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Abstract— We consider the multichannel blind deconvolution
problem where we observe the output of multiple channels
that are all excited with the same unknown input. From these
observations, we wish to estimate the impulse responses of each
of the channels. We show that this problem is well-posed if
the channels follow a bilinear model where the ensemble of
channel responses is modeled as lying in a low-dimensional
subspace but with each channel modulated by an independent
gain. Under this model, we show how the channel estimates can be
found by minimizing a quadratic function over a non-convex set.
We analyze two methods for solving this non-convex program,
and provide performance guarantees for each. The first is a
method of alternating eigenvectors that breaks the program down
into a series of eigenvalue problems. The second is a truncated
power iteration, which can roughly be interpreted as a method
for finding the largest eigenvector of a symmetric matrix with
the additional constraint that it adheres to our bilinear model.
As with most non-convex optimization algorithms, the perfor-
mance of both of these algorithms is highly dependent on having
a good starting point. We show how such a starting point can be
constructed from the channel measurements. Our performance
guarantees are non-asymptotic, and provide a sufficient condition
on the number of samples observed per channel in order to
guarantee channel estimates of certain accuracy. Our analysis
uses a model with a “generic” subspace that is drawn at random,
and we show the performance bounds hold with high probability.
Mathematically, the key estimates are derived by quantifying how
well the eigenvectors of certain random matrices approximate
the eigenvectors of their mean. We also present a series of
numerical results demonstrating that the empirical performance
is consistent with the presented theory.

Index Terms—Blind deconvolution, non-convex optimization,
eigenvalue decomposition, sensitivity analysis.

I. INTRODUCTION

LIND deconvolution, where we estimate two unknown
signals from an observation of their convolution, is a clas-
sical problem in signal processing. It is ubiquitous, appearing
in applications including channel estimation in communica-
tions, image deblurring and restoration, seismic data analysis,
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speech dereverberation, sensor calibration in medical imag-
ing, and convolutive dictionary learning. While algorithms
based on heuristics for particular applications have existed for
decades, it is not until recently that a rich mathematical theory
has developed around this problem. The fundamental identifi-
ability of solutions to this problem has been studied from an
information theoretic perspective [3]-[9]. Practical algorithms
with provable performance guarantees that make the problem
well-posed by imposing structural constraints on the signals
have arisen based on ideas from compressed sensing and low-
rank matrix recovery. These include methods based on convex
programming [10]-[12], alternating minimization [13], and
gradient descent [14]. More recent works studied the more
challenging problem of blind deconvolution with off-the-grid
sparsity models [15], [16].

In this paper, we consider the multichannel blind
deconvolution problem: we observe a single unknown signal
(the “source”) convolved with a number of different “chan-
nels”. The fact that the input is shared makes this problem
better-posed than in the single channel case. Mathematical
theory for the multichannel problem under various constraints
has existed since the 1990s (see [17], [18] for surveys).
One particular strand of this research detailed in [19]-[21]
gives concrete results under the very loose assumption that
the channel responses are time-limited. These works show
how with this model in place, the channel responses can
be estimated by forming a cross-correlation matrix from the
channel outputs and then computing its smallest eigenvector.
This estimate is consistent in that it is guaranteed to converge
to the true channel responses as the number of observations
gets infinitely large. However, no performance guarantees were
given for a finite number of samples, and the method tends to
be unstable for moderate sample sizes in even modest noise.
Recent work [22] has shown that this spectral method can
indeed be stabilized by introducing a more restrictive linear
(subspace) model on the channel responses.

Our main contributions in this paper are methods for
estimating the channel responses when the ensemble has a
certain kind of bilinear structure. In particular, we model the
ensemble of channel responses as lying in a low-dimensional
subspace, but with each channel modulated by an independent
constant; we will discuss in the next section an application
in which this model is relevant. Our estimation framework
again centers on constructing a cross-correlation matrix and
minimizing a quadratic function involving this matrix over the
unit sphere, but with the additional constraint that the solution
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can be written as the Kronecker product of two shorter vectors.
This optimization program, which might be interpreted as
a kind of structured eigenvalue problem, is inherently non-
convex. We propose two iterative methods for solving it,
each with very simple, computationally efficient iterations.
The first is a method of alternating eigenvectors, where we
alternate between fixing a subset of the unknowns and esti-
mating the other by solving a standard eigenvalue problem.
The second method is a truncated power iteration, where we
repeatedly apply the cross-correlation matrix to an initial point,
but project the result after each application to enforce the
structural constraints. We derive performance guarantees for
both of these algorithms when the low-dimensional subspace
is generic (i.e. generated at random).

A. Related Work

Closely related to the problem of multichannel blind decon-
volution is the problem of blind calibration. Here we observe
the product of an unknown weighting vector applied to a
series of other unknown vectors. Non-convex optimization
algorithms for blind calibration have been studied and ana-
lyzed in [23] and [24].

Multichannel blind deconvolution can also be approached
by linearizing the problem in the Fourier domain. This has
been proposed for various applications, including the cali-
bration of a sensor network [25], computational relighting in
inverse rendering [26], and auto-focus in synthetic aperture
radar [27]. Under a generic condition that the unknown
impulse responses belong to random subspaces, necessary
and sufficient conditions for the unique identification of the
solution have been put forth in [6], and a rigorous analysis of
a least-squares method has been studied [28].

More recently, performance guarantees for spectral methods
for both subspace and sparsity models have been developed
in [29]. As in this paper, these methods are estimating the
channel by solving a structured eigenvalue problem. The
structural model, however, is very different than the one
considered here.

Algorithms for solving non-convex quadratic and bilinear
problems have recently been introduced for solving problems
closely related to blind deconvolution. In [30], it is shown that
a non-convex optimization over matrix manifolds provides a
guaranteed solution for matrix completion [30]. Alternating
minimization, another non-convex optimization algorithm for
matrix completion that provides a provable performance guar-
antee, was analyze in [31]-[33]. A different suite of gradient-
based algorithms with a specially designed regularizer within
the conventional Euclidean geometry have also been studied
recently [34]. Wirtinger flow [35]-[38] and alternating mini-
mization [39], [40] are non-convex optimization algorithms for
the phase retrieval problem. Alternating minimization has also
been recently analyzed for the closely related problem of blind
Ptychographic diffraction imaging [41]. Dictionary learning
is another bilinear problem arising in numerous applications;
convergence of a Riemannian trust-region method for this
problem has been studied with a thorough geometric analysis
in [42] and [43].
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B. Organization

The rest of the paper is organized as follows. The mul-
tichannel blind deconvolution problem is formulated under
a bilinear channel model in Section II. After we review
relevant previous methods for multichannel blind deconvolu-
tion in Section III, we present two iterative algorithms for
multichannel blind deconvolution under the bilinear channel
model in Section IV, which are obtained by modifying the
classical cross-convolution method. Our main results on non-
asymptotic stable recovery are presented in Section V with
an outline of the proofs. Detailed analysis of the spectral
initialization and the two iterative algorithms are derived
in Sections VII, VIII, and IX. We demonstrate numerical
results that support our theory in Section VI, and summarize
in Section X.

II. PROBLEM STATEMENT

In the classic multichannel blind deconvolution problem,
we observe an unknown signal x € CI that has been
convolved with M different unknown channel responses
hi,... hy, €CE:

Yp=hpn®x+w,, m=1,...,M, (D)

where ® denotes circular convolution! modulo L and
w,, € Cl is additive noise. Given the outputs {y,,}*_, and
working without knowledge of the common input x, we want
to recover the unknown channel impulse responses {hm}nnle.

We will show how we can solve this problem when the
channels are time-limited and obey a bilinear model. By time-
limited, we mean that only the first K entries in the h,, can

be non-zero; we can write
hy = S'h,, where S :=[Ix Ok —x]. )

m?
In addition, the shapes of ki, ..., hy are jointly modeled as
lying in a D-dimensional subspace of CX, but are multiplied
by unknown channel gains ay, ..., ay > 0. This means that

h, =an®,b, Ym=1,...,M, 3)

where ®p,...,®) are complex K x D matrices, whose
columns are the parts of the basis vectors corresponding to
channel m, and b € CP is the common set of basis coeffi-
cients. Stacking up the channel responses into a single vector
h € CMX and the gains into a € CM, an equivalent way to
write (3) is

h=®@®b), “4)
where
o, 0 0
L]
= ! :2 0
0 0 @y
and
aib
arb
axb= 2
aMb

Iwe are using circular convolution in our model problem for the ease of
analysis.
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Fig. 1. Illustration of construction of a joint linear subspace model from a parametric model. (a) A uniform array of M sensors. (b) Examples of {g;} rearranged
as M-by-K matrices. (c) Sorted eigenvalues of Hx in a logarithmic scale. (d) First few dominant eigenvectors of H rearranged as M-by-K matrices.

This alternative expression can be interpreted as a linear
subspace model with respect to the basis ® € CMEKXMD yjith
a separability (rank-1) prior on the coefficient vector.

For an example of how a model like this might arise,
we consider the following stylized problem for array process-
ing illustrated in Figure 1. Figure 1(a) shows a linear array.
Suppose we know that if a source is at location 7 then the
concatenation of the channel responses between the source
location and the array elements is g € CMK. In simple
environments, these channel responses might look very similar
to one another in that they are all (sampled) versions of
the same shifted function (see Figure 1(b)). The delays are
induced by the differences in sensor locations relative to
the source, while the shape of the response might be deter-
mined by the instrumentation used to take the measurements
(e.g. the frequency response of the sensors) — there could
even be small differences in this shape from element to
element.

Suppose now that there is uncertainty in the source location
that we model as 7 € R, where R is some region in space.
As we vary 7 over the set R, the responses gy trace out a
portion of a manifold in C¥X . We can (approximately) embed
this manifold in a linear subspace of dimension D by looking
at the D principal eigenvectors of the matrix

Hp =[ g7 g dr.
reR

The dimension D that allows an accurate embedding will
depend on the size of R and smoothness properties of the
mapping from 7 to g;. In this case, we are building ® above by
taking the M K x D matrix that has the principal eigenvectors
as columns and apportioning the first K rows to @, the next
K rows to @, etc.

This technique of embedding a parametric model into a
linear space has been explored for source localization and
channel estimation in underwater acoustics in [44] and [45],
and some analysis in the context of compressed sensing is
provided in [46]. However, it is not robust in one important
way. In practice, the gains (the amplitude of the channel
response) can vary between elements in the array, and this
variation is enough to compromise the subspace embedding

described above. The bilinear model (4) explicitly accounts
for these channel-to-channel variations.

In this paper, we are interested in when equations of the
form (1) can be solved for h,, with the structural con-
straint (4); we present two different algorithms for doing so in
the sections below. The effectiveness of these algorithms will
of course be affected by properties of @ (including the number
of channels M and embedding dimension D) as well as the
number of samples L. While empirical models like the one
described above are used in practice (see in particular [45]),
we will analyze generic instances of this problem, where the
linear model is drawn at random.

III. SPECTRAL METHODS FOR MULTICHANNEL
BLIND DECONVOLUTION

A classical method for treating the multichannel blind
deconvolution problem is to recast it as an eigenvalue problem:
we create a correlation matrix using the measured data {y,,},
and estimate the channels from the smallest eigenvector’ of
this matrix. These methods were pioneered in the mid-1990s
in [19]-[21], and we briefly review the central ideas in this
section. The methods we present in the next section operate
on the same basic principles, but explicitly enforce structural
constraints on the solution.

The cross-convolution method for multichannel blind
deconvolution [19] follows directly from the commutativity
of the convolution operator. If there is no noise in the obser-
vations (1), then it must be the case that

Ym, ®hmz = Ymy ®hm1 =0

for all my,my = 1,..., M. Using Ty, ~as the matrix whose
action is convolution with y, with a signal of length K,
we see that the channel responses h,,, and h,,, must obey the
linear constraints T Yy h, —T Yy h,, = 0. We can collect all
pairs of these linear constraints into a large system, expressed

as
Yh =0pm-1yL/2,1 %)

2By which mean the eigenvector corresponding to the smallest
eigenvalue.
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with ¥ € CMM=DL/2xMK gefined by

y®
y@
Y = ) ) (6)
y -1
where
0r.x 0z, Tyi+1 _TY;
y® — . E :
0, x 0L x Ty, —T,y,
(i — 1) blocks (M — i + 1) blocks

fori=1,...,M — 1.

