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Decentralized Ergodic Control: Distribution-Driven
Sensing and Exploration for Multi-Agent Systems

Ian Abraham and Todd D. Murphey

Abstract—We present a decentralized ergodic control policy
for time-varying area coverage problems for multiple agents with
nonlinear dynamics. Ergodic control allows us to specify distri-
butions as objectives for area coverage problems for nonlinear
robotic systems as a closed-form controller. We derive a variation
to the ergodic control policy that can be used with consensus to
enable a fully decentralized multi-agent control policy. Examples
are presented to illustrate the applicability of our method for
multi-agent terrain mapping as well as target localization. An
analysis on ergodic policies as a Nash equilibrium is provided
for game theoretic applications.
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I. INTRODUCTION

IN the task of exploration and area coverage, decentralized
robot networks have been shown to improve the sensing

capacity of mobile robots [1], [2], [3] while minimizing com-
putation for individual robotic agents. Shifting the computation
to the individual robotic agent becomes necessary as the size
of the multi-agent network becomes large and coordination
of the network becomes costly for a single computing unit
to calculate [3], [4], [5], [6]. This is more of an issue if
the coordination algorithm becomes more complex with each
agent, making it more desirable to have local, decentralized
computation that only relies on neighboring information. This
is also true as the underlying task becomes complex and ad-
ditional environmental considerations must then be taken into
account. In this paper, we present an algorithm for dynamic
decentralized area coverage derived from ergodic control [7]
that admits nonlinearities in the dynamics of robot and is
general to many applications of multi-agent coordination.

Ergodic control [8], [9], [10], [7], [11] enables area coverage
for robotic agents with nonlinear dynamics that is general to
many applications. By specifying the ergodic metric for area
coverage, it was shown that one can synthesize trajectories that
maximally optimize the ergodic metric, resulting in persistent
coverage,1 visitation of the entire exploration domain [8], [9],
[12], and resilience to distractors in localization tasks [13],
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[7]. In [7] it was shown that one can formulate the ergodic
control algorithm as a centralized ergodic controller for mul-
tiple agents. However, it has yet to be shown how one can
decentralize the algorithm for use in larger, more complex,
multi-agent systems where control decisions are made on an
individual basis. Thus, the contribution of this work is a
formulation of ergodic control for a multi-agent network as a
decentralized algorithm that, through consensus, solves various
forms of persistent area coverage problems using the ergodic
metric for agents with nonlinear dynamics.

Existing work in multi-agent coordination addresses the
problems of area coverage [14], [15], [16], inclusion of sensor
constraints [17], [18], and localization and estimation [19],
[18]. While these methods address specific problems in decen-
tralized coordination, none of these methods have been shown
to be flexible enough to solve all the problems. While we
initially frame our algorithm for area coverage, we provide
additional examples for target localization, terrain estimation,
and coverage in corridors to show that our method can
be generalized to other tasks seen in multi-agent coordina-
tion [18], [19] without the need to change the specification
of our algorithm. Moreover, our method is distinct from
coverage algorithms that rely on Voronoi segmentation of the
environment to make coordinated decisions [17], [14], [16],
[15], [20]. Voronoi segmentation requires the specification of
a metric for generation of the segmentation in addition to
a metric for control and area coverage of each individual
robotic agent. When the dynamics of the robot are non-
linear, control synthesis requires additional assumptions or
metrics [20], [15]. Our method only uses the ergodic metric
to formulate control for nonlinear dynamics [7]. Moreover,
one can specify the ergodic metric with respect to information
densities based on measurement models that include sensor
physics/constraints [7], [9]. We show in Section III-C that the
requirement of our decentralized algorithm is that the agents
need only communicate coefficients representing their actions
in order to make independent decisions that reduce the ergodic
metric.

The outline of the paper is as follows: Section II defines the
problem of area coverage for multi-agent networks. Section
III introduces ergodicity and the ergodic metric as well as
formulates the ergodic control problem for decentralized multi-
agent systems. A game theoretic analysis on ergodic control
policies is provided in Section IV. Section V demonstrates the
algorithm on an area-coverage problem for multi-agents. We
then present the problem for multi-agent target localization in
Section VI and the conclusion is in Section VII.
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II. MULTI-AGENT AREA COVERAGE

In this section we present the problem statement that our
method solves. Let us consider a set of N heterogeneous
robotic agents where the evolution of the ith agent’s state
xi(t) : R+ → Rn at time t ∈ R+ is governed by the
deterministic nonlinear equation

