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ABSTRACT: Understanding the influence of potential on electrochemical
surface reaction kinetics remains a challenge in identifying catalytic
materials for numerous important reactions including water splitting
(OER), hydrogen evolution (HER), and CO2 reduction, among others.
Limitations in computational methods, complicated by the unique
environment of the electrode−electrolyte interface, have compelled
many studies to focus on the thermodynamics of reaction schemes and
to generalize inferences about the kinetics of charge transfer. In instances
where activation barrier estimates are available, they are typically assumed
to follow the empirical Butler−Volmer (BV) model. In this Perspective, we
illustrate that the relative magnitudes and potential-dependences of
elementary barriers can have a marked effect on the properties of a
catalyst deemed “optimal” for a given reaction. We use a simple pseudosteady-state analysis of two sequential surface-mediated
charge transfers to assess the degree of rate control of each step as a function of the material and conditions. We compare BV
kinetics to Marcus theory and also discuss more recent models that are specific to the interactions of an adsorbate with the
electronic structure of a surface. Recent developments in the full simulation of charge transfer to surface species are also briefly
discussed. Finally, we highlight the need for assessment of kinetics and identification of activity descriptors that are optimal at
relevant operating conditions, and we conclude with an outlook on current research needs.
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■ INTRODUCTION

Electrocatalytic reactions are at the forefront of contemporary
research due to their promising role in sustainable energy
conversion.1−3 However, it remains a challenge to optimize
catalytic materials to navigate the complex energy landscapes
that govern most transformations of interest, both in
electrocatalysis and in heterogeneous catalysis in general. The
electrochemical environment poses unique difficulties, with
solvent, electrolyte ions, electrode potential, and the interfacial
field all playing roles that can be difficult to quantify.4 These
complexities beget a corresponding knowledge gap in
comparison to thermally driven reactions; in particular, the
dynamical processes involved in electrochemical activation are
notoriously difficult to interrogate.
Significant progress has been made in recent years toward

the explicit evaluation of activation barriers for elementary
electrochemical surface processesmost notably through the
use of quantum chemical calculations.5−7 Nonetheless, the
computational costs and uncertainties associated with these
methods have driven a majority of studies to base analyses of
electrocatalytic activity on the pure thermodynamics of
proposed elementary steps. Specifically, it is common practice
to identify catalytic material candidates with the criterion that
they minimize the overpotential needed to make all elementary
steps either energetically neutral or downhill.8 In most
instances where microkinetic models have been built from

barrier estimates,9−12 the treatment has been restricted to the
phenomenological Butler−Volmer (BV) framework, which
assumes that activation barriers shift linearly with respect to
potential. While more encompassing theories of electron
transfer predict deviations from BV kinetics, the extent to
which these deviations may be significant (with respect to
identifying optimal electrocatalysts) is generally assumed
negligible and rarely discussed.
In this contribution, we examine the criteria for identifying

an “optimal” catalyst for a simple two-step mechanism
involving an adsorbed intermediate. In this context, an
“optimal” material will be defined as one that possesses a
value for an activity descriptor (e.g., the binding energy of a key
intermediate) that maximizes the predicted rate within a given
kinetic model. For clarity, we also differentiate kinetic models
which permit extrapolation of explicitly calculated or measured
barriersfrom the interfacial models and referencing schemes
involved in such explicit evaluations. We compare rates
determined by BV kinetics to Marcus theory, and then discuss
more recent approaches to modeling the interactions between a
redox species and the electronic structure of an electrode
surface. Our analysis indicates that model choice may be
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secondary in importance to obtaining accurate barrier values,
but that the model can still be critical if calculated barriers must
be extrapolated over significant potential ranges. Most
importantly, we highlight that the best material choice depends
on operating potential.
It is worth mentioning that a variation in optimal catalyst

material with operating conditions is well-established in
heterogeneous catalysis. For example, the water−gas-shift
reaction is typically carried out in two catalytic stagesa
high temperature stage for high initial rates followed by a lower
temperature stage permitting greater equilibrium conversion
each over catalysts that work best at the given conditions.13

Similarly, ammonia synthesis has been shown to be most
efficient over staged or gradient catalyst beds, with a varying
formulation optimized for specific concentrations.14,15 Such
principles have yet to find use in electrochemical processes, and
a critical step toward better-informed catalyst choice will be the
establishment of sufficiently accurate models for the potential-
dependence of the kinetics. In writing a Perspective, our goal is
not to provide a comprehensive review of approaches to
modeling electrocatalytic reactions, but rather to highlight the
implications of using approaches with varying degrees of detail
to optimize a given activity descriptor. We thus hope to
underscore the importance of balancing tractability with rigor in
kinetic frameworks.

■ ACTIVITY DESCRIPTORS AND THE TRANSFER
COEFFICIENT AS A BEP RELATION

For the sake of discussion, we consider the following two-step
reaction scheme:

+ + * ↔ *+ −A e A (R1)

* + + ↔ + *+ −A A e A2 (R2a)

* ↔ + *2A A 22 (R2b)

The above scheme could represent the hydrogen evolution
reaction (HER), although we intend to keep the discussion
more general. One notable feature of the reaction scheme is
that the product (A2) may form by either electrochemical
(R2a) or pure chemical (R2b) pathways. Naturally, the rate of
the former can be expected to exhibit much stronger sensitivity
to potential, and the dominant pathway may thus depend on
operating conditions. However, even in a case where a pure
electrochemical pathway is followed (e.g., steps R1 and R2a
only), it is not necessarily true that each step in the sequence
will respond in the same manner to potential or that a given
step will retain rate control at all potentials. Additionally, cases
may arise where the step identified as “rate-determining”
(RDS) differs from the most endergonic, or “potential-
determining” step (PDS).16 To focus on the underlying
phenomena, we will restrict analysis to the pure electrochemical
case.
Rough guidance toward the optimization of catalytic activity

can be found in the form of the Sabatier principle,17 which
stipulates that catalytic materials should bind surface inter-
mediates neither too strongly nor too weakly, lest the reaction
be limited by either removal of products or activation of
reactants. This trade-off implies that there exists an optimal
degree of surface reactivity, prompting the well-known concept
of a volcano relationship. The affinity of a surface for
intermediates is generally quantified by the adsorption energy
of a key representative species, and correlating the activity with

such a descriptor often captures broad trends well.18−20 The
successes of this approach can be understood in terms of the
Brønsted−Evans−Polanyi (BEP) principle of free energy
scaling,21,22 which dictates that activation barriers should shift
(linearly) in proportion to the reaction energy. A schematic free
energy diagram illustrating the effect of changing ΔGads for the
reaction scheme above is given in Figure 1b.
In a similar vein, adjusting the potential of an electrode

changes the free energy of each electron transfer, with a
corresponding shift in each activation barrier. Empirically, the
dependence of the activation barrier on potential can be
described by the transfer coefficient, α:

