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Abstract

Crime forecasts are sensitive to the spatial discretizations on which
they are defined. Furthermore, while the Predictive Accuracy Index
(PAI) is a common evaluation metric for crime forecasts, most crime
forecasting methods are optimized using maximum likelihood or other
smooth optimization techniques. Here we present a novel methodol-
ogy that jointly i) selects an optimal grid size and orientation and ii)
learns a scoring function with the aim of directly maximizing PAI. Our
method was one of the top performing submissions in the 2017 NIJ
Crime Forecasting challenge, winning 9 of the 20 PAI categories under
the name of team PASDA. We illustrate the model on data provided
through the competition from the Portland Police Department.

1 Introduction

A number of statistical models have been proposed for “predicting” or “fore-
casting” the locations of crime hotspots including multivariate regression
based models [19, 13, 11, 5], kernel density estimation [2, 4, 9, 8, 6] and
spatio-temporal point processes [17, 15, 16]. In a typical crime forecast, ge-
ographical space is divided into sub-regions that are scored and/or ranked

1



over a forecasting time window. Forecasting models estimate a probability
or crime rate within a given spatial region using predictors derived from
past crime history (times and locations) or other spatial data defined in the
spatial sub-regions requiring a forecast (e.g. census variables, locations of
liquor stores and other crime attractors, parolee information). The implica-
tions for policing are both short-term, where spatial regions are ranked by a
forecast and patrols and other interventions can be directed to the highest
ranked spatial regions, and long-term, where the estimated crime rate may
help inform resourcing decisions and the design of patrol beats.

The National Institute of Justice (NIJ) hosted a “Real-time crime fore-
casting challenge” in 2017 aimed at spurring further interest and research
in this domain. The Portland Police Department provided crime data from
March 2012 up to end of February 2017 and participants where asked to
forecast crime hotspots for four types of incidents (burglary, motor vehicle
theft, street crime, and all calls for service) over the months of March, April
and May of 2017. In particular, participants were asked to define a grid sub-
ject to area and geometrical constraints and to rank grid cells for each crime
type over several forecasting windows. Unlike forecasting research focusing
on retrospective analysis, this competition was a true prospective forecast-
ing test given that the validation data was not yet generated at the time of
submission. Forecasts were made for 1-week, 2-week, 1-month, 2-month and
3-month time windows and scored on the basis of the PAI accuracy metric
(which we define below).

In this article we provide an overview of the competition and present our
method that won 9 out of 20 PAI categories in the large business division of
the competition (and was the top performing solution in terms of PAI across
all three competition divisions). The method jointly i) selects an optimal
rectangular grid cell size and orientation and ii) learns a scoring function
with the aim of directly maximizing PAI. The outline of the paper is as
follows. In Section 2, we provide details on the contest including the data
used, the submission guidelines and the evaluation metrics. In Section 3,
we present our Rotational Grid PAI-Maximizing (RGPM) methodology and
also outline the feature engineering and models we used within the RGPM
framework. In Section 4, we analyze the results of the competition and the
accuracy of the RGPM model and in Section 5, we include a discussion of
the competition and some directions for future research.
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Figure 1: Weekly crime counts during the study period. The predictions
were evaluated during March 1, 2017 - May 31, 2017 (highlighted in blue).

2 Data and Contest Details

The NIJ contest was based on forecasting the spatial locations for crime re-
lated call for service in Portland, OR. Specifically, the contestants were given
event data comprising projected geographic coordinates, date, and category
(burglary, street crime, theft of auto, other) for the period of March 1, 2012
through February 28, 2017. The weekly event counts during the training and
evaluation periods are given in Figure 1.

Separate forecasts were made for 4 event types: burglary (Burg), street
crime (Street), theft of auto (MVT), and all calls for service (ACFS) and 5
forecast horizons: 1 week (March 1-7), 2 weeks (March 1-14), 1 month (March
1-31), 2 months (March 1-April 30), and 3 months (March 1-May 31). The
submitted forecast was specified to be a set of regular grid cells that covered
all of the study region with some of the cells flagged as a “hotspot”.
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The grid cells were required to be a regular tessellation of the Portland,
OR administrative region in which all grid cells must have the same size,
shape, and orientation. Rectangles, triangles, and hexagons were the per-
mitted grid shapes. Furthermore, the grid cells were required to have an
area between 62,500 ft2 and 360,000 ft2 with the smallest dimension being
at least 125 ft. The cells flagged as hotspots were required to have aggregate
area between 0.25 mi2 - 0.75 mi2, but there was no requirement that the
hotspot cells be connected.

