
Memory Equalizer for Lateral Management of
Heterogeneous Memory

Chencheng Ye
Service Computing Technology and
System Lab, School of Computer

Science and Technology, Huazhong
University of Science and Technology

Wuhan, Hubei, China
yechencheng@gmail.com

Chen Ding
Computer Science Department

University of Rochester
Rochester, New York, USA
cding@cs.rochester.edu

Hai Jin
Service Computing Technology and
System Lab, School of Computer

Science and Technology, Huazhong
University of Science and Technology

Wuhan, Hubei, China
hjin@hust.edu.cn

Abstract
Modern computers increasingly use more types of memory
such as phase-change memory and high-bandwidth memory.
Consequently, it is more complex and difficult to manage
memory effectively.

This paper presents a vision of memory management and
its key component called fraction cache, which is a type of
two-level exclusive cache. The fraction cache is flexible and
encompasses a broad solution space. More importantly, its
parameters can be automatically optimized. As a demonstra-
tion, the fraction cache is used to minimize the DRAM need
to sometimes less than 1% of the program data size.

ACM Reference format:
Chencheng Ye, Chen Ding, and Hai Jin. 2017. Memory Equalizer
for Lateral Management of Heterogeneous Memory. In Proceedings
of ACM Conference, Washington, DC, USA, July 2017 (Conference’17),
10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
As Peter Denning explained in his 1980 survey paper, the
problem of memory management dates back to the design
of the Multics computer, where Jerome H. Saltzer saw it as
“an adaptive control that would allocate memory ... in order
to maximize performance. The resulting system could have
a knob by which the operator could occasionally tune it.”
Denning called it “Saltzer’s Problem”. His drawing of the
“knob” is shown in Figure 1 [8].1

The solution to Saltzer’s Problem is well known andwidely
used. It is the virtual memory support in every general-
purpose operating system. In the classic design, virtual mem-
ory has two memory types: the fast main memory and the
disk. It is concerned with mainly two memory properties:
speed and capacity.

Today, there are additional memory types, not just DRAM
but also high-bandwidth memory (HBM) and phase-change

1Permission for re-publication was granted by the Association for Comput-
ing Machinery.

memory (PCM); and there are equally important considera-
tions beyond speed and capacity: energy, power, endurance
and persistence.

Conventionally, virtual memory is hierarchical. Each run-
ning application is allocated a portion of the main memory.
“Turning the knob” means judicious allocation based on the
application’s dynamic memory demand, i.e., its locality [11].
Memory management has one primary objective — to maxi-
mize the throughput with limited fast memory.

Today’s memory is heterogeneous, and its structure flat. A
processor has direct access to different types of memory, not
just DRAM but also HBM and PCM. Memory management
has multiple objectives, not just throughput, but also energy
efficiency and system lifetime.
DENNING: WORKING SETS PAST AND PRESENT

Fig. 1. Abstract mathematical representation of Saltzer's Problem.

[64]. Belady's famous study of programs on the M44/44X
computer showed no clear "winner" among the leading con-

tenders for page replacement policies [13]. Saltzer knew from
preliminary studies of Multics that performance could collapse
on attempted overcommitment of the main memory; he used
the term "thrashing" to describe this unexpected behavior.
Before they would risk building it, the designers of Multics
thus wanted hard evidence that my proposal would be a

"winner" and would not thrash.
But there was scant hope that I could collect enough data

and develop enough theory in time to influence Multics. Re-
cording and analyzing program address traces was tedious and
expensive: the "stack algorithms" [88] for simplifying the
data reductions had not yet been discovered. Moreover, it
was important to test programs developed specifically for the
virtual memory's environment: Brawn, Gustavson, Mankin,
and Sayre had found that significant improvements in pro-
gram behavior would result if programmers attempted even

simple schemes to enhance "locality" [18], [19], [105].
Few such programs existed in 1967. Testing programs de-
signed when locality does not matter can lead to unduly
pessimistic conclusions, e.g., the Fine et al. study [64].
However convincing my arguments might have been, there

were many who believed that usage bits were all the hardware
support for memory management that could be afforded. My
proposal was, for the time, out of the question.
The working set is usually defined as a collection of recently

referenced segments (or pages) of a program's virtual address
space. Because it is specified in the program's virtual time, the
working set provides an intrinsic measurement of the pro-
gram's memory demand-a measurement that is unperturbed
by any other program in the system or by the measurement
procedure itself. Data collected from independent measure-

ments of programs can be recombined within a system model
in order to estimate the overall perfornance of the system
subjected to a given program load. Queuing networks are

widely used for this purpose owing to their ability to esti-
mate throughputs and utilizations well [54]. It was not until
1976 that the collective results of many researchers contained

the data (on program behavior for various memory policies)
and the theory (on combining these data with queuing net-
work models of systems) to allow a convincing argument that
the working set principle is indeed a cost-effective basis for
managing multiprogrammed memory to within a few percent
of optimum throughput-a solution of Saltzer's problem.
Following the next section, which defines the terminology

used throughout the paper, are four main sections. The first
describes the working set as an efficient tool for measuring
the memory demands of programs; the second describes a pro-
gression of program behavior models culminating in the
phase/transition model; the third describes the experimental
evidence demonstrating that a working set policy can operate
a system to within a few percent of optimum; and the fourth
describes an inexpensive implementation of a working set
dispatcher. A concluding section assesses the state of the art.