α = −
∂
∂

=
∂Δ

∂

‡
RT

F

k

E F

G

E

ln 1 app

(1)

where k is the rate constant, ΔGapp
‡ is the apparent barrier, E is

the potential, and the physical constants have their usual
meaning. We will distinguish the apparent transfer coefficient
for a multistep reaction, α, from that of elementary steps by
using the alternative designation “symmetry factor,” β, which
applies specifically to the elementary casei.e. the elementary
transfer coefficient is the symmetry factor.23 This parameter
indicates that when a reaction energy shifts by a given amount,
the activation barrier will undergo a fractional change of β.
Thus, a constant symmetry factor may be interpreted as a
manifestation of the BEP relation. It may be noted here that an
overpotential corresponds to an efficiency loss, and is thus
usually not a preferred lever to “tune” activity. Nonetheless
there is a parallel to be drawn with changing adsorption energy.
As illustrated in Figure 1a, the key difference is that an applied
overpotential has the effect of shifting all electrochemical steps
in the exergonic direction, rather than accelerating some at the
expense of others. Throughout this discussion we adopt the
sign convention that a negative overpotential increases the rate
of reduction, as negative potentials increase electron energy.
In a BV model, symmetry factors are treated as constants,

and it is common to assume that β ≈ 1/2 for all elementary
steps.24,25 While β ≈ 1/2 is a serviceable approximation,
microscopic theories of charge transfer indicate that symmetry
factors should vary continuously with potential. The depend-
ence on potential can, in some instances, be weak; nonetheless,
differences in elementary symmetry factors will alter the relative
importance of each step as potential varies. An extreme example
would be the electrochemical-chemical or “EC” pathway R1 +
R2b, where the chemical step would show β ≈ 0 (perhaps a
weak dependence on field, concentration terms, etc.) and
become increasingly rate-determining as potential is applied to
accelerate the electrochemical step. For less dramatic differ-

Figure 1. Schematic free energy diagrams for a two-step, two-electron
transfer reaction with linear barrier scaling. (a) Varying overpotential.
(b) Varying adsorption energy of the surface intermediate.
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ences in symmetry factors, the implication is still that the best
catalyst identified for a particular potential may not be ideal for
realistic or practical overpotentialswe will show below that
even identical symmetry factors do not guarantee the optimal
catalyst is independent of potential.
Considering each contribution to the activation barrier

explicitly, a rate constant for a given step may be written as

β η γ= − Δ + + Δ‡k A G F G RTexp[ ( )/ ]i i i i i i0, 0, 0, (2)

where η is the overall-reaction overpotential (E − E0), γi is the
(thermochemical) BEP coefficient, ΔG0,i is the elementary
reaction energy at zero overall-reaction overpotential (±ΔGads

of 1/2 A2 for each step here), A0,i is the pre-exponential factor,
and ΔG0,i

‡ is an “intrinsic” barrier, defined when the individual
step is at equilibrium on a reference material exhibiting ΔG0,i =
0. The elementary reaction energy (ΔG0,i) may thus be more
appropriately labeled a “ΔΔG” relative to the reference
material, but the distinction is arbitrary for a reference of
zero. Additionally, the intrinsic barrier (ΔG0,i

‡ ) will be
independent of the reference if β = γ. Because a strict BEP
relation does not parse free energy change into chemical and
electrochemical contributions, it may often be approximated
that β ≈ γ, though this is not inherently requiredthe factors
embed potential-dependent and material-dependent properties,
respectively. Given the analogy between each coefficient, β and
γ will be referred to as the electrochemical symmetry factor
(ESF) and thermochemical symmetry factor (TSF). We restrict
the present analysis to the case in which both quantities are
equal. Equation 2 is equivalent to the Butler-Volmer model of
electrode kineticsthat is, free energy curves for reactant and
product (vs reaction coordinate, see Figure 3) are linear near
the transition state. Consequently, changing a reactant energy
(electrode potential) by a given amount (Fη) moves the
transition-state energy by a corresponding fractional amount
([1 − β]Fη), with net barrier decrease βFη. The reverse of any
given step thus also obeys β−i = (1 − βi). Deviations from β =

1/2 can be interpreted as a measure of the earliness or lateness
of the transition state,24 and measured values for single-electron
transfer reactions usually range from ∼0.3 to ∼0.7 under typical
experimentally accessible conditions.26

To a first approximation, it may be estimated that both
reaction steps in consideration, R1 + R2a, will have β1 ≈ β2 ≈
0.5 (and γ1 ≈ γ2 ≈ 0.5). Whenever β1 = β2, the ratio k1:k2 is
independent of the overpotential. If both steps are irreversible,
this leads to a total independence of the optimal adsorption
energy with respect to potential. On the other hand, a simple
steady-state analysis also stipulates that when all forward and
reverse steps are considered, any difference in intrinsic barriers
(ΔG0,i

‡ ) will cause the optimal adsorption energy to vary from
zero near equilibrium to a new constant at large overpotential.
The impact of reversible elementary steps is an aspect of
microkinetics that is perhaps even more important in
electrocatalysis than in thermal processeselectrochemical
half-reactions are ideally run very close to their individual
equilibria, even though the overall cell reaction is far from
equilibrium. The steady-state analysis when all steps are
reversible is shown in Figure 2, and the specific case in which
intrinsic barriers differ is shown in Figure 2c. There, the
variation in optimal adsorption energy may be understood from
the perspective that when η = 0, a value of ΔGads = 0 balances
the net rates of adsorption and desorption. The maximum
activity (dotted lines in Figure 2) coincides with an adsorbate
coverage of 1/2, which is established if each elementary step is
near equilibrium, regardless of their individual intrinsic barriers.
As overpotential increases, reverse rates become negligible, and
the optimal ΔGads is the one that causes the apparent barriers of
each step to equalizefor the scenario where all symmetry
factors are 1/2 this happens to occur when ΔGads is equal to the
difference in intrinsic barriers. Hence, a difference of say 0.25
eV in ΔG0

‡ values would be expected to cause a 0.25 eV shift in
optimal adsorption energy with potential, as shown in Figure
2c. Differences between ESFs (β1 ≠ β2), further influence the

Figure 2. Activity maps (a−d) using BV model for two step electrochemical reaction scheme. In all cases γi = βi. (a) Identical parameters: β1 = β2 =
0.5 and ΔG0,1

