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Fast and Guaranteed Blind Multichannel
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System Model
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Abstract— We consider the multichannel blind deconvolution
problem where we observe the output of multiple channels
that are all excited with the same unknown input. From these
observations, we wish to estimate the impulse responses of each

of the channels. We show that this problem is well-posed if
the channels follow a bilinear model where the ensemble of
channel responses is modeled as lying in a low-dimensional
subspace but with each channel modulated by an independent
gain. Under this model, we show how the channel estimates can be
found by minimizing a quadratic function over a non-convex set.
We analyze two methods for solving this non-convex program,
and provide performance guarantees for each. The first is a
method of alternating eigenvectors that breaks the program down
into a series of eigenvalue problems. The second is a truncated
power iteration, which can roughly be interpreted as a method
for finding the largest eigenvector of a symmetric matrix with
the additional constraint that it adheres to our bilinear model.
As with most non-convex optimization algorithms, the perfor-
mance of both of these algorithms is highly dependent on having
a good starting point. We show how such a starting point can be
constructed from the channel measurements. Our performance
guarantees are non-asymptotic, and provide a sufficient condition
on the number of samples observed per channel in order to
guarantee channel estimates of certain accuracy. Our analysis
uses a model with a “generic” subspace that is drawn at random,
and we show the performance bounds hold with high probability.
Mathematically, the key estimates are derived by quantifying how
well the eigenvectors of certain random matrices approximate
the eigenvectors of their mean. We also present a series of
numerical results demonstrating that the empirical performance
is consistent with the presented theory.

Index Terms— Blind deconvolution, non-convex optimization,
eigenvalue decomposition, sensitivity analysis.

I. INTRODUCTION

B
LIND deconvolution, where we estimate two unknown
signals from an observation of their convolution, is a clas-

sical problem in signal processing. It is ubiquitous, appearing
in applications including channel estimation in communica-
tions, image deblurring and restoration, seismic data analysis,
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speech dereverberation, sensor calibration in medical imag-
ing, and convolutive dictionary learning. While algorithms
based on heuristics for particular applications have existed for
decades, it is not until recently that a rich mathematical theory
has developed around this problem. The fundamental identifi-
ability of solutions to this problem has been studied from an
information theoretic perspective [3]–[9]. Practical algorithms
with provable performance guarantees that make the problem
well-posed by imposing structural constraints on the signals
have arisen based on ideas from compressed sensing and low-
rank matrix recovery. These include methods based on convex
programming [10]–[12], alternating minimization [13], and
gradient descent [14]. More recent works studied the more
challenging problem of blind deconvolution with off-the-grid
sparsity models [15], [16].

In this paper, we consider the multichannel blind
deconvolution problem: we observe a single unknown signal
(the “source”) convolved with a number of different “chan-
nels”. The fact that the input is shared makes this problem
better-posed than in the single channel case. Mathematical
theory for the multichannel problem under various constraints
has existed since the 1990s (see [17], [18] for surveys).
One particular strand of this research detailed in [19]–[21]
gives concrete results under the very loose assumption that
the channel responses are time-limited. These works show
how with this model in place, the channel responses can
be estimated by forming a cross-correlation matrix from the
channel outputs and then computing its smallest eigenvector.
This estimate is consistent in that it is guaranteed to converge
to the true channel responses as the number of observations
gets infinitely large. However, no performance guarantees were
given for a finite number of samples, and the method tends to
be unstable for moderate sample sizes in even modest noise.
Recent work [22] has shown that this spectral method can
indeed be stabilized by introducing a more restrictive linear
(subspace) model on the channel responses.

Our main contributions in this paper are methods for
estimating the channel responses when the ensemble has a
certain kind of bilinear structure. In particular, we model the
ensemble of channel responses as lying in a low-dimensional
subspace, but with each channel modulated by an independent
constant; we will discuss in the next section an application
in which this model is relevant. Our estimation framework
again centers on constructing a cross-correlation matrix and
minimizing a quadratic function involving this matrix over the
unit sphere, but with the additional constraint that the solution
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can be written as the Kronecker product of two shorter vectors.
This optimization program, which might be interpreted as
a kind of structured eigenvalue problem, is inherently non-
convex. We propose two iterative methods for solving it,
each with very simple, computationally efficient iterations.
The first is a method of alternating eigenvectors, where we
alternate between fixing a subset of the unknowns and esti-
mating the other by solving a standard eigenvalue problem.
The second method is a truncated power iteration, where we
repeatedly apply the cross-correlation matrix to an initial point,
but project the result after each application to enforce the
structural constraints. We derive performance guarantees for
both of these algorithms when the low-dimensional subspace
is generic (i.e. generated at random).

A. Related Work

Closely related to the problem of multichannel blind decon-
volution is the problem of blind calibration. Here we observe
the product of an unknown weighting vector applied to a
series of other unknown vectors. Non-convex optimization
algorithms for blind calibration have been studied and ana-
lyzed in [23] and [24].

Multichannel blind deconvolution can also be approached
by linearizing the problem in the Fourier domain. This has
been proposed for various applications, including the cali-
bration of a sensor network [25], computational relighting in
inverse rendering [26], and auto-focus in synthetic aperture
radar [27]. Under a generic condition that the unknown
impulse responses belong to random subspaces, necessary
and sufficient conditions for the unique identification of the
solution have been put forth in [6], and a rigorous analysis of
a least-squares method has been studied [28].

More recently, performance guarantees for spectral methods
for both subspace and sparsity models have been developed
in [29]. As in this paper, these methods are estimating the
channel by solving a structured eigenvalue problem. The
structural model, however, is very different than the one
considered here.

Algorithms for solving non-convex quadratic and bilinear
problems have recently been introduced for solving problems
closely related to blind deconvolution. In [30], it is shown that
a non-convex optimization over matrix manifolds provides a
guaranteed solution for matrix completion [30]. Alternating
minimization, another non-convex optimization algorithm for
matrix completion that provides a provable performance guar-
antee, was analyze in [31]–[33]. A different suite of gradient-
based algorithms with a specially designed regularizer within
the conventional Euclidean geometry have also been studied
recently [34]. Wirtinger flow [35]–[38] and alternating mini-
mization [39], [40] are non-convex optimization algorithms for
the phase retrieval problem. Alternating minimization has also
been recently analyzed for the closely related problem of blind
Ptychographic diffraction imaging [41]. Dictionary learning
is another bilinear problem arising in numerous applications;
convergence of a Riemannian trust-region method for this
problem has been studied with a thorough geometric analysis
in [42] and [43].

B. Organization

The rest of the paper is organized as follows. The mul-
tichannel blind deconvolution problem is formulated under
a bilinear channel model in Section II. After we review
relevant previous methods for multichannel blind deconvolu-
tion in Section III, we present two iterative algorithms for
multichannel blind deconvolution under the bilinear channel
model in Section IV, which are obtained by modifying the
classical cross-convolution method. Our main results on non-
asymptotic stable recovery are presented in Section V with
an outline of the proofs. Detailed analysis of the spectral
initialization and the two iterative algorithms are derived
in Sections VII, VIII, and IX. We demonstrate numerical
results that support our theory in Section VI, and summarize
in Section X.

II. PROBLEM STATEMENT

In the classic multichannel blind deconvolution problem,
we observe an unknown signal x ∈ C

L that has been
convolved with M different unknown channel responses
h1, . . . , hm ∈ CL :

ym = hm ⊛ x + wm, m = 1, . . . , M, (1)

where ⊛ denotes circular convolution1 modulo L and
wm ∈ CL is additive noise. Given the outputs { ym}M

m=1, and
working without knowledge of the common input x, we want
to recover the unknown channel impulse responses {hm}M

m=1.
We will show how we can solve this problem when the

channels are time-limited and obey a bilinear model. By time-
limited, we mean that only the first K entries in the hm can
be non-zero; we can write

hm = S>hm , where S :=
�
IK 0K ,L−K

�
. (2)

In addition, the shapes of h1, . . . , hM are jointly modeled as
lying in a D-dimensional subspace of CK , but are multiplied
by unknown channel gains a1, . . . , aM > 0. This means that

hm = am8m b, ∀m = 1, . . . , M, (3)

where 81, . . . ,8M are complex K × D matrices, whose
columns are the parts of the basis vectors corresponding to
channel m, and b ∈ CD is the common set of basis coeffi-
cients. Stacking up the channel responses into a single vector
h ∈ CM K and the gains into a ∈ CM , an equivalent way to
write (3) is

h = 8(a ⊗ b), (4)

where

8 :=

⎡
⎢⎣

81 0 . . . 0
0 82 . . . 0
...

...
. . .

...
0 0 . . . 8M

⎤
⎥⎦

and

a ⊗ b =

⎡
⎢⎢⎣

a1b

a2b
...

aM b

⎤
⎥⎥⎦ .

1We are using circular convolution in our model problem for the ease of
analysis.
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Fig. 1. Illustration of construction of a joint linear subspace model from a parametric model. (a) A uniform array of M sensors. (b) Examples of {gEr } rearranged
as M-by-K matrices. (c) Sorted eigenvalues of HR in a logarithmic scale. (d) First few dominant eigenvectors of HR rearranged as M-by-K matrices.

This alternative expression can be interpreted as a linear
subspace model with respect to the basis 8 ∈ CM K×M D with
a separability (rank-1) prior on the coefficient vector.

For an example of how a model like this might arise,
we consider the following stylized problem for array process-
ing illustrated in Figure 1. Figure 1(a) shows a linear array.
Suppose we know that if a source is at location Er then the
concatenation of the channel responses between the source
location and the array elements is gEr ∈ C

M K . In simple
environments, these channel responses might look very similar
to one another in that they are all (sampled) versions of
the same shifted function (see Figure 1(b)). The delays are
induced by the differences in sensor locations relative to
the source, while the shape of the response might be deter-
mined by the instrumentation used to take the measurements
(e.g. the frequency response of the sensors) — there could
even be small differences in this shape from element to
element.

Suppose now that there is uncertainty in the source location
that we model as Er ∈ R, where R is some region in space.
As we vary Er over the set R, the responses gEr trace out a
portion of a manifold in CM K . We can (approximately) embed
this manifold in a linear subspace of dimension D by looking
at the D principal eigenvectors of the matrix

HR =



Er∈R
gEr g∗

Er dEr .

The dimension D that allows an accurate embedding will
depend on the size of R and smoothness properties of the
mapping from Er to gEr . In this case, we are building 8 above by
taking the M K × D matrix that has the principal eigenvectors
as columns and apportioning the first K rows to 81, the next
K rows to 82, etc.

This technique of embedding a parametric model into a
linear space has been explored for source localization and
channel estimation in underwater acoustics in [44] and [45],
and some analysis in the context of compressed sensing is
provided in [46]. However, it is not robust in one important
way. In practice, the gains (the amplitude of the channel
response) can vary between elements in the array, and this
variation is enough to compromise the subspace embedding

described above. The bilinear model (4) explicitly accounts
for these channel-to-channel variations.

In this paper, we are interested in when equations of the
form (1) can be solved for hm with the structural con-
straint (4); we present two different algorithms for doing so in
the sections below. The effectiveness of these algorithms will
of course be affected by properties of 8 (including the number
of channels M and embedding dimension D) as well as the
number of samples L. While empirical models like the one
described above are used in practice (see in particular [45]),
we will analyze generic instances of this problem, where the
linear model is drawn at random.

III. SPECTRAL METHODS FOR MULTICHANNEL

BLIND DECONVOLUTION

A classical method for treating the multichannel blind
deconvolution problem is to recast it as an eigenvalue problem:
we create a correlation matrix using the measured data { ym},
and estimate the channels from the smallest eigenvector2 of
this matrix. These methods were pioneered in the mid-1990s
in [19]–[21], and we briefly review the central ideas in this
section. The methods we present in the next section operate
on the same basic principles, but explicitly enforce structural
constraints on the solution.

The cross-convolution method for multichannel blind
deconvolution [19] follows directly from the commutativity
of the convolution operator. If there is no noise in the obser-
vations (1), then it must be the case that

ym1
⊛ hm2 − ym2

⊛ hm1 = 0

for all m1, m2 = 1, . . . , M . Using T ym
as the matrix whose

action is convolution with ym with a signal of length K ,
we see that the channel responses hm1 and hm2 must obey the
linear constraints T ym1

hm2
−T ym2

hm1
= 0. We can collect all

pairs of these linear constraints into a large system, expressed
as

Y h = 0M(M−1)L/2,1 (5)

2By which mean the eigenvector corresponding to the smallest
eigenvalue.
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with Y ∈ CM(M−1)L/2×M K defined by

Y =

⎡
⎢⎢⎢⎣

Y (1)

Y (2)

...

Y (M−1)

⎤
⎥⎥⎥⎦ , (6)

where

Y (i) =

⎡
⎢⎢⎢⎣

0L ,K . . . 0L ,K
...

...

0L ,K . . . 0L ,K� �
 �
(i − 1) blocks

T yi+1
−T yi

...
. . .

T yM
−T yi� �
 �

(M − i + 1) blocks

⎤
⎥⎥⎥⎦

for i = 1, . . . , M − 1.
It is shown in [19] and [21] that h is uniquely determined

up to a scaling by (5) (i.e. Y has a null space that is exactly
1-dimensional) under the mild algebraic condition that the
polynomials generated by the (hm)M

m=1 have no common
zeros. In the presence of noise, h is estimated as the minimum
eigenvector of Y∗Y :

ĥ = argmin
kgk2=1

g∗Y∗Y g. (7)

Note that Y ∗Y is computed by cross-correlating the outputs.
Therefore, Y∗Y is computed at a low computational cost using
the fast Fourier transform. Furthermore, the size of Y ∗Y ,
which is M K × M K , does not grow as the length L of the
observations increases. When there is additive white noise, this
cross-correlation matrix will in expectation be the noise-free
version plus a scaled identity. This means that as the sample
size gets large, the noise and noise-free cross-correlation matri-
ces will have the same eigenvectors, and so the estimate (7)
is consistent.

A similar technique can be used if we have a linear model
for the channel responses, h = 8u. We can estimate the
expansion coefficients u by solving

minimize
v

v∗8∗ �Y∗Y − %I
�
8v

subject to kvk2 = 1, (8)

where % is a scalar that depends on the variance of the additive
noise (this correction is made so that eigen-structure more
closely matches that of 8∗Y∗Y8 for noise-free Y ). In [22],
it was shown that a linear model can significantly improve the
stability of the estimate of h in the presence of noise, and gave
a rigorous non-asymptotic analysis of the estimation error for
generic bases 8.