Forecast evaluation was based on1 the Prediction Accuracy Index (PAI)
[4]. Given a set of k predicted hotspot cells, the PAI is determined by com-
puting the ratio of the proportion of crime captured in the hotspots relative
to the porportion area of the city flagged as hotspots. Specifically, defining
H to be the union of the hotspot cells (which does not need to be connected)
and S the spatial region of interest (e.g. Portland, OR), the PAI is defined
as

PAI(H) =
N(H)

|H|

|S|

N(S)

where N(H) is the number of events in H over the forecasting window and
|H| is the size of the hotspot region H ⊂ S. Letting λ(H) = N(H)/|H| be
the estimated intensity of events in region H and λ̄ = N(S)/|S| be the total
intensity of events in the region of interest, the PAI becomes

PAI(H) =
λ(H)

λ̄
∝ λ(H)

which is only a function of λ(H) because λ̄ is not dependent on the hotspot
region. Thus, PAI can also be interpreted as the average rate of crime in the
hotspots relative to the average crime rate in the city.

On February 28, 2017 the forecasts (i.e., grid cells with hotpot indicator)
for each crime type and forecast period (20 total) were submitted to NIJ.

3 Methodology

The RGPM methodology is designed for jointly learning an optimal grid
and scoring function for the purpose of maximizing PAI in crime forecasts.

1The Prediction Efficiency Index (PEI) [7] was also used to evaluate forecasts, but we
did not attempt to compete in that category. We include some remarks on PEI in the
discussion in Section 5.

4



In particular, we assume a grid of equally sized rectangles and fix the grid
cell size to be the minimum allowed in the competition, Amin. We then
parametrize the grid with three parameters: cell height h, a grid translation
parameter γ and a rotation angle θ. The overall procedure is captured in
Algorithm 1.

Algorithm 1 Optimal rotational grid PAI maximizing methodology

1: procedure PAI(h,θ,γ,~xi,ti,ω,Amin)
a. Set up grid with cell height h, cell area Amin, grid angle θ, and offset
γ.
b. Calculate event based features on grid using crime locations ~xi and
times ti.
c. Fit a supervised model M, using tuning parameters ω, on event
features defined on the training set.
d. Predict M on test data features and output PAI.

return PAI
2: procedure OptimizeGrid(~xi,ti,ω,Amin)

Run simplex method to maximize PAI(h, θ, γ, ~xi, ti, ω, Amin) over h, θ,
and γ.

return h, θ, and γ.

In the outer loop of the algorithm, procedure 2, a simplex method is
used to optimize the RGPM with respect to the grid parameters, given that
PAI is a non-differentiable function. In the inner loop of the algorithm,
procedure 1, PAI is calculated on a test data set given a grid parameter set,
supervised learning model M and a set of features computed on the grid. In
the competition, we used two different supervised learning algorithms for M
that are outlined below.

3.1 RGPM: random forest

The first model we consider utilizes a regression framework and a random
forest to map features to a target variable and we refer to this model as
RGPM-RF. In particular, given a spatial discretization of the city, a number
of features are defined within each spatial grid cell along with a target variable
that the model attempts to predict. In the competition we used the following
event count based features defined in each cell:

5



1. Number of target crime incidents 0 to 2 months before the forecasting
window

2. Number of target crime incidents 3 to 5 months before the forecasting
window

3. Number of target crime incidents 6 to 14 months before the forecasting
window

4. Number of target crime incidents more than 14 months before the fore-
casting window

5. Number of target crime incidents before the forecasting window in
March through May

6. Features 1 through 5 defined for each of the other three event categories
(leading indicators)

The target variable was then the logarithm of the number of crimes of the
target event type in a given cell over the forecasting time window and the
distribution was assumed to be Gaussian.