TERMINOLOGY
Segmentation and Paging
A segment is a named block of contiguous locations in a

(logical) address space. A segment can be small, as a single-
entry-single- exit instruction sequence (detected by a compiler),
medium, as a data file (declared by a programmer), or large, as
an entire address space. Normally, the biggest segments are
several orders of magnitude larger than the smallest; this com-
plicates memory managers that try to store segments contig-
uously. Paging simplifies segment management by allocating
space in blocks all of the same size; a segment can be divided
into equal size "pages," any one of which can be stored in
any "page frame" of main memory. One or more small seg-
ments can be fitted into a single page. A large segment can
be partitioned into a sequence of pages of which the last is
only partly filled; the common scheme of paging a large linear-
address space is an example of this use of segmentation.
Segmentation is an important hardware tool for implement-

ing programming-language features; for example, access con-
trols, scope rules, controlled sharing, encapsulation of subsys-
tems, error confinement, or storage objects whose sizes change.
Paging is an important tool for implementing efficient storage
managers. Some systems try to obtain both sets of advantages
by combining aspects of both; for example, Multics pages each
segment independently with 1024-word pages (see [93]). The
compilers on the Burroughs B6700 enforce a maximum seg-
ment size but treat word 0 of segment i + 1 as the local succes-
sor of the last word of segment i; thus a large file can span
several large fixed-size segments and a smaller one (see [94]).
In the following discussion I shall use the term "segments"

to include the possibility of "pages," except when discussing
matters pertaining specifically to paging.

Memory Policies
A reference string is a sequence of T references, r(l) . . . r(t)

... r(T), in which r(t) is the segment that contains the tth vir-
tual address generated by a given program. Time is measured
in memory references; thus t = 1, 2, 3, * - - measures the pro-
gram's internal "virtual time" or "process time."
A resident set is the subset of all the program's segments

present in the main memory at a given time. If the reference

Il
65

Mill -T I (-

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on January 30, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

Figure 1. (Left) A visual representation created by Denning
in 1980 for the classic memory management problem [8].
(Right) The new problem of managing multiple types of
memory is visualized as an audio equalizer.

We envision a modern memory manager analogous to an
audio equalizer, shown in Figure 1. An equalizer has a row of
sliders which are frequency-specific volume knobs. What the
figure illustrates is that the equalizer problem (EQ) replaces
the single knob of the Saltzer’s Problem (SP) with multiple
sliders.

We call this new type of memory managersmemory equal-
izer. It manages a set of physical memories. As an audio
equalizer is used to adjust the sound effect of instruments
and correct acoustic defects of a room or an auditorium, a
memory equalizer is used to combine multiple types of ac-
tual memories to effect the most desirable overall quality.
The metaphorical sliders may be viewed as representing al-
locations, one in each memory. They may also be viewed

2017-09-11 13:15 page 1 (pp. 1-10)

https://doi.org/10.1145/nnnnnnn.nnnnnnn

as specifications from a user, expressing local constraint for
each memory.
From the outset, virtual memory is the abstraction and

optimized use of actual memories. The goal of a memory
equalizer is to manage more diverse and complex memories.
This shift from SP to EQ is to address two challenges. First,

a memory equalizer performs lateral memory management.
In EQ, an application stores its data laterally in different
types of memories. In comparison, SP manages just one type
of fast memory. In EQ, memory allocation must be tuned
for all memory types. In SP, the trade-off happens mainly
between capacity and throughput. In EQ, each memory type
has different strength and weakness compared to DRAM
and requires different trade-offs. Recent examples include
the trade off between energy and speed (see Section 2.1) and
between latency and bandwidth [14].2

Second, an equalizer serves multiple objectives. There
are measures such as performance, power, persistence and
lifetime, in which no one strictly dominates the rest. Each
specific problem may still have a single goal as a weighted
mixture of multiple objectives, but the weights in the mix-
ture may change from system to system, user to user, and
application to application. A general solution should allow
optimization for an arbitrarily weighted objective (or tell the
user if no such solution exists).
This position paper starts a tentative step in this new di-

rection. As the first step, we present an abstract design called
fraction cache. It divides program data into two parts: the
cached fraction and the uncached fraction. For the first frac-
tion, it uses the familiar cache mechanisms to dynamically
place data on two memories and move data between them.
Given the size of the memories, i.e. the cache size, it uses the
existing techniques of cache modeling to predict the access
at each memory and the amount of data migration.
The fraction cache creates a parameterized solution space:

a memory equalizer can choose how many fractions to use,
which fraction uses which memories, and at what memory
sizes. The creation of this solution space is the key to solve
EQ. First, the fraction cache is flexible. The large solution
space is likely to contain a good solution that satisfies a
complex objective. Second, the fraction cache predicts the
quality of all solutions and uses the prediction to find the
best one. We call the latter deductive optimization, since the
result is deduced rather than obtained through testing.
The rest of the paper is organized as follows. Section 2

presents the fraction cache and shows that it is general, flexi-
ble, and more importantly, permits multi-objective optimiza-
tion. Section 3 evaluates how the fraction cache may reduce
the DRAM demand in a set of test programs. Finally, the last
two sections discuss related work and summarize.

2Ramos and Hoefler showed that although the integrated Micron Multi

Channel DRAM (MCDRAM) on Intel Knight Landing has much higher

bandwidth than DRAM, it also has slightly higher access latency.

2 Fraction Cache Theory and Optimization

This section first reviews a previous study, then shows the
fraction cache and its parameterized solution space, and
finally its deductive optimization.

2.1 Motivation

In the first MEMSYS conference, Su et al. presented a study
of two architectures of hybrid DRAM and PCMmemory [18].
As shown in Figure 2, reproduced from the original paper,
the first architecture uses DRAM as the cache of PCM, and
the second organizes DRAM and PCM laterally. They called
them Page Cache and Historical Ranking, or PCache and
HRank in their paper.

App

pF3

LUL

Figure 2. The two architectures of hybrid DRAM and PCM
memory, reproduced from Su et al. in MemSys 2015 [18].

Su et al. showed two example applications. pF3D has good
locality and therefore better performance and lower energy
in the vertical PCache than in the horizontal HRank, while
LULESH has poor locality, so PCache is not effective, and as
a result, HRank is more energy efficient. Su et al. developed
a new memory controller called HpMC to switch between
PCache an HRank and make the best choice for each appli-
cation.
The study by Su et al. shows convincingly that neither

PCache or HRank is sufficient to achieve both high perfor-
mance and energy efficiency across different workloads. Fol-
lowing their approach of combining existing solutions, we
next develop a new technique that provides a greater range
of solution choices.