IV. NON-CONVEX OPTIMIZATION ALGORITHMS

Our proposed framework is to solve an optimization pro-
gram similar to (7) and (8) above, but with the additional
constraint that h obey the bilinear form (4).

Given the noisy measurements { ym} in (1), we create the
matrix

A = 8∗(Y ∗Y − σ̂ 2
w(M − 1)LIM K )8,

where σ̂ 2
w is an estimate of the noise variance σ 2

w (we will
briefly discuss how to estimate the noise variance later in

this section), and Y is formed as in (6). We then solve a
program that is similar to the eigenvalue problems above,
but with a Kronecker product constraint on the expansion
coefficients:

minimize
v,c,d

v∗ Av

subject to kvk2 = 1, v = c ⊗ d. (9)

The norm and bilinear constraints make this a non-convex
optimization program, and unlike the spectral methods dis-
cussed in the last section, there is no (known) computationally
efficient algorithm to compute its solution.

We propose and analyze two non-convex optimization algo-
rithms below for solving (9). The first is an alternating eigen-
value method, which iterates between minimizing for c in (9)
with d fixed, then minimizing for d with c fixed. The second
is a variation on the truncated power method [47], whose
iterations consist of applications of the matrix A followed by
a projection to enforce the structural constraints.

The performance of both of these methods relies critically
on constructing a suitable starting point. We discuss one
method for doing so below, then establish its efficacy in
Proposition 7 in Section V-B below.

A. Alternating Eigenvectors

While program (9) is non-convex, it becomes tractable if
one of the terms in the tensor constraint is held constant. If we
have an estimate �b for b, and fix d = �b, then we can solve
for c using

minimize
c

c∗ A�bc subject to kck2 = 1,

where

A�b = (IM ⊗ b̂)∗ A(IM ⊗ b̂)

and

IM ⊗ b̂ =

⎡
⎢⎢⎢⎣

�b 0 . . . 0

0 �b . . . 0
...

...
. . .

...

0 0 . . . �b

⎤
⎥⎥⎥⎦.

The solution is the eigenvector corresponding to the small-
est eigenvalue of A�b. Similarly, with an estimate �a =
[â1, . . . , âM ]> plugged in for c, we solve

minimize
d

d∗ A�a d subject to kdk2 = 1,

where

A�a = (�a ⊗ ID)∗ A(�a ⊗ ID), �a ⊗ ID =

⎡
⎢⎢⎣

â1I

â2I
...

âM I

⎤
⎥⎥⎦ ,

which is again given by the smallest eigenvector of A�a .
We summarize this method of “alternating eigenvectors”

in Algorithm 1. The function MinEigVec returns the
eigenvector of the input matrix corresponding to its smallest
eigenvalue.
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Algorithm 1 Alternating Eigenvectors

input : A, b0
output: �h

1 �b ← b0
2 while stop condition not satisfied do

3 �a ← MinEigVec((IM ⊗�b∗
)A(IM ⊗�b))

4 �b ← MinEigVec((�a∗ ⊗ ID)A(�a ⊗ ID))
5 end

6 �h ← 8(�a ⊗�b)

B. Rank-1 Truncated Power Method

A standard tool from numerical linear algebra to compute
the largest eigenvector of a symmetric matrix is the power

method, where the matrix is iteratively applied to a starting
vector, with a renormalization at each step. (The same method
can be used to compute the smallest eigenvector simply by
subtracting the matrix from an appropriate scalar multiple
of the identity.) In [47], a variation on this algorithm was
introduced that forced the iterates to be sparse. This was
done simply by hard thresholding after each application of
the matrix.

Our rank-1 truncated power method follows the same tem-
plate. We create a matrix B by subtracting A above from a
multiple of the identity,

B = γ IM D − A,

then iteratively apply B starting with an initial vector u0.
After each application of B, we project the result onto
the set of rank-1 matrices by computing the singular vec-
tor corresponding to the largest singular value, and then
renormalize.

We summarize the rank-1 truncated power method in
Algorithm 2. Some care must be taken in choosing the value
of γ . We want to ensure that the smallest eigenvalue of A

gets mapped to the largest (in magnitude) eigenvalue of B, but
we also want the relative gap between the largest and second
largest eigenvalues of B to be as large as possible. In our
analysis below, we use the conservative value of γ = E[kAk].
We also used this in the numerical results in Section VI.
Alternatively, one could estimate the largest rank-1 constrained
“eigenvalue” by applying Algorithm 2 to A itself, which may
accelerate the convergence.

Algorithm 2 Rank-1 Truncated Power Method
input : B, v0
output: vt , a vectorized rank-1 matrix whose factors are

the estimates �a,�b
1 t ← 1
2 while stop condition not satisfied do

3 �vt ← Bvt−1

4 �V t ← Rank1Approx (mat(�vt ))

5 vt ← vec(�V t )/k vec(�V t )k2
6 t ← t + 1
7 end

C. Spectral Initialization

Both the alternating eigenvectors and rank-1 truncated
power method require an initial estimate of the channel gains a

and the basis coefficients b. Because the program they are
trying to solve is non-convex, this starting point must be
chosen carefully.

Our spectral initialization is inspired from the lifting refor-
mulation (e.g., see [10] for the lifting in blind deconvolution).
The observation equations (1) can be recast as a linear operator
acting on the Kronecker product of the unknowns x, b, a.
Let A : C

L DM → C
M L be a linear map such that3

A(x ⊗ b ⊗ a) =

⎡
⎣

x ⊛ a1S∗81b
...

x ⊛ aM S∗8M b

⎤
⎦. (10)

Concatenating the { ym} and {wm} into vectors y and w of
length M L, we can rewrite (1) as

y = A(X ) + w,

where X = x ⊗ b ⊗ a.
A natural initialization scheme is to apply the adjoint of A

to y, then project the result onto the feasible set of vectors
that can be arranged as rank-1 tensors (this technique is often
used to initialize non-convex programs for recovering rank-1
matrices from linear measurements [48], [49]). However, there
is no known algorithm for computing the projection onto the
set of rank-1 tensors that has strong optimality guarantees.

We avoid this by exploiting the positivity of the multipliers,
am ≥ 0. The action of the operator (IL D ⊗11,M ) has the effect
of summing down the third mode of the tensor:

(IL D ⊗ 11,M)(x ⊗ b ⊗ a) =
� M�

m=1

am

�
(x ⊗ b).

Since they are positive, a1, . . . , aM sum constructively above,
and we can get an estimate of x ⊗ b by applying this operator
to A∗ y. The positivity constraint on a can be weakened if
estimates of the phases of a1, . . . , aM are available as prior
information. In this scenario, the known phase information is
absorbed into the basis 8 and one can focus on estimating
only the gains.

The first step of our initialization, then, is to compute

0 = mat
�
(IL D ⊗ 11,M)A∗ y

�
, (11)

where the operator mat(·) takes a vector in CL D and produces
a D × L matrix by column-major ordering.

Once corrected for noise, the leading eigenvector of
00∗ gives us a rough estimate of the channel coeffi-
cients b. In Section VII, we show that the random matrix
00∗ − σ 2

w L
�M

m=1 8∗
m8m concentrates around a scalar mul-

tiple of bb∗.
Finally, we note that there is a closed-form expression for

computing 0 from the measurements { ym}. This is given in
the following lemma that is proved in Appendix X.

3We have defined how A operates on length L DM vectors that can be
arranged as rank-1 tensors. Its action on a general vector in CL DM can be
derived by applying the expression in (10) to a series of L DM vectors that
form a separable basis for tensors in CL × CD × CM .
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Lemma 1: The matrix 0 in (11) can be written as

0 =
M�

m=1

8∗
m SC ym

J , (12)

where C ym
∈ C

L×L is the matrix whose action is the circular

convolution with ym ∈ C
L , J is the “flip operator” modulo L:

J :=
�
e1 eL eL−1 · · · e2

�
, (13)

and e1, . . . , eL are the standard basis vectors for RL .

We summarize our spectral initialization technique in
Algorithm 3.

Algorithm 3 Spectral Initialization

input : { ym}M
m=1, {8m}M

m=1, L, σ̂ 2
w

output: b0

1 0 ←
M�

m=1

8∗
m SC ym

J

2 b0 ← MaxEigVec(00∗ − σ̂ 2
w L

M�

m=1

8∗
m8m)

In our analysis of the initialization, we assume that we
know the noise variance σ 2

w. In practice, having an accurate
estimate can indeed make a difference in terms of numerical
performance. In the numerical experiments in Section VI,
we include simulations where we assume we know the noise
variance exactly, and where we take the crude guess σ̂ 2

w = 0.
The latter of course does not perform as well as the former,
but it still offers significant gains over disregarding the bilinear
structure all together.

It is also possible to get an estimate of the noise variance
through the low-rank matrix denoising technique described
in [50], where we solve the convex program

minimize
X,α

k00∗ − α

M�

m=1

8∗
m8m − Xk2

F + λkXk∗,

and take σ̂ 2
w = α̂/L. The theory developed in [50] for this

procedure relies on the perturbation to the low-rank matrix
being subgaussian, which unfortunately does not apply here,
as the perturbation involves both intra- and inter-channel
convolutions of the noise processes {wm}.

V. MAIN RESULTS

A. Non-Asymptotic Analysis

Our main results give non-asymptotic performance guar-
antees for both Algorithm 1 and Algorithm 2 when their
iterations start from the initial estimate by Algorithm 3 under
the following two assumptions4:

(A1) Generic subspaces. The random matrices 81, . . . ,8M

are independent copies of a K -by-D complex Gaussian
matrix whose entries are independent and identically

4The same assumptions were used for the analysis of the spectral method (8)
in [22].

distributed (iid) as CN (0, 1). Our theorems below hold
with high probability with respect to (8m)M

m=1.
(A2) Random noise. The perturbations to the measurements

w1, . . . ,wM ∈ CL are independent subgaussian vectors
with E[wm ] = 0 and E[wmw∗

m] = σ 2
wIL , and are

independent of the bases (8m)M
m=1.

We present main theorems in two different scenarios. In the
first, we assume that the input source is a white subgaussian
random process. In the second scenario, we assume that
the input source satisfies a kind of incoherence condition
that essentially ensures that it is not too concentrated in the
frequency domain (a characteristic that a random source has
with high probability). The error bound for the deterministic
model is more general but is also slightly weaker than that for
the random model.

The theorems provide sufficient conditions on the observa-
tion length L that guarantee that the estimation error will fall
below a certain threshold. The number of samples in these
sufficient conditions depends on the length of the impulse
responses K , their intrinsic dimensions D, the number of
channels M , and the signal-to-noise-ratio (SNR) defined as

η := Eφ[�M
m=1 khm ⊛ xk2

2]
Ew[�M

m=1 kwmk2
2]

. (14)

Under (A1) and (A2), it follows from the commutativity of
convolution and Lemma 35 that η simplifies to

η = Kkxk2
2kuk2

2

M Lσ 2
w

. (15)

In addition, the bounds will depend on the spread of the
channel gains. We measure this disparity using the two flatness
parameters

μ := max
1≤m≤M

√
Mam

kak2
(16)

and

ν := min
1≤m≤M

√
Mam

kak2
. (17)

Our results are most interesting when there are not too many
weak channels, meaning μ = O(1) and ν = �(1). To simplify
the theorem statements below, we will assume these conditions
on μ and ν. It is possible, however, to re-work their statements
to make the dependence on μ, ν explicit.

We now present our first main result. Theorem 2 below
assumes a random common source signal x. We present
guarantees for Algorithms 1 and 2 simultaneously, with
ht = 8vt as the channel estimate after iteration t (for the
alternating eigenvectors method, take vt = ât ⊗ b̂t ).

Theorem 2 (Random Source): We observe noisy channel

outputs { ym} as in (1), with SNR η as in (14), and form a

sequence of estimates (ht )t∈N of the channel responses by

either Algorithm 1 or Algorithm 2 from the initial estimate

by Algorithm 3. Suppose assumptions (A1) and (A2) above

hold. Let x be a sequence of zero-mean iid subgaussian

random variables with variance σ 2
x , η ≥ 1, μ = O(1),
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and L ≥ 3K .5 Then for any β ∈ N, there exist absolute

constants C > 0, α ∈ N and constants C1(β), C2(β) such

that if there are a sufficient number of channels,

M ≥ C1(β) logα(MKL), (18)

that are sufficiently long (relative to the dimension D of the

subspace prior),

K ≥ C1(β)D logα(MKL), (19)

and we have observed a sufficient number of samples at the

output of each channel,

L ≥ C1(β) logα(MKL)

η

� K

M2 + D

D ∧ M

�
, (20)

then with probability exceeding 1 − C K −β , we can bound the

approximation error by

sin 6 (ht , h) ≤ 2−t 6 (h0, h) + C2(β) logα(MKL)

·
�

1√
ηL

�√
K

M
+
�

D

D ∧ M

�
+

√
D

η
√

M L

�

(21)

for all t ∈ N.

The SNR requirement η ≥ 1 was introduced to simplify
the expressions in Theorem 2. The conditions in the low
SNR regime η < 1 can be easily extracted from the proof
of the theorem and Proposition 4 below.

We make the following remarks about the
assumptions (18)–(20) in Theorem 2. The lower bound
on the number of channels in (18) is very mild, M has to be
only a logarithmic factor of the number of parameters involved
in the problem. The condition (19) allows a low-dimensional
subspace whose dimension scales (up to a logarithmic factor)
linearly with K . For a fixed SNR and a large number of
channels (M = �(

√
K/D)), the condition in (20) says that

the length of observation can grow proportional to
√

K D.
This is suboptimal when compared to the degrees of freedom
(M + D)/(M − 1) per channel. (The total number of
unknowns is L + M + D and we have M L equations.) In fact,
if L < K , then the circular convolution modulo L of two
vectors respectively of length K and L introduces aliasing
due to the wrapping around of the vector of length K . This
turns the deconvolution problem into the demixing problem
of separating a mixture of convolutions. While it might be
still possible to uniquely identify a solution in this blind
demixing problem, the deconvolution approach in this paper
does not apply. In other words, the requirement L ≥ K is
the fundamental limitation of any approach that linearizes
the problem using cross-convolution. However, this still
marks a significant improvement over an earlier analysis of
this problem [51], which depended on the concentration of
subgaussian polynomial [52] and union bound arguments. The
scaling laws of parameters have been sharpened significantly,
and as we will see in the next section, its prediction

5Without the subspace prior, L > K is necessary to claim that Y∗Y has
nullity 1 in the noiseless case. We used L ≥ 3K in the proof in order to
use the identity that the circular convolutions of three vectors of length K

modulo L indeed coincide with their linear convolution.

is consistent with the empirical results by Monte Carlo
simulations in Section VI. Compared to the analysis for the
other spectral method under the linear subspace model [22],
Theorem 2 shows that the estimation error becomes smaller
by factor

√
D.