‡ = ΔG0,2
‡ = 1 eV. (b) Unequal symmetry factors: β1 = 0.3, β2 = 0.7, ΔG0,1

‡ = ΔG0,2
‡ = 1 eV. (c) Unequal intrinsic barriers: β1 = β2 = 0.5,

ΔG0,1
‡ = 1, ΔG0,2

‡ = 0.75 eV. (d) Unequal symmetry factors and intrinsic barriers: β1 = 0.3, β2 = 0.7, ΔG0,1
‡ = 1, ΔG0,2

‡ = 0.75 eV. The black dotted
lines denote the maximum rate at each potential. DRC plots (e−h) for reaction step R1 correspond to the activity maps directly above (a−d). All
values are normalized to activity at 0 V with 0 eV adsorption energy.
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relative importance of each step such that there is no
asymptotic limit to the optimal value (Figure 2b,d).
Examining the degree of rate control (DRC) for each step

(XRC,i = [∂ ln r/∂ ln ki]kj≠i,Ki

27,28 as a function of potential

provides further insight into the limiting processes. The DRC is
essentially a sensitivity analysis with respect to each transition-
state energy and is shown in Figure 2e−h for each scenario
mapped in Figure 2a−d. In the case where all parameters are
equal (Figure 2a), the maximum rate occurs when ΔGads = 0,
and each step exhibits equal control over the rate at all
potentials. In the case of more exergonic adsorption energies,
the rate falls but, notably, the DRC does not immediately
change near the equilibrium potential (right side of Figure 2e).
This is a consequence of the inclusion of reverse reactions and
compensating influences between rate constants and available
sitesraising ΔGads (relative to an exergonic value) better
balances adsorptive and desorptive processes, but there is still
not a single transition-state governing the rate. When
overpotential is increased in conjunction with the use of an
exergonic material, the product formation step and its
associated transition state then emerge as completely rate
controlling.
Moving to the case where symmetry factors differ (Figure

2b), a new behavior is exhibited whereby a trade-off in limiting
step can be seen at large overpotential. This corresponds to the
optimal value of adsorption energy continually decreasing,
shifting the limiting step from R2a to R1 for materials in the
range of mildly exergonic ΔGads. Finally, when the intrinsic
barriers differ (Figure 2c,d), the rate-determining step is
identified solely as the process with the higher intrinsic barrier
unless both adsorption energy and overpotential are large. At
smaller overpotentials, this scenario leads to a regime in which
the optimum adsorption energy does not correspond to an
equal DRC from each step. This is the case mentioned earlier in
which the rate-determining step differs from the potential-
determining step. The magnitude of the rate can be modulated
by the barrier of the first step, while the second step barrier has
no impact. Nonetheless, the second step is also critical as it
dictates a thermodynamically controlled (i.e., quasi-equili-
brated) active-site fraction.29 Such a phenomenon has been
discussed with respect to the kinetics of ORR on Pt, which
shows a Tafel slope and other kinetic signatures that are
indicative of limitation by activation, but which exhibits higher
rates on materials that bind oxygen more weakly than Pt.30,31 In
such cases, it could in principle be possible to accelerate the
rate by selectively lowering the initial O2 activation barrier.
Scaling relations may often prevent such a strategy in practice,
but it is worth consideration.
The above analysis presumes that elementary barriers and

symmetry factors are apt to show appreciable differences for
various elementary steps. It is not immediately clear, however,
that such regimes will appear in electrocatalytic processes of
interestmany of these processes (e.g., ORR, OER, HOR,
HER, CO2 reduction) are believed to proceed through series of
chemically similar proton-coupled electron transfer
steps.30,32−36 Thus, we next discuss some simple models of
the electrochemical activation process in order to explore the
extent to which such phenomena might be relevant.

■ MICROSCOPIC MODELS OF ELECTRON TRANSFER

Modern theories of charge transfer generally have origins
attributable to the work of Marcus37 and Hush.38 Marcus

originally proposed that solvent reorganization plays a major
role in activation via fluctuations, which lead to a non-
equilibrium polarization with respect to the electrostatic field of
the reactants or products. While the electron cloud of solvent
molecules can polarize quickly in response to charge transfer,
the slow solvent modes involved in reorientation cannot. A
reaction coordinate may thus be identified as a reorientation of
solvent between a configuration that would be in equilibrium
with the reactants and one corresponding to equilibrium with
the products. The “outer” reactant energy associated with
solvent reorganization is then given by the change (upon
charge transfer) in total solvation energy, minus that due to the
fast modes. Based on the approximation of solvent as a
continuum dielectric, this is roughly

λ
πε ε ε

=
Δ

−
∞

⎛

⎝
⎜

⎞

⎠
⎟

e

a

( )

8

1 1 1
O

r

2

0 0 (3)

where Δe is the charge transferred, ε∞ and εr are the optical and
static dielectric constants, and a0 is the radius of the reacting
ion. Additional terms may be added to account for an image
charge interaction on an electrode and/or cases of bimolecular
reactions. If the reaction coordinate, qs, represents the solvent
orientation that would be in equilibrium with a given extent of
charge transfer (i.e., Δe = qse0) then the resulting free energy
surface of both reactants and products can be considered
parabolic.39 Moreover, addition of any “inner” reorganization
energy (λI) in the form of changes to normal harmonic
vibrational modes will retain the parabolic nature of the free
energy surfaces along the reaction coordinate. With appropriate
coordinate scaling one can describe the reactant and product
surfaces by one effective reaction coordinate (q) and the total
reorganization energy λ = λO + λI, such that, for example, the
reactant energy is simply λq2.
A critical point for consideration in catalysis is that Marcus

theory treats reaction rates only in the limit of weak electronic
coupling between the wave functions of reacting species. The
coupling is assumed to be sufficient for the transition to be
adiabatic, but at the same time there is not a well-defined
transition state. Electron transfer occurs when a nuclear
configuration that could correspond to either product or
reactant at the same energy is achieved, and the barrier is thus
effectively located at the intersection of the free energy curves.
As illustrated in Figure 3b, if the coupling element (Vab) is
small, the true location of the barrier may be reasonably
estimated, but strong coupling introduces more uncertainty. A
rigorous quantum treatment in the limit of very weak coupling
was given originally by Levich and Dogonadze, addressing
nonadiabaticity, tunneling, and (for heterogeneous cases)
transfer to/from the continuum of states available on an
electrode.40,41 In contrast, the regime of strong coupling
remains less well-described but is unfortunately the domain
most relevant to electrocatalytic reactions. Strong coupling does
generally permit the assumption of adiabaticity, but treatment
of electron transfer to and from various electrode states must
give way toward a treatment of hybridization and shared
electrons between electrode and substrate.
Before discussing more contemporary approaches to

electrode kinetics, we illustrate a few consequences of Marcus
theory, as compared to the BV framework in Figure 3. Provided
that vibrational force constants do not change substantially
between reactants and products, both free energy parabolas will
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have the same characteristic reorganization energy. The
activation barrier is easily found at the intersection:

