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TRAVELING PULSES IN A NONLOCAL EQUATION ARISING
NEAR A SADDLE-NODE INFINITE CYCLE BIFURCATION*

XINFU CHENt AND BARD ERMENTROUT?

Abstract. We formally derive s simple normal form for the dynamics of a nonlocally coupled
neural field model when the local dynamics is near a saddle-node infinite eyele (SNICY bifurcation.
The derivation preduces a nonloeally coupled scalar model which does not satisfy the comparison
principla (ordered initial data produces ordered dynamieal solutions). We prove the adistence of
unigque traveling waves for bhe corresponding nonlocal evelution problem with a new tool that does
not use the comparison principle. We oblain sharp estimates for the speed of fast and slow waves
and compare these to numerical results,
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1. Introduction. Traveling pulses occur widely in excitable media such as the
action potential in the squid giant axon [17]. In models of the axon and related
systems, coupling is through local diffusion and existence of such waves s shown by
reducing the partial differential equation to an ordinary differential equation and then
using shooting methods to prove existence of homoclinic orbits [15, 3]. Such pulses also
occur in cerebral cortex slices (13, 25], and there have been a number of models that
describe them [24, 1, bl. In the models for such cortical pulses, propagation of activity
is not via diffusion, but rasher through nonlocal spatial convolutions, Ermentrout and
McLeod [8] showed the existence of front solutions in a scalar nonlocal equation, and
these results have been generalized by Chen {4}, Pinto and Ermentrout used the results
in {8} to construct traveling pulses in a slow fast equations where fronts and backs were
“gluedd” together by matching. They also constructed solutions when the nonlinearity
was a step-function. Hastings [15] and Faye {10} have also recently constructed pulses
in these singular systems with a smooth nonlinearity.

In this paper, we will study the existence of pulses in a very simple model based
on the so-called theta neuron that is a scalar representative of an excitable medium.
We first derive the equation that we will study from a formal expansion for a spatially
coupled system near a saddlenode infinite cycle {SNIC) bifurcation for which the
theta model is a normal form. We then turn to the analysis of the resulting nonlocal
equations, which turns out to require proving the existence of a front to a particular
set of equations. While this may sound like the results of [4], the dynamical system
that we obtain here does not obey a comparison principle; e.g., large initial data may
not yield large solutions. Thus, many tocls for parabolic local and nonlocal equations
such as [4} do not apply. A similar paper [23] studied a nonlocally coupled theta
model where the interaction was through time-dependent synapses rather than pulse
coupling as in this paper. We will highhght differences in the discussion.
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2. Derivation of the model. Neural field models describe populations of excl-
tatory and inhibitory neurons in some spatial region. Each spatial location is typically
represented by a pair of variables {e(x, ), e(xr, ]} that deseribe the probability that
neurons at that location are firing at some given time. The local behavior (in absence
of space) 15 determined by the dynamics of the planar system:

it

(2.1} ey = e+ flagee — el — be),
T'i[ = e f(aae - (L“'i - b)’}.

All parameters are positive with ayy representing the connection strengths between
the populations, 7 a relative time scale for the inhibition, and be ¢ firing thresholds.
Waves occur when the local behavior is excitable and the coupling is dominated by
connections between the excitatory cells, e(x,t). There are two classes of excitability
(26] called Class 1 and Class II. Most of the analysis of waves in excitable neural
media have considered only Class II excitable media {14, 2, 1, 24, 11}, Here, we
are interested in Class 1 excitability which is characterized as being close to a SNIC
bifurcation {26, 19]. This bifurcation arises when a dynamical system has an invariant
circle formed by a patr of heteroclinic orbits joining two fixed points (Figure 1A). As
some parameter varies, the two fixed points merge at a saddle-node, leaving one fixed
point and a homaelinic orbit (Figure 1B), and then disappear, leaving a limi¢ cycle
{Figure 1C). We now formally derive a simple “normal form” for the propagation of
waves in the Class T excitable neural field model by adding weak spatial interactions
to {2.1) and assuming that they are near the SNIC bifureation depicted in Figure 1B.
For simplicity of the derivation, we will assume coupling only between the excita-
tory variables although we can derive similar equations with full coupling (see remarks
below). We first review the singular perturbation argument for (2.1) at the SNIC,
(e, )7 1= U, The hehavior near the equilibrium point is governed by the so-called

outer equation,
dz 3

P

where 8 = et is the slow time scale. We assume g = 0, and when 7 > 0, the squation
for # blows up periodically. In {6}, it was shown that the full orbit around the SNIC
consists of the outer equation combined with the so-called inner equation (the actual
global homoclinic orbit) and the common part of the expansion. Combining these

together, it was found that

1 1
w2 —lndls  —rj2 -/

The part of the equation involving & does not blow up as the singular parts aze
subtracted away.