To prove Theorem 2, we establish an intermediate result
for the case where the input signal x is deterministic. In this
case, our bounds depend on the spectral norm ρx of the
(appropriately restricted) autocorrelation matrix of x,

ρx := k�SC∗
x C x

�S∗k,
where

�S =

⎡
⎣

�
0K−1,L−K+1 IK−1

�

�
I2K−1 02K−1,L−2K+1

�

⎤
⎦. (22)

Then the deterministic version of our recovery result is:
Theorem 3 (Deterministic Source): Suppose that the same

assumptions hold as in Theorem 2, only with x as a fixed

sequence of numbers obeying

ρx ≤ C3kxk2
2. (23)

If (18) and (19) hold, and

L ≥ C1(β) logα(MKL)

η

� K 2

M2 + K D

D ∧ M

�
, (24)

then with probability exceeding 1 − C K −β , we can bound the

approximation error by

sin 6 (ht , h) ≤ 2−t 6 (h0, h) + C2(β) logα(MKL)√
ηL

·
� K

M
+
�

K D

D ∧ M

�
(25)

for all t ∈ N.

The condition (23) can be interpreted as a kind of incoher-
ence condition on the input signal x. Since

ρx ≤ kC xk2 = Lk�xk2
∞,

where �x ∈ CL is the normalized discrete Fourier transform
of x, it is sufficient that x̂ is approximately flat for (23) to
hold. This is a milder assumption than imposing an explicit
stochastic model on x as in Theorem 2. For the price of this
relaxed condition, the requirement on L in (24) that activates
Theorem 3 is more stringent compared to the analogous
condition (20) in Theorem 2.

B. Proof of Main Results

The main results in Theorems 2 and 3 follow from the
following proposition, the proof of which is deferred to
Section V-C.

Proposition 4: Suppose the assumptions in (A1) and (A2)

hold, ρx satisfies (23), L ≥ 3K , μ = O(1), and ν = �(1).

For any β ∈ N, there exist absolute constants C > 0, α ∈ N

and constants C1, C2 that only depend on β, for which the

following holds: If

K ≥ C1 D logα(MKL), (26)

M ≥ C1 logα(MKL), (27)
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and

L ≥ C1 logα(MKL)

·
�

ρ2
x,w

ηKσ 2
wkxk2

2

� D

K ∧ M
+ K

M2 + 1
�

+ D

η2

�
, (28)

then

sin 6 (ht , h) ≤ 2−t sin 6 (h0, h) + κ, ∀t ∈ N (29)

with probability 1 − C K −β , where κ satisfies

κ ≤ C2 logα(MKL)

·
� √

D

η
√

M L
+ ρx,w√

ηK Lσwkxk2

·
�
μ
�√

K

M
+
�

D

M
+
�

D

K

�
+ 1

��
. (30)

The proofs of Theorems 2 and 3 are given by combining
Proposition 4 with the following lemmas, taken from [22],
which provide tail estimates on the signal autocorrelation and
the signal-noise cross correlation.

Lemma 5 [22, Lemma 3.9]: Suppose (A2) holds and let x

be a fixed sequence of numbers obeying (23). For any β ∈ N,

there exists an absolute constant C such that

ρx,w ≤ C Kσw
√

ρx

�
1 + log M + β log K

holds with probability 1 − K −β .

Lemma 6 [22, Lemma 3.10]: Suppose (A2) holds and let x

be a sequence of zero-mean iid subgaussian random variables

with variance σ 2
x . Then

ρx

kxk2
2

≤ L + Cβ K log3/2 L
√

log K

L − √
2Lβ log K

and

ρx,w

σwkxk2
≤ Cβ K log5(MKL)�

L − √
2Lβ log K

hold with probability 1 − 3K −β .

C. Proof of Proposition 4

The proof of Proposition 4 is given by a set of propositions,
which provide guarantees for Algorithm 1, Algorithm 2, and
Algorithm 3. The first proposition provides a performance
guarantee for the initialization by Algorithm 3. The proof of
Proposition 7 is given in Section VII.

Proposition 7 (Initialization): Suppose the assumptions in

(A1) and (A2) hold, ρx satisfies (23), and L ≥ 3K . Let η,μ, ν

be defined in (15), (16), (17), respectively. For any β ∈ N,

there exist absolute constants C > 0, α ∈ N and constants

C1, C2 that only depend on β, for which the following holds:

If

M ≥ C1 logα(MKL) ·
�μ

ν

�2
(31)

and

L ≥ C1 logα(MKL)

·
�

ρ2
x,w

ηKσ 2
wkxk2

2

·
� μ2 K

ν4 M2 + D

ν2 M

�
+ D

η2ν4 M

�
, (32)

then the estimate �b by Algorithm 3 satisfies

sin 6 (�b, b) ≤ C2 logα(MKL)

�
μ

ν
√

M
+

√
D

ην2
√

M L

+ ρx,w√
ηK Lσwkxk2

·
�μ

√
K

ν2 M
+

√
D

ν
√

M

��
(33)

with probability 1 − C K −β .

The second proposition, proved in Section VIII-B, provides
a performance guarantee for the update of �a by Step 3
of Algorithm 1.

Proposition 8 (Update of Channel Gains): Suppose the

assumptions in (A1) and (A2) hold, ρx satisfies (23), L ≥ 3K ,

and the previous estimate �b satisfies

6 (b,�b) ≤ π

4
. (34)

For any β ∈ N, there exist absolute constants C > 0, α ∈ N

and constants C1, C2 that only depend on β, for which the

following holds: If

K ≥ C1μ
4 D logα(MKL), (35)

M ≥ C1μ
4 logα(MKL), (36)

and

L ≥ C1 logα(MKL)

·
�

ρ2
x,w

ηKσ 2
wkxk2

2

�
μ2

� D

K ∧ M
+ K

M2

�
+ 1

�
+ D

η2

�
, (37)

then the updated �a by Step 3 of Algorithm 1 satisfies

sin 6 (a,�a) ≤ 1

2
sin 6 (b,�b) + κ (38)

with probability 1 − C K −β , where κ satisfies (30).
We have a similar result for the update of �b by Step 4 of

Algorithm 1, which is stated in the following proposition. The
proof of Proposition 9 is provided in Section VIII-C.

Proposition 9 (Update of Subspace Coefficients): Suppose

the assumptions in (A1) and (A2) hold, ρx satisfies (23),
L ≥ 3K , and the previous estimate �a satisfies

6 (a,�a) ≤ π

4
. (39)

For any β ∈ N, there exist absolute constants C > 0, α ∈ N

and constants C1, C2 that depend on β, for which the fol-

lowing holds: If (35), (36), and (37) are satisfied, then the

updated �b by Step 4 of Algorithm 1 satisfies

sin 6 (b,�b) ≤ 1

2
sin 6 (a,�a) + κ

with probability 1 − C K −β , where κ satisfies (30).
The next proposition shows the convergence of the rank-1

truncated power method from a provably accurate initializa-
tion. See Section IX for the proof.

Proposition 10 (Local Convergence of Rank-1 Truncated

Power Method): Suppose the assumptions in (A1) and (A2)

hold, ρx satisfies (23), and L ≥ 3K . Let 0 < μ < 1,

0 < τ < 1
3
√

2
, and

c(μ, τ ) = min
� 1

μ
√

1 − τ 2
,
(1 + μ)τ

1 − μ

�
.
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For any β ∈ N, there exist absolute constants C > 0,

α ∈ N, constants C 0
1, C 0

2 that only depend on β, for which

the following holds: If (35), (36), and (37) are satisfied for

C1 = c(μ, τ )C 0
1, C2 = c(μ, τ )C 0

2 and u0 satisfies

sin 6 (u0, u) ≤ τ,

then (ut )t∈N produced by Algorithm 2 for B = kE[A]k
IM D − A with u0 satisfies

sin 6 (ut , u) ≤ μt sin 6 (u0, u) + (1 + μ)κ

1 − μ
, ∀t ∈ N (40)

with probability 1 − C K −β , where κ satisfies (30).
Finally, we derive the proof of Proposition 4 by combining

the above propositions.
Proof of Proposition 4: Similar to the proof of

[22, Proposition 3.3], we show that

sin 6 (ht , h) ≤ σmax(8)

σmin(8)
·
√

2 sin 6 (ut , u) (41)

and

sin 6 (ut , u) ≤ max[sin 6 (at , a), sin 6 (bt , b)]. (42)

Furthermore, as we choose C1 in (26) sufficiently large,
we can upper bound the condition number of 8 by a constant
(e.g., 3) with high probability. We continue the proof con-
ditioned on this event. Then the convergence results in
Propositions 8, 9, and 10 imply (29).

Since μ = O(1), the conditions in (35), (36), (37) respec-
tively reduce (26), (27), (28). Furthermore, since ν = �(1),
(32) is implied by (28). By choosing C1 large enough, we can
make the initial error bound in (33) small so that the conditions
for previous estimates in Propositions 8, 9, 10 are satisfied and
the assertion is obtained by these propositions.

VI. NUMERICAL RESULTS

In this section, we provide observation on empirical per-
formance of the alternating eigenvectors method (AltEig)
in Algorithm 1 and the rank-1 truncated power method
(RTPM) in Algorithm 2, using the spectral initialization in
Algorithm 3. We compare the two iterative algorithms to the
classical cross-convolution method (CC) by Xu et al. [19],
which only imposes the time-limited model on impulse
responses, and to the subspace-constrained cross-convolution
method (SCCC) [22], which imposes a linear subspace model
on the impulse responses. This comparison will demonstrate
how the estimation error improves progressively as we impose
a stronger prior model on the impulse responses.

In our first experiment, we tested the algorithms on generic
data where the basis 8 is an i.i.d. Gaussian matrix. The input
source signal x, subspace coefficient vector b, and additive
noise are i.i.d. Gaussian as well. The channel gain vector is
generated by adding random perturbation to all-one vector
so that a = 1M,1 + αξ/kξk∞, where ξ = [ξ1, . . . , ξM ]>
and ξ1, . . . , ξM are independent copies of a uniform random
variable on [−1, 1). We use a performance metric given as
the 95th percentile of the estimation error in the sine of the
principal angle between the estimate and the ground truth out
of 1,000 trials. This amounts to the worst-case error after

excepting 5% of the instances. In other words, the estimation
error is less than this threshold with high probability no less
than 0.95.

Figure 2 compares the estimation error by the four algo-
rithms as we vary the problem parameters. Figure 2(a) shows
that the error as a function of the oversampling factor L/K ,
which is the ratio of the length of observation L to the
number of nonzero coefficients in each impulse response.
SCCC provides smaller estimation error than CC in order of
magnitude by exploiting the additional linear subspace prior.
Then AltEig and RTPM provide further reduced estimation
error again in order of magnitude compared to SCCC by
exploiting the bilinear prior that imposes the separability
structure in addition to the linear subspace prior. As expected,
longer observation provides a smaller estimation error for all
methods. Furthermore, as shown in Figure 2(b), the estimation
error increases as a function of the ratio D/K , which accounts
for the relative dimension of the subspace. More interest-
ingly, as our main theorems imply, the performance difference
between SCCC and AltEig/RTPM becomes more significant
as we add more channels (Figure 2(c)). The estimation error
by these method scales proportionally as a function of SNR
(Figure 2(d)). Similarity of channel gains, as captured by the
parameter α, did not affect the estimation error significantly
(Figure 2(e)). Moreover, when the two iterative algorithms
(AltEig and RTPM) provide stable estimate, they converge
very quickly. Figure 3 illustrates the convergence of the two
algorithms for a random instance. The estimation error decays
progressively for RTPM, whereas AltEig converges in less
than 5 iterations.

To better visualize the overall trend, we performed a Monte
Carlo simulation for the empirical phase transition. This is
illustrated in Figure 4 with a color coding that uses a log-
arithmic scale with blue denoting the smallest and red the
largest error within the regime of (D/K , L/K ). The error in
the estimate by CC is large (≥ 0.1) regardless of D/K for the
entire regime (Figure 4(a)). SCCC provides accurate estimates
for small D/K and for large enough L/K (Figure 4(b)).
On the other hand, it totally fails unless the dimension D

of subspace is less than a certain threshold. Finally, AltEig
and RTPM show almost the same empirical phase transitions,
which imply robust recovery for larger D/K and for smaller
L/K (Figures 4(c) and 4(d)).

The above illustrates the performance of SCCC, AltEig,
and RTPM for σ̂ 2

w = σ 2
w , i.e. in the scenario when the

true noise variance is given. Figures 4(e) and 4(f) illustrate
the empirical phase transitions for AltEig and RTPM when
a crude estimate of σ 2

w given as σ̂ 2
w = 0 is used instead.

These figures show that there is a nontrivial difference in
the regime for accurate estimation depending on the quality
of the estimate σ̂ 2

w . This opens up an interesting question of
how to show a guarantee for the noise variance estimation.
Nonetheless, even with σ̂ 2

w = 0, both AltEig and RTPM show
improvements in their empirical performances due to the extra
structural constraint on the impulse responses over CC and
SCCC, which are (partially) blind to the bilinear prior model.

In our second experiment, we tested the algorithms on
synthesized data with a realistic underwater acoustic channel
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Fig. 2. Comparison of cross-convolution (CC), subspace-constrained cross-convolution (SCCC), alternating eigenvectors method (AltEig), and rank-1 truncated
power method (RTPM). Default parameter setting: M = 8, K = 256, D = 32, L = 20 K , SNR = 20 dB. The 95th percentile estimation error is plotted in a
logarithmic scale as we vary each parameter as follows: (a) L . (b) D. (c) M. (d) SNR. (e) α.

model, where the impulse responses are approximated by a
bilinear channel model. In an ocean acoustic array sensing
scenario, receivers of the vertical line array (VLA) with equal
spacing listen to the same source near the ocean surface at
a distance. In a simple channel, each receiver will observe
essentially the same signal, only at different delays that depend
on the orientation of the source relative to the array. This
geometry makes the shape of CIRs closely linked to one
another (and hence amenable to a joint linear model), while
the relative gains of the receivers are independent. A detailed
description on how to form the basis 8 for a particular
underwater environment can be found in [53].

