = EPi(X,y) log
pi(X,y)

pi′(X,y)

= EPi(X,y) log
pi(y|X)

pi′(y|X)

= EP(X)

[

EPi(y|X)

[

log
pi(y|X)

pi′(y|X)

]]

= EX [D (Pi,X‖Pi′,X)] .
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Using the above equality and the convexity of the mutual

information, we get that

I (β∗;X,y) ≤ 1

M2

∑

1≤i,i′≤M
D (Pi‖Pi′)

=
1

M2

∑

1≤i,i′≤M
EX [D (Pi,X‖Pi′,X)]

=
1

M2

∑

1≤i,i′≤M
EX

‖Xβi −Xβi′‖2
2σ2

=
1

M2

∑

1≤i,i′≤M

n ‖βi − βi′‖2
2σ2

.

It follows from (51) that

I (β∗;X,y) ≤ 8c20p ≤
1

2
(log2M) / (log2 e) =

1

4
logM,

provided c0 is sufficiently small. Following a standard argu-

ment [5, 35, 38] to transform the estimation problem into a

hypothesis testing problem (cf. Eq. (46) and (47)), we obtain

inf
β̂

sup
β∗∈Gp(κ)

EX,z,e

[

ρ1

(

β̂,β∗
)]

≥ δ1
(

1− I (β∗;X,y) + log 2

logM

)

≥ 1

2
δ1 =

1

2
c0σ

√
p

n
.

This establishes a minimax lower bound for standard linear

regression. Now observe that given any standard linear re-

gression problem with regression vector β∗ ∈ Gp (κ), we

can reduce it to a mixed regression problem with θ∗ =
(β∗,−β∗) ∈ Θ(γ) by multiplying each yi by a Rademacher

±1 variable. Part 1 of the theorem hence follows.

B. Part 2 of the Theorem

Let δ2 := 2c0
σ2

κ

√
p−1
n . We first construct a δ2−packing

set Θ2 := {θ1, . . . ,θM} of Θ(γ) in the metric ρ(·, ·). Set

τ := 2c0
σ2

κ

√
1
n and κ20 := κ2 − (p− 1)τ2. Note that κ0 ≥ 0

under the assumption κ ≥ c1σ
(
p
n

)1/4
provided that c0 is small

enough. For i = 1, . . . ,M , we set θi := (βi,−βi) with

βi = κ0εp +

p−1
∑

j=1

(2ξi(j)− 1) τεj ,

where {ξi} are the vectors in Lemma 14. Note that ‖βi‖ = κ
for all i, so Θ2 = {θ1,θ2, . . . ,θM} ⊂ Θ(γ). We also have

that for all 1 ≤ i < i′ ≤M ,

‖βi − βi′‖2 ≤ pτ2 = 4c20
σ4p

κ2n
. (53)

Moreover, we have

ρ2 (θi,θi′) = 4min
{

‖βi − βi′‖2 , ‖βi + βi′‖2
}

≥ 16τ2 min {‖ξi − ξi′‖0 , ‖ξi + ξi′‖0}

≥ 16 · 4c20
σ4

κ2n
· p− 1

16
= δ22 , (54)

so Θ2 = {θ1, . . . ,θM} forms a δ2-packing of Θ(γ) in the

metric ρ.

Suppose θ∗ is sampled uniformly at random from the set

Θ2. For i = 1, . . . ,M , let P
(j)
i,X denote the distribution of yj

conditioned on θ∗ = θi and X , Pi,X denote the distribution

of y conditioned on θ∗ = θi and X , and Pi denote the joint

distribution of X and y conditioned on θ∗ = θi. We need the

following bound on the KL divergence between two mixtures

of univariate Gaussians. For any a > 0, we use Qa to denote

the distribution of the equal-weighted mixture of two Gaussian

distributions N (a, σ2) and N (−a, σ2).

Lemma 15. The following bound holds for any u, v ≥ 0:

D (Qu‖Qv)

≤ u2 − v2
2σ4

u2 +
v3 max {0, v − u}

2σ8

(
u4 + 6u2σ2 + 3σ4

)
.

See Section F-J for the proof. Note that P
(j)
i,X = Q|x>

j
βi|.

Using Pi,X = ⊗nj=1P
(j)
i,X and the above lemma, we have

EXD (Pi,X‖Pi′,X)

=

n∑

j=1

EXD
(

P
(j)
i,X‖P

(j)
i′,X

)

≤nE
∣
∣x>

1 βi
∣
∣
2 −

∣
∣x>

1 βi′
∣
∣
2

2σ4

∣
∣x>
j βi

∣
∣
2

+ nEX

∣
∣x>

1 βi′
∣
∣
3
max

{
0,
∣
∣x>

1 βi′
∣
∣−
∣
∣x>

1 βi
∣
∣
}

2σ8

×
(∣
∣x>

1 βi
∣
∣
4
+ 6

∣
∣x>

1 βi
∣
∣
2
σ2 + 3σ4

)

.

To bound the expectations in the last RHS, we need a simple

technical lemma proved in Section F-K.

Lemma 16. Suppose x ∈ Rp has i.i.d. standard Gaussian

components, and α,β ∈ Rp are any fixed vectors with ‖α‖2 =
‖β‖2. There exists an absolute constant c̄ such that for any

non-negative integers k, l with k + l ≤ 8,

E
∣
∣x>α

∣
∣
k ∣
∣x>β

∣
∣
l ≤ c̄ ‖α‖k ‖β‖l .

Moreover, we have

EX

[(∣
∣x>α

∣
∣
2 −

∣
∣x>β

∣
∣
2
) ∣
∣x>α

∣
∣
2
]

≤ 2 ‖α‖ ‖α− β‖2 .

E

(∣
∣x>α

∣
∣
2 −

∣
∣x>β

∣
∣
2
)2

≤ ‖α− β‖4 .