ẋi = fi(xi(t), ui(t)) (1)

where ui(t) : R+ → Rm is an applied control and fi(x, u) :
Rn × Rm → Rn is a nonlinear function. Furthermore, let
us define a bounded domain Xv ⊂ Rv whose limits are
[0, L1] × [0, L2] × . . . [0, Lv] with v ≤ n. We can consider
this bounded domain a “search space” where we can define
any arbitrary spatial statistic φ(s) : Xv → R+2 where
s ∈ Rv ⊂ Rn. Typically φ(s) is generated from the expected
information density [9], [7] based on the measurement model
and sensor constraints. The goal of multi-agent area coverage
is to position the agents in a system in such a manner that
the states of the system x(t) =

[
x1(t)>, . . . , xN (t)>

]>
are

proportional to the spatial statistics φ(s). That is, we want the
statistics of the trajectory of the robots, which we will define
as c(s, x(t)) to be equal to the spatial statistics φ(s) through
some metric (in our case ergodicity).

We note that our approach treats the problems of target
tracking, estimation, and area coverage as the same problem of
persistent area coverage, that is, the spatial statistics contains
the information for all these problems (which we specify
in Sections VI and V). Moreover, we emphasize persistent
area coverage because the basis of the ergodic metric (see
Section III-A) revolves around the time-averaged statistics of
the multi-agent system trajectories in the search space. This
results in persistent movement and monitoring, rather than
placement, of an agent.

The following section formulates the decentralized ergodic
controller for a multi-agent system.

III. DECENTRALIZED ERGODIC CONTROL

In this section, ergodicity and the ergodic metric are intro-
duced and we formulate an ergodic control policy for multi-
agent systems. We make note of the terminology distributed
and decentralized used in this paper as two distinct terms:

Definition 1: A distributed algorithm is one where the ini-
tialization of the optimization occurs in a centralized computer
hub and then the calculation for the optimization are offloaded
onto a set of individual computation units.

Definition 2: A decentralized algorithm is one where each
individual computational unit solves their own optimization
problem that, through communication with a network, solves
a larger global optimization problem (typically using some
form of consensus) [21], [22].

A. Ergodicity and the Ergodic Metric

Assume the state at time t is given by x(t) : R+ → Rn.
Controls to the robot at time t are u(t) : R+ → Rm. 3

2Under the assumption that
∫
Xv

φ(s)ds = 1.
3We drop the ith indexing notation for readability and to illustrate that the

multi-agent system can be treated as a larger, unified system in later sections.

The dynamics of the robot are assumed to be governed by
a control-affine dynamical system of the form

ẋ(t) = f(x(t), u(t)) = g(x(t)) + h(x(t))u(t) (2)

where g(x) : Rn → Rn is the free, unactuated dynamics of
the robot, and h(x) : Rn → Rn×m is the dynamic control
response subject to input u(t). Let us consider the robot’s
time-averaged statistics c(s, x(t)) for a trajectory x(t) (i.e.,
the statistics describing where the robot spends most of its
time) for some time interval t ∈ [ti, ti + T ] as

c(s, x(t)) =
1

T

∫ ti+T

ti

δ(s− xv(t))dt, (3)

where δ is a Dirac delta function, T ∈ R+ is the time horizon,
ti ∈ R+ is the ith sampling time, and xv(t) ∈ Rv is the state
that intersects with the search space. An ergodic metric [10]
which relates the two distributions c(s, x(t)) and φ(s) is:

E(x(t)) = q
∑
k∈Nv

Λk (ck − φk)
2 (4)

= q
∑
k∈Nv

(
1

T

∫ ti+T

ti

Fk(x(t))dt− φk

)2

where
φk =

∫
Xv

φ(s)Fk(s)ds,

q ∈ R+ is a scalar weight on the metric, and ck are the Fourier
decompositions4 of c(s, x(t)) and φ(s) with

Fk(x) =
1

hk

v∏
i=1

cos

(
kiπxi
Li

)
being the cosine basis function for a given coefficient k ∈ Nv ,
hk is a normalization factor defined in [10], and Λk = (1 +

‖k‖2)−
v+1
2 are weights on the frequency coefficients. A robot

whose control inputs result in a trajectory x(t) that minimizes
(4) as t→∞ is then said to be optimally ergodic with respect
to the target distribution.