We performed Monte-Carlo simulation to demonstrate the
robustness of our method on realistic acoustic channels which
represent an at-sea experiment carried out in the Santa Bar-
bara Channel. In the simulation, the common driving source
signal, x ∈ R

L , is white Gaussian noise filtered in an
arbitrary bandwidth representative of shipping noise spectra
(400–600 Hz) for L = 2000. Each CIR is of length K = 500
and represents a Gaussian-windowed pulse in the band
of 400–600 Hz. The number of channels M is 31. The
basis 8 ∈ RK×D is of dimension D = 8. The number of
trials in the Monte-Carlo simulation is 100. In this experi-
ment, unlike the previous experiments with Gaussian bases,
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Fig. 3. Convergence of alternating eigenvectors method (AltEig) and rank-1
truncated power method (RTPM) for a random instance. x-axis: iteration
index, y-axis: log of the estimation error. M = 8, K = 256, D = 32,
L = 20 K , SNR = 20 dB.

AltEig does not provide a stable recovery. Therefore, we report
the results only for RTPM. As for the estimation of the noise
variance, since the basis matrices are unitary, there is no need
to subtract the expectation of the noise auto-correlation term.
Figure 5 shows order statistics of the estimation error in a
log scale. The empirical success rate of the recovery in this
experiment is lower than that in the first experiment with
generic data. The median of the estimation error approaches
to the modeling error due to approximation with a bilinear
model as we increase the SNR.

VII. ANALYSIS OF SPECTRAL INITIALIZATION

We prove Proposition 7 in this section. Recall that
Algorithm 3 computes an initial estimate �b of the true para-
meter vector b as an eigenvector of 00∗ −�M

m=1 σ 2
w L8∗

m8m

corresponding to the largest eigenvalue in magnitude. Let us
decompose the matrix 0 in (11) as 0 = 0s+0n, where 0s and
0n respectively correspond to the noise-free portion and noise
portion of 0. In other words, 0s is obtained as we replace
ym = hm ⊛ x + wm in the expression of 0 in (12) by its first
summand hm ⊛ x. Similarly, 0n is obtained as we replace ym

by wm . Then it follows that

Ew[0n0
∗
n] =

M�

m=1

σ 2
w L8∗

m8m .

By direct calculation, we obtain that the expectation of 0s
is written as

E[0s] =
M�

m=1

K am bx> = Kkak1bx>. (43)

Therefore,

E[0s]E[0s]∗ = K 2kxk2
2kak2

1bb∗. (44)

It is straightforward to check that the rank-1 matrix
E[0s]E[0s]∗ has an eigenvector, which is collinear with b.
Thus as we interpret 00∗ −�M

m=1 σ 2
w L8∗

m8m as a perturbed
version of E[0s]E[0s]∗, the error in �b is upper bounded by
the classical result in linear algebra known as the Davis-Kahan
theorem [54]. Among numerous variations of the original
Davis-Kahan theorem available in the literature, we will use
a consequence of a particular version [55, Th. 8.1.12], which
is stated as the following lemma.

Lemma 11 (A Special Case of the Davis-Kahan Theorem):

Let M, M ∈ Cn×n be symmetric matrices and λ denote the

largest eigenvalue of M in magnitude. Suppose that λ > 0
and has multiplicity 1. Let Q = [q1, Q2] ∈ Cn×n be a unitary

matrix such that q1 is an eigenvector of M corresponding to λ.

Partition the matrix Q∗M Q as follows:

Q∗M Q =
�

λ 01,n−1
0n−1,1 D

�
.

If

kDk + kM − Mk ≤ λ

5
, (45)

then the largest eigenvalue of M in magnitude has multiplic-

ity 1 and the corresponding eigenvector �q satisfies

sin 6 (�q, q1) ≤ 4k(M − M)q1k2

λ
. (46)

Remark 12: In Lemma 11, the rank-1 matrix λq1q∗
1 is

considered as the ground truth matrix. Then M−M+ Q2 D Q∗
2

corresponds to perturbation in M relative to the ground truth
matrix M. Also note that Q2 D Q∗

2q1 = 0.
In the remainder of this section, we obtain an upper bound

on the error in�b by applying Lemma 11 to M = E[0s]E[0s]∗,
M = 00∗ −�M

m=1 σ 2
w L8∗

m8m , q1 = b, and �q =�b.
By (44), we have D = 0 and λ = K 2kxk2

2kak2
1kbk2

2. Then
we show that the spectral norm of the perturbation term, which
is rewritten as

00∗ − Ew[0n0
∗
n] − E[0s]E[0s]∗

= 0s0
∗
s − E[0s]E[0s]∗, (47a)

+ 0s0
∗
n + 0n0

∗
s , (47b)

+ 0n0
∗
n − Ew[0n0

∗
n], (47c)

satisfies (45). We will compute an upper estimate of the
spectral norm of each summand, divided by λ, separately. Then
we combine these estimates using the triangle inequality.

A. Perturbation Due to Signal Term

Note that the first summand 0s0
∗
s − E[0s]E[0s]∗ in (47a)

has entries, which are fourth-order Gaussian random vari-
ables. We decompose it using second-order random variables
as

0s0
∗
s − E[0s]E[0s]∗ = (0s − E[0s])(0s − E[0s])∗

+ E[0s](0s − E[0s])∗
+ (0s − E[0s])E[0s]∗. (48)
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Fig. 4. Empirical phase transition in the 95th percentile of the log estimation error. x-axis: D/K . y-axis: L/K . K = 256, M = 8, SNR = 20 dB.
(a) cross-convolution method [19]. (b) subspace-constrained cross-convolution method [22]. (c) alternating eigenvectors method (σ̂2

w = σ 2
w). (d) rank-1 truncated

power method (σ̂ 2
w = σ 2

w). (e) alternating eigenvectors method (σ̂ 2
w = 0). (f) rank-1 truncated power method (σ̂ 2

w = 0).

We have already computed E[0s] in (43). It remains to
upper bound the spectral norm of 0s−E[0s]. By the definitions
of 0s and ρx , we obtain

k0s − E[0s]k ≤
���

M�

m=1

am(8∗
m SC S∗8m b

− Eφ[8∗
m SC S∗8m b])S̆

∗
S̆C x

���

≤
���

M�

m=1

am(8∗
m SC S∗8m b

− Eφ[8∗
m SC S∗8m b])S̆

∗���kS̆C xk

≤ √
ρx

���
M�

m=1

am(8∗
m SC S∗8m b

− Eφ[8∗
m SC S∗8m b])S̆

∗���, (49)
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Fig. 5. Order statistics for the log estimation error in varying SNR for the
underwater channel model.

where S̆ ∈ R(2K−1)×L is defined by

S̆ =

⎡
⎣
�
0K−1,L−K+1 IK−1

�

�
IK 0K ,L−K

�

⎤
⎦ .

The right-hand side of (49) except the constant factor√
ρx is upper bounded by the following lemma, which is

proved in Appendix X.
Lemma 13: Suppose that (A2) holds. For any β ∈ N, there

is a constant C(β) that depends only on β such that

���
M�

m=1

am(8∗
m SC S∗8m b − Eφ8∗

m SC S∗8m b)S̆
∗���

≤ C(β)K
√

Mkak∞kbk2 logα(MKL) (50)

holds with probability 1 − K −β .

By applying (43), (49), Lemma 13 together with the fact√
ρx ≤ C0kxk2 to (48), we obtain that

k0s0
∗
s − E[0s]E[0s]∗k

λ
≤ C(β)

√
Mkak∞ logα(MKL)

kak1

≤ C(β)μ logα(MKL)

ν
√

M
(51)

holds with probability 1 − K −β .

B. Perturbation Due to Signal-Noise Cross Term

Next we consider the second term in (47b). By the triangle
inequality, we have

k0s0
∗
n + 0n0

∗
s k ≤ k0s0

∗
nk + k0n0

∗
s k ≤ 2k0s0

∗
nk.

Therefore, it suffices to upper estimate k0s0
∗
nk. To this end,

we decompose 0s0
∗
n as

0s0
∗
n = (0s − E[0s])0∗

n + E[0s]0∗
n. (52)

Note that the first summand in the right-hand side of (52)
is written as

(0s − E[0s])0∗
n

=
� M�

m=1

am8∗
m SC S∗8m b S̆

∗ − Eφ[am8∗
m SC S∗8m b S̆

∗]
�

·
� M�

m0=1

S̆C x C∗
wm0 S∗8m0

�
, (53)

where the first and second factors of the right-hand side
of (53) are upper bounded in the spectral norm respectively
by Lemma 13 and by the following lemma. (See Appendix X
for the proof.)

Lemma 14: Suppose that (A1) and (A2) hold. For any

β ∈ N, there is a constant C(β) that depends only on β such

that

���
M�

m=1

S̆C x C∗
wm

S∗8m

���≤C(β)ρx,w

√
M K logα(MKL) (54)

holds with probability 1 − K −β .

By applying Lemmas 13 and (14) to (53), we obtain that

k(0s − E[0s])0∗
nk ≤ C(β)ρx,wM K 3/2kak∞kbk2 logα(MKL)

(55)

holds with probability 1 − K −β .
Next, the second summand in the right-hand side of (52) is

written as

E[0s]0∗
n = Kkak1b

� M�

m0=1

e∗
1C x C∗

wm0 S
∗8m0

�
, (56)

whose spectral norm is upper bounded by using the following
lemma.

Lemma 15: Suppose that (A1) and (A2) hold. For any

β ∈ N, there is a constant C(β) that depends only on β such

that

���
M�

m0=1

e∗
1C x C∗

wm0 S∗8m0
��� ≤ C(β)ρx,w

√
M D logα(MKL)

holds with probability 1 − K −β .

The proof of Lemma 15 is very similar to that of Lemma 14.
The proof of Lemma 14 involves the following optimization
formulation:

max
z∈B2K−1

2

max
q∈B D

2

M�

m=1

z∗ S̆C x C∗
wm

S∗8m q.

Instead of maximizing over z ∈ B2K−1
2 , we fix z to S̆e1.

Equivalently, we replace the unit ball B2K−1
2 by the singleton

set {S̆e1}. This replacement simply removes the entropy inte-
gral corresponding to B2K−1

2 . Except this point, the proofs for
the two lemmas are identical. Thus we omit further details.

Applying Lemma 15 to (56) implies that

kE[0s]0∗
nk ≤ C(β)ρx,w

√
M K

√
Dkak1kbk2 logα(MKL)

(57)

holds with probability 1 − K −β .
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By combining (55) and (57), after plugging in the definitions
of η, μ, and ν, we obtain that

k0s0
∗
n + 0n0

∗
s k

λ
≤ C(β) logα(MKL)√

η
· ρx,w

kxk2σw

√
L

·
� μ

ν2 M
+

√
D

ν
√

M K

�
(58)

holds with probability 1 − 2K −β .

C. Perturbation Due to Noise Term

Finally, we derive an upper bound on the spectral norm of
the last term in (47c) using the following lemma, which is
proved in Appendix X.

Lemma 16: Suppose that (A2) holds. For any β ∈ N, there

is a constant C(β) that depends only on β such that

k0n0
∗
n − Ew[0n0

∗
n]k ≤ C(β)ρw M3/2

√
K D logα(MKL)

holds with probability 1 − K −β .

We also use a tail bound on ρw given by the following
lemma from [22].

Lemma 17 ([22, Lemma 5.9]): Suppose that (A2) holds.

For any β ∈ N, there is a constant C(β) that depends only

on β such that

ρw ≤ C(β)σ 2
w

√
K L logα(MKL) (59)

holds with probability 1 − K −β .

By Lemma 17 and (15), the corresponding relative pertur-
bation is upper bounded by

k0n0
∗
n − Ew[0n0

∗
n]k

K 2kxk2
2kak2

1kbk2
2

≤ C(β) logα(MKL)

η
·

√
D

ν2
√

M L
(60)

with probability 1 − K −β .
Then it follows from (51), (58), and (60) that the condition

in (45) is satisfied by the assumptions in (32) and (31). There-
fore, Lemma 11 provides the upper bound on the estimation
error in (33), which is obtained by plugging (51), (58), and
(60) to (46). This completes the proof.

VIII. CONVERGENCE OF ALTERNATING EIGEN METHOD

Algorithm 1 iteratively updates the estimates of a, b from
a function of the matrix A = 8∗(Y∗Y − σ 2

w(M − 1)LIM K )8

and previous estimates. Propositions 8 and 9 show the conver-
gence of the iterations in Algorithm 1 that alternately update
the estimates �a and �b under the randomness assumptions
in (A1) and (A2). Similarly to the analysis of the spectral
initialization in Section VII, we prove Propositions 8 and 9
by using the Davis-Kahan Theorem in Lemma 11. To this
end, we first compute tail estimates of norms of the deviation
of the random matrix A from its expectation A = E[A] below.

A. Tail Estimates of Deviations

Algorithm 1 updates the estimates �a as the least dominant
eigenvector of (IM ⊗ �b∗

)A(IM ⊗ �b) where �b denotes the
estimate in the previous step. The other estimate �b is updated
similarly from (�a∗ ⊗ ID)A(�a ⊗ ID). The matrices involved

in these updates are restricted version of A with separable
projection operators.

In order to get a tightened perturbation bound for the
estimates, we introduce a new matrix norm with this separa-
bility structure. To define the new norm, we need operators
that rearrange an M-by-D matrix into a column vector of
length M D and vice versa. For V = [v1, . . . , vM ] ∈ CM×D ,
define

vec(V ) = [v>
1 , . . . , v>

M ]>.

Let mat(·) denote the inverse of vec(·) so that

mat(vec(V )) = V , ∀V ∈ C
M×D

and

vec(mat(v)) = v, ∀v ∈ C
M D.

With these vectorization and matricization operators, we define
the matricized Sp-norm of v ∈ CM D by

|||v |||Sp = kmat(v)kSp .

Then the matricized operator norm of M ∈ CM D×M D is
defined by

||| M |||Sp→Sq := max
|||v |||Sp ≤1

||| Mv |||Sq .

For p = 1 and q = ∞, by the Courant-Fischer minimax
principle, the matricized operator norm is written as a varia-
tional form, i.e. ||| M |||S1→S∞ is a solution to

maximize
ϒ,ϒ 0∈CM×D

|hvec(ϒ 0), Mvec(ϒ)i|
subject to kϒkS1 ≤ 1, kϒ 0kS1 ≤ 1.