2.2 Fraction Cache

A fraction cache divides the program data into fractions. In
the basic design, we randomly divide program data into two
fractions and store them in two types of memories: DRAM
and PCM. One fraction is cached in DRAM and evicted to
PCM. The other fraction is stored directly in PCM. We may
distinguish by calling them the cached fraction and the un-
cached fraction.
A fraction cache has the following parameters:

• Total data sizem, the unit of which is usually a page.
• The cached fraction szfr, which is a size between 0 and
m. The cached fraction uses DRAM as the cache and
PCM the target of eviction.

2

• The DRAM size szdram and PCM size szpcm. To not
waste memory, as cache, the DRAM size is no greater
than the cached data, i.e., szdram ≤ szfr. When the
cache data is more than the DRAM size szfr > szdram,
the overflow, szfr − szdram, is stored in PCM.

The organization of a fraction cache is shown in a dia-
gram in Figure 3. Program data is of size m and stored in
both DRAM and PCM, so we havem = szdram + szpcm. The
cache fraction szfr is stored partly in DRAM szdram and partly
in PCM.3 The vertical dotted line in Figure 3 marks the sepa-
ration in PCM between the cache fraction and the uncached
fraction.

proc

DRAM
szdram

PCM
szpcm

cached fraction szfr uncached

data size m

Figure 3. A fraction cache divides program data into the
cached fraction and the uncached fraction. It stores the
cached fraction in DRAM and PCM and the uncached frac-
tion in PCM.

The memory organization is flat. At any time, the program
data is partitioned between DRAM and PCM, and each is
accessed directly. An access to the data of the cache fraction
will happen in DRAM, if the access is a cache hit, and in
PCM, if it is a cache miss. At a cache miss, the missed data is
also promoted into DRAM, incurring an eviction in DRAM if
it is full. Effectively, the cache replacement policy is used to
control data migration between DRAM and PCM. The new
lateral memory management by the fraction cache reuses
the familiar solution of cache design. A difference is that in
a conventional cache, the miss data is fetched through the
cache. In the fraction cache, the miss data is fetched from
PCM directly, at the same time of the migration of the missed
data to DRAM.
The key novelty of the design resides in its two parame-

ters, szfr, szdram, which make the fraction cache not a single
solution but a collection of solutions, one for each parameter
combination.

3The two-level, DRAM-PCM cache may be inclusive or exclusive. This paper
assumes an exclusive cache, which consumes less PCM but incurs more
write backs compared to an inclusive cache. The performance modeling
discussed later in the paper is the same for either the exclusive or the
inclusive cache.

By choosing the right parameters, the fraction cache can
implement the two designs of Su et al., discussed in Sec-
tion 2.1. If the fraction szfr =m, we have the effect of vertical
PCache. In actual design, the fraction cache has two differ-
ences compared to PCache. First, the fraction cache is ex-
clusive, while PCache is inclusive. Second, at a DRAM miss,
the data is fetched directly from PCM, and at the same time,
the data page is migrated from PCM to DRAM. If the cached
fraction fits entirely in DRAM szfr = szdram, then we have
the effect of horizontal HRank without page migration.4

The performance of fraction cache can be efficiently mod-
eled. Next we present a technique based on a recent locality
theory.

2.3 Predicting Cache Performance Using Footprint
Xiang et al. developed the higher-order theory of locality
(HOTL), which defines a set of metrics and uses them to
compute the miss ratio in shared cache [23]. We review the
HOTL theory here and then use it to model and optimize
the performance of the fraction cache. In HOTL, the most
important metric is the footprint.
In an execution trace, each time window is represented

by (t ,x), where t is the end position and x the window
length. The number of distinct elements in the window is
the working-set size ω(t ,x), as defined first by Denning [6].
The working-set size may vary from window to window,
the footprint is its average. For each x , fp(x) is the average
working-set size of all windows of length x , i.e., the total
working-set size divided by the number of length-x windows
as shown by the following equation:

fp(x) = 1
n − x + 1

n∑
t=x

ω(t ,x) (1)

The footprint is a function fp(x), and its parameterx a timescale
such that 0 ≤ x ≤ n, where the largest timescale n is the
trace length.

For fully-associative LRU cache, the miss ratiomr(c) is the
(discrete) derivative of the footprint function. The precise
formula has two calculations as follows. Given cache size c ,
it first finds the timescale x and then takes the derivative at
x .

mr(c) = fp(x + 1) − fp(x) where c = fp(x)

In this paper, we refer to it as the HOTL conversion and
use a more compact representation based on the Leibniz’s
notation, where the two calculations are in the same equation
separated by the vertical bar.

4In HRank of Su et al. [18], periodically themost accessed pages aremigrated
from PCM to DRAM.

3

mr(c) = d
dx fp(x)

�����
fp(x)=c

(2)

As an example illustration, the following figure shows a
simple access trace, its footprint, and the miss ratios com-
puted using the HOTL conversion.

access trace: a b c

(a) An access trace

timescale x 0 1 2 3
fp(x) 0 1 2 3

(b) Footprint

cache size c 0 1 2
mr(c) 100% 100% 100%

(c) Miss ratios

Figure 4. Example footprint and HOTL conversion

In 1972, Denning and Schwartz were the first to estimate
the LRU cache miss ratio by the slope of the mean working-
set size [9]. The HOTL conversion has the same form but
using the footprint.5 The mean working-set size was ini-
tially defined as a limit value [9]. See Xiang et al. [23] for a
comparison between HOTL and the working-set theory.
The HOTL theory includes efficient footprint measure-

ment, concavity of the footprint (hence monotonicity of the
miss ratio), and the correctness condition [22, 23]. This paper
builds on these results and will use the HOTL conversion to
model performance and drive optimization.

2.4 Fraction Cache Performance
The performance is measured by data traffic. We consider
three types of traffic, one for each connection between the
processor, DRAM, and PCM, shown in Figure 3: the traffic
trfcdram between the processor and DRAM, trfcpcm between
the processor and PCM, and trfcmiss between DRAM and
PCM. The last one trfcmiss is the misses in the fraction cache.
It is also the data migration from PCM to DRAM.