Because we are computing the ergodic control in receding
horizon, and the target distribution φ(s) can be time-varying,
a history of where a robot has been is maintained in memory
in order to compute the ergodic metric. The ergodic metric is
then computed by adding a time parameter ∆tE which governs
how far into the past the robot must remember where it has
been. Equation (4) then becomes

E(x(t)) = q
∑
k∈Nv

(
1

TE

∫ ti+T

ti−∆tE

Fk(x(t))dt− φk

)2

. (5)

Note that choosing ∆tE = ti would result in storing all past
states. This can be avoided by recursively defining ck as shown
in [7]. In addition, choosing a ∆tE < T would result in very
myopic behavior (i.e., only spending time in regions of high
spatial statistics). This is often desired if a time-varying spatial
distribution φ(s, t) is specified where past information is ren-
dered uninformative as the underlying spatial statistics change

4The cosine basis function is used, however, any choice of basis function
Fk can be used.
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rapidly. In practice, a choice of ∆tE = 2T is empirically a
reasonable start which can be tuned to performance needs after
further evaluation.

B. Ergodic Control

In [8] the ergodic controller is formulated using a trajectory
optimization scheme. While this approach does give optimal
solutions, it is difficult for the controller to run in real time. As
a result, [7] developed a hybrid systems approach using [23]
to obtain control policies that sufficiently reduce the ergodic
metric. We formulate our controller using a similar approach,
but provide a variation to the controller that allows the policy
to be fully distributable.

Rather than directly minimizing (4) with respect to x(t)
and u(t), we consider the sensitivity of (4) with respect to
an infinitesimal time of application λ ∈ R+ → 0 of the best
possible control u?(t) : R+ → Rm that sufficiently reduces (4)
at time τ ∈ R+ from some default control udef(t) : R+ → Rm.
Following [7], we take the derivative of (4) with respect to the
duration time λ of control u?(t) which gives the sensitivity
(known as the mode insertion gradient [24], [25], [26], [27]).

Proposition 1: The first order sensitivity of (4 with respect
to the control duration λ of the applied control u?(τ) is

∂E
∂λ

∣∣∣
τ

= ρ(τ)>(f2(τ, τ)− f1(τ)) (6)

where f2(t, τ) = f(x(t), u?(τ)), f1(t) = f(x(t), udef(t)), and
ρ(t) : R+ → Rn is given by the differential equation

ρ̇ = −2
q

T

∑
k∈Nv

Λk(ck − φk)
∂Fk
∂x
− ∂f

∂x

>
ρ(t)

with ρ(ti + T ) = 0 ∈ Rn.
Proof: See [7] for more details.

The mode insertion gradient now represents the sensitivity of
the ergodic metric with respect to an application of a control
u?(t).

Given the mode insertion gradient, we seek to find the con-
trol u?(t) that most significantly decreases in the objective (4).
We can write this as an unconstrained optimization problem
of the form

J2 =

∫ ti+T

ti

∂E
∂λ

∣∣∣
t

+
1

2
‖u?(t)− udef(t)‖2R (7)

where R ∈ Rm×m is a positive definite matrix that weighs
u?(t). Note that (7) is quadratic in u?(t) which encodes a
regularization term with respect the default control udef and
includes a cost on sufficient decrease in the mode insertion
gradient. The minimizer of (7) with respect to u?(t) is the
control that provides the most negative mode insertion gradient
and reduces the objective (4).

Proposition 2: The solution to u?(t) that minimizes (7) is

u?(t) = −R−1h(x)>ρ(t) + udef(t). (8)

Proof: Taking the derivative of (7) with respect to control
u?(t) and setting the solution to zero gives

∂J2

∂u?
=

∫ ti+T

ti

∂

∂u?

(
∂E
∂λ

)
+R(u? − udef)dt

=

∫ ti+T

ti

h(x)>ρ+R(u? − udef)dt = 0 (9)

where the dependency on time is dropped for simplicity.
Solving for u? in (9) gives

u?(t) = −R−1h(x(t))>ρ(t) + udef(t).

Lemma 1: Assuming that h(x)>ρ 6= 0, the mode insertion
gradient in (6) is always negative for u?(t) defined in (8), that
is ∂E

∂λ < 0∀u? ∈ U where U is the control space.
Proof: Inserting (8) into (6) gives

∂E
∂λ

= h(x)>ρ
(
−R−1h(x)>ρ

)
= −ρ>h(x)R−1h>ρ = −‖h(x)>ρ‖2R−1 < 0. (10)

Thus (10) shows us that ∀u? ∈ U defined in (8), ∂E∂λ < 0.
Because (8) always provides a negative ∂E

∂λ , this implies that
each control that is chosen will result in a decrease in (4);
thus eventually minimizing the ergodic metric. Additionally,
as in [7], a contractive constraint on the reduction of the
ergodic metric is enforced that further provides a reduction
in the ergodic metric from the previous control calculation
time.