Given the features and response variables defined on a fixed grid using
historical data, we then estimated a random forest model [3] to map the
features to the response. Random forests are a type of ensemble learning
algorithm where many individual decision trees are estimated on bootstrap
samples of the training data. While each decision tree over-fits a particular
sample, when averaged together they comprise a random forest with good
variance reduction properties.

3.2 RGPM: sparse logistic regression with point pro-

cess features

The second model for M we consider is a sparse logistic regression, RPGM-
GLM, where the features are determined by marked point process kernels.
Let (ti, ~xi,mi) denote an event i in the history leading up to a forecasting
window where ti is the event time, ~xi is the 2-dimensional event spatial loca-
tion, and mi is the crime type of event i. Given a specific grid configuration
C, we can find the grid cell containing each event, which we denote with ci.

Instead of modeling the event rate in each cell, we model the probability
that the event rate (or equivalently the number of events) exceeds a threshold.
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The threshold is set so that if the event count in the cell reaches the threshold
then the cell would be part of the optimal hotspot region. Using the historical
event data, we found the threshold, φ(τ,m), that a grid cell would need to be
part of the optimal hotspot region (subject to the minimum size constraints)
for a forecast period of length τ and crime type m.

Let pj(τ,m) = P (nj(τ,m) ≥ φ(τ,m)) be the probability that the number
of events, nj, in grid cell j exceeds the hotspot threshold. A multivari-
ate/marked Hawkes process [15] or exciting point process is used to model
the probability that a grid cell will be included in the hotspot.

For a given τ and m, we model the logit of the probability that cell j is
in the hotspot using the features from a marked Hawkes process [15]:

logit(pj(τ,m)) = α +
∑

i:ci=j

hm,mi
(t− ti; ~β, ~θ)

= α +
∑

i:ci=j

K∑

k=1

βk(mi,m)g(t− ti; θk) (1)

= α +
∑

l

∑

k

βk(l,m)Zjl(θk)

where t is the start of the forecast period. The decay function hm,mi
(u) =∑K

k=1
βk(mi,m)g(u; θk) is a mixture of K geometric pmfs (i.e., g(u; θ) =

θ(1 − θ)u−1), We used the pre-specified values ~θ = .001, .005, .01, .02, .1 to
provide a range of decay effects. The last line of (1) shows that this is in
the form of a GLM model (logistic regression) where Zjl(θk) =

∑
i 1(ci =

j,mi = l) g(t− ti; θk) are the covariates formed from geometric point process

kernels evaluated at historical event times. The model parameters ~β are
estimated using an elastic net penalty [20] with α = 0.8, a mix between ridge
and lasso penalties which can provide a sparse solution. The correct penalty
strength was determined from 10-fold cross-validation. The resulting fitted
decay functions, ĥm,l(·), are shown in Figure 2.

4 Results

To construct the 2017 forecasts, we first trained the RGPM-RF and RGPM-
GLM models on data up to the spring of 2016 and then evaluated the models
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Figure 2: The decay functions hm,l(·) for predicting crime type m using the
past events of type l.
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with the spring 2016 data to perform model comparison and select the best
model and grid for each category. We then used the date up to February
28, 2017 to build the forecast models and generate the hotspot estimates.
Table 1 displays the performance of the models, for the 20 PAI categories,
during the contest period. The table also shows the difference in PAI scores
between the two models and which model was submitted to NIJ. The random
forest (RF) tended to do better for the long-range forecasts (2MO and 3MO),
whereas the sparse GLM scored better for the short term forecasts. However,
while both models produced similar PAI scores, they did so using different
grid configurations.

In Table 2 we show the feature importances of the RGPM-RF for each
target event category. For high volume incident types (street crime and all),
we note that leading indicators play less of a role and the 5 best features
are the count features for that particular event category. However, for lower
volume incident types leading indicators are more important as they serve
to reduce variance. The features created from the Other crime type were
useful in predicting burglary and motor vehicle theft, for example. In Table
3 we show the feature importances of the RGPM-GLM. There are some
similarities, for example the most recent data (e.g., large values of θ) are
not always the most important and the Other and ACFS leading indicators
are useful for forecasting the lower volume crime types. Here we see some
differences, for example burglary is a stronger predictor of burglary than in
the random forest.