λ

λ
Δ =

+ Δ‡G
G( )

4
i

i i

i

2

(4)

For an electrode reaction in which the reactant can adsorb, we
may express ΔGi = ΔG0,i + Fη (as defined for eq 2). At
equilibrium, eq 4 yields a barrier of λi/4. The ESF may be
determined from the derivative with respect to overpotential:

β
η

λ

η

λ
= +

Δ +
= +

G F F1

2 2

1

2 2i

i

i

i

i

0,

(5)

where we have noted the overpotential of an individual step to
be ηi = ΔG0,i/F + η. It is also straightforward to show that the
Marcus description requires a TSF γi = βi. The relation in eq 5
implies that in an individual reaction, the symmetry factor spans
the range of zero to unity over the course of an overpotential
window of ± λ/F, creating significant deviation from BV
characteristics unless λ is large. Reorganization energies of
outer-sphere electron transfer are typically on the order of 0.5−
1 eV,42 while estimates for the process of shedding a (partial)
solvent layer to bond to an electrode can be significantly
highera value of 3 eV has been suggested for reduction of an
aqueous proton,43 which is consistent with eq 3 using the
solvation radius of H3O

+ (∼1 Å). The variation of rate
constants with the values λ = 1 eV and λ = 3 eV is shown in
Figure 3c. With values of the latter magnitude, deviation from a
constant symmetry factor may be slow, but in a sequential
mechanism, elementary steps may also require a large
overpotential to become favorable. A highly unfavorable step
would be expected to show an ESF near unity when the overall

reaction is at equilibrium, while the ESF would shift nearer to
1/2 at the overpotentials where this step becomes downhill.
Extreme overpotentials (>1 V) are commonly utilized in
reactions such as oxygen evolution (OER) and the electro-
reduction of CO2.

44,45

It may be noted that in the limit of very large driving force,
eqs 4 and 5 should yield an increasing barrier and negative
symmetry factor. Such behavior is known as the “inverted
regime” and can be seen in Figure 3 as a decreasing rate
constant at large negative overpotential. Marcus theory
approximates that the majority of electron transfer should
occur to/from states near the Fermi level set by electrode
potential, as these represent the largest driving force among
appropriately populated states (e.g., highest energy states with
electrons available for reduction). Unlike homogeneous
electron transfers, however, the electrode may exchange
electrons from any available level and should reach a current
plateau rather than an inverted region. In a framework
formulated by Gerischer,46 the local rate (per unit energy
level in the electrode) is considered proportional to the product
of the electrode density of states (DOS) and the concentration
of redox species (which exhibit a distribution of energies) that
are aligned at the same level. For a simple metal electrode
(treated as a reservoir of large, constant DOS), eq 4 can be
used to infer a Gaussian distribution of local rates,47 as
illustrated in the inset of Figure 3b. Approximating the Fermi−
Dirac distribution of electronic states, f(ε), as a step function,
one may write

∫
λ η ε

λ
ε ε

λ η

λ
∝ −

+ − ′
′ ′ ≈

+⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟k

F

RT
f

F

RT
exp

( )

4
( )d erfc

2
i

i i

i

i i

i

2

(6)

where ε′ = ε − εf. This yields

β
πλ

=
−RT z

z

exp[ ]

erfc( )i
i

2

(7)

where =
λ η

λ

+
z

F

RT2

i i

i

. Equations 6 and 7 yield asymptotic limits for

the rate constant and ESF (zero) at large overpotential, and are
compared to the BV and basic Marcus models in Figure 3.
Deviations are seen to be minor with respect to Marcus theory,
but they become significant for small reorganization energies
and large exergonic overpotentials. While asymptotic behavior
is not addressable by BV or simple Marcus kinetics, it is
common practice in microkinetic modeling to impose cutoff
points such that the barrier does not become negative (the
“activationless” limit) or exceeded by reaction energy (the
“barrierless” limit).48

Narrowing the focus to surface-mediated reactions, strong
resonant coupling is to be expected between the reactant wave
function and electrode band structure. While these interactions
may be most accurately captured with numerical quantum
chemical calculations, significant insight may be gained by
examination of more approximate models. To this end it is
helpful to define the energy of the complete reacting system,
rather than producing separate reactant and product curves.
Most important to this description, the energy level of the
relevant orbital of the redox species has been shown, to good
approximation, to couple with solvent modes in linear
proportion to charge.40 When the solvent coordinates are
scaled by the linear coupling constants, the effective one-

Figure 3. Representative free energy diagrams for (a) Butler−Volmer
model and (b) Marcus theory electron transfers. “O” and “R”

represent oxidized and reduced forms of a molecule. Inset: Band
diagram of initial and final states for Gerischer−Marcus model, where
rate is proportional to overlap. (c) Normalized rate constants and (d)
corresponding symmetry factors as a function of overpotential for
typical kinetic parameters, as labeled. For each curve marked by a λ
value, the lighter weight line represents standard Marcus theory and
the heavier line is the Gerischer modification. The BV barrier was set
to 0.75 eV to coincide with the λ = 3eV Marcus model at equilibrium.
Discontinuities in the solid BV curves represent a crossover to
activationless and barrierless regimes, while the dotted lines show the
result of eq 2 unrestricted.
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electron energy level (relative to that in vacuum) can then be
described as

ε ε λ̃ = − + ⟨ ⟩σ σ σ−q U n2a a a, , , (8)

Equation 8 has the meaning that for occupation number ⟨na,σ⟩,
the electronic energy of the state is ⟨na,σ⟩ε̃a,σ (where σ denotes
spin). The solvent coupling term (2λq) is defined here with the
convention that a neutral species has occupation number ⟨na,σ⟩
= 0 (equilibrium polarization at q = 0), and the final term
represents on-site Coulomb repulsion of magnitude U. It has
been suggested49,50 to treat the hybridization of the effective
redox level (eq 8) with electrode states according to the
Newns−Anderson (NA) model of chemisorption.51,52 Here we
perform such an analysis for the reductive adsorption of H+ on
Pt using several ideas outlined in refs 49 and 50, but we have
also made a few critical alterations. These works consider the
electron transfer to involve a single spin state of the adsorbate,
even when the spin states become degenerate at the short
electrode-adsorbate separations relevant to adsorption. Our
depiction effectively differs by accounting for both states so that
the DOS projected onto the adsorbate orbital during
adsorption still represents a capacity for two electrons.53 Our
development ultimately resembles more closely an effective-
medium theory.54 A more detailed description will be given
elsewhere.
A simple formulation of the NA-model gives the (spin-

unpolarized) adsorbate-localized DOS as

ρ ε
π

ε

ε ε ε ε
=

Δ

− ̃ − Λ + Δ
( )

1 ( )