Using the above lemma and the fact that ‖βi‖2 = ‖βi′‖2 =
κ for all 1 ≤ i < i′ ≤M , we have

EX

∣
∣x>

1 βi
∣
∣
2 −

∣
∣x>

1 βi′
∣
∣
2

2σ4

∣
∣x>

1 βi
∣
∣
2 ≤ 1

2σ4
κ2 ‖βi − βi′‖2 ,
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and for some universal constant c′ > 0,

EX

∣
∣x>

1 βi′
∣
∣
3
max

{
0,
∣
∣x>

1 βi′
∣
∣−
∣
∣x>

1 βi
∣
∣
}

2σ8

×
(∣
∣x>

1 βi
∣
∣
4
+ 6

∣
∣x>

1 βi
∣
∣
2
σ2 + 3σ4

)

≤ 1

2σ8
EX max

{

0,
∣
∣x>

1 βi′
∣
∣
2 −

∣
∣x>

1 βi
∣
∣
2
} ∣
∣x>

1 βi′
∣
∣
2

×
(∣
∣x>

1 βi
∣
∣
4
+ 6

∣
∣x>

1 βi
∣
∣
2
σ2 + 3σ4

)

(a)

≤ 1

2σ4

√

EX

(∣
∣x>

1 βi′
∣
∣
2 −

∣
∣x>

1 βi
∣
∣
2
)2

· 1

σ8
EX

∣
∣x>

1 βi′
∣
∣
4

×
√
(∣
∣x>

1 βi
∣
∣
4
+ 6

∣
∣x>

1 βi
∣
∣
2
σ2 + 3σ4

)2

(b)

≤ 1

2σ4

√

‖βi − βi‖4 · c′2 ‖βi′‖4 =
c′

2σ4
‖βi − βi‖2 κ2,

where (a) follows from the Cauchy-Schwarz inequality, and

(b) follows from the first and third inequalities in Lemma 16

as well as ‖βi‖ = ‖βi′‖ = κ ≤ σ. It follows that

EXD (Pi,X‖Pi′,X) ≤ n · c
′ ‖βi − βi′‖2 κ2

σ4
≤ c′′p,

where the last inequality follows from (53) and c′′ can be made

sufficiently small by choosing c0 small enough. We therefore

obtain

I (θ∗;X,y) ≤ 1

M2

∑

1≤i,i′≤M
D (Pi‖Pi′)

=
1

M

∑

1≤i,i′≤M
EX [D (Pi,X‖Pi′,X)] ≤ c′′p ≤ 1

4
logM

using M ≥ 2(p−1)/16. Following a standard argument [38,

35, 5] to transform the estimation problem into a hypothesis

testing problem (cf. Eq. (46) and (47)), we obtain

inf
θ̂

sup
θ∗∈Θ(γ)

EX,z,e

[

ρ
(

θ̂,θ∗
)]

≥ δ2
(

1− I (θ∗;X,y) + log 2

logM

)

≥ 1

2
δ2 = c0

σ2

κ

√
p

n
.

C. Part 3 of the Theorem

The proof follows similar lines as Part 2. Let δ3 :=

2c0σ
(
p
n

)1/4
. Again we first construct a δ3−packing set

Θ3 := (θ1, . . . ,θM ) of Θ(γ) in the metric ρ(·, ·). Set

τ := 2c0σ√
p−1

(
p
n

)1/4
. For i = 1, . . . ,M , we set θi = (βi,−βi)

with

βi =

p−1
∑

j=1

(2ξi(j)− 1) τεj ,

where {ξi} are the vectors from Lemma 14. Note that ‖βi‖2 =√
p− 1τ = 2c0σ

(
p
n

)1/4 ≥ c1σ
(
p
n

)1/4 ≥ κ provided c1 is

sufficiently small, so Θ3 = {θ1, . . . ,θM} ⊂ Θ(γ). We also

have for all 1 ≤ i < i′ ≤M ,

ρ2 (βi,βi′) = 4min
{

‖βi − βi′‖22 ‖βi + βi′‖22
}

≥ 16τ2 min {‖ξi − ξi′‖0 , ‖ξi + ξi′‖0}

= 16 · 4c
2
0σ

2

p− 1

√
p

n
· p− 1

16
≥ δ23 , (55)

so Θ3 = {θ1, . . . ,θM} is a δ3-packing of Θ(γ) in the

metric ρ.

Suppose θ∗ is sampled uniformly at random from the set

Θ2. Define Pi,X ,P
(j)
i,X and Pi as in the proof of Part 2 of the

theorem. We have

EXD (Pi,X |Pi′,X)

=

n∑

j=1

EXD
(

P
(j)
i,X‖P

(j)
i′,X

)

(a)

≤nEX

∣
∣x>

1 βi
∣
∣
2 −

∣
∣x>

1 βi′
∣
∣
2

2σ4

∣
∣x>

1 βi
∣
∣
2

+ nEX

∣
∣x>

1 βi′
∣
∣
3
max

{
0,
∣
∣x>

1 βi′
∣
∣−
∣
∣x>

1 βi
∣
∣
}

2σ8

×
(∣
∣x>

1 βi
∣
∣
4
+ 6

∣
∣x>

1 βi
∣
∣
2
σ2 + 3σ4

)

≤ n

2σ4
EX

∣
∣x>

1 βi
∣
∣
4
+

n

2σ8
EX

∣
∣x>

1 βi′
∣
∣
4

×
(∣
∣x>

1 βi
∣
∣
4
+ 6

∣
∣x>

1 βi
∣
∣
2
σ2 + 3σ4

)

(b)

≤ n

2σ4
c̄ ‖βi‖4 +

n

2σ8
c̄ ‖βi′‖4

(

‖βi‖4 + 6σ2 ‖βi‖2 + 9σ4
)

(c)

≤c′p,
where (a) follows from Lemma 15, (b) follows from

Lemma 16, (c) follows from ‖βi‖ = 2c0σ
(
p
n

)1/4 ≤ σ, ∀i,
and c′ is a sufficiently small absolute constant. It follows that

I (θ∗;X,y) ≤ 1

M

∑

1≤i,i′≤M
EXD (Pi‖Pi′) ≤ c′p ≤

1

4
logM,

since M ≥ 2(p−1)/8. Again transforming the estimation

problem into a hypothesis testing problem, we obtain

inf
θ̂

sup
θ∗∈Θ(γ)

EX,z,e

[

ρ
(

θ̂,θ∗
)]

≥ δ3
(

1− I (θ∗;X,y) + log 2

logM

)

≥ 1

2
δ3 = c0σ

( p

n

)1/4

.