For simplicity, we consider only data reads6 and only the
volume of data reads. The performance is measured by the
amount of read traffic from DRAM and PCM and the traffic
of data misses in DRAM. These three types of traffic are
shown in Figure 5.

5HOTL conversion is defined for all execution traces. Take the simple
example in Figure 4. Since it has no reuses, it is unclear how the previous
working-set theory defines its means working-set size, but its footprint has
a clear definition.
6Data writebacks in cache can be modeled using write locality developed
by Chen et al. [5].

proc

DRAM
szdram

PCM
szpcm

cached fraction szfr uncached

data size m

proc

DRAM
szdram

PCM
szpcm

DRAM traffic
trfcdram

PCM traffic
trfcpcm

data migration
trfcmiss

Figure 5. The performance of a fraction cache is measured
by the communication between the processor and DRAM,
between the processor and PCM, and data migration be-
tween DRAM and PCM. This position paper simplifies and
considers only reads and misses.

In fraction cache, the cached data is accessed in DRAM
if it is a hit. Otherwise, the missed data is accessed directly
in PCM, not indirectly through DRAM. However, another
copy of the missed data is transferred to DRAM to update
the content of the DRAM cache. Hence, the DRAM traffic
includes the accesses to the cached fraction but does not
include the misses, and the PCM traffic includes all accesses
to the uncached fraction and all the misses.

Using the footprint theory in Section 2.3, we compute the
performance of the fraction cache as follows. Let h(x) be the
footprint of the cached data. We first compute the miss ratio
mr(szdram) using HOTL for any szdram ≥ 0:

mr(szdram) = d
dx h(x)

�����
h(x)=szdram

(3)

The miss traffic is naturally the miss ratio times n.7 Let
r =

szfr
m be the ratio of the cached fraction. All three types of

traffic are computed as follows:

trfcmiss = mr(szdram) ∗ n (4)
trfcdram = r ∗ n − trfcmiss (5)
trfcpcm = (1 − r) ∗ n + trfcmiss = n − trfcdram (6)

2.5 Fraction Cache Optimization
The key novelty of the fraction-cache design is its parameter-
ized solution space, which has fully predictable performance.
The benefit is two fold: to make it flexible and to enable
optimization.
The fraction cache is a versatile tool for lateral memory

management. The previous section has shown how to divide
data dynamically between DRAM and PCM. The previous
solution was a two-fraction cache. On a machine with three
7In our implementation described in Section 3, the fraction data foot-
print h(x) uses the logical clock of all n accesses, and the miss traffic
is mr(szdram) ∗ n. If h(x) uses the logical clock of only the accesses to the
data fraction, the miss traffic would be computed as mr(szdram) ∗ n ∗ r .

4

types of memories, HBM, DRAM and PCM, we divide pro-
gram data into three fractions. There are at least two choices
to assign these fractions. The first fraction is cached in HBM
and evicted to DRAM, the second fraction cached in DRAM
and evicted to PCM, and the last fraction is stored only in
PCM. Alternatively, if we avoid storing infrequently accessed
data in DRAM, the data of the first fraction can be evicted to
PCM instead of DRAM.

The fraction cache enables deductive optimization. It has
a clearly defined solution space, parameterized by howmany
fractions to use, which fraction to store in which memories,
and at what memory sizes. With the modeling technique
from Section 2.4, we can compute the performance of each
solution. Because the solution space is large, it is likely for
different objectives of performance, power, persistence and
lifetime, a good solution exists in this space, which is then
discovered by performancemodeling and deductive optimiza-
tion. At the end, the optimization finds the best parameters.
The fraction cache requires dividing program data into

cached and uncached fractions. There are two generic schemes:
page interleaving and random assignment. In page inter-
leaving, data pages are assigned round robin based on the
fraction. In random assignment, data pages are randomly
assigned. For example, if the fraction is 0.7, page interleaving
would place 7 out of every 10 pages in the cached fraction,
and random assignment would place a page in the cached
fraction with 0.7 probability. These schemes are generic be-
cause they do not require program knowledge and can be
applied on any application process. More specific division
schemes may be used if special program information is avail-
able. For example, some data may have frequent accesses
and should always be placed in the cached fraction. The
remaining data can be assigned through the two generic
schemes.

The performance model requires to know the footprint of
the access to the cached fraction, which can be analyzed in
real time using sampling. A recent technique is based on a
model called the average-evicting time (AET), and its analysis
has a negligible cost in both time and space [10]. In fact, the
model can be changed to use reuse distance, which can be
as efficiently sampled by a technique called SHARDS [20].
Another possible extension is miniature simulation, which
may allow the fraction cache to use non-LRU replacement
policies [21].
Fraction cache optimization may not reach optimal per-

formance for two reasons. First, the performance model may
have errors, and an error in the model can lead to an error
in optimization. Second, its solution space does not cover
all possible solutions. In particular, it uses fixed partitioning
to assign data between cached and uncached partitions. It
is possible that the locality set of an application changes
dynamically, and the data in the uncached partition later
receives frequently access. The problem of fixed partitioning

may be ameliorated by periodically repartition data for the
fraction cache.

2.6 DRAM Portion Reduction
In this section, we use the fraction cache to solve a contrived
problem called DRAM Portion Reduction (DPR). The motiva-
tion for this problem is as follows. Consider a machine with
hybrid DRAM and PCM. Since DRAM is more expensive
and consumes more energy per bit than PCM, we maximize
the cost and energy savings by minimizing the portion of
program data stored in DRAM. The following is the problem
setup.