With these preliminaries in mind, we now sketch the derivation of the model that
will be the subject of our analysis.

i

(2.2} U(s) = U+ (U (sfe) — Up) + ¢ |z(s) —

-

S
2]
i

- -‘F<aeeﬁf - ﬂ{ei — bp{) + E[(:ef J(l: - y)E(y, t) dy - E(AL 1)} * EQbM)‘
R '
'= =i+ flaese — aui = b))/

-5
it

We have chosen the threshold parameter for the excitatory population to be the value
for which there is a saddle node, bag, so that bey represents the perturbation away

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fia. 1. Closs 1 cxciiabilify in (2.1} as the threshold be decreases showing transition Jrom
excitoble to oscillatory behavior. In cach punel, the solid curves ahow the fnvariant circle; the dashed
curves are the ercilalory nulleline (dejdt = 0) and the inhibitory nulleline (difdt = 0). (A} Two
equilibria lie on an invariant cirele formed by o poir of heteroclinic orbits. (B} The fwo equilibria
merge of o soddle-nede with a homeslinic orbit. (C) Limit cycle, In {A), f(u) = 1/(1 +exp(~ul},
Qo = 8,0y = 13,0, = 25,05 = 10,y = 3.9 b, = 10,7 = 3 for the top panel, In the next tweo

punels, by = 3.6, 1.4, respectively.

from this. (In keeping with the fact that there is a local saddle-node bifurcation, the
perturbation of the parameter governing the saddle node is order €2} Setting ¢ = 0,
we let {eg, ig) denote the fixed point and A the linearization at the equilibrium. By
assumption, there is a vector & such that Ad = 0, and since 0 is a simple eigenvalue,
there is a vector ¥ with ATV = 0 and ¥ . & = 1, We can expand the e =  right-hand
side of (2.3) as AU + Q{U,U) +. .., where Q{U, U} represents the quadratic terms of
the Taylor expansion around (eg,4p). Applying the methods in [18], we see that near
the equilibrium
U(x, t) = Uy + ez(z, s)O + O(?).

z{r, 5) satisfies the outer equation:

Oz{x, s 1 )
{2.4) —0) = g2z + gober + G‘I’ . [ feee [ J(ylely, s) dy — ez, 1) } ,

3
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where

fe == fl(ﬂeaet) — ety — beo),
o= T-Q(%,2),
qo =T [fe, 0.

We have purposely left the coupling part unsimplified and unexpanded since we have
to incorporate the full asymptotic expansion from (2.2). There are two pieces in the
coupling term-—the outer part, which we will defer for the moment, and the inner part,
which consists of the large homoclinic orbit. Let {{x} denote the time {in slow time
units) at which the excitatory population at x fires (that is, traverses the homoclinic
orbit}; there may be multiple times, but let us focus on the first time. The term
- ey ((s — C(x)}/€)} — eg}/e is nothing more than a weighted Dirac delta function as
¢~ {}, so the fast inner part of the coupling takes the form of a delta function. Now,
what about the order € terms? These take the form of

feceds [/ J{)a{z — y,8) dy — 2(z, 8} |,
R

along with the corrections to account for the matching as in (2.2}, so that combining
with the inner equation, we obtain the following equation for z(x, )

AL g2z +gobet +ce fe ﬁa J{z—y)dsd{s—5"(y))+da(z(y, s)—z{x.8))i dy.

Here s*(z) is the time at which the excitation at spatial point & traverses the homo-
chnie. Finally, we let z{xz, 8) = tan{0(x, 5)/2), so that » blows up when # — 7, where
it is reset to —w. Equation (2.5) becomes

2.6 2P} cos(0)) + {1+ cos ) {fmba,

+ cofi ﬁ I =)l b(0(3. ) ~ ) + o (RO, ) — RO, )] |

9.7 Ve tan(8/9) —

(27} R(#) = tan(6/2) " + el

The term R{#) is the correction in terms of § that appears in (2.2) and keeps the
behavior near the saddle node bounded for all 8. We remark that R{#) is defined only
on {—m, 5}, has a finite limit as & — &, and can be extended periodically.