APPENDIX F

PROOFS OF AUXILIARY RESULTS

A. Proof of Lemma 2

Simple algebra shows that

∑

b

∥
∥
∥ĤT − 2β∗

b ĥ
>
∥
∥
∥

2

F

= 2
∥
∥
∥ĤT − (β∗

1 + β∗
2)ĥ

>
∥
∥
∥

2

F
+ 2 ‖β∗

1 − β∗
2‖22 ‖ĥ‖22

≥ 2 ‖β∗
1 − β∗

2‖22 ‖ĥ‖22 ≥ α (‖β∗
1‖2 + ‖β∗

2‖)2 ‖ĥ‖22,
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and
∑

b

∥
∥
∥ĤT − 2β∗

b ĥ
∥
∥
∥

2

F

=4
(

‖β∗
1‖22 + ‖β∗

2‖2
)
∥
∥
∥
∥
∥
ĥ− ĤT (β

∗
1 + β∗

2)

2 ‖β∗
1‖22 + 2 ‖β∗

2‖2

∥
∥
∥
∥
∥

2

2

+
2
(

‖β∗
1‖22 + ‖β∗

2‖2
)∥
∥
∥ĤT

∥
∥
∥

2

F
−
∥
∥
∥ĤT (β∗

1 + β∗
2)
∥
∥
∥

2

2

‖β∗
1‖22 + ‖β∗

2‖2

(a)

≥
2
(

‖β∗
1‖22 + ‖β∗

2‖2
)∥
∥
∥ĤT

∥
∥
∥

2

F
−
∥
∥
∥ĤT

∥
∥
∥

2

F
‖β∗

1 + β∗
2‖22

‖β∗
1‖22 + ‖β∗

2‖2

=α
∥
∥
∥ĤT

∥
∥
∥

2

F
,

where the inequality (a) follows from

∥
∥
∥ĤT

∥
∥
∥ ≤

∥
∥
∥ĤT

∥
∥
∥
F

.

Combining the last two displayed equations with the simple

inequality

∑

b

∥
∥
∥ĤT − 2β∗

b ĥ

∥
∥
∥
F
≥
√
∑

b

∥
∥
∥ĤT − 2β∗

b ĥ

∥
∥
∥

2

F
,

we obtain
∑

b

∥
∥
∥ĤT − 2β∗

b ĥ
∥
∥
∥
F
≥ √α (‖β∗

1‖2 + ‖β∗
2‖2) ‖ĥ‖2,

∑

b

∥
∥
∥ĤT − 2β∗

b ĥ
∥
∥
∥
F
≥ √α

∥
∥
∥ĤT

∥
∥
∥
F
.

B. Proof of Lemma 3

Without loss of generality, we may assume σ = 1. Set L :=√
c log n for some c sufficiently large. For each i ∈ [n], we

define the event Ei = {|ei| ≤ L} and the truncated random

variables

ēi = ei1 (Ei) ,
where 1(·) is the indicator function and c is some suffi-

ciently large numeric constant. Let mi := E [ei1 (Eci )] and

si :=
√

E [e2i1 (Eci )]. WLOG we assume mi ≥ 0. Note that

the following equation holds almost surely:

e2i1 (Eci ) = |ei| · |ei|1 (Eci ) ≥ L · |ei|1 (Eci ) ≥ L · ei1 (Eci ) .
Taking the expectation of both sides gives s2i ≥ Lmi. We

further define

ẽi := ēi + Lε+i − Lε−i ,
where ε+i and ε−i are independent random variables distributed

as Ber(ν+i ) and Ber(ν−i ), respectively, with

ν+i :=
1

2

(
mi

L
+
s2i
L2

)

, ν−i :=
1

2

(

−mi

L
+
s2i
L2

)

.

Note that mi ≥ 0 and s2i ≥ Lmi implies that ν+i , ν
−
i ≥ 0. We

show below that ν+i , ν
−
i ≤ 1 so the random variables ε+i and

ε−i are well-defined.

With this setup, we now characterize the distribution of ẽi.
Note that

E
[
Lε+i − Lε−i

]
= mi,

E
[
(Lε+i )

2 + (Lε−i )
2
]
= s2i ,

which means

E [ẽi] = E [ēi] + E [ei1 (Eci )] = E [ei] = 0.

V ar
[
ẽ2i
]
= E

[
ē2i
]
+ E

[
e2i1 (Eci )

]
= E

[
e2i
]
= 1.

Moreover, ẽi is bounded by 3L almost surely, which means

it is sub-Gaussian with sub-Gaussian norm at most 3L. Also

note that

mi ≤ E [|ei1 (Eci )|]

=

∫ ∞

0

P (|ei1 (Eci )| ≥ t) dt

= L · P(|ei| ≥ L) +
∫ ∞

L

P (|ei| ≥ t) dt

≤
√

c log n
1

nc1
+

∫ ∞

L

e1−t
2

dt ≤ 4

nc2

for some large constant c1 and c2 by sub-Gaussianity of ei. A

similar calculation gives

s2i = E
[
e2i1 (Ec)

]
.

1

nc2
.

This implies ν+i , ν
−
i . 1

nc2
, or equivalently Lε+i − Lε−i = 0

w.h.p. We also have ēi = ei w.h.p. by sub-Gaussianity of ei.
It follows that ẽi = ēi+Lε+i −Lε−i = ei w.h.p. Moreover, ẽi
and ei have the same mean and variance.

We define the variables {(x̃i)l, i ∈ [n], l ∈ [p]} in a similar

manner. Each (x̃i)l is sub-Gaussian, bounded by L a.s., has

mean 0 and variance 1, and equals (xi)l w.h.p.

Now suppose the conclusion of Theorem 3 holds w.h.p.

for the program (7) with {(x̃i, ỹi)} as the input, where ỹi =
x̃>
i β

∗
b+ẽi for all i ∈ Ib and b = 1, 2. We know that e = ẽ and

xi = x̃i, ∀i with high probability. On this event, the program

above is identical to the original program with {(xi, yi)} as

the input. Therefore, the conclusion of the theorem also holds

w.h.p. for the original program.