We assume the machine has DRAM and PCM side by side,
with access bandwidths bwdram, bwpcm. To use both DRAM
and PCM bandwidth fully, we want the ratio of DRAM and
PCM traffic matches the ratio of DRAM and PCM bandwidth,
i.e., trfcdram

trfcpcm
=

bwdram
bwpcm

. To simplify the discussion, we consider
the case bwdram = bwpcm.
For this problem, we want to (1) equalize the DRAM and

PCM traffic trfcdram = trfcpcm, (2) limit the migration cost,
and (3) minimize the need for DRAM. We call the first band-
width requirement and the second migration requirement. In
this paper, we measure traffic by the ratio of accesses. The
bandwidth requirement means that both DRAM and PCM
traffic be 50% of all memory accesses trfcdram = trfcpcm = 0.5.
Let’s examine the solution space. The simplest solution

is even division, which divides the program datam into two
halves between DRAM and PCM. Both memory types will
be accessed equally frequently, satisfying the traffic require-
ment. Even division is trivial to implement. We use it as the
baseline solution, where the initial DRAM needed is half of
the data size m

2 .
We can reduce the DRAM need by assigning frequently

accessed data to DRAM. The fraction cache moves such data
to DRAM automatically. It can be proved that, assuming the
miss ratio is monotone, the DRAM need is minimized by
complete caching, that is, caching the entire data szfr = m
and choosing the DRAM size so thatmr(szdram) = 0.5. In this
solution, the miss ratio is 50% and the trfcdram = trfcpcm = 0.5.

Fraction cache has a two-dimensional solution space: the
fraction szfr ranges from 0.5 to 1, and the DRAM need ranges
from m

2 down. The trivial and best solutions, even division
and complete caching, are two extreme points in this space.
A key factor is data migration. Even division needs most

DRAM but incurs no migration (trfc_miss = 0), while com-
plete caching needs least DRAM but incurs most migration
(trfc_miss = 0.5). While caching depresses the need for
DRAM, it incurs the cost of migration. It must not grow
without a bound.

5

Given a migration bound, the fraction cache theory com-
putes the minimal DRAM size. From the formulas in Sec-
tion 2.4, we can compute the DRAM, PCM andmigration traf-
fic for any fraction szfr and DRAM size szdram. It is straight-
forward to find all valid solutions that meet the bandwidth
requirement and stay within the migration bound. From the
valid solutions, we select one with the minimal DRAM size.

3 Evaluation
We measure the effect of DRAM portion reduction as de-
scribed in Section 2.6. On a machine with hybrid DRAM and
PCM, we want to use DRAM the least and PCM the most
to save cost and energy. In this section, we first show an
experimental setup and then an evaluation using the results
from performance modeling and deductive optimization. The
evaluation is partially theoretical and not based on a real
system.

3.1 Methodology
Benchmarks we select 7 benchmarks to evaluate the frac-
tion cache, including 3 programs from NPB [1], 3 from
PRASEC [3], and 1 real application. All 7 benchmarks have
large memory footprint. The NPB benchmarks use class C
input, the PARSEC benchmarks use native input, and Cas-
sandra [?] uses the input generated by the Yahoo! Cloud
Serving Benchmark (YCSB) [?].
PRASEC is a benchmark suites of multi-threaded pro-

grams, it includes both server and desktop applications. The
3 programs selected in this paper, canneal, dedup and fre-
qmine, are used for cache-aware simulated annealing, data
compression and frequent item-set mining respectively.
Cassandra is distributed storage system widely used in

commodity servers. The workload is specified by YCSB, in
particular, the portion of reads, updates, scans and/or insert
operations.We use the first of the five built-in coreworkloads.
It is update heavy. Specifically, the workload Awith 8 million
records (8GB data) and 10 million operations. Half of the
operations are reads, and the rest are updates.

Trace Collection The traces are obtained on an Intel ma-
chine with i7-6700K processor(4C/8T) and 16GB memory.
All programs are run with 8 threads. We sample accesses
missed in last level cache using PEBS. The event

MEM_LOAD_UOPS_RETIRED:L3_MISS
is used. We sample 1 miss in every 10 misses. The informa-
tion of the sampled traces are showed by Table 1. The page
size is 4KB.

The overhead of sampling is less than 10% of the execution.
Computing footprint handles about 7 million accesses per
second, which means for example 7.7 seconds for BT.

Data Partitioning and CacheModeling We assume that
data partitioning is done by one of the two generic schemes,

Benchmark Accesses Pages Data size (MB)
Cassandra 189,060,547 4,354,988 17,011.67
canneal 70,707,747 235,460 919.77
dedup 1,075,904 229,137 895.07
CG 39,828,501 228,574 892.87

freqmine 6,041,628 192,936 753.66
BT 53,054,258 182,589 713.24
LU 9,433,759 136,669 533.86

Table 1. The length and data size of 7 test programs

page interleaving and random assignment, described in Sec-
tion 2.5. For example, if the fraction is 0.7, page interleaving
would place 7 out of every 10 pages in the cached fraction,
and random assignment would place a page in the cached
fraction with 0.7 probability.

Since the partitioning is generic, we assume that the data
access pattern in the cached fraction is the same as that of
the whole. We compute the footprint of the cached fraction
as follows. Let r = szfr

m be the fraction ratio, 0 ≤ r ≤ 1. Let
fp(x) be the footprint of the whole data. The footprint for
the cached fraction is computed by h(x) = fp(x) ∗ r . Then
we compute the cache performance using the formulas from
Section 2.4.
As stated in Section 2.6, we use cache modeling to (1)

equalize the DRAM and PCM traffic trfcdram = trfcpcm, (2)
limit the data migration, and (3) minimize the portion of data
stored in DRAM.
The generic data partitioning does not require program

knowledge or profiling, which is not always practical or ac-
curate. However, when there is program knowledge about
the data access pattern, the knowledge can be used to im-
prove data partitioning. For DRAM portion reduction, we
may improve the result by allocating frequently accessed
data to the cached fraction. The following results are based
on the generic data partitioning and show the least benefit
that can be achieved by fraction cache optimization.