In many robotics applications, it is required that the control
is saturated due to actuation limits in the robot while main-
taining some form of sufficient decrease in the objective cost.
In this work, we select a time of application τ that results in
the most negative mode insertion gradient, or more formally
written by

τ? = argmin
τ

∂E
∂λ

where the subscript ? indicates the time of application that
results in the most negative mode insertion gradient. A line
search [28] is then used to find the duration λ that signif-
icantly reduces (4) subject to the saturated control u?(τ).
The resulting control is then added to the default control
udef(t) = u?(τ)∀t ∈ [τ, τ + λ] ∩ [ti, ti + ts] where ts is the
sampling time and u?(τ) is saturated.

The following subsection derives the ergodic control policy
for a decentralized multi-agent systems.

C. Decentralized Ergodic Control using Consensus

Consider a set of N agents with state x(t) =[
x1(t)>, x2(t)>, . . . , xN (t)>

]>
: R+ → RnN . 5

Proposition 3: Given the default trajectory of each agent
x(t)∀t ∈ [ti −∆tE , ti + T ] subject to udef(t), the control
policy (8) is distributable amongst each individual agent and
independent of the other agent’s control policy.

5For readability we consider a homogeneous set of agents with the same
state dimension xi(t) ∈ Rn. However, this analysis can be done for a
heterogeneous set of agents with arbitrary dynamics and state dimensions.
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Proof:Letusfirstdefinethedynamicsofthecollective
multi-agentsystemas

ẋ=f(x,u)=g(x)+h(x)u

=








g1(x1)
g2(x2)

...
gN(xN)








+






h1(x1) ... 0
...

...

0 hN(xN)




u (11)

whereh(x)isblockdiagonal.Themulti-agentsystem’scon-
tributiontothetime-averagedstatisticsck canberewritten
as

ck=
1

N

N

j=1

1

TE

ti+T

ti−∆tE

Fk(xj(t))dt

=
1

TE

ti+T

ti−∆tE

F̃k(x(t))dt (12)

where F̃k(x(t)) = 1
N jFk(xj(t)). The modeinsertion

gradient(6)undera multi-agentdynamicalsystemnowhas
f1(t)andf2(t,τ)definedby(11)andtheconvolutionequation
fortheadjointvariableρ(t)becomes

ρ̇=−2
q

TE
k∈Nv

Λ(ck−φk)
∂̃Fk

∂x
−

∂f

∂x
ρ (13)

where

∂̃Fk

∂x
=

1

N







∂Fk(x1)
∂x1

...
∂Fk(xN )

∂xN





 and

∂f

∂x
=









∂f1

∂x1
0 ... 0

0 ∂f2

∂x2

...
...

0 ∂fN

∂xN









isblockdiagonal.Becauseeachagent’sdynamicsareinde-
pendentofeachother,(13)canbewrittenindependentlyfor
eachagentas

ρ̇j=−2
q

TEN
k∈Nv

Λk(ck−φk)
∂Fk(xj)

∂xj
−

∂fj

∂xj
ρj.

Similarly,theergodiccontrolpolicyderivedfrom(9)becomes






u,1(t)
...

u,N (t)




= R−1






h1(x1) ... 0
...

...
0 hN(xN)











ρ1(t)
...

ρN(t)






+






udef,1(t)
...

udef,N(t)




 (14)

whereR∈RmN×mN andmN isthesizeofthecollective
multi-agentsystemcontrolinput.Sinceh(x)isblockdiagonal,
(14)becomes

u,j(t)=−R−1
j hj(xj)

Tρj(t)+udef,j(t) (15)

foreachagentj∈[1,...,N]andRj∈Rm×m.Thecontrol
policyin(15)forthejthagentdoesnotdependontheith

agentandthereforeisdistributable.
Whilethe jthcontrolpolicyisindependentoftheithcontrol

policy,itisassumedstartingfrom(5)thateachagent’spastand
anticipatedtrajectoryisknowntoallagentsbeforecalculating

thecontrolpolicy. Wecanconsiderthisadistributedergodic
controlpolicywherethecontrolcomputationisstilldoneon
individualCPUson-boardtheagents,buttheinitialconditions
arerequiredtobesentfromacentralcommunicationhub.
Insteadofadistributedcontroller, weseektocompletely
removetheneedforacentralizedcommunicationhuband
havefullyindependentagentssolvesmallerergodiccontrol
problemsthatsolvethesamelargermulti-agentergodiccontrol
problem. Weaddressthisproblemusingconsensus-based
methodswhereanetworkofagentscommunicateswithone
anotherthelocalck fortheindividualagent.