Since the unit ball with respect to the S1-norm is given
as the convex hull of all unit-S2-norm matrices of rank-1,
||| M |||S1→S∞ is a solution to

maximize
ϒ,ϒ 0∈CM×D

|hvec(ϒ 0), Mvec(ϒ)i|

subject to kϒkS2 ≤ 1, kϒ 0kS2 ≤ 1

rank(ϒ) = rank(ϒ 0) = 1. (61)

Therefore, by dropping the rank-1 constraints in (61),
we obtain

||| M |||S1→S∞ ≤ kMk, ∀M ∈ C
M D×M D. (62)

The following lemma provides a tail estimate of
||| E |||S1→S∞ divided by K 2kxk2

2kuk2
2, which amounts to

the spectral gap between the two smallest eigenvalues of A.
Compared to the analogous tail estimate for its spectral norm,
derived in [22, Sec. 3.2], the tail estimate for ||| E |||S1→S∞
is smaller in order. This is the reason why we obtain a better
sample complexity by introducing the extra rank-1 structure
to the prior model on impulse responses.

Lemma 18: Let E = A − A. For any β ∈ N, there exist a

numerical constant C and a constant C(β) that depends only
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on β such that

||| E |||S1→S∞

K 2kxk2
2kuk2

2

≤ C(β) logα(MKL) ·
�� 1√

M
+
�

D

K

�
μ2 +

√
D

η
√

L

+ ρx,w√
ηK Lσwkxk2

�
μ
�√

K

M
+
�

D

M
+
�

D

K

�
+ 1

��

(63)

holds with probability 1 − C K −β .

Proof of Lemma 18: The derivation of (63) is similar to
that for the analogous tail estimate for kEk in [22, Sec. 3.2].
We use the same decomposition of E, which is briefly sum-
marized below.

We decompose Y as Y = Y s + Y n, where the noise-free
portion Y s (resp. the noise portion Y n) is obtained as we
replace ym = hm ⊛ x +wm in Y by its first summand hm ⊛ x

(resp. by its second summand wm) for all m = 1, . . . , M .
Then E is written as the sum of three matrices whose entries
are given as polynomials of subgaussian random variables of
different order as follows.

E = 8∗Y ∗
s Y s8 − E[8∗Y ∗

s Y s8] (64)

+ 8∗Y∗
s Y n8 + 8∗Y∗

nY s8 (65)

+ 8∗(Y∗
nY n − σ 2

w(M − 1)LIM K )8. (66)

We first compute tail estimates of the components; the tail
estimate in (63) is then obtained by combining these results
via the triangle inequality.

For the first summand in (64) and the last summand in (66),
we were not able to reduce their tail estimates in order com-
pared to the spectral norms. Thus we use their tail estimates
on the spectral norms derived in [22, Sec. 3.2], which are also
valid tail estimates by (62). For the completeness, we provide
the corresponding lemmas below.

Lemma 19 [22, Lemma 3.5]: Suppose that (A1) holds. For

any β ∈ N, there exist a numerical constant α ∈ N and a

constant C(β) that depends only on β such that

k8∗Y ∗
s Y s8 − E[8∗Y ∗

s Y s8]k
K 2kxk2

2kuk2
2

≤ C(β) logα(MKL)
�� 1

M
+
�

D

K

�
μ2 (67)

holds with probability 1 − C K −β .

Lemma 20 [22, Lemma 3.7]: Suppose that (A1) holds. For

any β ∈ N, there is a constant C(β) that depends only on β

such that

k8∗(Y ∗
nY n − σ 2

w(M − 1)LIM K )8k
K 2kxk2

2kuk2
2

≤ C(β) logα(MKL)

η
·
�

D

L
(68)

with probability 1 − C K −β .

For the second and third terms in (65), we use their tail
estimates given in the following lemma, the proof of which is
provided in Appendix X.

Lemma 21: Suppose that (A1) holds. For any β ∈ N, there

exists a constant C(β) that depends only on β such that,

conditional on the noise vector w,

|||8∗Y∗
s Y n8 |||S1→S∞

K 2kxk2
2kuk2

2

≤ C(β)ρx,w√
ηK Lσwkxk2

·
�
μ
�√

K

M
+
�

D

M
+
�

D

K

�
+ 1

�

(69)

holds with probability 1 − C K −β .

Finally, the tail estimate in (63) is obtained by combining
(67), (67), and (69) via the triangle inequality. This completes
the proof.

We will also make use of a tail estimate of
||| Eu |||S∞/kuk2, again normalized by factor K 2kxk2

2kuk2
2.

The following lemma, which provides a relevant tail estimate,
is a direct consequence of Lemma 21 and [22, Lemma 3.8].

Lemma 22: Let E = A − A. For any β ∈ N, there exist a

numerical constant C and a constant C(β) that depends only

on β such that

||| Eu |||S∞

K 2kxk2
2kuk3

2

≤ C(β) logα(MKL)

�
ρx,w√

ηK Lσwkxk2

·
�
μ
�√

K

M
+
�

D

M
+
�

D

K

�
+ 1

�
+

√
D

η
√

M L

�
(70)

holds with probability 1 − C K −β .

B. Proof of Proposition 8

To simplify notations, let θ = 6 (b,�b) denote the principal
angle between the two subspaces spanned respectively by b

and �b, i.e., θ ∈ [0, π/2] satisfies

sin θ = kP b⊥�bk2, cos θ = kP b
�bk2,

where P b denotes the orthogonal projection onto the span of b.
The assumption in (34) implies θ ≤ π/4.

Recall that Algorithm 1 updates �a from a given esti-
mate �b in the previous step as the eigenvector of the matrix
(IM ⊗�b∗

)A(IM ⊗�b) corresponding to the smallest eigenvalue.
Without loss of generality, we may assume that k�bk2 = 1.

By direct calculation, we obtain that A = E[A] is rewritten
as

A = K 2kxk2
2kbk2

2(kak2
2IM − diag(|a|2)) ⊗ P b⊥

+ K 2kxk2
2kbk2

2(kak2
2IM − aa∗) ⊗ P b. (71)

Then

(IM ⊗�b∗
)A(IM ⊗�b)

= K 2kxk2
2kbk2

2(kak2
2IM − cos2 θ aa∗)

− K 2kxk2
2kbk2

2 sin2 θ diag(|a|2). (72)

Here |a|2 denotes the vector whose kth entry is the squared
magnitude of the kth entry of a and diag(|a|2) is a diagonal
matrix whose diagonal entries are given by |a|2.



LEE et al.: FAST AND GUARANTEED BLIND MULTICHANNEL DECONVOLUTION UNDER A BILINEAR SYSTEM MODEL 4807

We verify that the matrix kak2
2IM − cos2 θ aa∗ is positive

definite and its smallest eigenvalue, which has multiplicity 1,
is smaller than the next smallest eigenvalue by kak2

2 cos2 θ .
Furthermore, a is collinear with the eigenvector corresponding
to the smallest eigenvalue.

Let us consider the following matrix:

K 2kxk2
2kbk2

2kak2
2IM − (IM ⊗�b∗

)A(IM ⊗�b)

= K 2kxk2
2kbk2

2 cos2 θ aa∗

+ K 2kxk2
2kbk2

2 sin2 θ diag(|a|2)
− (IM ⊗�b∗

)E(IM ⊗�b),

which we considered as a perturbed version of
K 2kxk2

2kbk2
2 cos2 θ aa∗. Then the perturbation, that is

the difference of the two matrices, satisfies

����K 2kxk2
2kbk2

2kak2
2IM − (IM ⊗�b∗

)A(IM ⊗�b)

− K 2kxk2
2kbk2

2 cos2 θ aa∗
����

≤
���K 2kxk2

2kbk2
2 sin2 θ diag(|a|2)

���
+ k(IM ⊗�b∗

)E(IM ⊗�b)k
≤ K 2kxk2

2kbk2
2kak2

∞ sin2 θ + ||| E |||S1→S∞ . (73)

For sufficiently large C1(β), the conditions in (34), (35),
(36), and (37) imply

K 2kxk2
2kbk2

2kak2
2 cos2 θ

> 2(K 2kxk2
2kbk2

2kak2
∞ sin2 θ + ||| E |||S1→S∞).

Therefore, �a is a unique dominant eigenvector of
K 2kxk2

2kbk2
2kak2

2IM − (IM ⊗�b∗
)A(IM ⊗�b).

Next we apply Lemma 11 for

M = K 2kxk2
2kbk2

2 cos2 θ aa∗,

M = K 2kxk2
2kbk2

2kak2
2IM

−(IM ⊗�b∗
)A(IM ⊗�b),

q1 = a

kak2
,

�q = �a.

Then λ and D in Lemma 11 are given as λ =
K 2kxk2

2kbk2
2kak2

2 cos2 θ and D = 0.
By (73), we have

kM − Mk
λ

≤ kak2
∞ sin2 θ

kak2
2 cos2 θ

+ ||| E |||S1→S∞

K 2kxk2
2kbk2

2kak2
2 cos2 θ

≤ μ2

M
+ 2||| E |||S1→S∞

K 2kxk2
2kbk2

2kak2
2

,

where the last step follows from (34). Therefore, for suffi-
ciently large C1(β), the conditions in (35), (36), (37) combined
with Lemma 18 satisfy (45) in Lemma 11 and we obtain the
error bound in (46).

It remains to compute k(M − M)q1k2/λ. The `2-norm of
(M − M)q1 satisfies

k(M − M)q1k2 ≤ K 2kxk2
2kbk2

2 sin2 θkdiag(|a|2)ak2

kak2

+k(IM ⊗�b∗
)E(a ⊗�b)k2

kak2

≤ K 2kxk2
2kbk2

2kak2
∞ sin2 θ

+ 3 sin θ ||| E |||S1→S∞

+cos2 θ ||| E(a ⊗ b) |||S∞
kak2kbk2

, (74)

where the second step follow from the decomposition of �b
given by

�b = P b
�b + P b⊥�b.

which satisfies kP b
�bk2 = cos θ and kP b⊥�bk2 = sin θ .

By dividing the right-hand side of (74) by λ, we obtain

4k(M − M)q1k2

λ

≤ 4kak2
∞ sin2 θ

kak2
2 cos2 θ

+ 12 sin2 θ ||| E |||S1→S∞

K 2kxk2
2kbk2

2kak2
2 cos2 θ

+ 4||| Eu |||S∞

K 2kxk2
2kuk3

2

≤
�8μ2

M
+ 24||| E |||S1→S∞

K 2kxk2
2kuk2

2

�
sin θ + 4||| Eu |||S∞

K 2kxk2
2kuk3

2

, (75)

where the second step follows from (34).
By Lemma 18, the constant factor for sin θ in (75) becomes

less than 1/2 as we choose C1(β) in (35), (36), (37) suf-
ficiently large. This gives (38), where the expression for
κ follows from Lemma 22. This completes the proof.

C. Proof of Proposition 9

The proof of Proposition 9 is similar to that of Proposition 8.
Thus we will only highlight the differences between the two
proofs.

Without loss of generality, we assume that k�ak2 = 1. Let
θ̆ = 6 (a,�a). The assumption in (39) implies θ̆ ≤ π/4.
This time, we compute the least dominant eigenvector of
(�a∗ ⊗ ID)A(�a ⊗ ID). From (71), we obtain

(�a∗ ⊗ ID)A(�a ⊗ ID)

= K 2kxk2
2kak2

2(kbk2
2ID − cos2 θ̆ bb∗)

− K 2kxk2
2kbk2

2k|a| ��ak2
2 P b⊥ . (76)

We consider the matrix

K 2kxk2
2kbk2

2kak2
2ID − (�a∗ ⊗ ID)A(�a ⊗ ID)

= K 2kxk2
2kak2

2 cos2 θ̆ bb∗

+ K 2kxk2
2kbk2

2k|a| ��ak2
2 Pb⊥

− (�a∗ ⊗ ID)E(�a ⊗ ID)
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as a perturbed version of K 2kxk2
2kak2

2 cos2 θ̆ bb∗. The differ-
ence of the two matrices satisfies

����K 2kxk2
2kbk2

2kak2
2ID − (�a∗ ⊗ ID)A(�a ⊗ ID)

− K 2kxk2
2kbk2

2kak2
2 cos2 θ̆ P b

����

≤
���K 2kxk2

2kbk2
2k|a| ��ak2

2 P b⊥
���

+ k(�a∗ ⊗ ID)E(�a ⊗ ID)k
≤ K 2kxk2

2kbk2
2kak2

∞ + ||| E |||S1→S∞ .

For sufficiently large C1(β), the conditions in (34), (35),
(36), and (37) imply

K 2kxk2
2kbk2

2kak2
2 cos2 θ

> 2(K 2kxk2
2kbk2

2kak2
∞ sin2 θ + ||| E |||S1→S∞).

Therefore, �b is also a unique dominant eigenvector of
K 2kxk2

2kbk2
2kak2

2ID − (�a∗ ⊗ ID)A(�a ⊗ ID).
Next we apply Lemma 11 for

M = K 2kxk2
2kak2

2 cos2 θ̆ bb∗,
M = K 2kxk2

2kbk2
2kak2

2ID

−(�a∗ ⊗ ID)A(�a ⊗ ID),

q1 = b

kbk2
,

�q = �b.

Then λ and D in Lemma 11 are given as λ =
K 2kxk2

2kbk2
2kak2

2 cos2 θ̆ and D = 0.
Similarly to the proof of Proposition 8, we show

kM − Mk
λ

≤ 2μ2

M
+ 2||| E |||S1→S∞

K 2kxk2
2kbk2

2kak2
2

and

4k(M − M)q1k2

λ
≤ 24||| E |||S1→S∞

K 2kxk2
2kuk2

2

sin θ + 4||| Eu |||S∞

K 2kxk2
2kuk3

2

.

Here we used the decomposition of �a given by

�a = P a�a + P a⊥�a,

which satisfies kP a�ak2 = cos θ̆ and kP a⊥�ak2 = sin θ̆ .
The remaining steps are identical to those in the proof of

Proposition 8 and we omit further details.

IX. CONVERGENCE OF RANK-1
TRUNCATED POWER METHOD

In this section, we prove Proposition 10. First we present a
theorem that shows local convergence of the rank-1 truncated

power method for general matrix input B. Then we will show
the proof of Proposition 10 as its corollary.