3.2 DRAM Portion Reduction
Figure 6 shows seven graphs, one for each program showing
the minimal DRAM portion on the y-axis and the bound
of migration traffic on the x-axis. The DRAM portion is
measured as a ratio of the data size, and the migration traffic
a ratio of data accesses.
In all graphs, the leftmost is the baseline solution, even

division, where the DRAM portion is 50% and migration
traffic is 0. The rightmost is complete caching, where the
DRAM portion is minimized and migration traffic 50%.
Deductive optimization examines the two-dimensional

solution space, where the fraction ratio szfr ranges from 0.5
to 1 and the DRAM portion ranges from 50% down. For each
migration requirement on the x-axis, the fraction cache the-
ory finds the solution with the minimal DRAM size, shown

6

0%

10%

20%

30%

40%

50%

0% 10% 20% 30% 40% 50%
Migration traffic(pct accesses)

M
in

im
al

 D
R

A
M

 n
ee

d(
pc

t d
at

a
si

ze
) Cassandra

0%

10%

20%

30%

40%

50%

0% 10% 20% 30% 40% 50%
Migration traffic(pct accesses)

M
in

im
al

 D
R

A
M

 n
ee

d(
pc

t d
at

a
si

ze
) canneal

0%

10%

20%

30%

40%

50%

20% 30% 40% 50%
Migration traffic(pct accesses)

M
in

im
al

 D
R

A
M

 n
ee

d(
pc

t d
at

a
si

ze
) dedup

0%

10%

20%

30%

40%

50%

0% 10% 20% 30% 40% 50%
Migration traffic(pct accesses)

M
in

im
al

 D
R

A
M

 n
ee

d(
pc

t d
at

a
si

ze
) CG

0%

10%

20%

30%

40%

50%

0% 10% 20% 30% 40% 50%
Migration traffic(pct accesses)

M
in

im
al

 D
R

A
M

 n
ee

d(
pc

t d
at

a
si

ze
) freqmine

0%

10%

20%

30%

40%

50%

0% 10% 20% 30% 40% 50%
Migration traffic(pct accesses)

M
in

im
al

 D
R

A
M

 n
ee

d(
pc

t d
at

a
si

ze
) BT

0%

10%

20%

30%

40%

50%

0% 10% 20% 30% 40% 50%
Migration traffic(pct accesses)

M
in

im
al

 D
R

A
M

 n
ee

d(
pc

t d
at

a
si

ze
) LU

Figure 6. Minimal DRAM portion (y-axis) computed by deductive optimization for exact migration cost (x-axis) ranging from
0% to 50% of accesses. In CG,BT, the minimal DRAM portion differs for bounded migration cost and is shown by dotted lines.

by the y-axis value. The figure shows the cached fraction
(selected by deductive optimization) indirectly — it is 0.5 plus
the migration traffic (the x-axis value).
The baseline DRAM need is 50% of data size. Fraction

cache achieves significant DRAM savings in most of the
tests, obtaining DRAM needs below 3% for 4 programs in-
cluding 0.55% for the one with the largest data size Cassandra.
Compared to the baseline, the DRAM size reduction is over
16 times (90 times for Cassandra). When the migration is
within 20%, the DRAM need can be reduced to as low as
3.8% of the program data size and 24.7% on average. If the

migration is within 10% of accesses, the DRAM need is 16%
for canneal, 5% for freqmine, and 7% for Cassandra, which
means a reduction by a factor of 3, 10, and 7 respectively.
Most graphs show a monotone drop of DRAM portion

as more migration is permitted. Four programs have a clear
inflection point where the rate of DRAM portion reduction
is steep before the inflection and flat after the inflection.

Different DRAMportion reductions are caused by different
program locality. Figure 7 shows the miss ratio curve for
three programs. Cassandra has good locality, which means
that the miss ratio drops precipitously to near zero when the

7

cache size increases. BT has poor locality, and its miss ratio
decreases somewhat linearly when the cache size increases.
The case of LU is in between. In Cassandra, the good locality
makes the fraction cache effective at reducing the DRAM
portion. The inflection point in the miss ratio curve leads to
the inflection point in the minimal DRAM portion. Cassandra
is representative of the group of programs that also include
the three PARSEC benchmarks.
In two programs, CG,BT, the minimal DRAM portion is

not monotone. At some amounts of migration traffic, it needs
to store more data in DRAM to increase the migration traffic.
For the optimization, we desire a bound, not an exact amount
of themigration traffic. The smallest DRAMportion is always
used by the optimization. This result is shown by the dotted
line in Figure 6.

4 Related Work
The problem ofmemorymanagement dates back to the begin-
ning of first general-purpose computers. Some early systems
(before 1970) have multiple types of memories. Denning cat-
egorized the solutions into two approaches: slave memory
and distributed memory [7, pp. 184]. The memories are hi-
erarchical in both approaches. The difference is that slave
memory permits direct access only at the top level, while
distributed memory allows the access at all levels. With just
two memories, the vertical organization is a type of slave
memory, and the lateral organization is distributed memory.
With three or more memories, lateral connections may form
a network more complex than that of a hierarchy, and this
complexity adds to the challenges of memory management.

A number of recent studies considered either vertical and
lateral organization of DRAM and PCM. Su et al. developed
HpMC which selects the best organization based on applica-
tion locality, both temporal and spatial, for both performance
and energy [18]. In separate studies, Liu et al. developed a
system called Memos for lateral memory management [13].
Memos builds on an operating system kernel extension,
which supports online program monitoring [12], and uses
the program characteristics to guide the page placement
on DRAM and PCM and dynamic page migration between
them. The evaluation showed broad improvements, not just
throughput but also QoS, NVM latency, energy consumption,
and NVM lifetime [13].
The studies by Su et al. and Liu et al. show convincingly

the merit of lateral organization of memory and the need
to consider multiple objectives. Inspired by the previous
work, the fraction cache aims to broaden the consideration
to include the design space between the vertical and lateral
solutions. Our vision of the memory equalizer hinges on
this broad solution space to satisfy multiple objectives and
on deductive optimization to search this space efficiently
without exhaustive testing.

For example, lateral solutions must solve the problem
of data migration. In both HRank and Memos, pages with

more frequent accesses are moved from PCM to DRAM. In
a fraction cache, similar data migration happens as a result
of the caching mechanism and therefore can be controlled
and tuned using existing performance models. The large
solution space and deductive optimization may generalize
previous work to support more memory types and different
objectives.