[ ( )] ( )a
a

2 2
(9)

Above, the Δ(ε) term is a broadening proportional to the
coupling matrix element (Va,Mk

) between the adsorbate level

and each metal state, often treated as a constant (for fixed
separation distance) such that Δ(ε) is proportional to the metal
DOS: Δ(ε) = πV2ρM(ε). The Λ(ε) term represents an energy
shift, which in the limit of strong coupling to narrow bands
(e.g., d-states) produces bonding and antibonding levels. It is
given by the Hilbert transform of Δ:

∫ε
π

ε

ε ε
εΛ =

Δ ′
− ′

′
−∞

∞
( )

1 ( )
d

(10)

In the limit of a flat band structure (e.g., sp-metals), Λ→ 0 and
the broadening is simply Lorentzian. Representative plots for
ρa(ε) during the adsorption of H on a Pt surface, computed
with DFT (VASP package55,56) and fit with eq 9 are shown in
Figure 4.53 We note that direct quantum chemical calculations
are not necessary for a qualitative description, but extracting a

few parameters from these calculations greatly simplifies
discussion. Fits of ρa(ε) were used to estimate the coupling
matrix elements as well as the self-consistent vacuum adsorbate
levels corresponding to each H-metal distance with the solvent
coordinate q = 0 (reduced H atom). It should also be noted
that despite any superficial resemblances, this adsorbate-
localized DOS is fundamentally different than the distribution
of available redox levels in Figure 3.
Equipped with the local DOS for the adsorbing species and a

means to calculate its changes due to solvent fluctuation, the
one electron energy sum (integration over the DOS) may be
obtained. It has been well illustrated in the effective medium
theory of Nørskov and co-workers54,57 that changes to the one-
electron sum upon adsorption will often capture differences in
adsorption energies across a series of similar systems. This is a
powerful result because the one-electron energy is not the only
contribution to total energy. Briefly, in the effective medium
theory, adsorption is governed mainly by the atom seeking a
region of optimal electron density. When a system is perturbed
by, for example, changing the chemical identity of the surface,
the adsorbate will adjust its bond distance to re-establish a
similar ambient electron density and thus experience a similar
“embedding energy.” Dif ferences in adsorption energy are then
governed by small corrections which amount to (i) the change
in one-electron energy levels and (ii) changes in nonlocal
electrostatic interactions. In this context, “nonlocal” refers to
the interactions between the charge density in one region (e.g.,
the adsorbate) and the field emanating from the other region
(e.g., the surface). The electrostatic contributions are often
small, though they can play a significant role when strong
dipoles or ions are present, as in alkali-promoted reactions58,59

or, naturally, redox reactions.
In the present system, solvent fluctuations may be treated as

a perturbation, modifying the H-metal interaction relative to
the value in the absence of solvent at a given H-metal
separation. With solvent terms, the change in adsorption energy
(at fixed distance and zero overpotential) can then be estimated
as

δ δ λ λΔ = Δ | + + + +=E q E E q E q q q( ) ( ) ( ) 2q e es0 1
2

(11)

where:

∫δ ρ ε ρ ε ε ε

δ ϕ

= ̃ − ·

= − ⟨ ⟩

ε

−∞
E

E n

[ ( ) ( )] d

(1 )

e a a

es a

1

f

Above, Δ indicates the change upon adsorption while δ
indicates a change upon perturbation by a solvent fluctuation.
Perturbed quantities are denoted by a tilde. The first term in eq
11 is simply the adsorption energy in the absence of solvent.
The electrostatic energy term represents the interaction of the
field of the electrode (screened potential, ϕ, relative to the bulk
solution, at distance d), with the charge of the adsorbate
(proton). To higher order, a polarization term could also be
added to account for the image charge induced in the electrode,
but the electrostatic contribution was found to be small here
and does not impact the discussion. The last term emanates
from eq 8 by assigning the proton a coordinate of q = −1 and a
charge of 1 − ⟨na⟩, rather than ⟨na⟩. Finally, we can estimate the
free energy (relative to H++e− at 0 VRHE), by adding the
contributions of overpotential, entropy, and zero-point energy,
each proportional to the charge transferred: ΔG = ΔE(q) +
e0η(1 − ⟨na⟩) + (ΔZPE − TΔS)⟨na⟩. While the energy

Figure 4. Calculated (green) and fit (blue) H1s projected density of
states53 at various distances between H and the plane of a 3-fold
hollow site of Pt(111). A Gaussian fit to the Pt d-band (dotted line) is
also shown for reference. The sp-states were treated as a flat band in
fits.

ACS Catalysis Perspective

DOI: 10.1021/acscatal.7b03235
ACS Catal. 2017, 7, 8641−8652

8646



associated with overpotential should indeed shift linearly with
the extent of charge transfer, the latter terms are effectively an
interpolation between tabulated60,61 initial and final values. The
resulting free energy surface at η = 0 is presented in Figure 5a,
along with corresponding DOS plots showing how the
occupation of the H-orbital changes along the reaction
coordinate (Figure 5c).
Before interpreting the free energy surface, it should be

noted that the effective medium theory approximates that there
is no change to exchange and correlation energies upon
perturbation. Since the orbital occupancies in the present
model change more dramatically than in the case of shifting
across various transition metal surfaces, this approximation
represents a weakness in our depiction. The allocation of
charge to the adsorbate also raises an interesting issue. One
may note that the occupation of the adsorbate state is estimated
by ⟨na⟩ = ∫ −∞

εf ρa(ε)dε, where proper normalization of ρa
permits an occupancy up to two electrons. As the adsorbed
H atom reaches its final bond length, the band occupancy tends
to exceed 1 (i.e., the one electron introduced by charge
transfer). More complex spatial-allocation schemes such as
Bader analysis62 give similar results. Thus, separating the
contributions of charge transfer and local hybridization (i.e.,
bond polarity) from a simulation is nontrivial. One computa-
tional test that has been suggested is to compare the
dependence of the adsorption energy on the work function
of the surface (modified with remote coadsorbates).10 This can
help to diagnose the absence of true charge transfer, but if both
phenomena are simultaneous, the interpretation is less clear. In
some studies, hybridization has been considered negligible
the addition of explicit solvent molecules can actually reduce
the apparent charge transfer for PCET reactions to less than
unity.63 This may relate to a partial occupancy on H+ while still
in the double layer, and/or to delocalization errors in DFT.5

Further discussion of computational models is deferred to the
following section. In the present analysis, we have chosen to
normalize the occupation of the projected H1s state to its final

value, such that both contributions scale with the reaction
progress.
By computing a series of free energy surfaces (as in Figure