C. Proof of Lemma 6

We need to bound

W =
√
p

∥
∥
∥
∥
∥

∑

b

X>
b diag(eb)wb +

∑

b

σ2X>
b Xbδ

∗
b

+
∑

b

2σ2X>
b eb

∥
∥
∥
∥
∥
∞

≤√p
∑

b

∥
∥
∥
∥
∥

∑

i∈Ib

(σ2−e2i )〈xi, δ∗b 〉xi+
∑

i∈Ib

(e2i+σ
2)eixi

∥
∥
∥
∥
∥
∞

≤√p
∑

b

∥
∥
∥
∥
∥

∑

i∈Ib

(σ2 − e2i )〈xi, δ∗b 〉xi
∥
∥
∥
∥
∥
∞

︸ ︷︷ ︸

S9

+
√
p
∑

b

∥
∥
∥
∥
∥

∑

i∈Ib

(e2i + σ2)eixi

∥
∥
∥
∥
∥
∞

︸ ︷︷ ︸

S10

.

Lemma 3 makes it possible to assume the boundedness

of ei with the loss of only small probability, we thus have
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that (e2i +σ
2)eixi is sub-Gaussian random vector with Orlicz

norm O(σ3
√
log n

3
). Therefore the standard sub-Gaussian

concentration result leads to that the following inequality holds

with high probability

S10 . σ3√n1 log2 n1 + σ3√n2 log
2 n2 . σ3

√
n log2 n,

where the last inequality follows from min{n1/n2, n2/n1} =
Ω(1).

Since 〈xi, δ∗b 〉 is sub-Gaussian random variable with Or-

licz norm O(γ) and (σ2 − e2i )xi is sub-Gaussian random

vector with Orlicz norm O(σ2 log n), their product (σ2 −
e2i )〈xi, δ∗b 〉xi is centered sub-exponential random vector with

Orlicz norm O(γσ2 log n). By standard concentration inequal-

ity of sub-exponential random variables (see, e.g., Corollary

5.17 in [30]), we obtain that for every ε > 0 and K =
γσ2 log n,

Pr





∥
∥
∥
∥
∥

∑

i∈Ib

(σ2−e2i )〈xi, δ∗b 〉xi +
∑

i∈Ib

(e2i + σ2)eixi

∥
∥
∥
∥
∥
∞

> εnb





≤ 2p exp

(

−cmin

{
ε2

K2
,
ε

K

}

nb

)

.

For each b = 1, 2, by setting ε = c1K
√

log p/nb, we have

that when nb & log p, with probability at least 1− 1/p,

S9 . γσ2(
√
n1 +

√
n2)
√

log p log n . γσ2
√
n log2 n.

Putting all ingredients together, we have that W .

γσ2√pn log2 n with high probability.

D. Proof of Lemma 7

Using the inequalities
∥
∥K(t)

∥
∥
∗ ≤ ‖K∗‖∗ and

∥
∥
∥K̂

∥
∥
∥
∗
≤

‖K∗‖∗, we have

∥
∥
∥

(

K(t) −K∗
)

T⊥

∥
∥
∥
∗
≤
∥
∥
∥

(

K(t) −K∗
)

T

∥
∥
∥
∗
, and

∥
∥
∥ĤT⊥

∥
∥
∥
∗
≤
∥
∥
∥ĤT

∥
∥
∥
∗
.

(56)

For the term H(t) we have
∥
∥
∥H

(t)
∥
∥
∥
∗
≤
∥
∥
∥K

(t) −K∗
∥
∥
∥
∗
+
∥
∥
∥Ĥ

∥
∥
∥
∗

(a)
=
∥
∥
∥

(

K(t) −K∗
)

T⊥

∥
∥
∥
∗
+
∥
∥
∥

(

K(t) −K∗
)

T

∥
∥
∥
∗

+
∥
∥
∥ĤT⊥

∥
∥
∥
∗
+
∥
∥
∥ĤT

∥
∥
∥
∗

(b)

≤ 2
∥
∥
∥

(

K(t) −K∗
)

T

∥
∥
∥
∗
+ 2

∥
∥
∥ĤT

∥
∥
∥
∗

(c)

≤ 2
∥
∥
∥H

(t)
T

∥
∥
∥
∗
+ 4

∥
∥
∥ĤT

∥
∥
∥
∗
,

where the inequality (b) follows from (56); (a) and (c) are

from the triangle inequality.

Also note that
∥
∥H(t)

∥
∥
∗ ≥

∥
∥
∥H

(t)

T⊥

∥
∥
∥
∗
−
∥
∥
∥H

(t)
T

∥
∥
∥
∗
. Putting the

lower and upper bounds of ‖H(t)‖∗ together, we complete our

proof.

E. Proof of Lemma 9

Let

Ψt(K, g)

:=
〈

∇KL(t)
n ,K

〉

+
〈

∇gL(t)
n , g

〉

+
η

2

∥
∥
∥K −K(t)

∥
∥
∥

2

F

+
ηγ2

2

∥
∥
∥g − g(t)

∥
∥
∥

2

2
.

From the optimality of
(
K(t+1), g(t)

)
, we have

〈

∇KΨt(K
(t+1), g(t+1)), K̂ −K(t+1)

〉

+
〈

∇gΨt(K
(t+1), g(t+1)), ĝ − g(t+1)

〉

≥ 0.

We thus have
〈

∇KL(t)
n , K̂ −K(t+1)

〉

+
〈

∇gL(t)
n , ĝ − g(t+1)

〉

≥ η
〈

K(t) −K(t+1), K̂ −K(t+1)
〉

+ ηγ2
〈

g(t) − g(t+1), ĝ − g(t+1)
〉

. (57)

Using the first condition (lower bound), we have

Ln(K̂, ĝ)

≥ L(t)
n +

〈

∇KL(t)
n , K̂ −K(t)

〉

+
〈

∇gL(t)
n , ĝ − g(t)

〉

+Q
n
(H(t),h(t))

(a)

≥ L(t)
n +

〈

∇KL(t)
n ,K(t+1) −K(t)

〉

+
〈

∇gL(t)
n , g(t+1) − g(t)

〉

+Q
n
(H(t),h(t))

+ η
〈

K(t) −K(t+1), K̂ −K(t+1)
〉

+ ηγ2
〈

g(t) − g(t+1), ĝ − g(t+1)
〉

.