It is shown in [19] and [21] that & is uniquely determined
up to a scaling by (5) (i.e. Y has a null space that is exactly
1-dimensional) under the mild algebraic condition that the
polynomials generated by the (Qm)n"f:l have no common
zeros. In the presence of noise, & is estimated as the minimum
eigenvector of Y*Y:

h = argmin g*Y*Yg.
ligl2=1

@)

Note that Y*Y is computed by cross-correlating the outputs.
Therefore, Y*Y is computed at a low computational cost using
the fast Fourier transform. Furthermore, the size of Y™*Y,
which is MK x MK, does not grow as the length L of the
observations increases. When there is additive white noise, this
cross-correlation matrix will in expectation be the noise-free
version plus a scaled identity. This means that as the sample
size gets large, the noise and noise-free cross-correlation matri-
ces will have the same eigenvectors, and so the estimate (7)
is consistent.

A similar technique can be used if we have a linear model
for the channel responses, h = ®u. We can estimate the
expansion coefficients u by solving

minimize v*®* (Y*Y — QI) Pv
v
subject to |lvllz =1, (8)

where p is a scalar that depends on the variance of the additive
noise (this correction is made so that eigen-structure more
closely matches that of ®*Y*Y ® for noise-free Y). In [22],
it was shown that a linear model can significantly improve the
stability of the estimate of & in the presence of noise, and gave
a rigorous non-asymptotic analysis of the estimation error for
generic bases ®.

IV. NON-CONVEX OPTIMIZATION ALGORITHMS

Our proposed framework is to solve an optimization pro-
gram similar to (7) and (8) above, but with the additional
constraint that & obey the bilinear form (4).

Given the noisy measurements {y,,} in (1), we create the
matrix

A=®" (Y'Y —62(M — 1) LIyk)®,

where 63) is an estimate of the noise variance auz) (we will

briefly discuss how to estimate the noise variance later in
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this section), and Y is formed as in (6). We then solve a
program that is similar to the eigenvalue problems above,
but with a Kronecker product constraint on the expansion
coefficients:
minimize v*Av
v,c,d

subject to |lvfo =1, v=c®d. 9)

The norm and bilinear constraints make this a non-convex
optimization program, and unlike the spectral methods dis-
cussed in the last section, there is no (known) computationally
efficient algorithm to compute its solution.

We propose and analyze two non-convex optimization algo-
rithms below for solving (9). The first is an alternating eigen-
value method, which iterates between minimizing for ¢ in (9)
with d fixed, then minimizing for d with ¢ fixed. The second
is a variation on the truncated power method [47], whose
iterations consist of applications of the matrix A followed by
a projection to enforce the structural constraints.

The performance of both of these methods relies critically
on constructing a suitable starting point. We discuss one
method for doing so below, then establish its efficacy in
Proposition 7 in Section V-B below.

A. Alternating Eigenvectors

While program (9) is non-convex, it becomes tractable if
one of the terms in the tensor constraint is held constant. If we
have an estimate b for b, and fix d = b, then we can solve
for ¢ using

minimize ¢*Ajc subject to |[ic[l2 =1,
(4

where
Ap =y @ b)* Aly ® b)
and
) 0
. 0 b 0
Iy b=
0 0 ... b

The solution is the eigenvector corresponding to the small-
est eigenvalue of Ajz. Similarly, with an estimate @ =
[a1,...,au)" plugged in for ¢, we solve

minidmize d*Azd subjectto |d|, =1,

where
a1
arl

a= (Zi® ID)*A(3® Ip), a® Ip = : s

aml
which is again given by the smallest eigenvector of Ag.
We summarize this method of “alternating eigenvectors”
in Algorithm 1. The function MinEigVec returns the

eigenvector of the input matrix corresponding to its smallest
eigenvalue.
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Algorithm 1 Alternating Eigenvectors

input : /4 by

output: h
1b < by
2 while stop condition not satisfied do
3 @ < MinEigVec((Iy ® b)A(Iy ® b))
4 b < MinEigVec((@* ® Ip)A@®1Ip))
5 end
6h <« ®@xDb)

B. Rank-1 Truncated Power Method

A standard tool from numerical linear algebra to compute
the largest eigenvector of a symmetric matrix is the power
method, where the matrix is iteratively applied to a starting
vector, with a renormalization at each step. (The same method
can be used to compute the smallest eigenvector simply by
subtracting the matrix from an appropriate scalar multiple
of the identity.) In [47], a variation on this algorithm was
introduced that forced the iterates to be sparse. This was
done simply by hard thresholding after each application of
the matrix.

Our rank-1 truncated power method follows the same tem-
plate. We create a matrix B by subtracting A above from a
multiple of the identity,

B:yIMD—A,

then iteratively apply B starting with an initial vector wug.
After each application of B, we project the result onto
the set of rank-1 matrices by computing the singular vec-
tor corresponding to the largest singular value, and then
renormalize.

We summarize the rank-1 truncated power method in
Algorithm 2. Some care must be taken in choosing the value
of y. We want to ensure that the smallest eigenvalue of A
gets mapped to the largest (in magnitude) eigenvalue of B, but
we also want the relative gap between the largest and second
largest eigenvalues of B to be as large as possible. In our
analysis below, we use the conservative value of y = E[||A]|].
We also used this in the numerical results in Section VI.
Alternatively, one could estimate the largest rank-1 constrained
“eigenvalue” by applying Algorithm 2 to A itself, which may
accelerate the convergence.

Algorithm 2 Rank-1 Truncated Power Method
input : B, vy
output: v;, a vectorized Arank-l matrix whose factors are

the estimates a, b

11«1

2 while stop condition not satisfied do

3 ’61‘ <~ Bv,_

s V< Rank 1 Approx (mat(v;))

5 v < vec(Vy) /| vee(Vi)ll2

6 t<t+1

7 end

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

C. Spectral Initialization

Both the alternating eigenvectors and rank-1 truncated
power method require an initial estimate of the channel gains a
and the basis coefficients b. Because the program they are
trying to solve is non-convex, this starting point must be
chosen carefully.

Our spectral initialization is inspired from the lifting refor-
mulation (e.g., see [10] for the lifting in blind deconvolution).
The observation equations (1) can be recast as a linear operator
acting on the Kronecker product of the unknowns x, b, a.
Let A: CLPM 5 CML be a linear map such that?
X ® a1S*<I>1b
Ax®@b®a) = : (10)
xX®ayS*®yb
Concatenating the {y,,} and {w,} into vectors y and w of
length M L, we can rewrite (1) as

y=AX)+w,

where X =x @b R a.

A natural initialization scheme is to apply the adjoint of A
to y, then project the result onto the feasible set of vectors
that can be arranged as rank-1 tensors (this technique is often
used to initialize non-convex programs for recovering rank-1
matrices from linear measurements [48], [49]). However, there
is no known algorithm for computing the projection onto the
set of rank-1 tensors that has strong optimality guarantees.

We avoid this by exploiting the positivity of the multipliers,
am > 0. The action of the operator (I7,p ®11 ) has the effect
of summing down the third mode of the tensor:

M
Ip®@Lim)xR®b®a) = ( Z am)(x ® b).
m=1
Since they are positive, ai, ..., ay sum constructively above,
and we can get an estimate of x ® b by applying this operator
to A*y. The positivity constraint on a can be weakened if
estimates of the phases of aj,...,ay are available as prior
information. In this scenario, the known phase information is
absorbed into the basis @ and one can focus on estimating
only the gains.
The first step of our initialization, then, is to compute

I =mat ((Izp ® 11,m)A*y), (1D

where the operator mat(-) takes a vector in CX? and produces
a D x L matrix by column-major ordering.

Once corrected for noise, the leading eigenvector of
I'T* gives us a rough estimate of the channel coeffi-
cients b. In Section VII, we show that the random matrix
IT* —o2 L Znﬂf: | @5, ®,, concentrates around a scalar mul-
tiple of bb*.

Finally, we note that there is a closed-form expression for
computing I' from the measurements {y,,}. This is given in
the following lemma that is proved in Appendix X.

3We have defined how A operates on length LDM vectors that can be
arranged as rank-1 tensors. Its action on a general vector in CLDM can be
derived by applying the expression in (10) to a series of LDM vectors that
form a separable basis for tensors in CL x CP x CM.
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Lemma 1: The matrix T in (11) can be written as

M
r=> &,5C,, I,

m=1

12)

where Cy € CL*L s the matrix whose action is the circular

convolution with y,, € CE, J is the “flip operator” modulo L:

Jo=[er e er ], (13)

and e1, ..., ey are the standard basis vectors for RL.
We summarize our spectral initialization technique in
Algorithm 3.

Algorithm 3 Spectral Initialization

input : (y,,}0_ . (@wly_;. L. 65
output: bg
M

1T« > ®,5C, J

m=1

M
2 by < MaxEigVec(I'T* — 62 L Z o ®,,)
m=1

In our analysis of the initialization, we assume that we
know the noise variance auz). In practice, having an accurate
estimate can indeed make a difference in terms of numerical
performance. In the numerical experiments in Section VI,
we include simulations where we assume we know the noise
variance exactly, and where we take the crude guess 63) =0.
The latter of course does not perform as well as the former,
but it still offers significant gains over disregarding the bilinear
structure all together.

It is also possible to get an estimate of the noise variance
through the low-rank matrix denoising technique described
in [50], where we solve the convex program

M
L 2
mll}(lzllle ITT* —a Z " ®, — X5+ A X |+

m=1

and take 62 = &/L. The theory developed in [50] for this
procedure relies on the perturbation to the low-rank matrix
being subgaussian, which unfortunately does not apply here,
as the perturbation involves both intra- and inter-channel
convolutions of the noise processes {w,,}.

V. MAIN RESULTS
A. Non-Asymptotic Analysis

Our main results give non-asymptotic performance guar-
antees for both Algorithm 1 and Algorithm 2 when their
iterations start from the initial estimate by Algorithm 3 under
the following two assumptions*:

(A1) Generic subspaces. The random matrices ®1,..., ®y
are independent copies of a K-by-D complex Gaussian
matrix whose entries are independent and identically

4The same assumptions were used for the analysis of the spectral method (8)
in [22].
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distributed (iid) as CA/(0, 1). Our theorems below hold
with high probability with respect to (<I>m)f,;[=1.
Random noise. The perturbations to the measurements
wi,..., Wy € CL are independent subgaussian vectors
with E[w,] = 0 and E[w,w) ] = auz)IL, and are
independent of the bases (<I>m)""f: I

(A2)

We present main theorems in two different scenarios. In the
first, we assume that the input source is a white subgaussian
random process. In the second scenario, we assume that
the input source satisfies a kind of incoherence condition
that essentially ensures that it is not too concentrated in the
frequency domain (a characteristic that a random source has
with high probability). The error bound for the deterministic
model is more general but is also slightly weaker than that for
the random model.

The theorems provide sufficient conditions on the observa-
tion length L that guarantee that the estimation error will fall
below a certain threshold. The number of samples in these
sufficient conditions depends on the length of the impulse
responses K, their intrinsic dimensions D, the number of
channels M, and the signal-to-noise-ratio (SNR) defined as

Bl I ® x]3]
Ew [2’1114:1 lwj, ”%]

Under (A1) and (A2), it follows from the commutativity of
convolution and Lemma 35 that # simplifies to

(14)

2 2
_ Kllx i3]l

15
MLo2 (1>

In addition, the bounds will depend on the spread of the
channel gains. We measure this disparity using the two flatness
parameters

v May,

llall2

uo= (16)

= max
l<m<M
and

v May,
V= .

‘= min
l=sm=M |lall2

A7)

Our results are most interesting when there are not too many
weak channels, meaning x = O(1) and v = Q(1). To simplify
the theorem statements below, we will assume these conditions
on u and v. It is possible, however, to re-work their statements
to make the dependence on u«, v explicit.

We now present our first main result. Theorem 2 below
assumes a random common source signal x. We present
guarantees for Algorithms 1 and 2 simultaneously, with
h, = ®v; as the channel estimate after iteration ¢ (for the
alternating eigenvectors method, take v, = a; ® I;,).