Ratherthancommunicatingthepastandanticipatedtrajec-
toriesofeachagent(whichmayhavelargedimensionality)in
thenetwork,wecommunicatetheck valuesinstead.6

Proposition4:A connected multi-agent network under
consensusovertheck coefficientsapproximatesthetime-
averagestatisticsck ofthecentralizedergodic metric(12),
thatis̃ck → ck ast→ ∞ wherec̃k istheconsensus-based
time-averagestatistics.

Proof:Considerthecollectivetime-averagedstatisticsck

forthesystemin(12):

ck=
1

N

N

j=1

1

T

ti+T

ti

Fk(xj(t))dt.

Equation(12)issimplyanaveragingoftheindividualagent’s
spatialstatistics.Letusthendefinearowandcolumnstochas-
ticconsensus matrixP (e.g., jPij = 1)thatdefines
thenetworkconnectivityamongsttheagents[21],[22].The
operation jPijck,jisequivalenttotakinganaverageofthe

localck,j valuesforeachneighboringagent.7Therefore,we
can writeaconsensusonthecollectiveck (12)usingP as
[21],[22]

lim
tk→∞

j

Ptk
ijck,j=

1

N
j

1

T

t0+T

t0

Fk(xj(t))dt

where N isthenumberofagents,tk isthenumberof
timesthatPijck,jvalueshavebeencommunicatedthroughthe
networkandaveraged.Thusconsensusamongstalltheagents
approximatesthecollectivemulti-agentsystemtime-averaged
statisticsck in(12).
Algorithm1isprovidedtoillustratethedecentralizedergodic
controlpolicyformulti-agentsystems.

D. CommunicationComplexityandScalability

SincetheergodicmetricisdefinedintermsoftheFourier
coefficientsoftheagent’strajectoryandthespatialstatistics,
eachagentisonlyrequiredtotransmittheirownck,jtrajectory
coefficients.Thebenefitofthisistwo-fold:First,eachagent
inthedecentralizednetworkneedonlystoretheirownpast
trajectoryinformationforcomputingck,j.Thus,therequired
storagefora64bit memoryis64∗∆tE/ts∗nbits where
ts isthesamplingrate. Wecanfurtherreducethe memory

6Itisassumedthateachagenthasthesameφk target,however,thesame
analysiscanbedonetoformaconsensusonthetargetφk values.

7Forsimplicityinnotation,weassumethatPijreferstoablock matrix
suchthatP∈R|k|N×|k|N andPij∈R|k|×|k|where|k|isthetotalnumber
ofck coefficients.
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Algorithm 1 Decentralized Ergodic Control
1: initialize: agents N with initial condition xj(0), initial

target distribution φk,0, t0, tf , ts, time horizon T , ergodic
memory ∆tE and network P .

2: while ti < tf do
3: for each agent do . Control step
4: simulate x(t), ρ(t) for t ∈ [ti, ti + T ] from x(ti)
5: compute u?(τ) from (8)
6: calculate τ and λ from [23], [7]
7: udef(t) = u?(τ)∀t ∈ [τ, τ + λ] ∩ [ti, ti + ts]
8: end for
9: for each agent do . Communication Loop

10: Send ck,j to ith neighbors in the network P
11: Receive ck,i from neighbors and average amongst

ith neighbors
12: end for
13: apply control udef(ti)
14: i← i+ 1
15: end while

requirements by recursively defining the ck,j values as done
in [7]. The second benefit is in the complexity and scale of
the algorithm as the number of agents increases. Since each
agent only needs to communicate their local ck,j values to
their neighbors, the computational burden lies in computing
the ergodic control for the individual agents themselves.
Because we have shown that we can fully decentralize the
ergodic control calculations, the computation remains constant
to each robot. Thus, the computational complexity of the
ergodic controller only scales with the dimensions of the
single agent’s state (which for practical purposes will remain
constant as the agents’ state dimensions are not time-varying)
and the decentralized algorithm does not scale by increasing
the number of agents in the network.