The separability structure in (9) corresponds to the rank-1
structure when the eigenvector is rearranged as a matrix.
We introduce a collection of structured subspaces, where their
Minkowski sum is analogous to the support in the sparsity
model. For (a, b) ∈ C

M × CD , we define

T (a, b) := {a ⊗ ξ + q ⊗ b | ξ ∈ C
D, q ∈ C

M }.

Then

mat(T (a, b)) = {mat(v) | v ∈ T (a, b)}

is equivalent to the tangent space of the rank-1 matrix
U = ab>.

Now we state a local convergence result for the rank-1
truncated power method in the following theorem, the proof
of which is postponed to Section IX-A.

Theorem 23: Let u = a ⊗ b be a unique dominant

eigenvector of B. Let �λ2(B) be defined in (77), as shown at

the bottom of this page. Suppose that there exist 0 < μ < 1
and 0 < τ < 1

3
√

2
, for which (78), as shown at the bottom of

this page

4
√

6||| B − B |||S1→S∞
λ1(B)

≤ min
� 1

3
√

2
,
(1 − μ)τ

1 + μ

�
, (79)

and

�λ2(B) + 6||| B − B |||S1→S∞ ≤ λ1(B)

5
(80)

hold. If sin 6 (u0, u) ≤ τ , then (ut )t∈N produced by

Algorithm 2 satisfies

sin 6 (ut , u) ≤ μ sin 6 (ut−1, u)

+ (1 + μ)4
√

6|||(B − B)u |||S∞
λ1(B)

(81)

for all t ∈ N.

Proposition 10 is a direct consequence of Theorem 23
for the case where the input matrix B is given as B =
kE[A]k IM D − A and its proof is presented below.

Proof of Proposition 10: We apply Theorem 23 for

B = kE[A]k IM D − A

and

B = K 2kxk2
2uu∗.

Then the difference between B and B is written as

B − B = (kE[A]k − K 2kxk2
2kuk2

2)IM D + K 2kxk2
2ϒ − E.

(82)

�λ2(B) := sup
v,(�a,�b),(�a,�b)

 
v∗ Bv | kvk2 ≤ 1, v ∈ u⊥ ∩ [T (a, b) + T (�a,�b) + T (�a,�b)]

!
. (77)

√
5(�λ2(B) + 6||| B − B |||S1→S∞)√

1 − τ 2 λ1(B) − τ�λ2(B) − 6(
√

1 − τ 2 + τ )||| B − B |||S1→S∞
< μ, (78)
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In Section VIII-B, we have computed A = E[A] in (71),
which is rewritten as

A = K 2kxk2
2(kuk2

2 Pu⊥ − ϒ) (83)

with

ϒ = diag(|a|2) ⊗ kbk2
2 Pb⊥,

where u = a ⊗ b.
Therefore, it follows from (83) that

|kAk − K 2kxk2
2kuk2

2| ≤ K 2kxk2
2kϒk

≤ K 2kxk2
2kbk2

2kak2
∞. (84)

Then by plugging in (84) to (82), we obtain

||| B − B |||S1→S∞ ≤ 2K 2kxk2
2kbk2

2kak2
∞ + ||| E |||S1→S∞ .(85)

On the other hand, B is a rank-1 matrix whose eigenvector
is collinear with u and the largest eigenvalue is given by

λ1(B) = K 2kxk2
2kbk2

2kak2
2. (86)

Therefore, B also satisfies

�λ2(B) = 0.

Since �λ2(B) = 0, (78) and (79) are implied by

||| B − B |||S1→S∞
λ1(B)

≤ C0 min
�
μ
�

1 − τ 2,
(1 − μ)τ

1 + μ

�
(87)

for a numerical constant C0.
By applying (86) and the tail estimate of ||| E |||S1→S∞

given in Lemma 18 to (85), we verify that the sufficient
condition in (87) is implied by (35), (36), and (37) for C1 =
c(μ, τ )C 0

1, C2 = c(μ, τ )C 0
2 where C 0

1 and C 0
2 are constants

that only depend on β.
Since the conditions in (78) and (79) are satisfied,

Theorem 23 provides the error bound in (40). This completes
the proof.

A. Proof of Theorem 23

In order to prove Theorem 23, we first provide lemmas,
which show upper bounds on the estimation error, given
in terms of the principal angle, in the corresponding steps
of Algorithm 2.

The first lemma provides upper bounds on norms of a matrix
and a vector when they are restricted with a projection operator
onto a subspace with the separability structure.

Lemma 24: Let

T̆ =
r�

k=1

T (ak, bk)

for {(ak, bk)}r
k=1 ⊂ CM ×CD , M ∈ CM D×M D , and u ∈ CM D .

Then

kP
T̆

M P
T̆
k ≤ 2r ||| M |||S1→S∞

and

kP T̆ Muk2 ≤
√

2r ||| Mu |||S∞.

Proof: Let v ∈ T̆ . Then rank(mat(v)) ≤ 2r . Let

mat(v) =
2r�

l=1

σl qlξ
>
l

denotes the singular value decomposition of mat(v), where
kqlk2 = kξ lk2 = 1 and σl ≥ 0 for k = 1, . . . , 2r . Then

v =
2r�

l=1

σl ql ⊗ ξ l .

Similarly, we can represent v0 ∈ T̆ as

v0 =
2r�

j=1

σ 0
j q0

j ⊗ ξ 0
j .

Then

|hv0, Mvi| ≤
2r�

j,l=1

σlσ
0
j |h(q0

j ⊗ ξ 0
j ), M(ql ⊗ ξ l)i|

≤
2r�

l=1

σl

2r�

j=1

σ 0
j ||| M |||S1→S∞

≤ 2rkvk2kv0k2||| M |||S1→S∞ .

Therefore,

kP T̆ M P T̆ k = sup
v,v0∈T̆

{hv0, Mvi | kvk2 = kv0k2 = 1}

≤ 2r ||| M |||S1→S∞ .

This proves the first assertion. The second assertion is obtained
in a similar way by fixing v = u.

The following lemma is a direct consequence of the
Davis-Kahan Theorem together with Lemma 24.

Lemma 25 (Perturbation): Let {(ak, bk)}r
k=1 ⊂ CM × CD

satisfy

T (a, b) ⊂
r�

k=1

T (ak, bk) =: T̆ .

Let v (resp. u) be a unique most dominant eigenvector of

P T̆ M1 P T̆ (resp. P T̆ M2 P T̆ ). If

λ2(P T̆ M2 P T̆ ) + 2r ||| M1 − M2 |||S1→S∞

≤ λ1(P T̆ M2 P T̆ )

5
, (88)

then

sin 6 (v, u) ≤ 4
√

2r |||(M1 − M2)u |||S∞
λ1(P T̆ M2 P T̆ )

.

The following lemma shows how the conventional power
method converges depending on the largest and second largest
eigenvalues.

Lemma 26 (A Single Iteration of Power Method

[56, Th. 1.1]): Let M have a unique dominant eigenvector v.

Then

sin 6 (M�v, v) ≤ λ2(M) sin 6 (�v, v)

λ1(M) cos 6 (�v, v) − λ2(M) sin 6 (�v, v)

for any �v such that h�v, vi 6= 0.
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The following lemma is a modification of [47, Lemma 12]
and shows that the correlation is partially preserved after
the rank-1 truncation. Unlike the canonical sparsity model,
where the atoms are mutually orthogonal, in the low-rank
atomic model, atoms in an atomic decomposition may have
correlation. Our proof addresses this general case and the
argument here also applies to an abstract atomic model.

Lemma 27 (Correlation after the Rank-1 Truncation): Let

v̆ ∈ CM D satisfy kv̆k2 = 1 and rank(mat(v̆)) = 1. For

v ∈ CM D such that kvk2 = 1, let �V ∈ CM×D denote the

best rank-1 approximation of V = mat(v) and �v = vec(�V ).

Then

|h�v, v̆i| ≥ |hv, v̆i|
− min

��
1 − |hv, v̆i|2, 2(1 − |hv, v̆i|2)

�
. (89)

Proof of Lemma 27: There exist ă ∈ CM and b̆ ∈ CD

such that

U = mat(v̆) = ăb̆
>
.

Let �a ∈ CD and �b ∈ CD respectively denote the left and
right singular vectors of the rank-1 matrix �V . Define T1 =
T ({(ă, b̆)}), T2 = T ({(�a,�b)}), and T3 = T1 ∩T2. Then T1 +T2
is rewritten as

T1 + T2 = PT ⊥
2

T1 ⊕ T2 = PT ⊥
2

T1 ⊕ T3 ⊕ PT ⊥
3

T2. (90)

Similarly, we also have

T1 + T2 = T1 ⊕ PT ⊥
1

T2 = PT ⊥
3

T1 ⊕ T3 ⊕ PT ⊥
1

T2. (91)

By the definition of T2, we have

kPT2vk2 ≥ kPT1vk2.

Therefore,

kP P
T ⊥

3
T2vk2 ≥ kP P

T ⊥
3

T1vk2.

Then by (90) and (91) it follows that

kP P
T ⊥

1
T2vk2 ≥ kP P

T ⊥
2

T1vk2. (92)

By the Cauchy-Schwartz inequality and the Pythagorean
identity, we have

|hv, v̆i|2 = |hPT1v, v̆i|2
≤ kPT1vk2

2

≤ 1 − kPT ⊥
1

vk2
2

≤ 1 − kP P
T ⊥

1
T2vk2

2

≤ 1 − kP P
T ⊥

2
T1vk2

2,

where the last step follow from (92). The above inequality is
rearranged as

kP P
T ⊥

2
T1vk2 ≤

�
1 − |hv, v̆i|2. (93)

We may assume that |hv, v̆i| > 2−1/2. Otherwise, the
right-hand side of (89) becomes negative and the inequality
holds trivially. Then by (93) we have

kP P
T ⊥

2
T1vk2 < |hv, v̆i|,

which also implies

kP P
T ⊥

2
T1vk2kP P

T ⊥
2

T1 v̆k2 < |hv, v̆i|. (94)

Since PT1+T2 v̆ = v̆, we have

|hv, v̆i| = |hPT1+T2v, v̆i|
= |h(P P

T ⊥
2

T1 + PT2)v, v̆i|
= |hP P

T ⊥
2

T1v, v̆i| + |hPT2v, v̆i|
≤ kP P

T ⊥
2

T1vk2kP P
T ⊥

2
T1 v̆k2

+kPT2vk2kP T2 v̆k2

≤ kP P
T ⊥

2
T1vk2kP P

T ⊥
2

T1 v̆k2

+
�

1 − kP P
T ⊥

2
T1vk2

2

�
1 − kP P

T ⊥
2

T1 v̆k2
2.

By solving the above inequality for kP P
T ⊥

2
T1 v̆k2 under the

condition in (94), we obtain

kP P
T ⊥

2
T1 v̆k2 ≤ kP P

T ⊥
2

T1vk2|hv, v̆i|

+
�

1 − kP P
T ⊥

2
T1vk2

2

�
1 − |hv, v̆i|2

≤ min(1, 2
�

1 − |hv, v̆i|2). (95)

Since PT2(v −�v) = 0, we have

|hv, v̆i| − |h�v, v̆i| ≤ |hv −�v, v̆i|
= |hP P

T ⊥
2

T1(v −�v), v̆i|
= |hP P

T ⊥
2

T1v, v̆i|
≤ kP P

T ⊥
2

T1vk2kP P
T ⊥

2
T1 v̆k2

≤ min
��

1 − |hv, v̆i|2, 2(1 − |hv, v̆i|2)
�
,

where the last step follows from (93) and (95). The assertion
is obtained by a rearrangement.

Proof of Theorem 23: We use the mathematical induction
and it suffices to show sin 6 (vt , u) ≤ τ and (81) hold provided
that sin 6 (vt−1, u) ≤ τ for fixed t .

Since rank(mat(vt )) = 1, there exist at ∈ C
M and bt ∈ C

D

such that vt = at ⊗ bt . Similarly, there exist at−1 ∈ CM and
bt−1 ∈ CD that satisfy vt−1 = at−1 ⊗ bt−1. Let

T̆ = T (at−1, bt−1) + T (at , bt ) + T (a, b).

Then define

�v0
t = P T̆ B P T̆ vt−1

kP T̆ B P T̆ vt−1k2
.

Note that Algorithm 2 produces the same result even when
�vt is replaced by �v0

t . Indeed, since P T̆ vt−1 = vt−1, it follows
that mat(Bvt−1) and mat(B P T̆ vt−1) are collinear, so are their
rank-1 approximations. Moreover, by vt is obtained normal-
izing as the normalized rearrangement of the rank-1 approx-
imation of mat(Bvt−1), by the construction of T̆ , it follows
that mat(P T̆ B P T̆ vt−1) is also collinear with mat(Bvt−1).

Let �V 0
t denote the rank-1 approximation of mat(�v0

t ) and
�u0

t = vec(�V 0
t ). Then we have

vt =�u0
t/k�u0

tk2.
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Let v(T̆ ) denote a unique most dominant eigenvector of
P T̆ B P T̆ . Since k�v0

tk2 = 1, we have k�u0
tk2 ≤ 1. Therefore,

sin 6 (vt , v(T̆ )) =
"

1 − |hvt , v(T̆ )i|2

≤
"

1 − |h�u0
t , v(T̆ )i|2.

We apply Lemma 27 with v̆ = v(T̆ ) and v = �v0
t .

By Lemma 27, we have

|h�u0
t , v(T̆ )i|
≥ |h�v0

t , v(T̆ )i|
− min

�"
1 − |h�v0

t , v(T̆ )i|2, 2(1 − |h�v0
t , v(T̆ )i|2)

�
,

which implies
"

1 − |h�u0
t , v(T̆ )i|2 ≤

√
5
"

1 − |h�v0
t , u(T̆ )i|2

=
√

5 sin 6 (�v0
t , v(T̆ )).

We apply Lemma 26 with M = P T̆ B P T̆ , v = v(T̆ ), and
�v = vt−1. Then

sin 6 (�v0
t , v(T̆ ))

≤ λ2(M) sin 6 (vt−1, v(T̆ ))

λ1(M) cos 6 (vt−1, v(T̆ )) − λ2(M) sin 6 (vt−1, v(T̆ ))

≤ λ2(M)

λ1(M)
√

1 − τ 2 − λ2(M) τ
· sin 6 (vt−1, v(T̆ )), (96)

where the last step follows from sin 6 (vt−1, v(T̆ )) ≤ τ 0.
Next we compute the two largest eigenvalues of P T̆ B P T̆ .