Theorem 2 (Random Source): We observe noisy channel
outputs {y,,} as in (1), with SNR n as in (14), and form a
sequence of estimates (h,);cN of the channel responses by
either Algorithm 1 or Algorithm 2 from the initial estimate
by Algorithm 3. Suppose assumptions (Al) and (A2) above
hold. Let x be a sequence of zero-mean iid subgaussian

random variables with variance o2, n > 1, u = 0(1),
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and L > 3K. Then for any f € N, there exist absolute
constants C > 0,0 € N and constants C1(f), C2(ff) such
that if there are a sufficient number of channels,

M = Ci(B)log" (MKL), (18)

that are sufficiently long (relative to the dimension D of the
subspace prior),

K = C1(B)Dlog" (MKL), 19)

and we have observed a sufficient number of samples at the
output of each channel,

- Ci1(p) log“(MKL)( K D )
- n M2 DAM/)

then with probability exceeding 1 — CK~F, we can bound the
approximation error by

sin Z(h,, h) < 27" L(hgy, h) + C2(B) log”* (MKL)
[ 1 («/? D )

L (20)

VL

M+ DAM

}

forall t € N.

The SNR requirement # > 1 was introduced to simplify
the expressions in Theorem 2. The conditions in the low
SNR regime 7 < 1 can be easily extracted from the proof
of the theorem and Proposition 4 below.

We make the following remarks about the
assumptions (18)—(20) in Theorem 2. The lower bound
on the number of channels in (18) is very mild, M has to be
only a logarithmic factor of the number of parameters involved
in the problem. The condition (19) allows a low-dimensional
subspace whose dimension scales (up to a logarithmic factor)
linearly with K. For a fixed SNR and a large number of
channels (M = Q(/K /D)), the condition in (20) says that
the length of observation can grow proportional to ~/ K D.
This is suboptimal when compared to the degrees of freedom
(M 4+ D)/(M — 1) per channel. (The total number of
unknowns is L + M + D and we have M L equations.) In fact,
if L < K, then the circular convolution modulo L of two
vectors respectively of length K and L introduces aliasing
due to the wrapping around of the vector of length K. This
turns the deconvolution problem into the demixing problem
of separating a mixture of convolutions. While it might be
still possible to uniquely identify a solution in this blind
demixing problem, the deconvolution approach in this paper
does not apply. In other words, the requirement L > K is
the fundamental limitation of any approach that linearizes
the problem using cross-convolution. However, this still
marks a significant improvement over an earlier analysis of
this problem [51], which depended on the concentration of
subgaussian polynomial [52] and union bound arguments. The
scaling laws of parameters have been sharpened significantly,
and as we will see in the next section, its prediction

SWithout the subspace prior, L > K is necessary to claim that Y*Y has
nullity 1 in the noiseless case. We used L > 3K in the proof in order to
use the identity that the circular convolutions of three vectors of length K
modulo L indeed coincide with their linear convolution.
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is consistent with the empirical results by Monte Carlo
simulations in Section VI. Compared to the analysis for the
other spectral method under the linear subspace model [22],
Theorem 2 shows that the estimation error becomes smaller
by factor +/D.

To prove Theorem 2, we establish an intermediate result
for the case where the input signal x is deterministic. In this
case, our bounds depend on the spectral norm p, of the
(appropriately restricted) autocorrelation matrix of x,

px i= |SCECLS"),
where

[0k 1o-&k+1 k1]

S = (22)

[k -1

Then the deterministic version of our recovery result is:

Theorem 3 (Deterministic Source): Suppose that the same
assumptions hold as in Theorem 2, only with x as a fixed
sequence of numbers obeying

02K71,L72K+1]

px < C3llx|I3. (23)
If (18) and (19) hold, and
C1(B)log*(MKL) ; K? KD
Ls 1(8) log”( )(_2+ ) 24)
n M2 ' DAM

then with probability exceeding 1 — CK ~#, we can bound the
approximation error by

. » C(8) log® (MKL
Sin L(hy, ) < 2" L(hg, ) + mji_; )

() @)
M DAM
forallt e N.

The condition (23) can be interpreted as a kind of incoher-
ence condition on the input signal x. Since

2 =12
px = [Cx|I” = LIXI5,

where ¥ € C is the normalized discrete Fourier transform
of x, it is sufficient that x is approximately flat for (23) to
hold. This is a milder assumption than imposing an explicit
stochastic model on x as in Theorem 2. For the price of this
relaxed condition, the requirement on L in (24) that activates
Theorem 3 is more stringent compared to the analogous
condition (20) in Theorem 2.

B. Proof of Main Results

The main results in Theorems 2 and 3 follow from the
following proposition, the proof of which is deferred to
Section V-C.

Proposition 4: Suppose the assumptions in (Al) and (A2)
hold, py satisfies (23), L > 3K, u = O(1), and v = Q(1).
For any f € N, there exist absolute constants C > 0,a € N
and constants Cy, Cy that only depend on [, for which the
following holds: If

K > CyDlog* (MKL),
M > Cylog*(MKL),

(26)
27)
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and
L > C;log*(MKL)
2
Px,w D K Di|

: : +—+1)+ 5|, @8
[nKau%lle%(K/\M M? ) P (28)

then
sinZ(h,,h) <27 "sinL(hy,h) +k, VteN (29)

with probability 1 — CK P, where k satisfies
k < Cylog”* (MKL)
( \/5 T Px,w
WML 1K Loylx|2

.[ﬂ(gﬂ/gﬂ/g)ﬁ}). (30)

The proofs of Theorems 2 and 3 are given by combining
Proposition 4 with the following lemmas, taken from [22],
which provide tail estimates on the signal autocorrelation and
the signal-noise cross correlation.

Lemma 5 [22, Lemma 3.9]: Suppose (A2) holds and let x
be a fixed sequence of numbers obeying (23). For any f € N,
there exists an absolute constant C such that

Pxw < CKJW/pX\/l +logM + flog K

holds with probability 1 — K —F.

Lemma 6 [22, Lemma 3.10]: Suppose (A2) holds and let x
be a sequence of zero-mean iid subgaussian random variables
with variance 2. Then

Px_ _ L+ CﬁI(logW2 L/log K

113~ L— 2LBTogK
and
Prow CpK log® (MKL)
owlxl2 = /L= /2LBlog K

hold with probability 1 — 3K 5.

C. Proof of Proposition 4

The proof of Proposition 4 is given by a set of propositions,
which provide guarantees for Algorithm 1, Algorithm 2, and
Algorithm 3. The first proposition provides a performance
guarantee for the initialization by Algorithm 3. The proof of
Proposition 7 is given in Section VIIL.

Proposition 7 (Initialization): Suppose the assumptions in
(Al) and (A2) hold, p, satisfies (23), and L > 3K. Let n, i, v
be defined in (15), (16), (17), respectively. For any f € N,
there exist absolute constants C > 0,a € N and constants
C1, Cy that only depend on p, for which the following holds:

If
u 2
M > C;log® (MKL) - (—) 31)
%
and
L > Cylog*(MKL)
2 2
Px,w (/u K D )
. > . 32
I:nKauz)HxH% vz T o)t n2viM | (32)

4799
then the estimate b by Algorithm 3 satisfies
L~ )z VD
sin Z(b, b) < Clog* (MKL [ +
) ¢ ) vWM /ML
SR o(”ﬁJr\/E)} (33)
ViKLoylxl2 \viM  vy/M

with probability 1 — CK .

The second proposition, proved in Section VIII-B, provides
a performance guarantee for the update of @ by Step 3
of Algorithm 1.

Proposition 8 (Update of Channel Gains): Suppose  the
assumptions in (Al) and (A2) hold, py satisfies (23), L > 3K,
and the previous estimate b satisfies

-~ T
L(b,b) < 1 (34)

For any p € N, there exist absolute constants C > 0,a € N
and constants Cy, Co that only depend on [, for which the
following holds: If
K > Ciu*Dlog*(MKL),
M > Cypu*log" (MKL),

(35)
(36)

and

L > Cylog*(MKL)

2

Px.w ( 2( D K) ) Di|
- +—)+1)+ 5| 37
[nKau%lle% F\kAm ™ m2 n? 37)

then the updated @ by Step 3 of Algorithm 1 satisfies

sin /(a,a) < % sin Z(b,i;) +x (38)
with probability 1 — CK P, where « satisfies (30).

We have a similar result for the update of b by Step 4 of
Algorithm 1, which is stated in the following proposition. The
proof of Proposition 9 is provided in Section VIII-C.

Proposition 9 (Update of Subspace Coefficients): Suppose
the assumptions in (Al) and (A2) hold, p. satisfies (23),
L > 3K, and the previous estimate @ satisfies

/(a,d) < %. (39)

For any f € N, there exist absolute constants C > 0,a € N
and constants C1, Co that depend on [, for which the fol-
lowing holds: If (35), (36), and (37) are satisfied, then the
updated b by Step 4 of Algorithm 1 satisfies

-~ 1
sin Z(b, b) < > sin /(a, @) + «

with probability 1 — CK =P, where « satisfies (30).

The next proposition shows the convergence of the rank-1
truncated power method from a provably accurate initializa-
tion. See Section IX for the proof.

Proposition 10 (Local Convergence of Rank-1 Truncated
Power Method): Suppose the assumptions in (Al) and (A2)
hold, p. satisfies (23), and L > 3K. Let 0 < pu < 1,

0<r<ﬁ,and
: 1 (14wt
c(u, v) = min , .
#7) (ﬂm 1—u>
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For any f € N, there exist absolute constants C > 0,
a € N, constants C{, C} that only depend on p, for which
the following holds: If (35), (36), and (37) are satisfied for
Ci =c(u,1)C}, C2 = c(u, )C} and uy satisfies

sin Z(ug, u) <7,

then (u;);en produced by Algorithm 2 for B = |E[A]]l
Iy p — A with ug satisfies
1
sin Z(us, u) < u'sin L(uo, u) + A+ Vi e N (40)

1—u’

with probability 1 — CK P, where « satisfies (30).
Finally, we derive the proof of Proposition 4 by combining

the above propositions.

Proof of Proposition 4: Similar to the proof of
[22, Proposition 3.3], we show that

®
sinZ(h,, h) < %L() -N/2sin /(uy;, u)

Omin (‘b) “h

and

sin Z(u;, u) < max[sin Z(a;, a), sin Z(b;, b)]. 42)

Furthermore, as we choose C; in (26) sufficiently large,
we can upper bound the condition number of ® by a constant
(e.g., 3) with high probability. We continue the proof con-
ditioned on this event. Then the convergence results in
Propositions 8, 9, and 10 imply (29).

Since u = O(1), the conditions in (35), (36), (37) respec-
tively reduce (26), (27), (28). Furthermore, since v = Q(1),
(32) is implied by (28). By choosing C; large enough, we can
make the initial error bound in (33) small so that the conditions
for previous estimates in Propositions 8, 9, 10 are satisfied and
the assertion is obtained by these propositions. O

VI. NUMERICAL RESULTS

In this section, we provide observation on empirical per-
formance of the alternating eigenvectors method (AltEig)
in Algorithm 1 and the rank-1 truncated power method
(RTPM) in Algorithm 2, using the spectral initialization in
Algorithm 3. We compare the two iterative algorithms to the
classical cross-convolution method (CC) by Xu ef al. [19],
which only imposes the time-limited model on impulse
responses, and to the subspace-constrained cross-convolution
method (SCCC) [22], which imposes a linear subspace model
on the impulse responses. This comparison will demonstrate
how the estimation error improves progressively as we impose
a stronger prior model on the impulse responses.

In our first experiment, we tested the algorithms on generic
data where the basis @ is an i.i.d. Gaussian matrix. The input
source signal x, subspace coefficient vector b, and additive
noise are i.i.d. Gaussian as well. The channel gain vector is
generated by adding random perturbation to all-one vector
so that @ = 1y + a&/)|€llco, wWhere & = [&1, ..., En]T
and ¢, ..., ¢y are independent copies of a uniform random
variable on [—1,1). We use a performance metric given as
the 95th percentile of the estimation error in the sine of the
principal angle between the estimate and the ground truth out
of 1,000 trials. This amounts to the worst-case error after
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excepting 5% of the instances. In other words, the estimation
error is less than this threshold with high probability no less
than 0.95.