Although {2.8) represents a significant reduction of the full model, it is still very
hard to prove anything about it. In Figure 2A, we show a plot of R(#} along with
a smooth delta function 6,{8} . The main roles of R are to provide a small amount
of positive input right before the delta funétion and to prevent the neural population
at x from firing again once it has crossed « since R is negative for 8 & (0, —x}, the
interval after the neurons have fired. Thus, to simplify the reduced model, we include
only the smeoth delta function, but we shift the peak of it from 7 to 8y < 7 so that
the neuron will fire with smaller input and take longer to recover once it has fired.
Figure 2B shows the traveling wave for the full version of (2.8} and for the case in
which we only include the shifted smooth delta function. The red and black curves
represent the full version of the equations (with R(6)) at locations 100, 160, and the
green and blue depict the same for the solution swhen we only use the shifted smooth
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Fic. 2. The reduced medel near the SNIC. (A} Plot of the function R(B) defined by {2.7)
(#olid line} and the smooth delta function, 5;(0) = exp{—200(1 + cos 8})/ #1003} (B) Numerical
solulions fo the spatinlly diseretized version of (2.6} at location 100 (left} and location 150 (right)
with full cquation, g2 = 1, qobel = —0.02, di = d2 = 1, cefe = 4.2, and with Dirac delta funclion,
dr =0, e fa =8, 87 = 2.5,

delta function, Since the shape is similar and the veloeity is also similar, we will focus
here on the simplified version of (2.8), where we set dy = 0. For the analysis and
theorems that follow, we first look at the case of a Dirac delta function and then look
at the smooth version of it.

Remarks. 1, As we noted in the formal derivation of the model, we only included
excitatory-excitatory connections. A natural question is how (2.6} would change with
other types of coupling. Instead of the integral term in {2.4), we would obtain

7. ( fe(geg{JM{_x) ke~ &) — cgl{Jo{m}) wi— 1)) )
(ff/‘?')({.'m(;](e(iﬂ) L t’:‘) — Cﬂ(r]ﬂ(iﬂ) HL - ’1)) i

where J(r) ke means the convolution over the real line. The part of (2.6} that includes
the Dirac delta function would consist of the convolution with a function J(xz) that is
a weighted sum of the four functions Jee, Jie, Jor, Ju, and the “outer” portion (terms
with the function R(#)) would have a different weighted sum for the convolution. For
example, the effective J{z) could have regions where it is positive and negative which
could oppose the formation of traveling waves; or the effective J(x) could, again, be
similar to the case with pure excitation. For simplicity, we restrict our attention to
the case shown in (2.6).

II. In Figure 2, we have plotted the numerical solutions to (2.6) in such a way
that they look like traveling pulses by plotting # on the interval [—, 7). We note that
the traveling waves here are fronts, but since (r, 5) lies on a circle, the starting and
ending points are physically the same point but are just unwrapped from the circle,
similar to the pulses computed in {9].

3. Preliminaries. Henceforth, we will set dy = 0 in (2.6), rescale time (g25 = ¢},
let 6(x:, 5} = u(x, £}, set 3 = co fedi /go, and set —a® = gobe1 /go so that we now consider
monotonic traveling waves for the evolution problem

(3.1) w=1-cosu+(1+ cosu) (8J () * Qlu(x, 1)) - a?) on R x (0,00),

where u = u(z, t) is the unknown function,  is convolution as ahove, and a and 3 are
positive constants, By a fraveling wave, we search for a solution of the form u(x,t) =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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v(x+ ct), where ¢ is a constant. Thus, we are looking for (¢,v) € (0,00} x CH{R) such
that

(3.2) {m’=f(v}+;‘3‘9(v}.f'(y)*Q(vﬁy)), v'>0  on R,

v{—oa) = —459, v{oc) = 27 — fo, v{0) = 8§y,
where ) 13 a certaln constant in (é(), ) and
(3.3} flsyi=1-a? (1 +0a%)coss, g(s) =1+ coss,

and éu 18 a root of
fs)+g(s)8Qs) = 0,
where we have assumed that [~ J(x) dr = 1. Throughout this paper, we will assume

that (){s) is zero away from a neighborhood of 84, so that 8y = 8y, where
@y 1= 2arctana.