In Table 4 we compare the relative PAI values when using fixed vs. rota-
tional grids. For this purpose we use the RGPM-RF, though we note similar
improvements are observed for the RGPM-GLM. The PAI values increase by
2-6 when employing a rotating grid. In Figure 3 we provide an example of
the final street crime grid used in the competition, which uses rectangular
cells aligned with the NE-SW direction.

Finally, in Table 5 we include overall competition results illustrating the
accuracy of the RGPM approach. In the table we list the number of overall
(across the three divisions) 1st, 2nd and 3rd place PAI finishes for teams
having placed at least once. We note that the RGPM tied for the most 1st
and 2nd place finishes and had the most 3rd place finishes across the crime
type categories and forecasting windows. We also include in Table 5 the total
number of finishes (3rd place and higher) within our division (large business)
and overall, in both cases the RGPM method had the most finishes.
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Table 1: RGPM-RF vs RGPM-GLM model performance during the compe-
tition period. n is the number of events in the hotspot, N is the total number
of events during the time frame, δPAI is the difference in PAI between the
two models, and an asterisk next to the model indicates the model which
was submitted to the competition.

Crime Time n N PAI Model δPAI

Burg 1WK 1 20 29.5 RF 0.1
Burg 2WK 2 41 28.7 GLM 14.3
Burg 1MO 4 93 25.3 *GLM 6.3
Burg 2MO 6 175 20.2 RF 3.4
Burg 3MO 8 268 17.6 RF 0.1

MVT 1WK 3 71 24.9 *GLM 0.1
MVT 2WK 12 135 52.2 *RF 4.1
MVT 1MO 21 273 45.4 *GLM 0.2
MVT 2MO 41 543 44.5 *GLM 5.6
MVT 3MO 55 805 40.3 GLM 3.1

Street 1WK 99 629 92.8 GLM 1.1
Street 2WK 185 1205 90.6 GLM 1.7
Street 1MO 405 2680 89.1 GLM 1.3
Street 2MO 771 5352 84.8 *RF 1.2
Street 3MO 1253 8480 87.0 *RF 2.9

ACFS 1WK 392 3876 59.5 GLM 1.6
ACFS 2WK 814 8021 59.7 GLM 0.1
ACFS 1MO 1805 17873 59.4 GLM 0.2
ACFS 2MO 3556 35770 58.5 *RF 0.9
ACFS 3MO 5570 55744 58.8 *RF 1.9
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Table 2: Feature importances for the RGPM-RF for each of the four target
crime types (top 5 in bold)

Feature Street Burg MVT ACFS

count1 other 1195.1 34.8 80.6 59621.0

count2 other 1839.3 40.1 94.0 80035.2

count3 other 2177.2 50.9 126.9 97239.9

count4 other 2259.8 60.1 149.6 87000.8

count5 other 1836.7 47.4 121.0 76231.5

count1 street 2586.2 16.4 37.7 15026.5
count2 street 2833.1 20.5 49.6 16556.2
count3 street 5167.8 32.9 78.1 30617.3
count4 street 4379.3 44.4 101.8 27493.2
count5 street 3191.6 28.5 66.9 18651.6
count1 mvt 81.8 2.2 47.7 677.2
count2 mvt 91.6 5.6 96.0 1008.9
count3 mvt 174.7 9.0 99.2 5234.8
count4 mvt 277.9 12.4 185.5 5152.1
count5 mvt 144.3 5.2 157.7 2381.2
count1 burglary 33.7 2.7 2.4 279.7
count2 burglary 119.1 4.8 4.6 587.9
count3 burglary 127.6 9.7 13.2 1007.2
count4 burglary 214.9 10.7 18.6 1777.3
count5 burglary 85.7 4.5 9.9 778.5
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Table 3: Feature importances for the RGPM-GLM for each of the four tar-
get crime types. The importance score is the estimated coefficient using
standardized covariates.