Figure 2 compares the estimation error by the four algo-
rithms as we vary the problem parameters. Figure 2(a) shows
that the error as a function of the oversampling factor L/K,
which is the ratio of the length of observation L to the
number of nonzero coefficients in each impulse response.
SCCC provides smaller estimation error than CC in order of
magnitude by exploiting the additional linear subspace prior.
Then AltEig and RTPM provide further reduced estimation
error again in order of magnitude compared to SCCC by
exploiting the bilinear prior that imposes the separability
structure in addition to the linear subspace prior. As expected,
longer observation provides a smaller estimation error for all
methods. Furthermore, as shown in Figure 2(b), the estimation
error increases as a function of the ratio D/ K, which accounts
for the relative dimension of the subspace. More interest-
ingly, as our main theorems imply, the performance difference
between SCCC and AltEig/RTPM becomes more significant
as we add more channels (Figure 2(c)). The estimation error
by these method scales proportionally as a function of SNR
(Figure 2(d)). Similarity of channel gains, as captured by the
parameter a, did not affect the estimation error significantly
(Figure 2(e)). Moreover, when the two iterative algorithms
(AltEig and RTPM) provide stable estimate, they converge
very quickly. Figure 3 illustrates the convergence of the two
algorithms for a random instance. The estimation error decays
progressively for RTPM, whereas AltEig converges in less
than 5 iterations.

To better visualize the overall trend, we performed a Monte
Carlo simulation for the empirical phase transition. This is
illustrated in Figure 4 with a color coding that uses a log-
arithmic scale with blue denoting the smallest and red the
largest error within the regime of (D/K, L/K). The error in
the estimate by CC is large (> 0.1) regardless of D/K for the
entire regime (Figure 4(a)). SCCC provides accurate estimates
for small D/K and for large enough L/K (Figure 4(b)).
On the other hand, it totally fails unless the dimension D
of subspace is less than a certain threshold. Finally, AltEig
and RTPM show almost the same empirical phase transitions,
which imply robust recovery for larger D/K and for smaller
L/K (Figures 4(c) and 4(d)).

The above illustrates the performance of SCCC, AltEig,
and RTPM for 62 = o2, ie. in the scenario when the
true noise variance is given. Figures 4(e) and 4(f) illustrate
the empirical phase transitions for AltEig and RTPM when
a crude estimate of ¢2 given as 62 = 0 is used instead.
These figures show that there is a nontrivial difference in
the regime for accurate estimation depending on the quality
of the estimate 63). This opens up an interesting question of
how to show a guarantee for the noise variance estimation.
Nonetheless, even with 63) = 0, both AltEig and RTPM show
improvements in their empirical performances due to the extra
structural constraint on the impulse responses over CC and
SCCC, which are (partially) blind to the bilinear prior model.

In our second experiment, we tested the algorithms on
synthesized data with a realistic underwater acoustic channel
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Fig. 2. Comparison of cross-convolution (CC), subspace-constrained cross-convolution (SCCC), alternating eigenvectors method (AltEig), and rank-1 truncated
power method (RTPM). Default parameter setting: M = 8, K =256, D =32, L =20 K, SNR = 20 dB. The 95th percentile estimation error is plotted in a
logarithmic scale as we vary each parameter as follows: (a) L. (b) D. (c) M. (d) SNR. (e) a.

model, where the impulse responses are approximated by a
bilinear channel model. In an ocean acoustic array sensing
scenario, receivers of the vertical line array (VLA) with equal
spacing listen to the same source near the ocean surface at
a distance. In a simple channel, each receiver will observe
essentially the same signal, only at different delays that depend
on the orientation of the source relative to the array. This
geometry makes the shape of CIRs closely linked to one
another (and hence amenable to a joint linear model), while
the relative gains of the receivers are independent. A detailed
description on how to form the basis ® for a particular
underwater environment can be found in [53].

We performed Monte-Carlo simulation to demonstrate the
robustness of our method on realistic acoustic channels which
represent an at-sea experiment carried out in the Santa Bar-
bara Channel. In the simulation, the common driving source
signal, x € RL, is white Gaussian noise filtered in an
arbitrary bandwidth representative of shipping noise spectra
(400-600 Hz) for L = 2000. Each CIR is of length K = 500
and represents a Gaussian-windowed pulse in the band
of 400-600 Hz. The number of channels M is 31. The
basis ® € RX*P is of dimension D = 8. The number of
trials in the Monte-Carlo simulation is 100. In this experi-
ment, unlike the previous experiments with Gaussian bases,
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Fig. 3. Convergence of alternating eigenvectors method (AltEig) and rank-1
truncated power method (RTPM) for a random instance. x-axis: iteration

index, y-axis: log of the estimation error. M = 8, K = 256, D = 32,
L =20 K, SNR = 20 dB.

AltEig does not provide a stable recovery. Therefore, we report
the results only for RTPM. As for the estimation of the noise
variance, since the basis matrices are unitary, there is no need
to subtract the expectation of the noise auto-correlation term.
Figure 5 shows order statistics of the estimation error in a
log scale. The empirical success rate of the recovery in this
experiment is lower than that in the first experiment with
generic data. The median of the estimation error approaches
to the modeling error due to approximation with a bilinear
model as we increase the SNR.

VII. ANALYSIS OF SPECTRAL INITIALIZATION

We prove Proposition 7 in this section. Recall that
Algorithm 3 computes an initial estimate b of the true para-
meter vector b as an eigenvector of TT*— > M 52 1 &% @,
corresponding to the largest eigenvalue in magnitude. Let us
decompose the matrix I in (11) as I' = I's+ Ty, where I's and
I';, respectively correspond to the noise-free portion and noise
portion of I'. In other words, I's is obtained as we replace
Ym = hm ®x + w,, in the expression of I" in (12) by its first
summand k,, ® x. Similarly, I', is obtained as we replace y,,
by w;,. Then it follows that

M
Ey[Talil= > o5 L&} P
m=1
By direct calculation, we obtain that the expectation of I
is written as

M
E[T] = Z Kanbx" = K|a||1bx . (43)

m=1

Therefore,

E[TSIE[T]* = K?||x|[3)|a|}bb*. (44)
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It is straightforward to check that the rank-1 matrix
E[T]JE[s]* has an eigenvector, which is collinear with b.
Thus as we interpret [ T* — Z;/Z]:l auz) L@, ®,, as a perturbed
version of E[T]E[Ts]*, the error in b is upper bounded by
the classical result in linear algebra known as the Davis-Kahan
theorem [54]. Among numerous variations of the original
Davis-Kahan theorem available in the literature, we will use
a consequence of a particular version [55, Th. 8.1.12], which
is stated as the following lemma.

Lemma 11 (A Special Case of the Davis-Kahan Theorem,):
Let M, M € C"" be symmetric matrices and A denote the
largest eigenvalue of M in magnitude. Suppose that 1 > 0
and has multiplicity 1. Let Q = [q, Q5] € C"*" be a unitary
matrix such that q is an eigenvector of M corresponding to A.
Partition the matrix Q*M Q as follows:

A 011
*MQO = o .
MO [On—l,l D :|

If

A
D]+ M — M| < 3 (45)
then the largest eigenvalue of M in magnitude has multiplic-
ity 1 and the corresponding eigenvector q satisfies

4IM — Mg, >
p .

Remark 12: In Lemma 11, the rank-1 matrix Agq7] is
considered as the ground truth matrix. Then M —M+ Q, D Q3
corresponds to perturbation in M relative to the ground truth
matrix M. Also note that @, D Q%q; = 0.

In the remainder of this section, we obtain an upper bound
on the error in b by applying Lemma 11 to M = E[L]E[I]",
M=Tr*->M 52 1®*®,,q, =b,and § = b.

By (44), we have D = 0 and 1 = K?||x|3]la]|7]|5]3. Then
we show that the spectral norm of the perturbation term, which
is rewritten as

sin £(q,q;) < (46)

IT* — E,[Tal}] — E[LSE[TS]

= I';I'; — E[T]E[T]*, (47a)
LIS 4 T,T (47b)
+ rnr: - Ew[rnr:]a (47¢c)

satisfies (45). We will compute an upper estimate of the
spectral norm of each summand, divided by 1, separately. Then
we combine these estimates using the triangle inequality.

A. Perturbation Due to Signal Term

Note that the first summand I'\I' — E[I]E[L]* in (47a)
has entries, which are fourth-order Gaussian random vari-
ables. We decompose it using second-order random variables
as

rsr: - E[FS]E[FS]* = (rs - E[rs])(rs - E[rs])*
+ E[Ts](Ts — E[T])*

+ (Ts — E[TDE[TS]". (48)
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Fig. 4. Empirical phase transition in the 95th percentile of the log estimation error. x-axis: D/K. y-axis: L/K. K = 256, M = 8, SNR = 20 dB.
(a) cross-convolution method [19]. (b) subspace-constrained cross-convolution method [22]. (c) alternating eigenvectors method (&l% = al%). (d) rank-1 truncated
power method (&uz) = auz)). (e) alternating eigenvectors method (&l% =0). (f) rank-1 truncated power method (&uz) =0).

We have already computed E[Ts] in (43). It remains to
upper bound the spectral norm of I's—E[T]. By the definitions

of I's and p,, we obtain

M
ITs =B < | D an(®},5Cs 0,

m=1

—Ey[®)SCg:q,51)S SCyx

M
< | X an@}5Cs0,
m=1
—Eyl®},SCs-0,5) | I13Cx]
M
< Px Zam(‘l’;,SCs*%b

m=1

—Ey[®%SCse0,5)S |, (49)
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Fig. 5. Order statistics for the log estimation error in varying SNR for the
underwater channel model.

where § € R@X-Dx*L s defined by

5 [0k 1..-&+1 Ik 1]
S =
[Tk 0%, k]

The right-hand side of (49) except the constant factor
/px is upper bounded by the following lemma, which is
proved in Appendix X.

Lemma 13: Suppose that (A2) holds. For any p € N, there
is a constant C(p) that depends only on [§ such that

| % an(®;,SCs28,5 — By @},SCs-0,»)3" |
m=1

< C(BKVM|allllbll2log* (MKL)  (50)

holds with probability 1 — K F.
By applying (43), (49), Lemma 13 together with the fact
JVPx < Collx|l2 to (48), we obtain that

ITTY — E[LE[T ] _ C(B)vV M all log* (MKL)
) - llall
C(B)ulog" (MKL)
51
=T UM O

holds with probability 1 — K 7.

B. Perturbation Due to Signal-Noise Cross Term
Next we consider the second term in (47b). By the triangle
inequality, we have

TSI + Lol < TSIl + Tl < 2] Tyl

Therefore, it suffices to upper estimate ||I'sI'}||. To this end,
we decompose T as

I, = (Ts — E[T))T; + E[T]T,. (52)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

Note that the first summand in the right-hand side of (52)
is written as

(s — ]E[l"s])l",f

(Zam<1> SCsog 58" — Eylan®:SCyeq 58 ])

(Zscx

where the first and second factors of the right-hand side
of (53) are upper bounded in the spectral norm respectively
by Lemma 13 and by the following lemma. (See Appendix X
for the proof.)

Lemma 14: Suppose that (Al) and (A2) hold. For any
p €N, there is a constant C(f3) that depends only on [ such
that

D), (53)

M
| > 5c.C;,, 8" n| <CBrprn/ MK tog" MKL) - (54)
m=1
holds with probability 1 — K —F.
By applying Lemmas 13 and (14) to (53), we obtain that
I(Ts = BITDT;I < C(B)pa,wMK>? @)oo bll2 log” (MKL)
(55)
holds with probability 1 — K /.
Next, the second summand in the right-hand side of (52) is
written as

M
EIT,IT; = Kllalib( Y €{C<C}y S* @), (56)
m'=1

whose spectral norm is upper bounded by using the following
lemma.

Lemma 15: Suppose that (Al) and (A2) hold. For any
p €N, there is a constant C(f) that depends only on B such
that

|3 ciccs, s

m'=

< C(B)px,wv MDlog" (MKL)

holds with probability 1 — K 5.

The proof of Lemma 15 is very similar to that of Lemma 14.
The proof of Lemma 14 involves the following optimization
formulation:

max max Zz*SCxC* S*®,.q.

2K -1
z€B; q632 m—1

Instead of maximizing over z € BZK 1, we fix z to Sej.

Equwalently, we replace the unit ball BzK ! by the singleton

set {Sel} This replacement simply removes the entropy inte-

gral corresponding to B22K -1 Except this point, the proofs for

the two lemmas are identical. Thus we omit further details.
Applying Lemma 15 to (56) implies that

IE[TSITE < C(B)px.wVMK~Dllal|b]2 log* (MKL)
(57)

holds with probability 1 — K 7.
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By combining (55) and (57), after plugging in the definitions
of 5, i, and v, we obtain that

[TTE+ Ty _ C(p)log”"(MKL)
A - NG

Px,w

I x|l200+vL
D
'(véuM-i- ‘/_) (58)

vWMK
holds with probability 1 — 2K ~#.