In the following section, we provide an analysis of the
ergodic control policy in a game-theoretic point of view.

IV. ERGODIC CONTROL POLICIES AS NASH EQUILIBRIUM
STRATEGIES

In this section, we analyze the ergodic control policy from a
game theoretic point of view in adversarial multi-agent games.

Definition 3: A game is defined by a tuple (P,A,O, µ,U)
where P is the set of players in a game, A is the set of control
actions u(t) where ui(t)∀t ∈ [ti, ti + T ] ,∀i ∈ P is considered
an action or strategy profile, O is the set of outcomes (or state
trajectories in our case), µ : A → O is the function that maps
actions to outcomes (in our case this is the robot dynamics),
and last U : O → R is a utility function that we index for
each ith player using the subscript i.

Each agent is defined by P . The action profile or strategy
A is defined by the ergodic control policy subject to a target
distribution. The resultant trajectory x(t) for each agent is the
outcomeO subject to the actions passing through the dynamics
f(x, u) of the system (µ). Here, we treat the utility function
U as the ergodic metric. In game theory, the notion of Nash

equilibrium [29], [30] is often used to describe a strategy in a
game.

Definition 4: A strategy is a Nash equilibrium if for each
agent i, Ui(u) ≤ Ui(u−i) where u−i is the updated strategy
profile for all agents not including agent i’s strategy.

Nash equilibrium tells us whether a strategy results in the
best possible expected utility of each agent subject to the other
agents’ actions. We consider Nash equilibrium in the problem
of target localization and evasion. Specifically, we look at what
strategy an evader can use to acquire a Nash equilibrium with
the pursuer (localizer) (i.e., a game between the pursuer and
evader while the pursuer expends energy not localizing the
evader).

Theorem 1: A Nash equilibrium strategy against a pursuer
with an ergodic policy is for the evader to adopt an ergodic
policy.

Proof: Consider two agents, a and b on opposing sides of
a game. Agent a is ergodic with respect to a target distribution
φa(s). Agent b is ergodic with respect to φb(s). We assume
that the target distribution of agent a and b is a function of
the state of the agents, that is, φa(s) = φa(s, xa(t), xb(t)) and
φb(s) = φ(s, xa(t), xb(t)). From Lemma 1, we have shown
that ∂E

∂λ < 0, ∀u(t) defined by an ergodic policy. As a result,
as t → ∞, both agents are asymptotically optimally ergodic
with respect to their own target distributions so long as each
action reduces the ergodic objective. Therefore, we can write
the change in the utility function—which we define as the
ergodic metric—as

Ui(x(t) | u)− Ui(x(t) | u−i) = ∆Ui ≈
∂Ei
∂λ

λ < 0

Ui(x(t) | u)− Ui(x(t) | u−i) < 0

Ui(x(t) | u) < Ui(x(t) | u−i)

Thus, an ergodic control strategy is a Nash equilibrium
strategy.

This kind of analysis lends some insight towards formally
viewing ergodic policies with respect to game theory and with
application in general multi-agent games.

In the following section, we provide examples for typical
uses of our proposed method for multi-agent area coverage
problems and a comparison with an area coverage in corridors
and tracking a time-varying distribution.

V. ERGODIC AREA COVERAGE FOR MULTI-AGENT
ELEVATION MAPPING

In this section we illustrate the capabilities of a decen-
tralized ergodic controller for multi-agent area coverage for
elevation mapping. We use this example to show improved
area coverage of a decentralized ergodic controller while
comparing with a centralized controller for the same task.

A. Problem Setup

A 12 dimensional quadrotor [31] is used for the robotic
agent dynamics with 4 inputs directly controlling thrust, yaw,
pitch, and roll angular accelerations. Each agent measures
ground elevation relative to the agent’s altitude which it
uses to construct a model of the terrain. Three agents are
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Fig. 1. (a) Three quadcopter agents are depicted in the map with the terrain. The red dashed line indicates the location. (b) Trajectories of a single agent
(blue) and a multi-agent system (blue, red, green) are shown estimating terrain. The terrain map is obtained from height measurements (dark regions represent
high elevation). (c) Top-down orthographic view of the terrain map for comparison with the results in (b). Error of the estimate is shown at 10 second intervals
of collected data. Our algorithm is able to coordinate the agents such that more area is covered, enabling the collection of more data and a resulting better
terrain map.
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Fig. 2. Comparison of ergodic metric for a decentralized ergodic scheme
versus a centralized ergodic scheme. Due to communication and consensus
amongst the agent in a decentralized scheme, the ergodic metric does not
reduce as quickly as a centralized scheme would. However, the decentralized
scheme is quick to reach consensus and performs comparably to the central-
ized scheme.
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Fig. 3. Comparison of area coverage in a corridor defined in [17] with
small (point-wise) visibility for each agent. Ergodic control allows the agents
to compensate for the limited sensing through motion while coordinating the
decentralized agents to minimize the area coverage objective.

used that are fully connected to one another. The agents are
randomly initialized and a Gaussian Process [32], [33] is used
to construct the terrain elevation from data collected after 10
second intervals.