Now applying the second condition (upper bound), we have

Ln(K̂, ĝ)

≥ L(t+1)
n −Qn(∆(t), δ(t)) +Q

n
(H(t),h(t))

+ η
〈

K(t) −K(t+1), K̂ −K(t+1)
〉

+ ηγ2
〈

g(t) − g(t+1), ĝ − g(t+1)
〉

.

Applying L(t+1)
n ≥ Ln(K̂, ĝ) and rearranging terms yield

η
〈

K(t)−K(t+1), K̂−K(t)
〉

+ ηγ2
〈

g(t)−g(t+1), ĝ−g(t)
〉

≤ Qn(∆(t), δ(t))−Q
n
(H(t),h(t))− η‖∆(t)‖2F

− ηγ2‖δ(t)‖22. (58)

Finally, by expanding ‖H(t+1)‖2F and ‖h(t+1)‖22 through

‖H(t+1)‖2F + γ2‖h(t+1)‖22
≤ ‖H(t)‖2F + γ2‖h(t)‖22 + 2

〈

K(t) −K(t+1), K̂ −K(t)
〉

+ 2γ2
〈

g(t) − g(t+1), ĝ − g(t)
〉

+ ‖∆(t)‖2F + γ2‖δ(t)‖22
and applying (58), we complete the proof.
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F. Proof of Lemma 11

We need to bound

S1 = 2
∑

b

∥
∥
∥
∥
∥

∑

i∈Ib

eb,ixb,ix
>
b,i · x>

b,i

(
β∗
b − β∗

−b
)

∥
∥
∥
∥
∥
,

where β∗
b −β∗

−b is supported on the first coordinate. Because

n1 � n2 � n and {(eb,i,xb,i)} are identically distributed, it

suffices to prove w.h.p.

‖E‖ :=
∥
∥
∥
∥
∥

n∑

i=1

eixix
>
i · x>

i δ
∗
1

∥
∥
∥
∥
∥
. σ ‖δ∗1‖2

√
np log3 n. (59)

Let x̄i ∈ R1 and xi ∈ Rp−1 be the subvectors of xi
corresponding to the first and the last p − 1 coordinates,

respectively. We define δ̄∗1 similarly; note that
∥
∥δ̄∗1
∥
∥ = ‖δ∗1‖ .

Note that E :=
∑

i eixix
>
i · x̄>

i δ̄
∗
1 due to the support of

δ∗1 . We partition E ∈ Rp×p as

E =

[
E1 E12

E>
12 E2

]

,

where E1 ∈ R1×1, E2 ∈ R(p−1)×(p−1) and E12 ∈ R1×p. We

have

‖E‖ ≤ ‖E1‖+ ‖E2‖+ 2 ‖E12‖ .

We bound each term separately.

Consider E1 =
∑

i eix̄ix̄
>
i · x̄>

i δ̄
∗
1 . We condition on {x̄i}.

Note that ‖x̄i‖2 .
√
log n and

∣
∣x̄>
i δ̄

∗
1

∣
∣ . ‖δ∗1‖

√
log n a.s. by

boundedness of xi. Since {ei} are independent of {x̄i}, we

have

P
[
‖E1‖ . σ ‖δ∗1‖

√
n log2 n| {x̄i}

]
≥ 1− n−10,

w.h.p. using Hoeffding’s inequality. Integrating over {x̄i}
proves ‖E1‖ . σ ‖δ∗1‖

√
n log2 n, w.h.p.

Consider E2 =
∑

i eixix
>
i · x̄>

i δ̄
∗
1 . We condition on the

event F :=
{
∀i :

∣
∣x̄>
i δ̄

∗
1

∣
∣ . ‖δ∗1‖

√
log n

}
, which occurs with

high probability and is independent of ei and xi. We shall

apply the matrix Bernstein inequality [28]; to this end, we

compute:
∥
∥eixix

>
i · x̄>

i δ̄
∗
1

∥
∥ . σp ‖δ∗1‖ log2 n, a.s.

by boundedness, and
∥
∥
∥
∥
∥

∑

i

Ee2i
(
xix

>
i

)2 ·
(
x̄>
i δ̄

∗
1

)2

∥
∥
∥
∥
∥

≤nσ2 max
i

∣
∣x̄>
i δ̄

∗
1

∣
∣
2
∥
∥
∥E
(
xix

>
i

)2
∥
∥
∥

≤npσ2 ‖δ∗1‖2 log n.

Applying the Matrix Bernstein inequality then gives

‖E2‖ . σ ‖δ∗1‖ (p+
√
np) log2 n ≤ σ ‖δ∗1‖

√
np log3 n,

w.h.p., where we use n & p in the last inequality.

Consider E12 =
∑

i eix̄ix
>
i · x̄>

i δ̄
∗
1 . We again condition on

the event F and use the matrix Bernstein inequality. Observe

that
∥
∥eix̄ix

>
i · x̄>

i δ̄
∗
1

∥
∥ . σ

√
p ‖δ∗1‖ log2 n, a.s.

by boundedness. Moreover, we have
∥
∥
∥
∥
∥

∑

i

Ee2i
(
x̄>
i δ̄b

)2 (
xix̄

>
i

) (
x̄ix

>
i

)

∥
∥
∥
∥
∥

≤ nσ2 max
i

∣
∣x̄>
i δ̄

∗
1

∣
∣
2 ‖x̄i‖2

∥
∥Exix

>
i

∥
∥

. nσ2 ‖δ∗1‖2 log2 n
and

∥
∥
∥
∥
∥

∑

i

Ee2i
(
x̄>
i δ̄b

)2 (
x̄ix

>
i

) (
xix̄

>
i

)

∥
∥
∥
∥
∥

≤ nσ2 max
i

∣
∣x̄>
i δ̄

∗
1

∣
∣
2 ∥
∥x̄ix̄

>
i

∥
∥E
[
x>
i xi

]

. npσ2 ‖δ∗1‖2 log2 n.
Applying the Matrix Bernstein inequality then gives

‖E12‖ . σ ‖δ∗1‖
√
np log3 n.