C. Perturbation Due to Noise Term

Finally, we derive an upper bound on the spectral norm of
the last term in (47c) using the following lemma, which is
proved in Appendix X.

Lemma 16: Suppose that (A2) holds. For any f € N, there
is a constant C(p) that depends only on [§ such that

ITaT: — EW[TalE1 < C(B)puwM>*VK D log* (MKL)

holds with probability 1 — K 5.

We also use a tail bound on p, given by the following
lemma from [22].

Lemma 17 ([22, Lemma 5.9]): Suppose that (A2) holds.
For any f € N, there is a constant C(f) that depends only
on f such that

puw < C(B)op 'K Llog" (MKL)

holds with probability 1 — K —F.
By Lemma 17 and (15), the corresponding relative pertur-
bation is upper bounded by
ITnT5 — Eo[Ta T3 _ C(B)log"(MKL)
K2|x|3lalfbl; n

(59)

VD
V2 ML

(60)

with probability 1 — K 7.

Then it follows from (51), (58), and (60) that the condition
in (45) is satisfied by the assumptions in (32) and (31). There-
fore, Lemma 11 provides the upper bound on the estimation
error in (33), which is obtained by plugging (51), (58), and
(60) to (46). This completes the proof.

VIII. CONVERGENCE OF ALTERNATING EIGEN METHOD

Algorithm 1 iteratively updates the estimates of a, b from
a function of the matrix A = ®*(Y*Y — 62 (M — 1)LIyx)®
and previous estimates. Propositions 8 and 9 show the conver-
gence of the iterations in Algorithm 1 that alternately update
the estimates @ and b under the randomness assumptions
in (Al) and (A2). Similarly to the analysis of the spectral
initialization in Section VII, we prove Propositions 8 and 9
by using the Davis-Kahan Theorem in Lemma 11. To this
end, we first compute tail estimates of norms of the deviation
of the random matrix A from its expectation A = [E[A] below.

A. Tail Estimates of Deviations

Algorithm 1 updates the estimates @ as the least dominant
eigenvector of (Iyy ® ’l;*)A(IM ® b) where b denotes the
estimate in the previous step. The other estimate b is updated
similarly from (@* ® Ip)A(a ® Ip). The matrices involved
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in these updates are restricted version of A with separable
projection operators.

In order to get a tightened perturbation bound for the
estimates, we introduce a new matrix norm with this separa-
bility structure. To define the new norm, we need operators
that rearrange an M-by-D matrix into a column vector of
length M D and vice versa. For V = [vy,...,vy] € CM*P,
define

vee(V) =[v],...,v),]".

Let mat(-) denote the inverse of vec(-) so that
mat(vec(V)) =V, VV e CMxD
and

vec(mat(v)) = v, Vv e CMP,
With these vectorization and matricization operators, we define
the matricized S,-norm of v € CM? by

llvllls, = [Imat(v)]ls,.

Then the matricized operator norm of M e CMP*MD g
defined by

N Mllls,~s, := max
P s, <1

I Mvl]|[s,.

For p = 1 and ¢ = oo, by the Courant-Fischer minimax
principle, the matricized operator norm is written as a varia-
tional form, i.e. ||| M |||s,—s,, 1s a solution to

[(vec(Y"), Mvec(Y))]|

maximize
Y, Y eCMxD

subject to [ X|ls, < 1, [IX'||s, < 1.

Since the unit ball with respect to the Sj-norm is given
as the convex hull of all unit-S>-norm matrices of rank-1,
[[|M||]s,—5. 1S a solution to

maximize |(vec(Y"), Mvec(Y))|
Y, Y eCMxD

subject to [[Xls, < 1, [X'||s, <1

rank(Y) = rank(Y') = 1. 61)
Therefore, by dropping the rank-1 constraints in (61),
we obtain

NIMll5,55 < IMIl, ¥M € CMP>MP (62

The following lemma provides a tail estimate of
| E|lls,—s, divided by K2|x|3|ul3, which amounts to
the spectral gap between the two smallest eigenvalues of A.
Compared to the analogous tail estimate for its spectral norm,
derived in [22, Sec. 3.2], the tail estimate for ||| E |||s,— 5.,
is smaller in order. This is the reason why we obtain a better
sample complexity by introducing the extra rank-1 structure
to the prior model on impulse responses.

Lemma 18: Let E = A — A. For any B € N, there exist a
numerical constant C and a constant C(f) that depends only
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on f such that

N E M1 500
K2x]13 w13
1 D D
Px,w E 2 2
it Car %) 1)
(63)

holds with probability 1 — CK 5.

Proof of Lemma 18: The derivation of (63) is similar to
that for the analogous tail estimate for ||E| in [22, Sec. 3.2].
We use the same decomposition of E, which is briefly sum-
marized below.

We decompose Y as ¥ = Y + Y, where the noise-free
portion Y (resp. the noise portion Y,) is obtained as we
replace y,, = h;; ® x + w,, in Y by its first summand k,, ® x
(resp. by its second summand w,,) for all m = 1,..., M.
Then E is written as the sum of three matrices whose entries
are given as polynomials of subgaussian random variables of
different order as follows.

E = ®'YVY,® —E[®'Y Y D] (64)
+ 'YV, @ + YYD (65)
+®*(Y¥Y, — 02 (M — 1)LIyk)®. (66)

We first compute tail estimates of the components; the tail
estimate in (63) is then obtained by combining these results
via the triangle inequality.

For the first summand in (64) and the last summand in (66),
we were not able to reduce their tail estimates in order com-
pared to the spectral norms. Thus we use their tail estimates
on the spectral norms derived in [22, Sec. 3.2], which are also
valid tail estimates by (62). For the completeness, we provide
the corresponding lemmas below.

Lemma 19 [22, Lemma 3.5]: Suppose that (Al) holds. For
any f € N, there exist a numerical constant a € N and a
constant C(f}) that depends only on f such that

1D* YV ® — E[® VY ®]]
K2|xll3]lel3

< C(p)log" (MKL) (/% + @ )u? 67

holds with probability 1 — CK 5.

Lemma 20 [22, Lemma 3.7]: Suppose that (Al) holds. For
any f € N, there is a constant C(f3) that depends only on f§
such that

[@*(Y3Yy

o2(M — 1)L1yk)®|
K2|x[3lull3

_ C(B)log"(MKL) \/E
= 5 VL

with probability 1 — CK ~F.

For the second and third terms in (65), we use their tail
estimates given in the following lemma, the proof of which is
provided in Appendix X.

(68)
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Lemma 21: Suppose that (Al) holds. For any f € N, there
exists a constant C(p) that depends only on p such that,
conditional on the noise vector w,

1| @YY @[5, 50 C(B)px,w
K2||x (13 llull3 =~ VnKLoy|xll2
v K D D
Jul+=+=)+1
[”( m T Vm T K)+ }

(69)

holds with probability 1 — CK ~F.

Finally, the tail estimate in (63) is obtained by combining
(67), (67), and (69) via the triangle inequality. This completes
the proof. O]

We will also make use of a tail estimate of
| Eullls../llull2, again normalized by factor K2|x|3|ul)3.
The following lemma, which provides a relevant tail estimate,
is a direct consequence of Lemma 21 and [22, Lemma 3.8].

Lemma 22: Let E = A — A. For any f € N, there exist a
numerical constant C and a constant C(f) that depends only
on f such that

I Eullls.,
K2||x[3lul3
Px,w
< C(p)log” (MKL)(i
VK Loy|x|2

[t =7 1]

holds with probability 1 — CK~F.

vD ) (70)
nvML

B. Proof of Proposition 8

To simplify notations, let § = Z(bj;) denote the principal
angle between the two subspaces spanned respectively by b
and b, i.e., 8 € [0, 7 /2] satisfies

sing = || Pyubla, cosd = |Pybl,

where Pj denotes the orthogonal projection onto the span of b.
The assumption in (34) implies 8 < x /4.

Recall that Algorithm 1 updates a from a given esti-
mate b _in the previous step as the eigenvector of the matrix
Iy ®$*)A(IM ®b) corresponding to the smallest eigenvalue.
Without loss of generality, we may assume that ||Z||2 =1.

By direct calculation, we obtain that A = E[A] is rewritten
as

A = K?|x 131613 (lal3Iy — diag(jal®) ® Py.

+ K2|x131613(lal3y — aa®) ® Py.  (71)
Then
Iy ® DAy @ b)
= K2|Ix 131613 (lali31y — cos® O aa*)
— K?|x1311B13 sin® 0 diag(|a|®). (72)

Here |a|?> denotes the vector whose kth entry is the squared
magnitude of the kth entry of @ and diag(|a|?) is a diagonal
matrix whose diagonal entries are given by |a|.
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We verify that the matrix ||a||%IM — cos? A aa* is positive
definite and its smallest eigenvalue, which has multiplicity 1,
is smaller than the next smallest eigenvalue by ||a||%coszé'.
Furthermore, a is collinear with the eigenvector corresponding
to the smallest eigenvalue.

Let us consider the following matrix:

K2x 31813 lal3y — Ay @ B ALy @ b)
= K2|x|3153 cos® 0 aa*
+ K2|x 311513 sin” 0 diag(lal?)
— Iy b HYE(Iy ®D),

which we considered as a perturbed version of
K?|x ||% |b ||% cos’0aa*. Then the perturbation, that is
the difference of the two matrices, satisfies

HK2||x||%||b||%||a||§IM — Iy ®b)A(Iy ®b)

— K?||x 3116113 cos® 0 aa*

= | K21 131613 5in? 0 diag(la )|

+ 1y ©BHE(Iy @Db)|

< K2Ix316I3lalZ sin? 0 + | Ellls,>s..  (73)

For sufficiently large Ci(f), the conditions in (34), (35),
(36), and (37) imply

K2|x131613 a3 cos? 6
2 KZ 2 b 2 2 . 29 E
> 2(K7|x 3118113 llallS, sin® 6 + ([ E [[]5,-5.)-

Therefore, @ is a uniqug\k dominanL
K2|x 131613 llal3y — (p @b )ALy ® b).
Next we apply Lemma 11 for

eigenvector of

M = K?||x|;3]b]l3 cos” 6 aa®,
M = K*|x|31151I3llall31y
~(ly @Ay ®b),
a

91 = -
lall>”

qg=a.

Then A and D in Lemma 11 are given as A =
K?|Ix|31813llal3 cos* 6 and D = 0.
By (73), we have

1M — M| _ |lall3,sin® 0 1 E [ll5,- s
A T llal3cos?0  K2|x|31b13]al3 cos? 6
_ 12 2AIE s s,
T M K2|x|31B13lall3”

where the last step follows from (34). Therefore, for suffi-
ciently large Cy(f), the conditions in (35), (36), (37) combined
with Lemma 18 satisfy (45) in Lemma 11 and we obtain the
error bound in (46).
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It remains to compute ||[(M — M)q,|2/4. The £2-norm of
(M — M)q, satisfies

K2||x (311513 sin” 0| diag(lal?)a»

(M —M)q,l> <
lall2
~ -
Iy @b )E(a @Db)|2
lall2

< K2 131813 1lal%, sin® 6
+3sin8 ||| E |]]s;— S
cos’0 ||| E(a ® b)|||s.,
lall2 (1Bl ’

(74)

where the second step follow from the decomposition of b
given by

b= Pyb+P,yb.

which satisfies ||Pb3||2 = cosf and ||bel;||2 = sind.
By dividing the right-hand side of (74) by 4, we obtain

4II(M — M)q, 112
A

_ 4lla|?, sin?@  12sin? 0 ||| E||]5,— sa

lal cos260 — K2|x|3llbl3llall3 cos? 6

4||| Eu ||| sy

K2||x(3lul3

8u?  24|||E 4||| Eu
E(LJF ||2| IIls.»szm)sine |2!| zlllsoo’ (75)

M K2|x 155 K2llx I3l

where the second step follows from (34).

By Lemma 18, the constant factor for sin & in (75) becomes
less than 1/2 as we choose Ci(f) in (35), (36), (37) suf-
ficiently large. This gives (38), where the expression for
x follows from Lemma 22. This completes the proof.

C. Proof of Proposition 9

The proof of Proposition 9 is similar to that of Proposition 8.
Thus we will only highlight the differences between the two
proofs.