B. Results

Figure 1 illustrates the algorithm for area coverage using a
network of three decentralized robotic agents. For comparison
purposes, the area coverage of a single agent under the ergodic
control policy is shown. Due to sharing where each agent
intends to go and where they have been, the outcome is a
more efficient search as each agent chooses the best possible
action that reduces the ergodic metric. The ergodic control
automatically takes into account dynamic constraints and the
histories of the other agents in order to allocate where each
agent should go in a decentralized fashion. We see this in
Fig. 1(c) where the multi-agent system immediately acquires
a good terrain model within the first ten seconds according the
error norm on the estimate compared to what the single agent
could be capable of accomplishing.

A comparison is presented in Fig. 2 with respect to the cen-
tralized formulation of the algorithm. Not much performance
is lost within the first 5 seconds of the algorithm when the
robotic agents are still trying to achieve a consensus. After
each agent has fulfilled consensus, the decentralized ergodic
policy functions minimize the ergodic metric comparably to
the centralized version of the algorithm.

We further compare our algorithm with the work done
in [17]. In [17], the algorithm uses a visibility constraint which
determined the location of the robot with linear dynamics
based on the corridor. We compare to this method using a
very small visibility (only the point below the quadcopter)
using the decentralized ergodic control scheme. We present
the area coverage problem in Fig. 3 where we show the
corridor used in [17] for area coverage using agents with
nonlinear dynamics (quadcopter dynamics defined previously).
The initial positions of the agents were placed as closely as
possible to [17]. Since the visibility constraint is significantly
small, this would require the robot to move in order to
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Fig. 4. Target localization is illustrated using 3 agents with deterministic quadcopter dynamics and 4 unknown stationary targets depicted as the red crosses.
(a) Area coverage of the quadcopter is shown as the lines associated with each quadcopter at distinct times. The density function underneath shows the likely
locations of the targets with darker regions indicating higher likelihood values. Obstacles are shown as black squares with red outlines. A 3D rendering of the
environment is shown in (b). Each agent only has a field of range of 0.36 meters as shown as the transparent blue circles. Within 10 seconds the agents under
decentralized ergodic policies are able to provide a consensus on the location of the targets. (c) Extended Kalman filter values on the location of the target
is shown. The black dashed line is the target location ground truth. We refer the reader to the multimedia https://youtu.be/Jibt4GLj5sw for more examples of
target localization with a moving target.

sufficiently cover the area. As a result, the work in [17] would
not be appropriate in a situation where the dynamics of the
robot are needed to compensate for the sensor inefficiencies.
In contrast, our method compensates for the small visibility
with motion as shown with the trajectories in Fig. 3.

We note in Fig. 3 that the individual agents’ respective
ergodicity measures do poorly, whereas the ergodicity measure
of the whole system does well. This illustrates the efficacy
of our method to coordinate the decentralized network to
successfully minimize the ergodic objective.

VI. DECENTRALIZED ERGODIC CONTROL FOR
MULTI-AGENT TARGET LOCALIZATION

In this section, decentralized ergodic control is used for
multi-agent target localization. We use the example of multi-
agent target localization because this platform provides us
with novel demonstration of the decentralized ergodic control
algorithm through a well known robotics problem.