While in some of our numerical examples (such as Figure 2}, Q(8) > 0 everywhere,
at fg, it is very small (less than 107%* in Figure 2), so that fy is very close to 8.
We assume the following:
(AlY J{z) = -és“g"'é for z € B; a € (0,00); Ay = 2arctana € (0, ).
(A2) Q is nonnegative, periodic with perind 27, in L1({0,25)), and ﬁfﬁ Hs)ds = 1.
Note that since () Is not monotonic, the dynamical system does not obey a com-
parizon principle; e.g., large initial dats may not yield large solutions. Thus, the many
tools for parabolic local and nonlocal equations do not apply. For this reason, in this
paper, we shall consider only two special cases; one is a singular problem, and the
other is a singular perturbation:
(A28) Q) = 8(-—8y) for some &y € {8y, w); here 8{-) is the Dirae mass concentrated
at the ongin.
{A2R) Q) = D on {—fp, 6] U (B + €,21 — 8], where 8 € (fp,7) and 0 = ¢ «
Im — By — Oy
Our main results are the following.

THREOREM 1. Assume (Al) and (A28). Let

* s 9{} P I3 91
a 1= tan 5 b= tan R
R L 16a{a+b)? »  2Ha+ by2(3b + 8a)
(3.4) Hula,b) = YR B*(a,b) = g

If0 < 8 1 3.(a,b), there does nol exist any solution te (3.2},

If 8 = 8%a,b), there exists a unigue traveling wave solution {o,1) € (0, o) x
CYR) of (3.2). In addition, denoting the wave speed by ¢ = S(8), we have S() €
C= ({3, oc)) and

15(
ds(p) =0 Y832 8 (ab),

d3
o i 1+ 1
(3.5} b(}j)=mﬁ~2a+0(5) as 3 — oo.

Copyright © by SIAM. Unauthorized reproduction of this article s prohibited.
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THEOREM 2. There exists a positive function £*(>,-, -} that does not depend on Q)
such that for Fach 8y € (0,m), & € (bp,®), 8 2 8*{a, b} and £ € (0, (60,81, 3)],
under the assumplions (A1), (A2), and (A2R), there erists @ unique traveling wave so-
lution (c,v) € (0,00)xC(R) of (3.2). In addition, denoting by (cs,vs} the associated
solution: given by Theorem 1, then

le = csl + llv = vell L=y = OLe).

Here and in what follows, O(g) = O(1)g, where O(1) is a generic quantity bounded
by a constant that does not depend on () and &.

Theorem 1 will be proven in section 4. Theorem 2 will be proven in section 5.
Concluding remarks and possible extensions will be given in section 6.

4. The singular case. In this section we prove Theorem 1. We introduce an
auxiliary function

(4.1 w(x) = BJ{x) Qv{x)).
Under the assumptions (A1) and {A25}, we can evaluate

v 41T el
(4.2} J(x) % Qu{z)) = / J(r~’f)(”(,((y})}dv(y)— ]((0)} ()

Upon noting that w' = w in (~00,0) and v’ = —w in (0,00}, we analyze and solve

(3.2} as follows.
1. If (¢, v) iz a solution of (3.2), then (¢, v,w}, with w defined by (4.1}, satisfies

4.3 vl = flo) +wglv), w =uw i (—o0,0y,

43 v(—oa) = —fp, w(—oc) =0, w(0)=46;

(4.4) { ev' = flo} +wg(v), w' =-w in (0,00),
o(0) = 8y, w(0) = h;

s h=u(), - 22OU0) +g6ue0)]

C

We solve (4.3), (4.4), and (4.5) as follows,

For each ¢ > €, we solve (4.3). Since (8,0} is & saddle point on the v-w

phase plane, there is a unique solution satisfying v’ > 0 and w’ > 0 on R, We

set W_{c} = w{0) and denote the trajectory by i see Figure 3.

3. For each ¢ > 0 and h = 0 we solve (4.4). On the v-w phase plane, (27 — 6, 0)
iz a stable node. The reflection of v about the vertical hine v = 7, denoted
by ¢, is a trajectory of (4.4). Every trajectory of (4.4) that is below 1
enters the equilibrium (27 ~ 8y, 0) either from the left or from the right; sce
Figure 3. We denote by 7o the trajectory with h = W (). Then 73 enters
(2w — 6’020} gither from the left or right.