Without loss of generality, we assume that @]l = 1. Let
6 = /(a,@). The assumption in (39) implies 6§ < /4.
This time, we compute the least dominant eigenvector of
(@ ®Ip)A(a ® Ip). From (71), we obtain

@ ®Ip)A@®Ip)
= K2||lx|3lall3(I1B1I31p — cos? & bb™¥)

—K2Ix 31813 lal @ @3 P,. . (76)

We consider the matrix

K2x13161311al31p — @ @ 1p)A@®1p)
= K?|x|3]lal}cos b bb*
+ KX 1311515 ]al © @5 Py
—@ ®Ip)E@xIp)
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as a perturbed version of K2||x||%||a||% cos? 6 bb*. The differ-
ence of the two matrices satisfies

K2 |x|131B13lal3lp — @ ®1p)A@ ® Ip)

21 12112 12 cad?
— K7lx 11311813 l|all; cos™ 0 Py

2 2 2 112
< | k21x 31813110l 0 @3 P,

+@ Ip)E@®Ip)|
< K2Ix 131813 0al’ + 1 E|lls,—s..-

For sufficiently large Ci(f), the conditions in (34), (35),
(36), and (37) imply

K2[x 131513 1@} cos?
> 2(K?[x 131815 1allZ, sin* 6 + |1 E]15,-5.)-

Therefore, b is also a unique dominant eigenvector of
K2||x 311815 ]al3Ip — @ ®Ip)A@ @ Ip).
Next we apply Lemma 11 for

M = K?|x|3]lal3 cos® 6 bb*,
M = K?||x|31513]ali31p
—(@ ®Ip)A@®Ip),
b

q1 = 77>
TR

o~

G=0

Then A and D in Lemma 11
K2||lx[31513lal3 cos>d and D = 0.
Similarly to the proof of Proposition 8, we show

IM - M| _ 242 2 Elllsise

are given as A =

Ao T M K2 x|311b13al3
and
4|(M — Mgyl _ 24111 E|llls,— 5w 4|1 Eullls,,
A T K2 xl3lul3 K2 x| 3llel3

Here we used the decomposition of @ given by
a=Psa+ P,a,

which satisfies || Pqa]l> = cos® and |P,idl> = sin 6.
The remaining steps are identical to those in the proof of
Proposition 8 and we omit further details.

IX. CONVERGENCE OF RANK-1
TRUNCATED POWER METHOD

In this section, we prove Proposition 10. First we present a
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power method for general matrix input B. Then we will show
the proof of Proposition 10 as its corollary.

The separability structure in (9) corresponds to the rank-1
structure when the eigenvector is rearranged as a matrix.
We introduce a collection of structured subspaces, where their
Minkowski sum is analogous to the support in the sparsity
model. For (a,b) € CM x CP, we define

T(a,b):={a®&+q®b|&ecCP, geC).
Then
mat(T (a, b)) = {mat(v) | v € T(a, b)}

is equivalent to the tangent space of the rank-1 matrix
U=ab'.

Now we state a local convergence result for the rank-1
truncated power method in the following theorem, the proof
of which is postponed to Section IX-A.

Theorem 23: Let u = a @ b be a unique dominant
eigenvector of B. Let IQ(E) be defined in (77), as shown at
the bottom of this page. Suppose that there exist 0 < u < 1
and 0 < 7 < ﬁ for which (78), as shown at the bottom of
this page

44/6[||B — B||ls,- 55 <mm[ 1 (1—,u)r] 79)
Z1(B) - 32 1+u I
and
~ 11(B
T2(B) + 6/l B — Bllls, 5., < ‘g—) (80)

hold. If sin/(ug,u) < 7,
Algorithm 2 satisfies

then (u;);en produced by

sin Z(uy,u) < psin/Z(u;—1,u)
(14 w)4v6l|| (B — B)u||ls..
A1(B)

(81)

forallt € N.

Proposition 10 is a direct consequence of Theorem 23
for the case where the input matrix B is given as B =
IE[A]]l Ipyp — A and its proof is presented below.

Proof of Proposition 10: We apply Theorem 23 for

B = |E[A]lImMp — A
and
B = K*|x|5uu*.
Then the difference between B and B is written as

B — B = (IE[A]ll - K*|lx|3lu|)Iyp + K*|x[3Y — E.

theorem that shows local convergence of the rank-1 truncated (82)
LB) = s [vBvl vl =1, veut NT@b)+T@h +7@ b} (77)
v,(@,b),(@,b)
5(A2(B) +6||| B — B||s,
V5(42(B) + 6l/| B = Bllls,—5..) - 78

VI =2201(B) — 1 12(B) — 6(¥1— 12+ 0)||| B — Bllls,>s.
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In Section VIII-B, we have computed A = E[A] in (71),
which is rewritten as

A=K*|x|3(ul3P,. — ) (83)
with
Y = diag(lal’) ® B3P,
where u =a ® b.
Therefore, it follows from (83) that
AN — K2x 3 1ul3 < K2x 1317
< K*|x51815llalZ,. (84

Then by plugging in (84) to (82), we obtain
1B — Bllls,>s. <2K2lx315130al + 11 Ellls,—s85)

On the other hand, B is a rank-1 matrix whose eigenvector
is collinear with u and the largest eigenvalue is given by

L1(B) = K2||x |13 1613 1al3. (86)

Therefore, B also satisfies
72(B) = 0.
Since Ez(ﬁ) =0, (78) and (79) are implied by

| B — Bllls,— 5, . ) (1—#)1]
B < Comin [#\/1 2] e
for a numerical constant C.

By applying (86) and the tail estimate of ||| E|||s,—s.
given in Lemma 18 to (85), we verify that the sufficient
condition in (87) is implied by (35), (36), and (37) for C; =
c(u,7)Cy, Co2 = c(pu, t)C) where C| and C} are constants
that only depend on j.

Since the conditions in (78) and (79) are satisfied,
Theorem 23 provides the error bound in (40). This completes
the proof. O

A. Proof of Theorem 23

In order to prove Theorem 23, we first provide lemmas,
which show upper bounds on the estimation error, given
in terms of the principal angle, in the corresponding steps
of Algorithm 2.

The first lemma provides upper bounds on norms of a matrix
and a vector when they are restricted with a projection operator
onto a subspace with the separability structure.

Lemma 24: Let

T=> T(a, by
k=1

for {(ak, b)};_, C CM xCP, M € CMP>MD gng y € CMP.
Then

|PzMPy| <2r|[| M]||ls,— 5y
and

[PyMul2 = ~2r|[| Mullls.
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Proof: Let v € T. Then rank(mat(v)) < 2r. Let

2r
mat(v) = Z o1q,&
=1

denotes the singular value decomposition of mat(v), where
lg;ll2 =11&ll2=1and 6y > 0 for k =1,...,2r. Then

2r

v="> 01q, QF.

=1

Similarly, we can represent v’ € T as

2r
’ ’ oy /
V=2 0/q;®&)
=

Then
2r
(v, Mv)| < D" a10]l((q; ® &), M(q, ® &)))|
jl=1
2r 2r
<D o) ojllIMIlls s,
=1 j=1
< 221|021l M |15, So0 -
Therefore,
[P MPg|| = sup {(v/, Mv) | [v]2 = |[v'l2 = 1}
vv'el
< 2r|[I M |15, a0 -

This proves the first assertion. The second assertion is obtained
in a similar way by fixing v = u. O
The following lemma is a direct consequence of the
Davis-Kahan Theorem together with Lemma 24.
Lemma 25 (Perturbation): Let {(ax, by)},_, C CM « cP
satisfy

-
T(a,b) C z T(ar, by) =:T.
k=1
Let v (resp. u) be a unique most dominant eigenvector of
PiM Py (resp. PyMoPy). If
Jo(PyMoPy)+2r ||| My — M2 ||ls, 54
< w’ (88)

then

4V2r ||| (My — Mo)ul|ls,,
2 (PyM3yP ;) '

The following lemma shows how the conventional power
method converges depending on the largest and second largest
eigenvalues.

Lemma 26 (A Single Iteration of Power Method
[56, Th. 1.1]): Let M have a unique dominant eigenvector v.
Then

sin Z(v, u) <

A2(M) sin (v, v)
L(V,v) — Ap(M)sin L (v, v)

in Z(Mv, v) <
sin £( v’v)_il(M)cos

for any v such that (v, v) # 0.
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The following lemma is a modification of [47, Lemma 12]
and shows that the correlation is partially preserved after
the rank-1 truncation. Unlike the canonical sparsity model,
where the atoms are mutually orthogonal, in the low-rank
atomic model, atoms in an atomic decomposition may have
correlation. Our proof addresses this general case and the
argument here also applies to an abstract atomic model.

Lemma 27 (Correlation after the Rank-1 Truncation): Let
b € CMP gatisfy ||9]n = 1 and rank(mat(¥)) = 1. For

€ CMD guch that ||vlly = 1, let V. € CM*D denote the
best rank-1 approximation of V = mat(v) and v = vec(V).
Then

[(v, 9)| > [(v, V)]
—mln(\/1—|vv|2 2(1 = [(v |))

Proof of Lemma 27: There exist @ € CM and becCP
such that

(89)

U = mat(s) = b .

Let@ e CP and b € CP respectively denote the left and
right singular vectors of the rank-1 matrix V. Define T} =
T ({(a, b)}) T, =T ({(a, b)}) and 73 = T1NTp. Then T1 4+ T3
is rewritten as

T+ 1T, = PTZJ_Tl b1 = PTZJ_Tl (WA PTSJ_TQ. 90)
Similarly, we also have
h+1T,=T & PTILTz = PT3LT1 CWERS PTILTZ. 1)
By the definition of 7, we have
IPrvl2 = | Pryvl2.
Therefore,
PP nvl2= PP 1yvl2
3 3
Then by (90) and (91) it follows that
IPp  mvll2 =[PP, 10l 92)
1 2

By the Cauchy-Schwartz inequality and the Pythagorean
identity, we have

(v, 9)> = (P, D)
I P73

2
1= [Privll3

IATA

IA

2
1= 1IPp_, 1003
1

IA

2
L= Pp 7vl3,
2

where the last step follow from (92). The above inequality is
rearranged as

93)

IPp_ 7ol < V1= [{v,9)%
2

We may assume that |(v, d)| > 2-1/2 Otherwise, the
right-hand side of (89) becomes negative and the inequality
holds trivially. Then by (93) we have

IPp, vz < (v, D),
2
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which also implies
IPp, 1ol Pp,, 73l < (v, 3)]. (94)
2 2
Since P1,4+1,¥ = ¥, we have

(v, V)| = {P1,41,0, V)|
= |<(PPT21_T1 + PTz)vai))l

= [Pp_ 1,0, )|+ (P10, V)|
2
< ||PPTJ_T]v||2||PPTJ_T[‘b||2
2 2
+IProll2 P02
<P, 1ol Pp, 1,6l
2 2

+J1—npg%nm@J1—an%ni@.

By solving the above inequality for || P p ey |2 under the

condition in (94), we obtain

IPp_,1bl2 < IPp, 7,0]2l(v. 9)]
2 2
1= 1IPp, 103V 1= (v, 5)12
2
< min(1,2y/T— [(0, B)).

Since Pz, (v — ) = 0, we have

(v, )| — [, ¥

95)

)< (v =7, 9)]
= |(PPTJ_T](U
2

= (PP, 1,0, 9)]
2

I1Pp, ol Pe, 73l
2 2

min (\/l — (v, )2, 2(1 — |{v, 17)|2)>,

where the last step follows from (93) and (95). The assertion
is obtained by a rearrangement. O
Proof of Theorem 23: We use the mathematical induction
and it suffices to show sin Z(v;, u) < 7 and (81) hold provided
that sin Z(v,—1, u) < 7 for fixed .
Since rank(mat(v;)) = 1, there exist a; € C¥ and b, € CP
such that v; = a; ® b,. Similarly, there exist a,_| € CM and
b, € CP that satisfy v, | =a,_| @ b,_. Let

T =T(@a—1,b—1) + T(as, b))+ T(a,b).
Then define

IA

5 P;BP;v; .
" IP#BPyv, 12

Note that Algorithm 2 produces the same result even when
v, is replaced by v;. Indeed, since P jv; | = v,_1, it follows
that mat(Bv,_1) and mat(B P 7v,_1) are collinear, so are their
rank-1 approximations. Moreover, by v, is obtained normal-
izing as the normalized rearrangement of the rank-1 approx-
imation of mat(Bv,_1), by the construction of T it follows
that mat(P 7 B P ;v,_1) is also collinear with mat(Bv;,_1).