Since u is a unique dominant eigenvector of B and P T̆ u = u,
we have λ1(P T̆ B P T̆ ) = λ1(B). Therefore, by the triangle
inequality,

λ1(P
T̆

B P
T̆
) ≥ λ1(P

T̆
B P

T̆
) − kP

T̆
(B − B)P

T̆
k

≥ λ1(B) − 6 ||| B − B |||S1→S∞ . (97)

By the variational characterization of eigenvalues, we have

λ2(P T̆ B P T̆ ) = sup
v

{v∗ Bv | kvk2 ≤ 1, v ∈ u⊥ ∩ T̆ }≤�λ2(B).

Therefore,

λ2(P T̆ B P T̆ ) ≤ λ2(P T̆ B P T̆ ) + kP T̆ (B − B)P T̆ k
≤ �λ2(B) + 6 ||| B − B |||S1→S∞ . (98)

By plugging in (97) and (98) into (96), we obtain that (78)
implies

sin 6 (vt , v(T̆ )) ≤ μ sin 6 (vt−1, v(T̆ )). (99)

Moreover, by the transitivity of the angle function [57],
we also have

6 (vt−1, v(T̆ )) ≤ 6 (vt−1, u) + 6 (u, v(T̆ )). (100)

Next we apply Lemma 25 for M1 = B, M2 = B, and
v = v(T̆ ). Since (80) implies (88), it follows from Lemma 25
that

sin 6 (u, v(T̆ )) ≤ 4
√

6|||(B − B)u |||S∞
λ1(B)

.

Then (79) implies

sin 6 (vt , v(T̆ )) <
1

3
√

2
.

Since sin 6 (vt−1, u) ≤ τ < 1
3
√

2
, it follows that (100) implies

sin 6 (vt−1, v(T̆ )) ≤ sin 6 (vt−1, u) + sin 6 (u, v(T̆ )). (101)

By (79), (99), and (101),

sin 6 (vt , v(T̆ )) <
1

3
√

2
.

Similarly to the previous case, the transitivity of the angle
function implies

6 (vt , u) ≤ 6 (vt , v(T̆ )) + 6 (v(T̆ ), u).

Then it follows that

sin 6 (vt , u) ≤ sin 6 (vt , v(T̆ )) + sin 6 (v(T̆ ), u).

By collecting the above inequalities, we obtain

sin 6 (vt , u) ≤ μ sin 6 (vt , v(T̆ )) + (1 + μ) sin 6 (v(T̆ ), u).

(102)

Finally, we verify that (102) and (79) imply sin 6 (vt , u)≤τ .
This completes the proof.

X. CONCLUSION

We studied two iterative algorithms and their perfor-
mance guarantees for a multichannel blind deconvolution that
imposes a bilinear model on channel impulse responses. Such
a bilinear model is obtained, for example, by embedding a
parametric model for the shapes of the impulse responses
into a low-dimensional subspace through manifold embedding,
while the channel gains are treated as independent variables.
Unlike recent theoretical results on blind deconvolution in the
literature, we do not impose a strong geometric constraint on
the input source signal. Under the bilinear model, we modified
classical cross-convolution method based on the commuta-
tivity of the convolution to overcome its critical weakness
of sensitivity to noise. The bilinear system model imposes a
strong prior on the unknown channel impulse responses, which
enables us to recover the system with short observation. The
constraint by the bilinear model, on the other hand, makes
the recovery no longer a simple eigenvalue decomposition
problem. Therefore, standard algorithms in numerical linear
algebra do not apply to this non-convex optimization problem.
We propose two iterative algorithms along with a simple
spectral initialization. When the basis in the bilinear model is
generic, we have shown that the proposed algorithms converge
linearly to a stable estimate of the unknown channel parame-
ters with provable non-asymptotic performance guarantees.

Mathematically, our analysis involves tail estimates of
norms of several structured random matrices, which are written
as suprema of coupled high-order subgaussian processes. In an
earlier version of our approach [51], we used the concentration
of a polynomial in subgaussian random vector [52] together
with the union bound through the �-net argument. In this
revised analysis, we factorized high-order random processes
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using Gaussian processes of the first or second order and com-
puted the supremum using sharp tail estimates in the literature
(e.g., [58]). This change has already provided a significant
improvement in scaling laws of key parameters in the main
results but the sharpened scaling law is still suboptimal com-
pared to the degrees of freedom in the underlying model.
Because we formulated the observations with the circular
convolution modulo L, it is necessary to assume that L is
no smaller than the length K of the impulse responses.
Otherwise, the problem becomes a demixing problem that
separates mixture of convolutions. The original formulation
given in terms of the linear convolution in the literature
(e.g., [19] [20]) also requires that the length of observation
exceeds the length of the impulse responses. It has not been
explored yet whether one can further reduce the sample
complexity in solving the resulting blind demixing problem for
L < K with the priors considered in this paper. On the other
hand, we expect that it would be possible to further sharpen
the estimates for structured random matrices. It remains as an
interesting open question how to extend the sharp estimates on
suprema of second-order chaos processes [58] to higher orders
similarly to the extension of the Hanson-Wright inequality [59]
for concentration of subgaussian quadratic forms to higher-
order polynomials [52].

APPENDIX A
TOOLBOX

In this section, we provide a collection of lemmas, which
serve as mathematical tools to derive estimates of structured
random matrices.

Lemma 28 (Complexification of Hanson-Wright Inequality

[60, Th. 1.1]): Let A ∈ Cm×n . Let g ∈ Cn be a standard

complex Gaussian vector. For any 0 < ζ < 1, there exists an

absolute constant C such that

|kAgk2
2 − Eg[kAgk2

2]|
≤ C[kA∗ AkF

"
log(2ζ−1) ∨ kAk2 log(2ζ−1)]

holds with probability 1 − ζ .

Lemma 29 (Complexification of Hanson-Wright Inequality

[60, Th. 2.1]): Let A ∈ Cm×n . Let g ∈ Cn be a standard

complex Gaussian vector. For any 0 < ζ < 1, there exists an

absolute constant C such that

|kAgk2 − kAkF| ≤ CkAk
"

log(2ζ−1)

holds with probability 1 − ζ .

The following lemma is a direct consequence of Maurey’s
empirical method [61].

Lemma 30 (Maurey’s empirical method [62, Lemma 3.1]):

Let k, m, n ∈ N and T : `k
1(R) → `m

∞(`d
2(R)) be a linear

operator. Then

 ∞

0

"
log N(T (B`k

1(R)), k · k`m∞(`d
2 (R)), t)dt

≤ C
�

(1 + log k)(1 + log m)(1 + log m + log d)kT k.
Lemma 30 extends to the complex field case, which is

shown in the following corollary.

Corollary 31: Let k, m, n ∈ N and T : `k
1(C) →

`m
∞(`d

2(C)) be a linear operator. Then

 ∞

0

"
log N(T (B`k

1(C)), k · k`m∞(`d
2 (C)), t)dt

≤ C
�

(1 + log k)(1 + log m)(1 + log m + log d)kTk.
The following lemma provides tail estimates of suprema of

subgaussian processes.
Lemma 32: Let ξ ∈ Cn be a standard Gaussian vector with

Eξξ∗ = In , 1 ⊂ C
n , and 0 < ζ < e−1/2. There is an absolute

constants C such that

sup
f ∈1

| f ∗ξ | ≤ C

"
log(ζ−1)


 ∞

0

�
log N(1, k · k2, t)dt

holds with probability 1 − ζ .

Theorem 33 ([58, Th. 3.1]): Let ξ ∈ Cn be an

L-subgaussian vector with Eξξ∗ = In , 1 ⊂ Cm×n , and

0 < ζ < 1. There exists a constant C(L) that only depends

on L such that

sup
M∈1

|kMξk2
2 − E[kMξk2

2]|

≤ C(L)
�

K1 + K2

"
log(2ζ−1) + K3 log(2ζ−1)

�

holds with probability 1− ζ , where K1, K2, and K3 are given

by

K1 := γ2(1, k · k)[γ2(1, k · k) + dF(1)]
+ dF(1)dS(1),

K2 := dS(1)[γ2(1, k · k) + dF(1)],
K3 := d2

S(1).

Using the polarization identity, this result on the suprema
of second order chaos processes has been extended from
a subgaussian quadratic form to a subgaussian bilinear
form [63].

Theorem 34 (A corollary of [63, Th. 2.3]): Let ξ ∈ Cn be

an L-subgaussian vector with Eξξ∗ = In , 12,11 ⊂ Cm×n ,

0 < ζ < 1, and a > 0. There exists a constant C(L) that only

depends on L such that

sup
M1∈11,M2∈12

##hM1ξ , M2ξi − E[hM1ξ , M2ξi]
##

≤ C(L)
�
�K1 + �K2

"
log(8ζ−1) + �K3 log(8ζ−1)

�
,

holds with probability 1− ζ , where �K1, �K2, and �K3 are given

by

�K1 := [aγ2(11, k · k) + a−1γ2(12, k · k)]
·[aγ2(11, k · k) + a−1γ2(12, k · k)
+ a dF(11) + a−1dF(12)]
+ [adF(11) + a−1dF(12)]
· [adS(11) + a−1dS(12)],

�K2 := [adS(11) + a−1dS(12)]
· [aγ2(11, k · k) + a−1γ2(12, k · k)
+ adF(11) + a−1dF(12)],

�K3 := [adS(11) + a−1dS(12)]2.
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A special case of Theorem 34 where a = 1 was shown
in [63, Th. 2.3]. Note that the bilinear form satisfies

hM1ξ , M2ξ i = ha M1ξ , a−1 M2ξ i, ∀a > 0.

Moreover, the γ2 functional and the radii with respect to
the Frobenius and spectral norms are all 1-homogeneous
functions. Therefore, Theorem 34 is a direct consequence
of [63, Th. 2.3].

Since a > 0 in Theorem 34 is arbitrary, one can minimize
the tail estimate over a > 0.

APPENDIX B
EXPECTATIONS

The following lemmas on the expectation of structured
random matrices are derived in [22]. For the convenience
of the readers, we include the lemmas. Here the matrix
�8m ∈ CL×D denotes the zero-padded matrix of 8m given
by �8m S>8m for m = 1, . . . , M , where S ∈ RK×L is defined
in (2).

Lemma 35 ([22, Lemma B.1]): Under the assumption in

(A1),

E[C∗
�8m um

C�8m um
] = Kkumk2

2IL .

Lemma 36 ([22, Lemma B.2]): Under the assumption

in (A1),

E[C∗
�8m um

�8m] = K e1u∗
m .

Lemma 37 ([22, Lemma B.3]): Under the assumption

in (A1),

E[�8∗
m C∗

�8m0 um0
C∗

x C x C�8m0 um0
�8m ]

=
$

K 2kxk2
2kum0k2

2ID m 6= m0,
K 2kxk2

2(kum0k2
2ID + um0 u∗

m0) m = m0.

APPENDIX C
PROOF OF LEMMA 1

Let x0 ∈ CL and b0 ∈ CD . By the definition of an adjoint
operator, we have

hx 0 ⊗ b0 ⊗ 1M,1,A
∗(y)i = hA(x 0 ⊗ b0 ⊗ 1M,1), yi.

Then by the definition of A, we continue as

hA(x0 ⊗ b0 ⊗ 1M,1), yi

=
M�

m=1

hC S∗8m b0 x0, ymi

=
M�

m=1

x0∗C∗
S∗8m b0 ym

=
M�

m=1

x0∗(J S∗8m b0
⊛ ym)

=
M�

m=1

x0∗ J(S∗8m b0
⊛ J ym)

=
M�

m=1

x0∗ J C>
ym

S∗8m b0.

Here we used the fact that the transpose of C h satisfies
C>

h = C J h.
Finally, by tensorizing the last term, we obtain

M�

m=1

x0∗ J C>
ym

S∗8m b0

=
M�

m=1

x0∗((b0)∗ ⊗ IL)vec(J C>
ym

S∗8m)

=
M�

m=1

(b0 ⊗ x0)∗vec(J C>
ym

S∗8m)

=
M�

m=1

(x0 ⊗ b0)∗vec(8∗
m SC ym

J).

Then the assertion follows since x0 and b0 were arbitrary.

APPENDIX D
PROOF OF LEMMA 13

The left-hand side of (50) is rewritten as a variational form
given by

sup
z∈B2K−1

2
q∈B D

2

� M�

m=1

am q∗8∗
m SC S∗8m b S̆

∗
z

� �
 �
(]])

−Eφ

� M�

m=1

am q∗8∗
m SC S∗8m b S̆

∗
z
��

. (103)

Since

q∗8∗
m SC

S̆
∗

z
S∗8m b = vec(8m)∗(q ⊗ IK )SC

S̆
∗

z

·S∗(b> ⊗ IK )vec(8m)

= vec(8m)∗(qb> ⊗ SC
S̆

∗
z
S∗)vec(8m),

(]]) is rewritten as

M�

m=1

amvec(8m)∗(qb> ⊗ SC
S̆

∗
z
S∗)vec(8m).

Let φ = [vec(81)
>, . . . , vec(8M )>]>. Then

M�

m=1

amvec(8m)∗(qb> ⊗ SC
S̆

∗
z
S∗)vec(8m)

= φ∗
� M�

m=1

am em e∗
m ⊗ qb> ⊗ SC

S̆
∗

z
S∗
�
φ.

Therefore, the objective function in the supremum in (103)
becomes a second-order chaos process. We compute the tail
estimate of the supremum by applying Theorem 34 with

11 =
 M�

m=1

am em e∗
m ⊗ q> ⊗ IK | q ∈ B D

2

!

and

12 =
 M�

m=1

em e∗
m ⊗ b> ⊗ SC

S̆
∗

z
S∗ | q ∈ B2K−1

2

!
.
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By direct calculation, the radii of 11 and 12 are given as
follows:

dS(11) ≤ kak∞,

dF(11) ≤ kak2
√

K ,

dS(12) ≤ kbk2
√

K ,

dF(12) ≤ kbk2
√

M K .

Here, we used the fact that

kSC
S̆

∗
z
S∗k ≤ kSC

S̆
∗

z
S∗kF ≤

√
Kkzk2 ≤

√
K .

Moreover, since

dS(11) ≤ kak∞kqk2,

by Dudley’s inequality and a standard volume argument,
we have

γ2(11) ≤ C1kak∞


 ∞

0

"
log N(B D

2 , k · k2, t)dt

≤ C2kak∞
√

D.