When ¢ € (2a, 00}, there exists W. ((,) = (0 such that when k = W (), the
corre%pondmg trajectory, denoted by ~4, enters the equilibrium from the left
in the eigendirection |1, (1+a* Y(e/2 —a)]. Trajectories lying between 7] and

3
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Fia. 3. A cartoon of the trajectory of (3.2) (with the condition v > 0 delsted) which is the
uriion of y| ond yo. If ¢ 5 20 orif ¢ > 20 and W_(c) » Wole), m Hes between vy and 74 se it
enters the equilibrium from the right; sce the loft figure. If ¢ % 20 and W_{c} = W (c), then 7g lics
below v so it enters the equilibrium from the left; see the right figure.

Wole) , W (e)

Fua. d. Numerical coaluation shows that there is 6 o, {a, b) £ {2, o0} such thal when ¢ € (0, el

W (c)

> Wt (e} when ¢ £ (o, 00}, W {c) < Wh(e). We have been unable to rigorously verify

the uniguencss of the inderarction of the curves b = Wy (e) and b = W-{a).

4 enter the equilibrium from the right. Trajectories lying above the v-axis
and below ~3 enter the equilibrium from the left.
Thus, when b & (0, Wi(c)], the solution of (4.4) satisfies

(4.6} v =0 >w on (0,0a), v{oe) =275 — fy, wloz) =0,

HW_{c) £ Wi(e), v enters the equilibrium from the left; if W_(c) > W,(¢),
2 enters the equilibrinm from the right. The functions Wi{e) are depicted
in Figure 4.
When ¢ € (0.2a], 44 is part of the v-axis, so Wy {¢) = 0, and 73 enters the
equilibrium from the right.

. Define (v(-, ¢}, w(-,¢)) as the unique solution of (4.3} on (~cc,0] and the
unique solution of (4.4) with A = W_(¢) on {0,oc}. Then (¢, v{:,c)) 18 a
solution of (3.2} if and only if

(4.7) ¢ = 2a, B = B{c},

Wele) 2 W-(e),
where, with b ;= tan %’- and a = tan %‘1,

_ 2W_{c}

[«

AW_(c)[p? — a® + W_(&)]
1+ ¢

(48) Ble): (#1600 + W-(09(01)) = -

In summary,

Copyright @ by SIAM. Unauthorized reproduction of this article is prohibited.
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(a} if ¢ satisfies (4.7), then (¢,v{-,¢)} is a solution of {3.2);
(b if {¢, v} is a solution of {3.2), then v = v(-, ¢} and ¢ satisfies 4.7,
In conclusion, under the assumptions (A1} and (A2S),
the traveling wave problem (3.2) is equivalent to the algebraic prob-
lern (4.7).
5. To solve {4.7), we prove the following:
(a) If ¢ 2 b+ a, then B'(¢) > 0. In addition, B € C*{(, 00)}, and with fand
az in {3.4},

. 148° .
4.9 max  Ble) < 8% (a,b), lim [(sﬁ — c}} = —2a.
(4.9) e (e) < #(a,b),  [lim Tatb? (e}
{b) Wezb+ 2a, then W_{c} < Wi (c].
As a result, if 3 2 3*(e,b), then (4.7) for ¢ admits a unique solution, and the
solution satisfies ¢ = b 2e; that is, (3.2} admits a unique solution.
In the rest of this section, we supply the missing arguments for the above derivations.

4.1. The left-half branch. In this subsection, we solve (4.3).

LEMMA 1. For each ¢ > 0, problem (4.3} admits a unique solution. The solution
satisfles v/ > 0 and v’ > 0 on R. Denote the solution restricted on (—o0, 0] by
(0(-,c), w(-,e)), and set W_(c} == w(0,¢). Then W_ € C°°((0, oct) and

i

mW_(c) =a®; W.i(c)=0 Vex0
N0

) W_{e) a+b  {c+ 2a)a+b) a+b )
. T - 1~ 0
(410} Wl (e) > P p— W e 1> 5y e Ye 2 2a.

LY

In addition, the function B{-} defined in (4.8) satisfies

B{ej[t + b7

4.11] 0« - da) < ———s— Ve la
(4.11) = Tdat by (c+20) <5 2 P
{4.12) B{c) >0 Yera+bh

Furthermore, for 8*(a,b) defined in (3.4), if 8 = B*(a,b), there erists a unique ¢ €
[2a,00) that satisfies 8 = B(c); the solution satisfies ¢ > b+ 2a and B'{c) > 0.