5a) with varying overpotential, we have estimated the
symmetry factor as a function of potential. This is plotted in
Figure 5d and compared to the basic Marcus theory with a
reorganization energy of 3.3 eV (chosen to align the solvated
proton energy to zero, but well within the approximation of eq
3). The ESFs are in qualitative agreement, but the computed
values are uniformly smaller. One reason may be that the
potential experienced by the proton as it approaches the surface
is only weakly repulsive, whereas the force constant of the H-
metal bond may give the product well of the free energy surface
a sharper curvature. Asymmetric potentials are known to have
the impact of shifting the symmetry factor line by
approximately a constant.64 Another cause for the departure
from simple Marcus theory may be that the electrode-reactant
separation distance corresponding to the transition state occurs
systematically at further separations for larger negative
overpotentials. Asymmetric potentials and distance depend-
ences are addressable in the complete Marcus theory,24

provided sufficient information on the relevant orbitals and
vibrational modes is available. These factors implicitly manifest
in Figure 5 as it is seeded with DFT energies at each separation
distance.
The key point to take away from the above analysis is that

the symmetry factor may differ non-negligibly from 1/2, even
near equilibrium. The deviations may not be large enough to
yield significant extrapolation errors over the small potential
window typical of HER and HOR on Pt, but there may,
however, be consequences in optimizing non-noble HER
electrocatalysts. MoS2, for example, is a promising material for
the HER, and it has been shown that edge sites are primarily
responsible for its activity.65,66 These sites are calculated to
have H-adsorption energies similar to Pt,67 but they are quite
scarce in comparison to basal plane sites. This scarcity leads to
a requirement of significant overpotential, and therefore may
imply that the optimal adsorption energy for H may not be
precisely zero. More complex mechanisms, such as CO2

reduction, with multiple bond breaking and formation steps,
may have behavior that varies more widely.

■ DIRECT SIMULATIONS OF ELECTRON TRANSER

Finally, we call attention to recent developments in the explicit
computation of electrochemical activation barriers. In some
regards, there is a fine line between a “physically transparent”
theory, such as that discussed above, and a simulation, which is
still derived from a theory, but which begins to have too many
interrelated parameters and too large a configuration space to
give one immediate, generalizable insight. This trade-off
underscores the need to establish highly accurate methods
upon which to benchmark and validate more approximate
models. Quantum chemical calculations have in principle the
capability to approach chemical accuracy, although compre-
hensive models of the electrochemical interface, including
solvent and electrolyte ion distributions, remain too computa-
tionally expensive to implement. As a starting point, numerous
works have been directed toward characterizing the potential of
the simulated electrode and the thermodynamics of the
electrochemical interface. Estimates of reaction energies have
been made accessible by the computational hydrogen electrode
scheme,5 which permits relation of a state with H+ + e− to the
computationally accessible energy of H2 (and likewise for other

Figure 5. (a) Free energy surface computed for Volmer (H++e− ↔
H*) reaction. (b) Minimum energy pathway at various overpotentials
(solid line corresponds to the path traced in (a)). (c) Corresponding
PDOS on H1s orbitals (blue, x-axis zoomed and truncated for visibility
of features) and scaled DOS for Pt (gray, Gaussian fit to d-band, flat
sp-band). (d) ESFs determined from (b) compared with a standard
Marcus model.
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redox pairs). However, explicit identification and control of
potential within calculations remains challenging. Perhaps the
most basic issue is that simulated systems are finite, and the
transfer of an electron from electrode to reactant results in a
change in potential. Periodic calculations, which are preferred
for reactions on extended surfaces, must also be charge-neutral.
Methods for controlling the potential of a periodic electrode
surface have included direct addition of electrons with a
homogeneous background counter-charge for neutrality,68

distributing counter charge in a planar conductor69 or
throughout a continuous dielectric medium per the Poisson−
Boltzmann equation,70,71 and placing alkali or H atoms in an
explicit water layer, such that charge moves to the surface and
leaves ions in the water layer.72 The atom-addition methods are
somewhat more representative of real systems with electrolyte,
but the control over potential is coarseadding charge in
integer increments creates large steps in potential unless the
simulation cell is extremely large. Changes to the potential of a
surface over the course of a full electron transfer reaction thus
also tend to be large, regardless of the manner in which
potential is established.
Several approaches have been taken to assigning a constant

electrode potential over a simulated reaction path. Perhaps the
most realistic (while still somewhat tractable) approach to date
utilizes an iterative adjustment of injected charge to maintain
constant potential, although it is still quite computationally
costly.7 Simple averaging between initial and final states has
been suggested,72 as has a cell-extrapolation scheme, whereby a
process is modeled in increasingly sized unit cells and the
reaction energy and change in work function are extrapolated to
values converging at infinite size (negligible change in charge
density).4,73 Due to the high computational requirements of
this method, a simpler charge-extrapolation method has been
recently introduced, in which the interface is treated as an ideal
capacitor.5,74 Using a single barrier calculation and a charge
allocation analysis (e.g., Bader), the charge transferred at
transition and final states can be used to estimate the reaction
energy and barrier fixed at the initial-state potential. The
symmetry factor is identified as the charge transferred upon
reaching the transition state. Uncertainties mainly stem from
delocalization errors within DFT,75 which can yield quantities
of charge transfer that differ significantly from integer values.
This may preclude accurate determination of the potential-
dependence of the symmetry factor for some time.
In each of these methods solvation must still also be handled

in an approximate way, either as continuum dielectric and/or
with a few explicit water molecules (often an ice-like surface
bilayer) with initial-state configurations representing reactants
in the Helmholtz layer rather than beginning from bulk
solvation. An alternative scheme has been developed in which
potential-dependent barriers for electrochemical reactions are
determined by extrapolating energetically equivalent non-
electrochemical barrierse.g. relating PCET to an equivalent
H atom transfer.11,36,76 In this method, the “equivalent”
activation barrier is defined for the potential at which the
atomic H species (adsorbed or bonded to water) would be in
equilibrium with a solvated H+ and e− in the electrode. The
barrier is then scaled with overpotential according to a Butler−
Volmer symmetry factor, or more recently, a Marcus-type
parabolic profile, fit to the points ascribed to initial, transition,
and final states.6 Definition of the reaction coordinate is still
open to some interpretation and subject to uncertainties in
solvent reorganization and charge allocation when, for example,

extent of transfer is used as a coordinate. Although much
progress has been made in the explicit calculation of
electrochemical barriers, limitations related to finite system
size including the representation of solvation, ion/field
distribution, and maintenance of a constant potential still
remain open problems with a need for further refinement.
Delocalization error in particular may prove a significant
challenge in moving beyond a linear (BV-type) model of the
barriers.