A. Problem Setup

The goal of target localization is to have the agents lo-
cate the target (or targets) in the environment. Bearing only
sensors [7], [34] are used for sensing the target with the
same three agents as mentioned in Section V with quadcopter
dynamics. The obstacles are incorporated into the objective
with an obstacle avoidance cost which we define by the
function Θ(x) : Rn → R+ which is a direct penalty if
the agent goes near an obstacle. In addition, we constrain
the radius of the target sensor to 0.38 meter diameter, thus
limiting the total area coverage from the sensor. The targets are
uniformly dispersed throughout the terrain of size [0, 1]×[0, 1]
8 such that they do not intersect with the obstacles. Targets

8This is can be easily adjusted in experimentation if the terrain is much
larger.

are localized using an extended Kalman filter (EKF) [35],
[36] with sensor noise assumed to be zero mean Gaussian
with variance σ2 = 0.01. The ergodic controller is initialized
with a uniform target distribution. The prior on the targets is
initialized as uniform over the search terrain and a distributed
EKF updates the prior for the network system [37]. The target
distribution is given by the expected information density [9],
[7]

φ(s) = η det

[∫
θ

∂ (Υ(θ, s))

∂θ

T

Σ−1 ∂ (Υ(θ, s))

∂θ
p(θ)dθ

]
where η is a normalization factor, Υ(θ, s) is the bearing only
measurement model parametrized by the position of the targets
θ.

B. Results

Figure 4 illustrates trajectories of the 3 agents localizing
4 targets in the environment. In Fig. 4 (a), each each agent
chooses a different path that reduces the ergodic measure
as well as increases the area coverage. The agents each
localize the targets within the first 10 seconds (as shown in
Fig. 4(c)) while successfully avoiding obstacles (illustrated
as the black colored squares). Here, each agent is solving
their own local control problem and only communicating the
respective agent’s ck values to the neighboring agents. The
resulting estimate error is within 0.001 as specified by the
Kalman filter and the measurement noise (zero mean Gaussian
noise with variance σ2 = 0.01).

We provide an additional example with a moving target in
the attached multimedia https://youtu.be/Jibt4GLj5sw. In this
example, we use a particle filter to track the position of the
target. Note that each agent does not share the particle filter
information with one another. Instead, the φk values are also
communicated which results in the agents converging over the

https://youtu.be/Jibt4GLj5sw
https://youtu.be/Jibt4GLj5sw
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single target. As a result, the agents are able to hone in on the
target even in the presence of obstacles.

VII. CONCLUSIONS

We present a fully decentralized formulation of ergodic
control for multi-agent systems with nonlinear dynamics. A
game theoretic analysis of the algorithm is provided showing
the capabilities that the algorithm has on multi-agent games.
Examples of area coverage and target localization illustrate the
flexibility of the algorithm for various multi-agent coordination
tasks with nonlinear dynamics. This opens up the possibilities
of adapting other multi-agent objectives—such as pursuit-
evasion games—into a decentralized network.

REFERENCES

[1] D. Carmel and S. Markovitch, “Exploration strategies for model-based
learning in multi-agent systems: Exploration strategies,” Autonomous
Agents and Multi-agent systems, vol. 2, no. 2, pp. 141–172, 1999.

[2] G. Dudek, M. R. Jenkin, E. Milios, and D. Wilkes, “A taxonomy for
multi-agent robotics,” Autonomous Robots, vol. 3, no. 4, pp. 375–397,
1996.

[3] C. Manss, D. Shutin, T. Wiedemann, A. Viseras, and J. Mueller,
“Decentralized multi-agent entropy-driven exploration under sparsity
constraints,” in Compressed Sensing Theory and its Applications to
Radar, Sonar and Remote Sensing (CoSeRa), 2016, pp. 143–147.

[4] A. Viseras Ruiz, M. Angermann, I. Wieser, M. Frassl, and J. Mueller,
“Efficient multi-agent exploration with Gaussian processes,” 2014.

[5] M. A. Khamis and W. Gomaa, “Adaptive multi-objective reinforcement
learning with hybrid exploration for traffic signal control based on co-
operative multi-agent framework,” Engineering Applications of Artificial
Intelligence, vol. 29, pp. 134–151, 2014.

[6] F. Pei, M. Wu, and S. Zhang, “Distributed SLAM using improved par-
ticle filter for mobile robot localization,” The Scientific World Journal,
2014.

[7] A. Mavrommati, E. Tzorakoleftherakis, I. Abraham, and T. D. Murphey,
“Real-time area coverage and target localization using receding-horizon
ergodic exploration,” IEEE Transactions on Robotics, vol. 34, no. 1, pp.
62–80, 2018.

[8] L. M. Miller and T. D. Murphey, “Trajectory optimization for continuous
ergodic exploration,” in American Control Conference, 2013, pp. 4196–
4201.

[9] L. M. Miller, Y. Silverman, M. A. MacIver, and T. D. Murphey, “Ergodic
exploration of distributed information,” IEEE Transactions on Robotics,
vol. 32, no. 1, pp. 36–52, 2016.
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