Combining these bounds on ‖Ei‖, i = 1, 2, 3, we conclude

that (59) holds w.h.p., which completes the proves of the

lemma.

G. Proof of Lemma 12

Define the sphere

Tr(b) :=
{
Z ∈ Rp×p : rank(Z) ≤ r, ‖Z‖F = b

}
.

Let Mr(ε/2, 1) be the smallest ε/2-net of T ′
r (1). We know

|Mr(ε/2, 1)| ≤
(
20
ε

)6pr
by [8]. For any 0 ≤ b ≤ 1, we

know Mr(ε/2, b) := {bZ : Z ∈M(ε/2, 1)} is an ε/2-net

of T ′
r (b), with |Mr(ε/2, b)| = |Mr(ε/2, 1)| ≤

(
20
ε

)6pr
.

Let k := b2/εc ≤ 2/ε. Consider the set M̄r(ε) = {0} ∪
⋃k
i=1Mr(ε/2, iε/2). We claim that M̄r(ε) is an ε-net of

the ball T̄r := {Z ∈ Rp×p : rank(Z) ≤ r, ‖Z‖F ≤ 1}, with

the additional property that every Z’s nearest neighbor Z̃ in

M̄r(ε) satisfies

∥
∥
∥Z̃

∥
∥
∥
F
≤ ‖Z‖F . To see this, note that for

any Z ∈ T̄ (r), there must be some 0 ≤ i ≤ k such that

iε/2 ≤ ‖Z‖F ≤ (i + 1)ε/2. DefineZ ′ := iεZ/(2 ‖Z‖F ),
which is in Tr(iε/2). We choose Z̃ to be the point in

Mr(ε/2, iε/2) that is closest to Z ′. We have
∥
∥
∥Z̃ −Z

∥
∥
∥
F
≤
∥
∥
∥Z̃ −Z ′

∥
∥
∥
F
+ ‖Z ′ −Z‖F

≤ε/2 + (‖Z‖F − iε/2) ≤ ε,

and

∥
∥
∥Z̃

∥
∥
∥
F

= iε/2 ≤ ‖Z‖F . The cardinality of M̄r(ε)

satisfies

∣
∣M̄r(ε)

∣
∣ ≤ 1 +

k∑

i=1

|Mr(ε/2, kε/2)|

≤ 1 +
1

ε

(
20

ε

)6pr

≤
(
20

ε

)7pr

.

We know that the smallest ε/2-netM′(ε/2, 1) of the sphere

T ′(1) := {z ∈ Rp : ‖z‖ = 1} satisfies |M′(ε/2, 1)| ≤
(
20
ε

)p
.

It follows from an argument similar to above that there is an

ε-coveringM̄′(ε) of the ball T̄ ′ := {z ∈ Rp : ‖z‖ ≤ 1} with

cardinality
∣
∣M̄′(ε)

∣
∣ ≤

(
20
ε

)2p
and the property that every z’s

nearest neighbor z̃ in M̄′(ε) satisfies ‖z̃‖2 ≤ ‖z‖2.
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Let S̄r be the set
{

(Z, z) ∈ Rp×p × Rp : rank(Z) ≤ r, ‖Z‖2F + ‖z‖22 ≤ 1
}

.

We claim that N̄r(
√
2ε) :=

(
M̄r(ε)× M̄′(ε)

)
∩S̄r is an

√
2ε-

net of S̄r. To see this, for any (Z, z) ∈ S̄r ⊂ T̄ (r)× T̄ ′, we

let Z̃ (z̃, resp.) be the point in M̄r(ε) (M̄′(ε), resp.) closest

to Z (z, resp.) We have
√
∥
∥
∥Z̃ −Z

∥
∥
∥

2

F
+ ‖z̃ − z‖22 ≤

√

ε2 + ε2 =
√
2ε,

and

∥
∥
∥Z̃

∥
∥
∥

2

F
+ ‖z̃‖22 ≤ ‖Z‖

2
F + ‖z‖22 ≤ 1.

Let Nr(
√
2ε) be the projection of the set N̄r(

√
2ε) onto the

sphere Sr. Since projection does not increase distance, we are

guaranteed that Nr(
√
2ε) is an

√
2ε-net of Sr. Moreover,

∣
∣
∣Nr(
√
2ε)
∣
∣
∣

≤
∣
∣
∣N̄r(
√
2ε)
∣
∣
∣ ≤

∣
∣M̄r(ε)

∣
∣×
∣
∣M̄′(ε)

∣
∣ ≤

(
20

ε

)10pr

.

H. Proof of Lemma 13

For simplicity, let’s assume H is symmetric. Later on one

can check our proof works for any general matrix H as well.

Suppose H =
∑

j∈[p] σjuju
>
j , where σj is jth eigenvalue

and uj is the corresponding eigenvector with unit Euclidean

norm. We have

1

n

∑

i∈[n]

〈
xix

>
i ,H

〉2

=
1

n

∑

i∈[n]




∑

j∈[p]

σj 〈xi,uj〉2




2

=
1

n

∑

i∈[n]




∑

j,k∈[p]

σjσk 〈xi,uj〉2 〈xi,uk〉2




≤ 1

n

∑

i∈[n]




∑

j∈[p]

|σj |〈xi,uj〉2 ·
〈

xix
>
i ,
∑

k∈[p]

|σk|uku>
k

〉



≤ 1

n
max
i∈[n]

{

‖xi‖22
}

· ‖H‖F ·
∑

i∈[n]




∑

j∈[p]

|σj |〈xi,uj〉2


 .

(60)

By using standard concentration result, for some constants

c, c′, c′′, ‖n−1
∑

i∈[n] xixi−I‖ ≤ 0.1 with probability at least

1 − c exp(−c′p) under assumption n ≥ c′′p. We thus have

that w.h.p. 1
n

∑

i∈[n]〈xi,uj〉2 ≤ 1.1 for all j ∈ [p]. Using this

result, we continue (60) with

1

n

∑

i∈[n]

〈
xix

>
i ,H

〉2

≤ 1.1max
i∈[n]

{

‖xi‖22
}

· ‖H‖F




∑

j∈[p]

|σj |





= 1.1max
i∈[n]

{

‖xi‖22
}

· ‖H‖F · ‖H‖∗.