■ COMPARISON OF APPROACHES

Having illustrated a number of models for electrochemical
activation, we consider the impact that some of these
treatments may have in identifying the “optimal” value of
adsorption energy for the reaction sequence comprised of steps
R1 + R2a above. Figure 6 shows the absolute value of rate
computed for both positive and negative overpotentials using
the (Gerischer)-Marcus model, eq 6. We compare cases with
(a) equivalent reorganization energies for both steps (λ1 = λ2 =
3 eV), and (b) values differing by 1 eV (λ1 = 4 eV, λ2 = 3 eV),
which would correspond to just a 0.25 eV difference in intrinsic
barrier. When the reorganization energies differ, it can be seen
that the ideal adsorption energy exhibits a variation with
potential, similar to what was shown in the BV analysis in
Figure 2. The parameters of BV kinetics cannot be
independently varied within Marcus theory due to their
inherent relationships with the reorganization energy (eqs 4
and 5), but Figure 6b roughly corresponds to Figure 2c, with
the addition of slowly varying symmetry factors.
To illustrate the possible implications of using fixed BV

parameters to identify optimal catalysts over a large potential
range, we compare, in Figure 7, volcano curves (vertical cuts
through activity maps such as Figures 2 and 6) derived from BV
and Marcus models. We make the approximation that Marcus-
theory rate constants represent correct local values (i.e., at a
given potential on a given material) for activation barriers and
symmetry factors when fit with BV parameters. In other words,
each BV activation barrier is given by a tangent plane to the
local Marcus barrier, per eqs 2, 4, and 5. The volcano curves are
shown at overpotentials of −0.3 V and −1.3 V for cases where
the BV parameters are extracted locally at the operating
potential, and where they are extrapolated from the equilibrium
potential (each case being evaluated with the respective optimal
adsorption energy for that potential). It can be seen in the
figure that the BV result is in good agreement with the Marcus
model when parameters are extracted near the chosen

Figure 6. Activity maps (relative magnitude of rate) for forward and
reverse two-step electrochemical reaction using Gerischer-Marcus
model. (a): λ1 = λ2 = 3 eV and (b): λ1 = 4 eV, λ2 = 3 eV. The black
dotted lines trace the maximum activity at each potential.
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operating potential. When extrapolated from 0 V, deviations
arise. However, in this simple mechanism it appears that despite
significant variation in the absolute values of rate constants, the
shift in activity maximum requires a large overpotential to reach
magnitudes of experimental consequence. At the −0.3 V
condition, the volcano peak error shifts by a modest 0.01 eV.
An additional volt of overpotential yields a 0.1 eV deviation,
which is roughly the accuracy to which adsorption energy
differences can be determined with DFT calculations.77,78 As a
point of reference, the symmetry factors at −1.3 V have moved
from their equilibrium values of β1 = β2 = 0.5 to β1 = 0.30 and
β2 = 0.34, while the apparent intrinsic barriers have shifted from
ΔG0,1

‡ = 1, ΔG0,2
‡ = 0.75 to ΔG0,1

‡ = 0.84, ΔG0,2
‡ = 0.67 (all in

eV). More complex mechanisms may have some potential to
beget larger errors over smaller potential windows, but in
general the conditions which generate significant shifts in
symmetry factors (large overpotentials, large adsorption
energies) will be most relevant when combatting elementary
steps that have very large barriers (large reorganization
energies). Since it is the ratio of reaction energy to
reorganization energy that impacts the symmetry factor (see
eq 5), extrapolation errors should only be expected to be
significant when overpotentials are large relative to those where
the rate is measured or where the barrier is calculated.
Finally, we point out that the particular example in Figure 7

does not represent a limiting magnitude of error, but rather just
the differences that may arise between two simplistic models.
As was shown in Figure 5d, it is possible that the true symmetry
factors may deviate by larger amounts. We have excluded the
NA-Marcus model from the present comparison because there
is a significant configuration space (more degrees of freedom to
map) for reaction R2a, and a proper NA model is also more
involved than space permits. Nonetheless, that example serves
to illustrate that actual parameter values have the potential to
differ appreciably from BV or basic Marcus fits. A best practice
in attempting to assess electrocatalyst kinetics would thus be to
fit parameters as near to the neighborhood of typical operation
on a given material as possible.

■ DISCUSSION AND OUTLOOK

Herein we have explored several models of electron transfer
and discussed their respective impact on the identification of an
optimal catalyst for a simple kinetic scheme. This study has
illustrated the necessity to inform the design of catalytic

materials with activation barrier estimates that are accurate at
the intended operating potential of a reaction. We have also
shown, however, that the approximation of constant elementary
symmetry factors may often be adequate to assess the potential-
dependencies of these barriers because activity maxima vary
more substantially with (i) absolute differences in barriers and
(ii) the (potential-dependent) reversibilities of the elementary
steps. The impact of reversibilities is particularly important in
electrocatalysis due to the operation of half-reactions near their
individual equilibriawhen a potential-determining elementary
step is crossing the point of favorability, the optimal adsorption
energy may still be a strong function of potential. In
comparison, while the potential dependence of activation
barriers can in principle play an important role, it is only the
dif ferences in such dependencies for multiple steps that
contributes to changes in their respective degrees of rate
control. Thus, from a practical perspective, shifts in predicted
activity due to the assumption of constant ESFs will often not
be large enough to alter the course of computational materials
screeningusually any material within a few tenths of an eV to
the optimum still merits testing. Reactions which require
significant overpotentials and/or catalyst materials with large
binding energiesfactors that can induce large shifts in
symmetry factorwill generally also involve commensurate
reorganization energies, which have a dampening effect per eq
5.
Nonetheless, there are cases where a reaction may be

performed at large overpotentials for reasons other than a large
enthalpic barrierfor example, to overcome the low
concentration of HER active sites on transition metal
chalcogenides. Such instances may show significant deviations
from symmetric BV kinetics across the potential span from
equilibrium to high-current conditions. As illustrated with a
Newns-Anderson-Marcus model for reductive H+ adsorption,
factors such as variability in the bond distance of the transition
state and/or substantial differences between reactant and
product force constants may yield a symmetry factor that
deviates significantly from 1/2. While the value of ESFs in that
model were generally smaller than 1/2, their potential-
dependence was also still weak. Thus, a good compromise
between accuracy and detail may be to utilize linear scaling
models (BV-type kinetics) but to focus on obtaining good
values for each of the constants at the most relevant conditions,
rather than presuming symmetry factors of 1/2 and/or
extrapolating barriers from the most convenient potential
referencefrequently dictated by the equilibrium of a reference
reaction or finite increments of potential set by simulation cell
dimensions.5,11 The fact that many real catalyst materials are
also far from the theoretical optimum further enforces the need
to evaluate barriers under relevant scenarios to determine how
these materials should best be modified.
Chemical accuracy in the magnitude of activation barriers

and symmetry factors will ideally be addressed with full
quantum chemical calculations. The role of outer reorganiza-
tion energy is large enough that these calculations will need to
account for solvent interactions. While solvent contributions
may be roughly constant in comparisons that are chemically
analogous (e.g., the same reaction on different surfaces), the
relative importance of sequential steps in complex mechanisms
could be significantly impacted by differences in solvation.
Explicit solvation is in principle ideal to capture specific
coordination environments, but particular care must be taken
with such models, as the initial-state solvent molecule