Let ‘7; denote the rank-1 approximation of mat(v;) and
@, = vec(V). Then we have

v =1, /w2
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Let v(T) denote a unique most dominant eigenvector of Then (79) implies

P:BP;. Since ||[v;]l2 = 1, we have ||u; |2 < 1. Therefore,

sin Z(v;, v(T)) = V1= 1{v, o(T))?
< /1= (@, v(D))2.

We apply Lemma 27 with ¥ = »(7) and v = 7).

By Lemma 27, we have

(@), v(T))]
> (@, v(T))|

— min (,/1 — 1@, v(T)2, 201 — (@, v(T))]| ))

which implies

V1= 1@, o(T) 2 < V51— (@, u(D))?

= V/5sin (¥, v(T)).
We apply Lemma 26 with M = P;BPj, v = v(T), and

V= v;_1. Then
sin Z(#,, v(T))
3 Ja(M)sin L(v,—1, v(T)
= (M) cos L(v;—1, v(T)) — Ay (M) sin (v,_1, v(T))

I (M) | V
L(vs—
SOV —Lon: (-1, 0(T)),  (96)

where the last step follows from sin Z(v;_1, v(f")) <7
Next we compute the two largest eigenvalues of Pz BP ;.
Since u is a unique dominant eigenvector of B and Pju = u,
we have A{(PzBPj;) = A1(B). Therefore, by the triangle
inequality,
21 (PyBPjy) > 21 (PyBPjy)—||P#(B—B)Pj|
> 21(B) — 6|l B — Blls;—5-

By the variational characterization of eigenvalues, we have

o7

J2(PyBP ) =sup{v*Bu | v < 1,v et NT}<72(B).
v

Therefore,
A2(PyBP;) < Jo(P3BP;) +||Py(B— B)Pj|
< 22(B) +6|[| B — B|ls;—S5.-

By plugging in (97) and (98) into (96), we obtain that (78)
implies

(98)

sin Z(v;, v(T)) < wsin Z(v;—q, v(T)). (99)

Moreover, by the transitivity of the angle function [57],
we also have

L(i—1,0(T)) < L(vi—1,u) + L(u, v(T)).

Next we apply Lemma 25 for M| = B, M, = B, and
v = v(T). Since (80) implies (88), it follows from Lemma 25
that

(100)

4v6l11 (B — Byullls.,

sin Z(u, v(T)) < B

sin Z(v;, v(T)) < %

Since sin Z(v;—1,u) <7 < it follows that (100) implies

7»
sin £ (vi—1, v(T)) < sin L(v,—1, ) + sin Z(u, v(T)).
By (79), (99), and (101),

(101)

o 1
sin Z(vs, v(T)) < ——.
' 32
Similarly to the previous case, the transitivity of the angle
function implies

L(vi,u) < L(vy, »(T)) + L(v(T), u).
Then it follows that
sin Z(vy, u) < sin Z(v;, v(T)) + sin £(v(T), u).
By collecting the above inequalities, we obtain

sin Z(v;, u) < psin Z(v,, v(T)) + (1 4 p) sin Z(o(T), u).
(102)

Finally, we verify that (102) and (79) imply sin Z(v;, u) <7.
This completes the proof. O

X. CONCLUSION

We studied two iterative algorithms and their perfor-
mance guarantees for a multichannel blind deconvolution that
imposes a bilinear model on channel impulse responses. Such
a bilinear model is obtained, for example, by embedding a
parametric model for the shapes of the impulse responses
into a low-dimensional subspace through manifold embedding,
while the channel gains are treated as independent variables.
Unlike recent theoretical results on blind deconvolution in the
literature, we do not impose a strong geometric constraint on
the input source signal. Under the bilinear model, we modified
classical cross-convolution method based on the commuta-
tivity of the convolution to overcome its critical weakness
of sensitivity to noise. The bilinear system model imposes a
strong prior on the unknown channel impulse responses, which
enables us to recover the system with short observation. The
constraint by the bilinear model, on the other hand, makes
the recovery no longer a simple eigenvalue decomposition
problem. Therefore, standard algorithms in numerical linear
algebra do not apply to this non-convex optimization problem.
We propose two iterative algorithms along with a simple
spectral initialization. When the basis in the bilinear model is
generic, we have shown that the proposed algorithms converge
linearly to a stable estimate of the unknown channel parame-
ters with provable non-asymptotic performance guarantees.

Mathematically, our analysis involves tail estimates of
norms of several structured random matrices, which are written
as suprema of coupled high-order subgaussian processes. In an
earlier version of our approach [51], we used the concentration
of a polynomial in subgaussian random vector [52] together
with the union bound through the e-net argument. In this
revised analysis, we factorized high-order random processes
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using Gaussian processes of the first or second order and com-
puted the supremum using sharp tail estimates in the literature
(e.g., [58]). This change has already provided a significant
improvement in scaling laws of key parameters in the main
results but the sharpened scaling law is still suboptimal com-
pared to the degrees of freedom in the underlying model.
Because we formulated the observations with the circular
convolution modulo L, it is necessary to assume that L is
no smaller than the length K of the impulse responses.
Otherwise, the problem becomes a demixing problem that
separates mixture of convolutions. The original formulation
given in terms of the linear convolution in the literature
(e.g., [19] [20]) also requires that the length of observation
exceeds the length of the impulse responses. It has not been
explored yet whether one can further reduce the sample
complexity in solving the resulting blind demixing problem for
L < K with the priors considered in this paper. On the other
hand, we expect that it would be possible to further sharpen
the estimates for structured random matrices. It remains as an
interesting open question how to extend the sharp estimates on
suprema of second-order chaos processes [58] to higher orders
similarly to the extension of the Hanson-Wright inequality [59]
for concentration of subgaussian quadratic forms to higher-
order polynomials [52].

APPENDIX A
TOOLBOX

In this section, we provide a collection of lemmas, which
serve as mathematical tools to derive estimates of structured
random matrices.

Lemma 28 (Complexification of Hanson-Wright Inequality
[60, Th. 1.1]): Let A € C™". Let g € C" be a standard
complex Gaussian vector. For any 0 < ¢ < 1, there exists an
absolute constant C such that

llAgl3 — EglllAgli3]l

< C[IA*Allpy/log(2 1) v [[A]* log(2¢ )]

holds with probability 1 — (.

Lemma 29 (Complexification of Hanson-Wright Inequality
[60, Th. 2.1]): Let A € C™". Let g € C" be a standard
complex Gaussian vector. For any 0 < ¢ < 1, there exists an
absolute constant C such that

l1Agll2 — lAllel < CllAlly/log(2¢ ")

holds with probability 1 — (.

The following lemma is a direct consequence of Maurey’s
empirical method [61].

Lemma 30 (Maurey’s empirical method [62, Lemma 3.1]):
Let k,m,n € N and T : {’II‘(R) — {’g"o(fg(R)) be a linear
operator. Then

o0
/O \/log N(T(Bgll((R)), Il - ||€g"o(€§(R))’ ndt

< C/(1 +1logk)(1 +logm)(1 + logm +logd)||T|.

Lemma 30 extends to the complex field case, which is
shown in the following corollary.
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Corollary 31: Let k,m,n € N and T f’l‘((C) —

fg’o(fg((C)) be a linear operator. Then

o0
/() \/log N(T(Bgll(((c)), [l - ||ggno(5621((c))a 1)dt

< C/(1+1logk)(1 +logm)(1 +logm +logd)||T|.

The following lemma provides tail estimates of suprema of
subgaussian processes.

Lemma 32: Let & € C" be a standard Gaussian vector with
E&E* =1, ACC" and0 < ¢ < e V2 There is an absolute
constants C such that

sup 17761 = €l /O JIog N (A, - T 1d
S

holds with probability 1 — (.

Theorem 33 ([58, Th. 3.1]): Let & e C" be an
L-subgaussian vector with EEE* = I,, A C C™", and
0 < ¢ < 1. There exists a constant C(L) that only depends
on L such that

sup || ME|3 — E[|ME|3]|
MecA

= CW)[K + Kayflog2c ) + K3 log2c )]

holds with probability 1 — ¢, where K1, K2, and K3 are given
by

Ky = p2(A, - DIy2(A, - 1D + dr(A)]

+dr(A)ds(A),
Ky i=ds(M)[y2(A, || - ) +dr(A)],
K3 = d2(A).

Using the polarization identity, this result on the suprema
of second order chaos processes has been extended from
a subgaussian quadratic form to a subgaussian bilinear
form [63].

Theorem 34 (A corollary of [63, Th. 2.3]): Let & € C" be
an L-subgaussian vector with EEE* = T,, Ay, Ay C C™>",
0 <¢ <1, and a > 0. There exists a constant C(L) that only
depends on L such that

sup |(M &, M2E) — E[(M &, M»§)]|

MieA|,MyeA,

< C)| Ki + Kayflog(8c ) + s log(8:7H),

holds with probability 1 — (', where K\, K», and K3 are given
by
Ky = [apa(Ar, Il 1) +a 'pa(Ags |- D]
Taya(Ar 11D +a 'pa(Aas I+ 1)
+a de(A1) +a 'dr(A2)]
+[adp (A1) +a~'dp(A2)]
lads(Ay) +a”'ds(A2)],
K> := [ads(A1) 4+ a~'ds(A2)]
Aaya(Ar I 1) +a ya (Mg, |- )
+adp(A1) +a ' de(Ad)],
K3 = [ads(A1) 4+ a~ds(A2)]%



LEE et al.: FAST AND GUARANTEED BLIND MULTICHANNEL DECONVOLUTION UNDER A BILINEAR SYSTEM MODEL

A special case of Theorem 34 where a = 1 was shown
in [63, Th. 2.3]. Note that the bilinear form satisfies

(M &, M) = (aM &, a""M1E), Va > 0.

Moreover, the y, functional and the radii with respect to
the Frobenius and spectral norms are all 1-homogeneous
functions. Therefore, Theorem 34 is a direct consequence
of [63, Th. 2.3].

Since a > 0 in Theorem 34 is arbitrary, one can minimize
the tail estimate over a > 0.

APPENDIX B
EXPECTATIONS

The following lemmas on the expectation of structured
random matrices are derived in [22]. For the convenience
(lf the readers, we include the lemmas. Here the matrix
®,, € CL*P denotes the zero-padded matrix of ®,, given
by ®,,S' ®,, form =1,..., M, where S € RK*L is defined
in (2).

Lemma 35 ([22, Lemma B.1]): Under the assumption in
(Al),

EIC, €] = Klln B
Lemma 36 ([22, Lemma B.2]): Under the assumption
in (Al),
E[C%mum ®,] = Keu),.
Lemma 37 ([22, Lemma B.3]): Under the assumption
in (Al),
E[E)f" C:%m/um/ C;k CxC;I;m/um/ &;m]

2 2
K213l 131D m#m,
K2|x 13Nl 131p + wpu’,) m=m'.

APPENDIX C
PROOF OF LEMMA 1

Let x’ € Cl and b’ € CP. By the definition of an adjoint
operator, we have

(X' @b @11, A () = (A" @b ®@ 1.1), ).
Then by the definition of A, we continue as

(AX' @b @1um1), y)

M-

/
(Csr @, 5'X s Ym)

3
I

M-

1% v
X CS*q,mb/ym

3
I

(IS @b @ y,)

I
M=

3
X

x*J (¥, b ® Jy,)

I
M=

3
I

M-

x*JC] @b

3
I
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Here we used the fact that the transpose of Cj, satisfies
C, =Cyp.

Finally, by tensorizing the last term, we obtain

M JE—

zx/*JCT S*q)_mb/

yﬂ‘l
m=1

M
= D X" (@) @ I)vec(JC] S*@y)

m=1

M
> (B ®x)vec(JC) 5*®,,)
m=1

I
M=

(x' ® b')*vec(®;,SC,, J).
1

mn

Then the assertion follows since x’ and b’ were arbitrary.