Many studies have designed cache for multiple objectives
such as performance, fairness and QoS. For example, the con-
cept of sharing incentive means that the participants would
pool their resource if the per-participant performance with
sharing is at least the performance without sharing [25].
Baseline optimization is developed to optimize cache partition-
sharing to maximize the throughput given the sharing in-
centive as the constraint [24]. Similar to these techniques,
DRAM portion reduction in Section 2.6 treats bandwidth and
migration requirements as constrains and then minimizes
the DRAM size.

While the fraction cache is a technique for memory man-
agement, it is similar to two recent techniques of cache man-
agement. For LRU cache and given the MRC, Talus divides
data and partitions the cache and by cleverly choosing their
parameters, Talus ensures that the new MRC lies within the
convex hull of the original [2]. Another system, SLIDE, re-
moves miss ratio “cliffs” for both LRU and non-LRU policies
including ARC, 2Q and LIRS [21]. The convex transforma-
tion by Talus and SLIDE has at least two benefits. One is
miss-ratio reduction by removing the “cliffs”, and the other
benefit optimal cache partitioning in multi-programming,
which can be done by a linear-time greedy algorithm [17, 19]
(otherwise the cost is number of programs times cache size
square as solved in optimal cache partition-sharing [4, 24]).
Talus and SLIDE divide both program data and its cache

into two partitions and use one cache partition for each data
partition. Logically, the fraction cache is more general. Talus
and SLIDE are equivalent to a three-fraction cache, with the
size of the third fraction set to zero. In this difference we see
the distinction between traditional hierarchical and current
lateral memory management. A lateral structure means di-
rect memory access not through a cache, which is irrelevant
to the purposes of Talus and SLIDE. In mechanisms, however,
the fraction cache solves similar problems, including parti-
tioning data and modeling MRC. This paper assumes ran-
domly partitioned data (in LRU caches) and uses the HOTL
model. With HOTL, the fraction cache may partition data
based on its footprint and perform better than random parti-
tioning, in either memory management or caching.
Finally, modern processors may use multiple memories

even when they are of the same type. IBM POWER8 has
8 DRAM channels, and each may be connected a Centaur
chip [16]. A Centaur chip has 16MB eDRAM. Therefore, the
processor has up to 128MB memory separate from DRAM.
Intel Knights Landing (KNL) has 16GBMulti Channel DRAM
(MCDRAM) on its CPU package [15]. On POWER8, eDRAM

8

0%

20%

40%

60%

80%

0e+00 1e+06 2e+06 3e+06 4e+06
Cache size(in 4KB granularity)

M
is

s
ra

tio
Cassandra

0%

20%

40%

60%

80%

0 25000 50000 75000 100000
Cache size(in 4KB granularity)

M
is

s
ra

tio

LU

0%

20%

40%

60%

80%

0 25000 50000 75000 100000
Cache size(in 4KB granularity)

M
is

s
ra

tio

BT

Figure 7.Miss ratio curve of Cassandra, LU and BT, assuming 50% data is cached.

is used as L4 buffer cache (directory in SRAM) to reduce the
latency and energy cost of L3 misses. On KNL, MCDRAMhas
three memory modes: cache, flat, and hybrid. Data access in
MCDRAM has a similar latency but much greater bandwidth
compared to DRAM. Both eDRAM and MCDRAM are aimed
to augment DRAM and represent new system opportunities
and challenges in the study of lateral memory management.

5 Summary
This paper has presented a vision of memory equalizer for
lateral memory management. The key is an abstract design
called fraction cache which is organized as a two level ex-
clusive cache. Its parameters, the fraction, the size of the
memory, the traffic of processor and inter-memory commu-
nication, encompasses a large solution space. In practice,
a user may specify performance objectives and leave the
tuning and optimization to an automatic tool. As a demon-
stration, we use fraction cache to minimize the need for
DRAM while limiting the cost of data migration. When the
migration is bounded to no more than 20%, the DRAM size
can be reduced to as low as 3.8% of the program data size
and 24.7% on average.
We believe that our technique is the first to observe and

characterize the inflection points in the trade off between
DRAM size and migration traffic. We expect that similar pat-
terns happen in other problems of lateral memory manage-
ment, and the fraction cache and its deductive optimization
will be a useful tool.

Acknowledgments
The authors would like to express sincere thanks to Peter
Denning for his insightful criticism and the abbreviations
SP and EQ and to Michael Scott and Lei Liu for the technical
discussion on related ideas. The authors would also like to
thank Alex Benishek, Zhizhou Zhang and the anonymous
referees of MEMSYS 2017 for their careful corrections and
suggestions. The image of the equalizer in Figure 1 is a screen
copy of the software created by Jingbing Yuan. The work

is supported by the National Science Foundation (Contract
No. CCF-1717877, CCF-1629376, CNS-1319617), an IBM CAS
Faculty Fellowship, the National High-tech Research and
Development Program of China and the National Natural
Science Foundation of China (Contract No. 2015AA015303,
No. 61433019). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
funding organizations.

References
[1] David H. Bailey. 2011. NAS Parallel Benchmarks. In Encyclopedia of

Parallel Computing. 1254–1259.
[2] Nathan Beckmann and Daniel Sanchez. 2015. Talus: A simple way to

remove cliffs in cache performance. In Proceedings of HPCA. 64–75.
https://doi.org/10.1109/HPCA.2015.7056022

[3] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC benchmark suite: characterization and architectural im-
plications. In Proceedings of PACT. 72–81.

[4] Jacob Brock, Chencheng Ye, Chen Ding, Yechen Li, Xiaolin Wang, and
Yingwei Luo. 2015. Optimal Cache Partition-Sharing. In Proceedings
of ICPP.

[5] Dong Chen, Chencheng Ye, and Chen Ding. 2016. Write Locality and
Optimization for Persistent Memory. In Proceedings of the Interna-
tional Symposium on Memory Systems. 77–87. https://doi.org/10.1145/
2989081.2989119

[6] Peter J. Denning. 1968. The working set model for program behaviour.
Commun. ACM 11, 5 (1968), 323–333.