Note that {3.5} follows from (4.11) and (4.7). Also, by the lower bound of Blc)
in (4.11) and the fact that ¢ > 2a, we see that (3.2) does not have any solution when
0 < 8 < Bula,b), where f,(a,b) is as in (3.4). The proof of this lemma is found in
the appendix.

. Redistribution subject to S1AM license or copyright; see httpr//www siam.orgfjournals’ojsa.php

2772

4.2. The right-half branch. Here we study problem (4.4).

LEMMA 2. There erists a smooth positive funetion W) defined on (2a,00) such
that for each constant ¢ € (2a,0c) and h € (0, W, (c)], the unique solution of the initial
value problem (4.4) satisfies (4.6). On the other hand, if c € {0,2a] or if c > 2a and
B> Wole), then the solution of (4.4) does not satisfy (4.6).

In addition, W, (2a+) =0 and

(413)  Wi(e) >0, Wile)> c{c —a—b+ g\,/c? - Qac} Ye > 2a.

Downloaded 070518 w0 136.142.124,

The proof of this lemma can be found in the appendix.
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4.3. Joining the two solutions. We now piece together the solutions of {4.3)
and (4.4).

LEMMA 3. Ife 2 b+ 2a, then W_(c) < Wi(e).
The proof of this is given in the appendix.

4.4. Completion of the proof of Theorem 1. Assume that 8 » 8*(a,b).
Then by Lemma 1, there exists a unique ¢ 2 2a that solves the algebraic problem
Ble) = B, In addition, the solution satisfies ¢ > b + 2a and B'(¢} » 0. Then by
Lemma 3, W_(e) < Wo(c). Thus, setting h = W_(¢) in (4.4) and piecing together
the solutions of (4.3) and (4.4), we obtain a solution of

o = flo) +glo)w, v>0 in B, ov(-co)=—fy v{icc)=2mw -8,

where w = W_(c)e™ . By (4.2} and (4.7), we find that w = 8J « Q(v); thus we
obtain a solution of (3.2). Since the solution of § = B(-) is unique in [2a, 50}, the
solution of {3.2) is also unique. The rest of Theorem 1 follows from Lemma 3 and
the discussion presented at the beginuing of this section, This completes the proof of
Theorem 1.

4.5. Nonmonotonic solutions. Notice that trajectories of (7.2) and (7.6) are
symmetric about the line v = m. As shown in Figure 3, since 8; < #, the trajectory
2 of (4.4} lies below ~]. Hence, the solution of (4.4) with h = W_{c) satisfies

Hm w{r) = 27 — 8.

e 2% 41
In ¢ > 20 and Wi {e) & W_(c), we have v’ = 0 on B; if ¢ € (0,20} or if ¢ > 2a and
W_ (o) » Wile), we have /() < 0 for 2 3 1. The union of the solution of {4.3) and
(4.4} satisfies

e’ = fuy+ g)W_(c)e Tl Ve B, w(-oo)=—f, vioc)="2r -0

Consequently, we have a traveling wave if and only if ¢ > 0 is the solution of the
algebraic equation
. 4 H,}'“ (C) 9 <y .
3 = B(c) i= —— ——{b" —a* + W_{(c}).
B =B = 1 (b a® + W (t))
Since W_(c) = a? + O(e) as ¢ N\ 0, we see that B(04) = oo and B(sc) = co. Thus,
under the assumptions (A1) and {A25),
there erists B(a,}b) > 0 such that the following hold:
L If0 < 8 < Bla,b), then there is no traveling wave solution.
2. If B = 3{a,b), there erist al least two solutions; the smaller speed ¢y and the
large speed oo admit the following asymptotic ay 3 — 0o

4a?? 1 O(1) 1+ 42 o)

4.14 = = et = e {3 e Vg A L
W) “ea=7m 5t 2 Tt 2t 5o

where (1) is bounded by a constant that does not depend on 3.
Although we have not been able to prove it, we expect that B{.} is a convex
function with a positive minimum attained at J{a,b) so that there are exactly two

solutions when & = S{a, b); see the numerical results in the next subsection.
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4.6, Numerical results, In Theorem 1, we treat ¢ as a parameter and show
that there iz minimum value of 3 above which there is a unique branch of monefonic
waves that travel at some velocity ¢. We solve the same boundary vahie problem as
in the proof of the theorem but reverse the roles and find 8 as a function of c. We
solve

dw cw

&~ f rugy V€ RO

with wi{—fg, g} = {1+ a*)(a + ¢/2)p, where p iz chosen to be small (here we take
) F H