APPENDIX D
PROOF OF LEMMA 13

The left-hand side of (50) is rewritten as a variational form
given by

M
sup (Zamq*Q;SCS*q,mbS’*z
ZEB%Kﬁl m=1
D
€5, @
M
ok
“Eg[ > and”®},5Cs-5,5872]).  (103)
m=1
Since

q*<I>leC§*ZS*<I>mb = vec(®,,)* (¢ ® Ig)SCy,
S*b" @ Ix)vec(®,,)
= vec(®,)*(gh" ® SCy S*)vec(®y),

(#1) is rewritten as

M
> anvec(®,)*(gh" ® SCy= S )vec(®y).

m=1

Let ¢ = [vec(®1) ', ..., vec(®y)"]". Then

M
> anvec(®,)*(gh" ® SC S*)vec(®p)

m=1

M
= ¢*( z amemer, @ qh ® SCS*ZS*)¢'
m=1
Therefore, the objective function in the supremum in (103)
becomes a second-order chaos process. We compute the tail
estimate of the supremum by applying Theorem 34 with

M
Al = {Zameme;@)qT@IK lq € BZD}
m=1
and
M
Ay = {Zeme;‘,, ©b ®SCy §* | qe Bg’“l}.

m=1
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By direct calculation, the radii of A and A, are given as
follows:

ds(A1) < lallo,
de(A1) < llalVK,
ds(A2) < bI2VK,
dr(A2) < ||bl2VMK.

Here, we used the fact that
ISC s S*Il < ISCy+ S¥llr < VKlizll2 = VK.
Moreover, since

ds(A1) =< llallligll2,

by Dudley’s inequality and a standard volume argument,
we have

o0
ya(Ay) = € ||a||oo/O Jlog NBP, 11 - I, 1)de
< C2llalloeV/D.
On the other hand, since
. ¥k
Cyr, = VLF*diag(FS z)F,
we have
ds(A2) < [|bll2VL| FS 2]l oo,
which implies
y2(A2) < Ci|blvVL
o0
[ Vo NS B oy
0
< G3||bl VLK
o0
' / Jog N(FS" B0 | o, 1)t
0

< C4llbll2VK /log(2K — 1) log*? L
< Cs|lbloVK log K log’* L,

where the third step follows from Corollary 31.
By applying these estimates to Theorem 34 with

L \/Vz(Az, | - 1)dr(A2)
72(Ar, - e (A7)

we obtain that the supremum in (103) is less than

(104)

C'(B)log" (MKL) - (WMK?*DV* + VMK + ~MKD)

with probability 1 — K —#. By the arithmetic-geometric mean
inequality,

VMK + ~/MKD

/MK34Dl/4 <
- 2

We also have /MK > ~/MKD since K > D. This completes
the proof.
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APPENDIX E
PROOF OF LEMMA 14

The spectral norm in the left-hand side of (54) is expressed
as a variational form given by

M
sup sup » z*SC.C}, S*®puq. (105)
zeBg‘K—' quzD m=1

The objective function in (105) is rewritten as
M
> 2*8CC}, ST Pugq
m=1
M
= Z:(qT ® z*SCxczm S*)vec(®,,)
m=1

= <f(q,z), i en ® vec(‘l>m)>,

m=1
where
M
f@.2)=> en®T®SCy, CL8z.
m=1
Note that
M vec(®y)
Z em @ vec(®y,) =

m=1 vec(®yr)

is a standard complex Gaussian vector of length MKD. There-
fore, we compute a tail estimate of the supremum in (105) by
applying Lemma 32 with

A= {f(q,z) |ge By, z¢ B%’“}.

Since

I.f(g.2z) — f(q@'.2)2
<If(g.2)— f@. D+ 1f(q.2)— fg.z)l
< VM||SCy, C:SII(lg — q'll2 + Iz — 2'll2)
< VMprw(lg —q'll2 + Iz = 2'l12).

we have

o0
/ VIog N(A, || - [l2, )dt
0
o 2K—1
<~ Mpy, ; log N(B3X =1, || - |l 1)d1

o0
+ [ loe NP o, 1)
0
< Cpx,wVMK,

where the last step follows from a standard volume argument
and the fact that K > D. The assertion then follows by
applying the above estimate to Lemma 32.
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APPENDIX F
PROOF OF LEMMA 16

We use the following lemma from [22] to prove Lemma 16.

Lemma 38 ([22, Lemma 5.3]): Let W € CK*P satisfy that
vec(W) follows CN(0,1xp), 0 < ¢ < 1, and A € CK*K,
Then

IW* AW — Eg[W*AW]| < C[|AIIVK D log(8; ")

holds with probability 1 — (.
Note that I',I'}; is expressed as

I, = z @ 5Cy, C;, S*®

m,m'=1
We apply Lemma 38 with
v=[®, . . . . &,

and

Ey [Cwm

M
> ene,S(Cu,C

m,m’=1

C:;,m,])S*.
By the block-Gershgorin-disk theorem [64], it follows that

lAll = max ZHS(Cwm
<M &

—Ew[cwmci;m,l)S*n < Mpu.

Then the assertion follows by Lemma 38.

APPENDIX G
PROOF OF LEMMA 21

We decompose @*Y Y ,® into two parts respectively cor-
responding to the diagonal block portion and the off-diagonal
block portion of Y!Y:

DYV, ® = (g) + (h),
where
(g) = Zemem ® ( Z am/<I> C* C;Cwm,i%n),
m ;m
(h) = z Z ene’, ® Uy ®,, Cs. 3CiCy, @,y (106)
m=1 m'=1
m'#m
Since ||| - |||s;— s, 18 a valid norm, by the triangle inequality,
we have

@YY@ Ills; 555 < (@555 F TN ]]]5] - 5 -
Furthermore, by (62), we also have

H1(@]s1- 55 = IR

We use a tail estimate of ||(g)|| derived in the proof of
[22, Lemma 3.6]. It has been shown that

(@Il < C(B)pr,wK~Dlall2]lbll2 log*(MKL)  (107)
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with probability 1 — CK—# (See [22, Sec. 5.3]). We will
show that the tail estimate of ||(g)| is dominated by that for
TR ]s)— Soo -

For the part corresponding to the off-diagonal portion
of Y{Y,, we add and subtract the diagonal sum in (h) and
obtain

(h) = (k) + (1)

for
M
k) = Z eme; ® q);‘;,SC;Cme*Zm,
M
O=— > eney®®,SCiCu, 8 Zy, (108)
m,m'=1
where

Zy = WS‘C%mbim, m=1,...,M.

Again, since |||(K)|lls;—s, < &), we can use a tail
estimate of ||(k)|| derived in the proof of [22, Lemma 3.6].
It has been shown that

10N < pr,wC(BYK?alloo 1Bl log” (MKL)

holds with probability 1 — CK~#. We will show that the
tail estimate of ||(k)|| is dominated by that for ||| (1)[||s;— Sx>
which we derive below.

Through a factorization of the full 2D summation in (1),
we obtain

T 81500

M
< || X e @3¢y, Cos570, ||
m=1

S1—>$

(0)

‘H Ze , ® (Zyy —E[Zy]) H

m'=1

Sl—>Sz

()

+| z encly ® ©;,SCCu, SEIZy] |||

S$1—> S
m,m'=

(@

Note that ||| (0)[||s;—s, 1s written as the supremum of a
Gaussian process and is bounded by the following lemma.

Lemma 39: Suppose that (Al) holds. For any f € N, there
exists a constant C(p) that depends only on p such that,
conditional on the noise vector w,

M
[ > en @3y, costen
m=1

’S1—>S2

< CJ1+ Bpx.wvM + D + K logK

holds with probability 1 — K 5.
Proof of Lemma 39: Let ¢,, = vec(®,) for m =
1,..., M and ¢:[¢T, R ¢—AE,]T. Let g=[q1,...,qu]" €CM.
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Then it follows from (61) that

S1—>$>

M
(| Do e @ 8cy, Cos @ ||
m=1

= sup
2K—1
ZEB)
geBP qeBY

M
‘ Z sz*gc*wm st*(bmg ’
=1

()]

where (§§) satisfies

M
9 = | 2 (g ©2°5C;, Cx88,,
m=1

M
= [ > anep 0 @7 ©25C;, Co5M4).

m=1

Let

M
f@.8.9) = Gnen ® E®SC;Cy,S8 7).

m=1

Then we obtain

M
| > e @8c, Cos 0,
m=1

= sup sup sup |f(z,§,9)°9l.

zeB3X "1 geBP ge B!
Note that f(z, £)*¢, conditioned on w, is a centered Gaussian
process. We compute a tail estimate of this supremum by
applying Lemma 32 with
A={f5.q) |zeB" By, qcB).

Then we need to compute the entropy integral for A. Recall

max ||§Cijm Sl

Px.w :lngM
> |SCh, CxS*|l, Vm=1,...,M.

By the triangle inequality, we obtain

If(z.&,9)— f(Z. &, 42
<I1f(z.§,9) — fz.8.4)2
+11f(z. &4 — f(z. &, ¢
+11f(z.8.9) - f&. &, 42
< prw(llzl20€N201g — 4'll2
+1zl21& — &'l1214" 112
+lz = 21121 12114112
< prwlg —q' 2+ 11E =&+ llz — Zll2).
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The integral of the log-entropy number is computed as

sup sup sup |f(z,&,q9) ¢l

zeB2K-1geBP qeBY!

o0
c / JIog N(A, - 12, )di
0

o
Clpx,w(/ \/IOgN(Béwa |- 1l2, £)dt
0 0
+/ \/log NBM, | - |2, t)dt

OOO
+ [ o N o)
0
< CopxwVvM+ D+ K,

where the last step follows from a standard volume argument.
Then the assertion follows from Lemma 32. O

Next ||| (p)|lls,—s, is written as the supremum of a second-
order Gaussian chaos process and its tail estimate can be
derived by Theorem 34. However, the rank-1 constraint on
the domain does not provide any gain in reducing the tail
estimate in this case. Therefore, we use a previous estimate
on ||(p)lls,—s, derived in [22, Lemma 5.6], which is stated in
the following lemma.

Lemma 40: Suppose that (Al) holds. For any p € N, there
exist a numerical constant o € N and a constant C(f) that
depends only on [ such that

IA

IA

M
| > e @ 2o —E1Za))|
m=1
< CPBllallclIbll2(K + vMKD) log” (MKL)
holds with probability 1 — K 5.

Similarly to [[|(0)||ls,—s,, one can rewrite ||[(q)||s,— S
as the supremum of a Gaussian process. The following lemma
provides its tail estimate.

Lemma 41: Suppose that (Al) holds. For any p € N, there
exists a constant C(f) that depends only on B such that,
conditional on the noise vector w,

M
|| 3 ene @ @p5C5C0, 5 B2,
m,m'=1 5
= CJV1+ Bprwlal2lbll2K~'M + Dlog K (109)

holds with probability 1 — K 5.
Proof of Lemma 41: Tt follows from the variational form
in (61) and Lemma 36 that the left-hand side of (109) is

written as

1—> S0

M
K sup ‘ Z qanm/am’s*q):lsciwmb*s
q@eBé"’ m,m’'=1
£,EeBP

- sup |b*&|

=K su ‘
g &eB?

qEBéW m'=1

M
csup [ D guE @}, 5C3w,|
q€B}"  m=1
geB?

qm' Am’

M
Klal20tlz sup | > guE @}, 5Csw,|.  (110)
Zegé"f m=1
&eB?

IA
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Note that the objective in the supremum in (110) is rewritten
as

M ~
| > Grw;, a5 @,E|

m=1

‘( % et ® w;CxS*Qm)(EQ)E)‘.
m=1

M
ok
| > anE @}, SCLw,

m=1

Then it follows that

M
‘H z e, @w;,CyS*"®,

m=1

S1—>5>

< CB)prwV/M+Dlogk  (111)

holds with probability 1 — K—#. The proof of (111) is
obtained as we replace z € B22K ~!in the proof of Lemma 39
by [1,012x]".
The proof completes by plugging in the tail bound in (111)
into (110). O
By collecting these estimates, we obtain that

IDlls;>50 < CB)px.wllall2lbll2log” (MKL)
-(K«/M D

ux'M + D + K(K + ~/MKD)
+ )
VM

holds with probability 1 — CK ~#. Then the tail estimate of
I(Dls;—s, dominates those for [|(g)]l and ||(k)|. Therefore,
we may ignore |[(2) s, s, and ||| ()]I]s)—s...

Therefore, by plugging in (15), we obtain that with proba-
bility 1 — CK %, the relative perturbation due to O*YIY, P
is upper bounded by

@YY @[55,
K2||x(3]lal3]b]3
C log* (MKL
< (,Bz)px,u; og”( ) . (Km
K=|x[l5]lall211b]l2
u~'M + D + K(K + ~/MKD)
+ it )
M
- C'(B)log"(MKL)  pxw
B VL VEKaoulx|2

GO+ )

This completes the proof.
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