[7] Peter J. Denning. 1970. Virtual Memory. Comput. Surveys 2, 3 (1970),
153–189. https://doi.org/10.1145/356571.356573

[8] Peter J. Denning. 1980. Working sets past and present. IEEE Transac-
tions on Software Engineering SE-6, 1 (Jan. 1980).

[9] Peter J. Denning and Stuart C. Schwartz. 1972. Properties of the
working set model. Commun. ACM 15, 3 (1972), 191–198.

[10] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Chen Ding, and
Zhenlin Wang. 2016. Kinetic Modeling of Data Eviction in Cache.
In Proceedings of USENIX ATC. 351–364. https://www.usenix.org/
conference/atc16/technical-sessions/presentation/hu

[11] Edward G. Coffman Jr. and Peter J. Denning. 1973. Operating Systems
Theory. Prentice-Hall.

9

https://doi.org/10.1109/HPCA.2015.7056022
https://doi.org/10.1145/2989081.2989119
https://doi.org/10.1145/2989081.2989119
https://doi.org/10.1145/356571.356573
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu

[12] Lei Liu, Yong Li, Chen Ding, Hao Yang, and Chengyong Wu. 2016.
Rethinking Memory Management in Modern Operating System: Hori-
zontal, Vertical or Random? IEEE Trans. Comput. 65, 6 (2016), 1921–
1935. https://doi.org/10.1109/TC.2015.2462813

[13] Lei Liu, Hao Yang, Yong Li, Mengyao Xie, Lian Li, and Chenggang Wu.
2016. Memos: A full hierarchy hybrid memory management frame-
work. In IEEE International Conference on Computer Design (ICCD).

[14] Sabela Ramos and Torsten Hoefler. 2017. Capability Models for Many-
core Memory Systems: A Case-Study with Xeon Phi KNL. In Proceed-
ings of IPDPS. 297–306. https://doi.org/10.1109/IPDPS.2017.30

[15] Avinash Sodani, Roger Gramunt, Jesús Corbal, Ho-Seop Kim, Krishna
Vinod, Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and
Yen-Chen Liu. 2016. Knights Landing: Second-Generation Intel Xeon
Phi Product. IEEE Micro 36, 2 (2016), 34–46. https://doi.org/10.1109/
MM.2016.25

[16] William J. Starke, Jeffrey Stuecheli, David Daly, J. S. Dodson, Florian
Auernhammer, Patricia Sagmeister, G. L. Guthrie, C. F. Marino, M. S.
Siegel, and Bart Blaner. 2015. The cache and memory subsystems of
the IBM POWER8 processor. IBM Journal of Research and Development
59, 1 (2015). https://doi.org/10.1147/JRD.2014.2376131

[17] Harold S. Stone, John Turek, and Joel L. Wolf. 1992. Optimal Partition-
ing of Cache Memory. IEEE Trans. Comput. 41, 9 (1992), 1054–1068.
https://doi.org/10.1109/12.165388

[18] Chun-Yi Su, David Roberts, Edgar A. León, Kirk W. Cameron, Bro-
nis R. de Supinski, Gabriel H. Loh, and Dimitrios S. Nikolopoulos.
2015. HpMC: An Energy-aware Management System of Multi-level
Memory Architectures. In Proceedings of the International Symposium

on Memory Systems. 167–178. https://doi.org/10.1145/2818950.2818974
[19] G. Edward Suh, Larry Rudolph, and Srinivas Devadas. 2004. Dynamic

Partitioning of Shared Cache Memory. The Journal of Supercomputing
28, 1 (2004), 7–26.

[20] Carl A. Waldspurger, Nohhyun Park, Alexander T. Garthwaite, and
Irfan Ahmad. 2015. Efficient MRC Construction with SHARDS.
In Proceedings of the USENIX Conference on File and Storage Tech-
nologies (FAST). 95–110. https://www.usenix.org/conference/fast15/
technical-sessions/presentation/waldspurger

[21] Carl A. Waldspurger, Trausti Saemundsson, Irfan Ahmad, and
Nohhyun Park. 2017. Cache Modeling and Optimization us-
ing Miniature Simulations. In Proceedings of USENIX ATC. 487–
498. https://www.usenix.org/conference/atc17/technical-sessions/
presentation/waldspurger

[22] Xiaoya Xiang, Bin Bao, ChenDing, and Yaoqing Gao. 2011. Linear-time
Modeling of Program Working Set in Shared Cache. In Proceedings of
PACT. 350–360.

[23] Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao. 2013. HOTL: a
higher order theory of locality. In Proceedings of ASPLOS. 343–356.

[24] Chencheng Ye, Jacob Brock, Chen Ding, and Hai Jin. 2017. Rochester
Elastic Cache Utility (RECU): Unequal Cache Sharing is Good Eco-
nomics. International Journal of Parallel Programming 45, 1 (2017),
30–44. https://doi.org/10.1007/s10766-015-0384-3

[25] SeyedMajid Zahedi and Benjamin C. Lee. 2014. REF: resource elasticity
fairness with sharing incentives for multiprocessors. In Proceedings of
ASPLOS. 145–160.

10

https://doi.org/10.1109/TC.2015.2462813
https://doi.org/10.1109/IPDPS.2017.30
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1147/JRD.2014.2376131
https://doi.org/10.1109/12.165388
https://doi.org/10.1145/2818950.2818974
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://doi.org/10.1007/s10766-015-0384-3

	Abstract
	1 Introduction
	2 Fraction Cache Theory and Optimization
	2.1 Motivation
	2.2 Fraction Cache
	2.3 Predicting Cache Performance Using Footprint
	2.4 Fraction Cache Performance
	2.5 Fraction Cache Optimization
	2.6 DRAM Portion Reduction

	3 Evaluation
	3.1 Methodology
	3.2 DRAM Portion Reduction

	4 Related Work
	5 Summary
	Acknowledgments
	References