For each j ∈ [p], let xij denote the jth coordinate of xi. By

union bound, for some constant c1, c2,

Pr

(

max
i∈[n],j∈[p]

|xij | > t

)

≤ np · exp(1− c2t2).

Choosing t �
√

log(np), we thus have w.h.p.

max
i∈[n]

{

‖xi‖22
}

. p · log(np),

which completes our proof.

I. Proof of Lemma 14

We need a standard result on packing the unit hypercube.

Lemma 17 (Varshamov-Gilbert Bound, [29]). For p ≥ 15,

there exists a set Ω0 = {ξ1, . . . , ξM0
} ⊂ {0, 1}p−1

such that

M ≥ 2(p−1)/8 and ‖ξi − ξj‖0 ≥
p−1
8 , ∀1 ≤ i < j ≤M0.

We claim that for i ∈ [M0], there is at most one ī ∈ [M0]
with ī 6= i such that

‖ξi − (−ξī)‖0 <
p− 1

16
; (61)

otherwise if there are two distinct i1, i2 that satisfy the above

inequality, then they also satisfy

‖ξi1 − ξi2‖0 ≤ ‖ξi1 − (−ξi)‖0 + ‖ξi2 − (−ξi)‖0 <
p− 1

8
,

which contradicts Lemma 17. Consequently, for each i ∈
[M0], we use ī to denote the unique index in [M0] that

satisfies (61) if such an index exists.

We construct a new set Ω ⊆ Ω0 by deleting elements from

Ω0: Sequentially for i = 1, 2, . . . ,M , we delete ξī from Ω0

if ī exists and both ξi and ξī have not been deleted. Note

that at most half of the elements in Ω are deleted in this

procedure. The resulting Ω = {ξ1, ξ2, . . . , ξM} thus satisfies

M ≥ 2(p−1)/16 and

min
{
‖ξi − ξj‖0 , ‖ξi + ξj‖0

}
≥ p− 1

16
, ∀1 ≤ i < j ≤M.

J. Proof of Lemma 15

By rescaling, it suffices to prove the lemma for σ = 1.

Let ψ(x) := 1√
2π

exp
(

−x2

2

)

be the density function of the

standard Normal distribution. The density function of Qu is

fu(x) =
1

2
ψ(x− u) + 1

2
ψ(x+ u),
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and the density of Qv is given similarly. We compute

D (Qu‖Qv)

=

∫ ∞

−∞
fu(x) log

fu(x)

fv(x)
dx

=
1

2

∫ ∞

−∞
[ψ (x− u) + ψ (x− u)]

× log




exp

(

− (x−u)2
2

)

+ exp
(

− (x+u)2

2

)

exp
(

− (x−v)2
2

)

+ exp
(

− (x+v)2

2

)



 dx

=
1

2

∫ ∞

−∞
[ψ (x− u) + ψ (x− u)]

× log




exp

(

xu− u2

2

)

+ exp
(

−xu− u2

2

)

exp
(
xv − v2

2

)
+ exp

(
−xv − v2

2

)



 dx

=
1

2

∫ ∞

−∞
[ψ (x− u) + ψ (x− u)]

× log

[

exp

(

−u
2 − v2
2

)
exp (xu) + exp (−xu)
exp (xv) + exp (−xv)

]

dx

=
1

2

∫ ∞

−∞
[ψ (x− u) + ψ (x− u)]

×
[

−u
2 − v2
2

+ log
cosh (xu)

cosh (xv)

]

dx

= −u
2 − v2
2

+
1

2

∫ ∞

−∞
[ψ (x− u) + ψ (x− u)] log cosh (xu)

cosh (xv)
dx.

(62)

By Taylor’s Theorem, the expansion of log cosh(y) at the point

a satisfies

log cosh(y)

= log cosh(a) + (y − a) tanh(a) + 1

2
(y − a)2 sech2(u)

− 1

3
(y − a)3 tanh(ξ) sech2(ξ)

for some number ξ between a and y. Let w := u+v
2 . We

expand log cosh(xu) and log cosh(xv) separately using the

above equation, which gives that for some ξ1 between u and

w, and some ξ2 between v and w,

log cosh (xu)− log cosh (xv)

=x(u−v) tanh (xw) + x2[(u−w) 2−(v−w)2]
2

sech2 (xw)

− x3 (u− w)3
3

tanh(xξ1) sech
2(xξ1)

+
x3 (v − w)3

3
tanh(xξ2) sech

2(xξ2)

=x(u− v) tanh
(
x(u+ v)

2

)

+
−x3
3

(
u− v
2

)3

×
[
tanh(xξ1) sech

2(xξ1) + tanh(xξ2) sech
2(xξ2)

]
, (63)

where the last equality follows from u− w = w − v = u−v
2 .

We bound the RHS of (63) by distinguishing two cases.

Case 1: u ≥ v ≥ 0.: Because tanh(xξ1) and tanh(xξ2)
have the same sign as x3, the second term in (63) is negative.

Moreover, we have x tanh
(
x(u+v)

2

)

≤ x· x(u+v)2 since u+v
2 ≥

0. It follows that

log cosh (xu)− log cosh (xv) ≤x
2(u− v)(u+ v)

2
,

Substituting back to (62), we obtain

D (Qu‖Qv)

≤ −u
2−v2
2

+
1

2

∫ ∞

−∞
[ψ(x−u)+ψ(x+u)] · x

2(u2−v2)
2

dx

= −u
2 − v2
2

+
u2 − v2

2
(u2 + 1) =

u2 − v2
2

u2.

Case 2: v ≥ u ≥ 0.: Let h(y) := tanh(y) − y + y3

3 .
Taking the first order Taylor’s expansion at the origin, we

know that for any y ≥ 0 and some 0 ≤ ξ ≤ y, h(y) =
−2
(
tanh(ξ) sech2(ξ)− ξ

)
y2 ≥ 0 since tanh(ξ) sech2(ξ) ≤

ξ · 12 for all ξ ≥ 0. This means tanh(y) ≥ y − y3

3 , ∀y ≥ 0.