Figure 7. Volcano plots at −0.3 V (a) and −1.3 V (b) showing
optimum adsorption energy found with Marcus theory and BV
models. Both plots use BV parameters extrapolated from equilibrium,
such that β1 = β2 = 0.5, ΔG0,1

‡ = 1, ΔG0,2
‡ = 0.75 eV, as well as local BV

parameters at each potential determined via eqs 2, 4, and 5 with λ1 = 4
eV, and λ2 = 3 eV. Black vertical dotted lines indicate the peak of each
curve.
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placements are subject to bias. As computational power
continues to grow, larger scale quantum molecular-dynamic
simulations of the electrochemical interface will undoubtedly
challenge previous assumptions and provide new insights.
Calculations will also need to utilize transparent referencing
schemes to establish constant reaction potentials and to utilize
a well-benchmarked charge allocation scheme. The boundary
for electrons shared by two centers can be defined in a number
of ways, and more importantly, DFT is still subject to
delocalization errors. Separation of charge transfer from
hybridization will also require further consideration in defining
symmetry factors according to, e.g., the partial charge
transferred at the transition state.
More generally we have indicated that large multistep

reactions should have the greatest likelihood of showing
significant differences among relevant elementary step
symmetry factors. It is to be expected from a microscopic
picture of charge transfer that a strongly bound intermediate
should have a low ESF for formation and a high ESF for
removal. Scaling relations tend to dictate that sequences of
elementary steps involving surface intermediates with corre-
lated energies are apt to pass through both high and low energy
intermediateseven on a good catalystand are thus apt to
show a range of symmetry factors. At the same time, it may be
recognized that the limiting cases of large energy change for a
step coincide with the approaches to activationless or
barrierless limits (quasi-equilibrium) of the step. Focus on
the PDS and the thermodynamic overpotential may thus often
be the first priority, but rates may have the potential to be
further enhanced by lowering RDS barriers. Such an approach
may also be limited by scaling relations, but these are not
necessarily impossible to circumvent. Various approaches have
been suggested to impart a differential stabilization to “related-
but-different” surface moieties. These include the introduction
of high-specificity surface ligands, alloying elements, or
appropriate nanostructuring for geometric effectsthough
the promise of implementing these strategies at-will is often
tempered by stability constraints. Manipulation of these
variables is also contingent upon a certain level of knowledge
about the active site and mechanism of reaction, and to this end
there will be great needs in both simulation (particularly the
role of solvent, adsorbed electrolyte species) and advanced
experimental characterization (e.g., in situ spectroscopic
probes). However, even simple experimental kinetic measure-
ments, such as temperature dependence, concentration depend-
ence, and isotopic labeling methods tend to be underutilized in
electrocatalysis.
Finally, we acknowledge that the mechanistic insights put

forth here are based on a hypothetical system and that the
manifestations in real electrocatalytic processes may differ for
any number of reasons. These may be simple, practical
considerations such as the presence of mass transport
limitations or stability issues such as restructuring or surface
oxidation of a catalyst.79 There may also be complexities that
are inherent to the kinetics of a given reaction. Parallel
pathways involving pure chemical steps are a simple example,
though are straightforward to incorporate into modeling efforts.
Another case could be the presence of rate-limiting outer-
sphere electron transfer steps, which can undermine attempts
to accelerate rates by tuning surface composition. This issue has
been noted for the ORR in alkaline solution, which is found to
involve an outer-sphere initiation step on many materials.80

There may also be cases in which the thermodynamics and

kinetics of crucial steps, either chemical or electrochemical,
exhibit strong departures from the approximate shift given by
the product of overpotential and charge transferred. These may
arise through secondary influences such as the interaction
between adsorbate dipoles and the electric field in the double
layer. In a recent example, a comprehensive DFT model of the
electrochemical interface (including solvent, electrolyte, and
potential-dependence) was used to show that certain “pure-
chemical” C−C coupling steps that may occur during CO2

reduction over Cu may exhibit a rather strong potential
dependence. It was found that the barrier for CO dimerization
actually increased with applied (negative) overpotential, while a
competing barrier for the reduction of CO to CHO decreased,
consistent with experimental shifts in the selectivity profile.7

Other studies of barriers for possible CO2 reduction steps have
shown that despite a higher thermodynamic driving force for
CO to reduce to a CHO species, the barrier for reduction to
COH is lower and governs selective conversion to methane
over methanol.36 Thus, we also note that while optimization of
overall rate is always a worthy goal, selectivity must also often
be prioritized and may be influenced by relatively subtle
differences in the response of reaction energies and barriers
toward potential. While such a long list of caveats certainly
limits the reach of our concrete analysis, it also strengthens the
underlying message. In such a complex environment as the
electrochemical interface, accuracy cannot be guaranteed
without a high degree of specificity, whether in simulation or
experiment. Nonetheless, approximate models are necessary to
generalize and guide priorities, both in experiment as well as in
computationally intensive simulation. Care must simply be
taken to ensure that these approximations do not cause
omissions or a focus on a nonoptimal parameter space.

■ METHODS

Calculation Details. Plane-wave density functional theory
calculations were performed using the Vienna Ab-Initio
Simulation Package (VASP)55,56 and the PBE exchange-
correlation functional.81 An energy cutoff of 450 eV was used
in all calculations. The Brillouin zone integration was
performed using a (5 × 5 × 1) k-point Monkhorst−Pack
grid82 for initial surface relaxations and a (17 × 17 × 1) k-point
Monkhorst−Pack grid for DOS calculations. The surfaces were
modeled by a (3 × 3) supercell with four metal layers and 16 Å
of vacuum. Dipole corrections were used to avoid slab−slab
interactions.83 The first two layers were allowed to relax, while
the bottom layers were fixed at the calculated nearest neighbor
distance. The optimized surfaces (prerelaxed) in the absence of
the hydrogen atom were used as input data to carry out the
calculations to study the hydrogen desorption. For each Volmer
reaction system, we performed a series of calculations for a
single hydrogen atom adsorbed on a hollow site, and varied its
separation from the surface. The prerelaxed surface was kept
fixed while the H was allowed to relax in the xy-coordinates
during these calculations. At each position, we calculated the
adsorption energy and the DOS projected onto the 1s orbital of
hydrogen. The calculations presented were performed without
spin polarization.
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