Feature (crimetype θ) Street Burg MVT ACFS

ACFS 0.1 - - - -
ACFS 0.02 0.07 0.11 - 0.19
ACFS 0.01 - 0.06 0.08 0.12
ACFS 0.005 - - 0.11 0.21
ACFS 0.001 - - - 0.20

other 0.1 0.15 - - 0.17
other 0.02 - - - 0.03
other 0.01 - - - -
other 0.005 - - - 0.04
other 0.001 - - - 0.02

street 0.1 - - - -
street 0.02 0.31 0.02 - -
street 0.01 - - - -
street 0.005 - - - -
street 0.001 0.38 - - 0.02

mvt 0.1 - - 0.01 -
mvt 0.02 0.02 - - -
mvt 0.01 0.03 - - -
mvt 0.005 0.01 - - -
mvt 0.001 0.01 0.06 0.27 0.03

burglary 0.1 - - - -
burglary 0.02 - - - -
burglary 0.01 - - - -
burglary 0.005 0.07 - - 0.03
burglary 0.001 - 0.11 0.04 0.06
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Table 4: PAI values for RGPM-RF vs fixed grid random forest

Method Street Burglary MVT All

RGRF 84.99 18.12 34.90 61.26
RF 78.75 13.59 32.57 59.12

Table 5: Aggregate number of 1st, 2nd and 3rd place PAI finishes across
divisions along with total number of overall 3rd and higher finishes (A) and
number of 3rd and higher finishes within division (B).

Name 1st 2nd 3rd A B

PASDA 4 5 4 13 20
TAMERZONE 4 5 2 11 15
GRIER 1 4 0 5 8
JeremyHeffner 2 0 3 5 9
ANDY NIJ 1 2 1 4 9
KUBQR1 0 1 3 4 7
pennaiken 2 0 2 4 10
Codilime 3 0 0 3 7
MURRAYMIRON 0 1 2 3 6
MARUANALSHEDIVAT 0 1 1 2 7
BATESANALYTICS 1 0 0 1 1
DYLANFITZPATRICK 0 0 1 1 1
GRANTHAM 0 0 1 1 7
Intuidex 0 1 0 1 3
TEAM Kernel Glitches 1 0 0 1 2
WARREN 1 0 0 1 20
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Figure 3: Optimal street crime grid with street crime events plotted for the 2017
forecasting window.

5 Conclusion

We provided a summary of the 2017 NIJ Real-time crime forecasting chal-
lenge and our top performing approach. Several take aways include i) the
spatial units and grid on which predictions are defined are a key component
to maximizing PAI ii) directly maximizing PAI can also improve accuracy,
especially for large volume incident types. These observations are in line with
several recent studies [18, 14] that move beyond the use of arbitrary grids in
crime forecasting and prediction. While our focus was on optimizing PAI,
PEI was another metric used in the competition. PEI is the ratio of PAI to
the maximum possible PAI a model could have achieved in the competition.
There appears to be some trade-off between the two metrics, as the other
top performing team, Kernel Glitches, in the large business category won a
number of the PEI categories. We believe a method like the one outlined
here can be tuned to optimize a particular metric of interest, including PEI.
In practice, given a fixed number of hotspots and police resources, PAI and
PEI are equivalent as they only diverge if the size of hotspot region can vary.
Thus the trade-off is not often of practical consequence. However, other ac-
curacy metrics (for example precision, the percentage of hotspots having a
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crime each day) may be useful to consider, as false positives can have the
effect of decreasing officer buy-in to predictive policing.

While the methodology introduced here improved accuracy of crime fore-
casts, greater improvements in the future may be possible with the greater
prevalence of sensor data provided by the internet of things in smart and con-
nected cities. For example, images and video of city locations may provide
features related to “broken windows” crime patterns [10] and some recent
work has shown that such imagery may help estimate crime rates [12]. Pedes-
trian and vehicle count data provides real time information on the density
of targets for various types of violent and property crime and other recent
research has shown that this type of data can also improve predictive models
of crime [1]. The methods we have introduced in this paper may be used
in combination with new sensor streams to improve crime forecasts in the
future.
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