1= 0.001). We integrate this until v = 8} to get

8 = B(e) = 2 1401) + g(01)w(01)]

Figure 5A shows the function 8 = B(c) with ¢ as the vertical axis. There are two
values of ¢ for each value of 3 corresponding to the fast ¢ and the slow e. The velocity
of the upper value of ¢ (fast waves) increases with the strength of coupling as expected,
while the lower branch (slow waves) decreases with strength. The two branches come
together at Jy, the minimum coupling strength. We pick 8 = 3 and look at the
solutions for ¢ > 0 in panel B. As shown by the theorem, the fast wave approaches
27 — fp monotonically, while the slow wave is nonmonotenic in its approach. While
we have not proven the existence of the slow branch of solutions, we see from the
numerical solutions that they are all part of the same branch. Fast and slow branches
of waves are known to occur in many other wave problems in excitable media, and
generally the fast waves are stable and the slow waves are unstable. In panel A, we
have also plotted the lines ¢y, o3 defined in (4,14}, In the inset of the figure, we plot
the slow branch and ¢ in an expanded view. The match is very good; the velocity is
essentially a linear function of 3 except near the limiting minimal value. Figure 5C
shows the dependence of the minimal value of 3, S as a function of #; and in panel
D as a Function of @, where a = tan(fp/2). The larger a {less excitable the medium)
the larger 3 must be to obtain a wave, an intuitively clear point. The dependence on
#, iz also monotonic. We also plot the upper and lower bounds 3*{a,b), 3,(a, b} for
a =02 in panel C and §; = 1.5 (b = tan(0.75)} in panel D.

Denote by cy the wave speed that corresponds to the minimum value of 8 = G,
and by ¢, the speed at which W_(e,) = W (z,) (¢f. Figure 3). Numerically we find
that ¢, > cg. Hence, when § € (85, B{c,)), both waves are nonmonotonic.

5. The singular perturbation problem. In this section we prove Theorem 2.

Assume that  satisfies (A2) and {A2R) where 8y € (0,7}, #; € (fo,7), and
3 2 B°(a,b). The associated singular problem discussed in the previous section
admits a unique solution, which we denote by {cs, vs, ws). Note that we have 3 =
Bles), B'(ey) > 0, and W_(es) < Wiles). We now establish the existence for the
regular problem. We assume that € is sufficiently small. As a start, we assume that
0<sg 5l

5.1, Construction of the solution. Naote that w(z) = FJ(x)«Q{v(z)) satisfics
the differential equation

'+ w = QL))
We construct a solution by joining three pieces as follows,

1. Fix ¢ > 2a. We define (v(,, ¢}, w{,¢)) on (—oc,0} as the unique solution of
(4.3), as stated in Lemma 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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£ \_‘_’*‘“—‘—"‘;:ma—-—-—
sy [ slow T
usx
A%
k]
" fast
5
7t
' [ [l U 22
5

) B

s, 5. Numerical solutions lo the boundary value problem. (A} Velocity of the wave (stippled
curve} as & funciion of 3 Jor 01 = L5 a = 0.2 @y = 0.395). The upper line is cald) from (d.14},
and the lower line ds ¢((B). The insel shows an expanded view of the slow velocity (stippled) and
et faokid). (B) The solution w(€) for £ » 0 for the twe different values of ¢ indicated by the filled
cireles in panel A, (copaw = 0.3833 indicated by the white cirele and ep4,, = 0.9733 indicated by the
black eirele at 3 = 8.) (O} The minimum value of 3 as a function of 81 and (D) as a function of a,
along with the wppor and lower bounds §* 5 from (3.4).

2. We define (), vl-, ¢}, (., ¢} € (0,00)x C1{[0, 2¢]) x O ({0, 3(]) as the solution
of the initial value problem
e’ = flv) + glv) max{w, 0}, —w’ 4w o= BQv) on [0,x4],
{5.1) v(0,e) = by, w(l,c) = W_(a), w'(0,c)=W_{c},
v =0 on [0,z1}, v(ri,c)=0;+=
The system of differential equations with initial value (v, w,w'} at o = 0

admits a unigue solution, and the solution can be extended to the interval
{0, 00). The point xy is defined as follows. Note that when v € {fy, 8, + <], we

have
) . 2b* — a?)
v’ = flu) + g{)max{w,0} 2 flv) = fl0) = TR
Thus,
(5.2) vire) = £0) as long as w(z,c) € (A1, 8 + €|