On the other hand, since

C
S̆

∗
z
=

√
L F∗diag(FS̆

∗
z)F,

we have

dS(12) ≤ kbk2
√

LkFS̆
∗

zk∞,

which implies

γ2(12) ≤ C1kbk2
√

L

·

 ∞

0

"
log N(F S̆

∗
B2K−1

2 , k · k∞, t)dt

≤ C3kbk2
√

L K

·

 ∞

0

"
log N(F S̆

∗
B2K−1

1 , k · k∞, t)dt

≤ C4kbk2
√

K
�

log(2K − 1) log3/2 L

≤ C5kbk2
√

K
�

log K log3/2 L,

where the third step follows from Corollary 31.
By applying these estimates to Theorem 34 with

a =
%

γ2(12, k · k)dF(12)

γ2(11, k · k)dF(11)
, (104)

we obtain that the supremum in (103) is less than

C 0(β) logα(MKL) · (
√

M K 3/4D1/4 +
√

M K +
√

MKD)

with probability 1 − K −β . By the arithmetic-geometric mean
inequality,

√
M K 3/4 D1/4 ≤

√
M K +

√
MKD

2
.

We also have
√

M K ≥
√

MKD since K ≥ D. This completes
the proof.

APPENDIX E
PROOF OF LEMMA 14

The spectral norm in the left-hand side of (54) is expressed
as a variational form given by

sup
z∈B2K−1

2

sup
q∈B D

2

M�

m=1

z∗ S̆C x C∗
wm

S∗8m q. (105)

The objective function in (105) is rewritten as

M�

m=1

z∗ S̆C x C∗
wm

S∗8m q

=
M�

m=1

(q> ⊗ z∗ S̆C x C∗
wm

S∗)vec(8m)

=
&

f (q, z),

M�

m=1

em ⊗ vec(8m)
'
,

where

f (q, z) =
M�

m=1

em ⊗ q ⊗ SCwm C∗
x S̆z.

Note that

M�

m=1

em ⊗ vec(8m) =

⎡
⎣

vec(81)
...

vec(8M )

⎤
⎦

is a standard complex Gaussian vector of length MKD. There-
fore, we compute a tail estimate of the supremum in (105) by
applying Lemma 32 with

1 =
 

f (q, z) | q ∈ B D
2 , z ∈ B2K−1

2

!
.

Since

k f (q, z) − f (q0, z0)k2

≤ k f (q, z) − f (q0, z)k2 + k f (q0, z) − f (q0, z0)k2

≤
√

MkSCwm C∗
x S̆k(kq − q0k2 + kz − z0k2)

≤
√

Mρx,w(kq − q0k2 + kz − z0k2),

we have

 ∞

0

�
log N(1, k · k2, t)dt

≤
√

Mρx,w

� 
 ∞

0

"
log N(B2K−1

2 , k · k2, t)dt

+

 ∞

0

"
log N(B D

2 , k · k2, t)dt
�

≤ Cρx,w

√
M K ,

where the last step follows from a standard volume argument
and the fact that K ≥ D. The assertion then follows by
applying the above estimate to Lemma 32.
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APPENDIX F
PROOF OF LEMMA 16

We use the following lemma from [22] to prove Lemma 16.
Lemma 38 ([22, Lemma 5.3]): Let 9 ∈ CK×D satisfy that

vec(9) follows CN (0, IK D), 0 < ζ < 1, and A ∈ CK×K .

Then

k9∗ A9 − Eφ[9∗ A9]k ≤ CkAk
√

K D log(8ζ−1)

holds with probability 1 − ζ .

Note that 0n0
∗
n is expressed as

0n0
∗
n =

M�

m,m0=1

8∗
m SCwm C∗

wm0 S
∗8m0 .

We apply Lemma 38 with

9 = [8>
1 , . . . ,8>

M ]>

and

A =
M�

m,m0=1

em e∗
m0 S(Cwm C∗

wm0 − Ew[Cwm C∗
wm0 ])S∗.

By the block-Gershgorin-disk theorem [64], it follows that

kAk ≤ max
1≤m≤M

M�

m0=1

kS(Cwm C∗
wm0

−Ew[Cwm C∗
wm0 ])S∗k ≤ Mρw.

Then the assertion follows by Lemma 38.

APPENDIX G
PROOF OF LEMMA 21

We decompose 8∗Y∗
s Y n8 into two parts respectively cor-

responding to the diagonal block portion and the off-diagonal
block portion of Y∗

s Y n:

8∗Y ∗
s Y n8 = (g) + (h),

where

(g) =
M�

m=1

em e∗
m ⊗

� M�

m0=1
m0 6=m

am0�8∗
m C∗

�8m0 bC∗
x Cwm0�8m

�
,

(h) = −
M�

m=1

M�

m0=1
m0 6=m

em e∗
m0 ⊗ am0�8∗

m C∗
�8m0 bC∗

x Cwm
�8m0 . (106)

Since ||| · |||S1→S∞ is a valid norm, by the triangle inequality,
we have

|||8∗Y∗
s Y n8 |||S1→S∞ ≤ ||| (g) |||S1→S∞ + ||| (h) |||S1→S∞ .

Furthermore, by (62), we also have

||| (g) |||S1→S∞ ≤ k(g)k.
We use a tail estimate of k(g)k derived in the proof of
[22, Lemma 3.6]. It has been shown that

k(g)k ≤ C(β)ρx,w K
√

Dkak2kbk2 logα(MKL) (107)

with probability 1 − C K −β (See [22, Sec. 5.3]). We will
show that the tail estimate of k(g)k is dominated by that for
||| (h) |||S1→S∞ .

For the part corresponding to the off-diagonal portion
of Y ∗

s Y n, we add and subtract the diagonal sum in (h) and
obtain

(h) = (k) + (l)

for

(k) =
M�

m=1

em e∗
m ⊗ 8∗

m SC∗
x Cwm S̆

∗
Zm ,

(l) = −
M�

m,m0=1

em e∗
m0 ⊗ 8∗

m SC∗
x Cwm S̆

∗
Zm0 , (108)

where

Zm := am S̆C∗
�8m b

�8m, m = 1, . . . , M.

Again, since ||| (k) |||S1→S∞ ≤ k(k)k, we can use a tail
estimate of k(k)k derived in the proof of [22, Lemma 3.6].
It has been shown that

k(k)k ≤ ρx,wC(β)K 3/2kak∞kbk2 logα(MKL)

holds with probability 1 − C K −β . We will show that the
tail estimate of k(k)k is dominated by that for ||| (l) |||S1→S∞ ,
which we derive below.

Through a factorization of the full 2D summation in (l),
we obtain

||| (l) |||S1→S∞

≤
###
###
###

M�

m=1

e∗
m ⊗ S̆C∗

wm
C x S∗8m

� �
 �
(o)

###
###
###
S1→S2

·
###
###
###

M�

m0=1

e∗
m0 ⊗ (Zm0 − E[Zm0 ])

� �
 �
(p)

###
###
###
S1→S2

+
###
###
###

M�

m,m0=1

em e∗
m0 ⊗ 8∗

m SC∗
x Cwm S̆

∗
E[Zm0 ]

� �
 �
(q)

###
###
###
S1→S∞

.

Note that ||| (o) |||S1→S2 is written as the supremum of a
Gaussian process and is bounded by the following lemma.

Lemma 39: Suppose that (A1) holds. For any β ∈ N, there

exists a constant C(β) that depends only on β such that,

conditional on the noise vector w,

###
###
###

M�

m=1

e∗
m ⊗ S̆C∗

wm
C x S∗8m

###
###
###
S1→S2

≤ C
�

1 + βρx,w

√
M + D + K log K

holds with probability 1 − K −β .

Proof of Lemma 39: Let φm = vec(8m) for m =
1, . . . , M and φ=[φ>

1 , . . . ,φ>
M ]>. Let q=[q1, . . . , qM ]> ∈CM .
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Then it follows from (61) that

###
###
###

M�

m=1

e∗
m ⊗ S̆C∗

wm
C x S∗8m

###
###
###
S1→S2

= sup
z∈B2K−1

2
ξ∈B D

2 ,q∈B M
2

###
M�

m=1

qm z∗ S̆C∗
wm

C x S∗8mξ

###
� �
 �

(§§)

,

where (§§) satisfies

(§§) =
###

M�

m=1

(qmξ> ⊗ z∗ S̆C∗
wm

C x S∗)φm

###

=
###

M�

m=1

qm e∗
m ⊗ (ξ> ⊗ z∗ S̆C∗

wm
C x S∗)φ

###.

Let

f (z, ξ , q) =
M�

m=1

qm em ⊗ (ξ ⊗ SC∗
x Cwm S̆

∗
z).

Then we obtain

���
M�

m=1

e∗
m ⊗ S̆C∗

wm
C x S∗8m

���

= sup
z∈B2K−1

2

sup
ξ∈B D

2

sup
q∈B M

2

| f (z, ξ , q)∗φ|.

Note that f (z, ξ )∗φ, conditioned on w, is a centered Gaussian
process. We compute a tail estimate of this supremum by
applying Lemma 32 with

1 = { f (z, ξ , q) | z ∈ B2K−1
2 , ξ ∈ B D

2 , q ∈ B M
2 }.

Then we need to compute the entropy integral for 1. Recall

ρx,w = max
1≤m≤M

k�SC∗
x Cwm

�S∗k

≥ kS̆C∗
wm

C x S∗k, ∀m = 1, . . . , M.

By the triangle inequality, we obtain

k f (z, ξ , q) − f (z0, ξ 0, q0)k2

≤ k f (z, ξ , q) − f (z, ξ , q0)k2

+ k f (z, ξ , q0) − f (z, ξ 0, q0)k2

+ k f (z, ξ 0, q0) − f (z0, ξ 0, q 0)k2

≤ ρx,w(kzk2kξk2kq − q0k2

+ kzk2kξ − ξ 0k2kq0k2

+ kz − z0k2kξ 0k2kq 0k2

≤ ρx,w(kq − q 0k2 + kξ − ξ 0k2 + kz − z0k2).

The integral of the log-entropy number is computed as

sup
z∈B2K−1

2

sup
ξ∈B D

2

sup
q∈B M

2

| f (z, ξ , q)∗φ|

≤ C1


 ∞

0

�
log N(1, k · k2, t)dt

≤ C1ρx,w

� 
 ∞

0

"
log N(B M

2 , k · k2, t)dt

+

 ∞

0

"
log N(B M

2 , k · k2, t)dt

+

 ∞

0

"
log N(B2K−1

2 , k · k2, t)dt
�

≤ C2ρx,w

√
M + D + K ,

where the last step follows from a standard volume argument.
Then the assertion follows from Lemma 32.

Next ||| (p) |||S1→S2 is written as the supremum of a second-
order Gaussian chaos process and its tail estimate can be
derived by Theorem 34. However, the rank-1 constraint on
the domain does not provide any gain in reducing the tail
estimate in this case. Therefore, we use a previous estimate
on k(p)kS1→S2 derived in [22, Lemma 5.6], which is stated in
the following lemma.

Lemma 40: Suppose that (A1) holds. For any β ∈ N, there

exist a numerical constant α ∈ N and a constant C(β) that

depends only on β such that

���
M�

m=1

e∗
m ⊗ (Zm − E[Zm])

���

≤ C(β)kak∞kbk2(K +
√

MKD) logα(MKL)

holds with probability 1 − K −β .

Similarly to ||| (o) |||S1→S2 , one can rewrite ||| (q) |||S1→S∞
as the supremum of a Gaussian process. The following lemma
provides its tail estimate.

Lemma 41: Suppose that (A1) holds. For any β ∈ N, there

exists a constant C(β) that depends only on β such that,

conditional on the noise vector w,

###
###
###

M�

m,m0=1

em e∗
m0 ⊗ 8∗

m SC∗
x Cwm S̆

∗
E[Zm0 ]

###
###
###
S1→S∞

≤ C
�

1 + βρx,wkak2kbk2 K
√

M + D log K (109)

holds with probability 1 − K −β .

Proof of Lemma 41: It follows from the variational form
in (61) and Lemma 36 that the left-hand side of (109) is
written as

K sup
q,�q∈B M

2
ξ ,�ξ∈B D

2

###
M�

m,m0=1

qmqm0am0�ξ∗
8∗

m SC∗
xwm b∗ξ

###

= K sup
�q∈B M

2

###
M�

m0=1

qm0am0
### · sup

ξ∈B D
2

|b∗ξ |

· sup
q∈B M

2
�ξ∈B D

2

###
M�

m=1

qm
�ξ∗

8∗
m SC∗

xwm

###

≤ Kkak2kbk2 sup
q∈B M

2
�ξ∈B D

2

###
M�

m=1

qm
�ξ∗

8∗
m SC∗

xwm

###. (110)
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Note that the objective in the supremum in (110) is rewritten
as

###
M�

m=1

qm
�ξ∗

8∗
m SC∗

xwm

### =
###

M�

m=1

qmw∗
m C x S∗8m

�ξ
###

=
###
� M�

m=1

e∗
m ⊗ w∗

m C x S∗8m

�
(q⊗�ξ )

###.

Then it follows that

###
###
###

M�

m=1

e∗
m ⊗ w∗

m C x S∗8m

###
###
###
S1→S2

≤ C(β)ρx,w

√
M + D log K (111)

holds with probability 1 − K −β . The proof of (111) is
obtained as we replace z ∈ B2K−1

2 in the proof of Lemma 39
by [1, 01,2K ]>.

The proof completes by plugging in the tail bound in (111)
into (110).

By collecting these estimates, we obtain that

k(l)kS1→S∞ ≤ C(β)ρx,wkak2kbk2 logα(MKL)

·
�

K
√

M + D

+μ
√

M + D + K (K +
√

MKD)√
M

�

holds with probability 1 − C K −β . Then the tail estimate of
k(l)kS1→S∞ dominates those for k(g)k and k(k)k. Therefore,
we may ignore ||| (g) |||S1→S∞ and ||| (k) |||S1→S∞ .

Therefore, by plugging in (15), we obtain that with proba-
bility 1 − C K −β , the relative perturbation due to 8∗Y∗

s Y n8

is upper bounded by

|||8∗Y ∗
s Y n8 |||S1→S∞

K 2kxk2
2kak2

2kbk2
2

≤ C(β)ρx,w logα(MKL)

K 2kxk2
2kak2kbk2

·
�

K
√

M + D

+μ
√

M + D + K (K +
√

MKD)√
M

�

≤ C 0(β) logα(MKL)√
ηL

· ρx,w√
Kσwkxk2

·
�
μ
�√

K

M
+
�

D

M
+
�

D

K

�
+ 1

�
.

This completes the proof.
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