Since u− v ≤ 0 and tanh(·) is an odd function, we have

x(u− v) tanh (x(u+ v))

≤ x(u− v)
[

x(u+ v)− 1

3
(xx(u+ v))

3

]

.

On the other hand, we have

x
[
tanh(xξ1) sech

2(xξ1) + tanh(xξ2) sech
2(xξ2)

]

(a)

≤ x(xξ1 + xξ2)
(b)

≤ x · 2vx,
where (a) follows from sech2(y) ≤ 1 and 0 ≤ y tanh(y) ≤ y2
for all y, and (b) follows from ξ1, ξ2 ≤ v since v ≥ w ≥ u ≥
0. Combining the last two displayed equations with (63), we

obtain

log cosh (xu)− log cosh (xv)

≤x(u−v)
[

x(u+v)

2
− 1

3

(
x(u+v)

2

)3
]

+
x3

3

(
v−u
2

)3

(2vx).

When u ≤ v, we get

D (Qu‖Qv)

≤− u2 − v2
2

+
1

2

∫ ∞

−∞
[ψ(x−u) + ψ(x+v)]

×
[

u2−v2
2

x2+
v−u
3

(
u+v

2

)3

x4+
2v

3

(
v−u
2

)3

x4

]

dx

=− u2−v2
2

+
u2−v2

2
(u2+1)+

[

(v−u)(u+v)3
48

+
v (v−u)3

24

]

×
∫ ∞

−∞
[ψ(x−u) + ψ(x+u)]x4dx

=
u2−v2

2
u2+

[

(v−u)(u+v)3
24

+
2v (v−u)3

24

]

(
u4+6u2+3

)

≤u
2 − v2
2

u2 + (v − u)
[

(2v)3

24
+

2v (v)
2

24

]

(
u4 + 6u2 + 3

)

≤u
2 − v2
2

u2 + (v − u)v
3

2

(
u4 + 6u2 + 3

)
.
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Combining the two cases, we conclude that

D (Qu‖Qv) ≤
u2 − v2

2
u2+

v3 max {0, v − u}
2

(u4+6u2+3).

K. Proof of Lemma 16

We recall that for any standard Gaussian variable z ∼
N (0, 1), there exists a universal constant c̄ such that

E

[

|z|k
]

≤ c̄ for all k ≤ 16. Now observe that µ :=

x>α ∼ N (0, ‖α‖2) and ν := x>β ∼ N (0, ‖β‖2). Because

x>α/ ‖α‖ ∼ N (0, 1) and x>β/ ‖β‖ ∼ N (0, 1), it follows

from the Cauchy-Schwarz inequality,

E

[∣
∣x>α

∣
∣
k ∣
∣x>β

∣
∣
l
]

≤‖α‖k ‖β‖l
√

E

∣
∣
∣
∣

x>α
‖α‖

∣
∣
∣
∣

2k

EX

∣
∣
∣
∣

x>β
‖β‖

∣
∣
∣
∣

2l

≤c̄ ‖α‖k ‖β‖l .

This proves the first inequality in the lemma.

For the second inequality in the lemma, note that

E

[(∣
∣x>α

∣
∣
2 −

∣
∣x>β

∣
∣
2
) ∣
∣x>α

∣
∣
2
]

= E
∣
∣x>α

∣
∣
4 − E

∣
∣x>α

∣
∣
2 ∣
∣x>β

∣
∣
2

= 3 ‖α‖4 − E
∣
∣x>α

∣
∣
2 ∣
∣x>β

∣
∣
2
.

But

E
∣
∣x>α

∣
∣
2 ∣
∣x>β

∣
∣
2

= E (α1x1 + · · ·+ αpxp)
2
(x1β1 + · · ·+ xpβp)

2

= E

p
∑

i=1

x4iα
2
iβ

2
i + E

∑

i 6=j
x2ix

2
jα

2
i β

2
j + 2E

∑

i 6=j
x2ix

2
jαiαjβiβj

= 3

p
∑

i=1

α2
i β

2
i +

∑

i 6=j
α2
iβ

2
j + 2

∑

i 6=j
αiαjβiβj

= 2

p
∑

i=1

α2
i β

2
i +

∑

i,j

α2
iβ

2
j + 2

∑

i 6=j
αiαjβiβj

= ‖α‖2 ‖β‖2 + 2
∑

i,j

αiαjβiβj

= ‖α‖2 ‖β‖2 + 2 〈α,β〉2 . (64)

It follows that

E

[(∣
∣x>α

∣
∣
2 −

∣
∣x>β

∣
∣
2
) ∣
∣x>α

∣
∣
2
]

=3 ‖α‖4 − ‖α‖2 ‖β‖2 − 2 〈α,β〉2

=2 ‖α‖4 − 2 〈α,β〉2

≤2 ‖α‖4 + 2
(

‖α‖2 − 〈α,β〉
)2

− 2 〈α,β〉2

=4 ‖α‖4 − 4 ‖α‖2 〈α,β〉
=2 ‖α‖2

(

‖α‖2 − 2 〈α,β〉+ ‖β‖2
)

≤2 ‖α‖2 ‖α− β‖2 .

For the third inequality in the lemma, we use the equal-

ity (64) to obtain

E

(∣
∣x>α

∣
∣
2 −

∣
∣x>β

∣
∣
2
)2

=E
∣
∣x>α

∣
∣
4 − 2E

∣
∣x>α

∣
∣
2 ∣
∣x>β

∣
∣
2
+ E

∣
∣x>β

∣
∣
4

=6 ‖α‖4 − 2 ‖α‖2 ‖β‖2 − 4 〈α,β〉2 = 4 ‖α‖4 − 4 〈α,β〉2

≤4 ‖α‖4 − 4 〈α,β〉2 + 2
(

‖α‖2 − 2 〈α,β〉
)2

=5 ‖α‖4 + 4 〈α,β〉2 − 8 ‖α‖2 〈α,β〉
≤4
[

‖α‖4 + 〈α,β〉2 − 2 ‖α‖2 〈α,β〉
]

=
(

2 ‖α‖2 − 2 〈α,β〉
)2

=
(

‖α‖2 − 2 〈α,β〉+ ‖β‖2
)2

= ‖α− β‖4 .
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