Consequently, there exists z; > 0 such that v{ry,¢) =8 + 2 and v = 0 1n
{0, (). By the mean value theorem, £ = vz, c)—v(0,¢) = v/(£, ¢)ay for some

Copyright © by SIAM. Unaunthorized reproduction of this article is prohibited.
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£ € [0,n1], s0

o0

We show that w = 0 in [0,21]. Indeed, integrating [e*(w — v’} = F*Q(v)
over [0,z] for = € [0,:21] and using w(0, ¢) = w'(0, ¢}, we obtain

wewt =5 [ s Quty, oy - [ ev-rHIL

(5.3) 0 <

o

B e e [P
Ve ./a Qs < 755 /.9 Qv = w5y

Integrating (e~ Tw) = e " Hw! —w), we obtain (from the mean value theorem
23 g '

4 2z
e Fw(r,c) = w{ﬁ,c)——f e'"zﬁ/ eV EQHuly, Ndydz

: B o
(5.4) 2W) = |y 2 V-0 gy

In view of {5.3), we find that when £ is small enough, we have w > lifV (r)
We now impmve the estimates (5.2) and (5.3) as follows: In [0‘11] using
vé 8,8 +g,and w > 1“ {c}, we have

o gt gl + )W (e) 2cos? B (e + 2a)(a + b)
T i e+ a+ b

=%
>

¢ - 2
Thus

. 5 81 +7
(5.5) o 2 aco 21T on (0,1,

Notice that these estimates do not depend on ¢. Revising the estimate (5.4},
we conclude that there exists a positive constant £¢{a, b, 3) that depends only
on a, b, and 3 such that when ¢ € {0,61{a,b, #)], problem (5.1} admits a
unique solution, and the solution satisfies (5.5}, We record the basic L™
estimate as follows: for o € {0,:x1],

W (c) B ;
5.6 < wa W_[(cle®, ww———————ﬁw‘w 0 <« O
(6.6 =D < w W (e)er, w-—F < o(1)
Here O(1) does not depend on ¢ 2 2a or on € € (0,£1{a, b, 3)}.
Funally, we integrate [e™"(w + w’)]’ = —e”*(J(v) over [0,x4] to obtain

e~ w(ry, ) +w'(x,e)) = [w(l,c) + w(0,e)] - 3 /1‘1 ¥ {uly)idy
a

Jt+e - .
=2w;@y~g/ e VQ(v)dy.
Jo

v'{y,c)
Define
Jle) = v {0, )™  [w(xy, ) + w'{xy, o]
B8 g=vy/ (0,
= B(e) -3 / c u'v;, t}C}Q(v)du
(5.7) = Ble) - 3 - 8nlc),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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where

v ‘ G4z P Y ()ﬁ i , 3
(5.8) w0 = [ A g,

(v, c)
We search for ¢ such that
(5.9) c»2a, Jle) =0, wole) = wiry,e) < W,{0) +¢& ).

3. Assume that (5.9) holds. We define {v(-, ¢), w(-,¢}} on {, ne) as the solution
of

ev' = flv) +wglv), w = —w in (xy, —oo),
(5.10) )+ wg(v) ( )
viy, o) = 8y + ¢, w{zry+, ¢} = w_{c).

First, since 0 < w_{c) < W, (8 + £,2), following the proof of Lemma 2, we
can show that the solution of (5,10} satisfies o' = 0 > w' on fry,00) and
fmgnafv, w) = (27 — 8y, 0.

Next, note that w' (0%, ) = w(0, ). Also, as j(e) =0, w'{z£,¢) = —w(xy, ),
sow € C(R). Since v < 8 in (—oo,0) and v > Ay +¢ in (], o0}, we see that
Q{v} =0 on (—ox, 0} U {xy, 00}, Thus, w is the solution of

' 4w = B{v) on R, w{toc) =0

This implies that w = 3J x Q(v). In conclusion, (¢, v{-, ¢}) € (0,00) x CY{R)
13 2 wolution of the traveling wave problem (3.2).

4, On the other hand, if {¢, v} is a solution of (3.2}, one can show that v = v(-, ¢)
is the function described as above and ¢ is a solution of (5.9}, Thus, solving
the traveling wave problem (3.2) is equivalent to solving the algebraic problem
{(5.9).

In the next subsection, we solve (5.9).
5.2, The algebraic equation (5.8). To solve (5.9), we first show that 7 =
((s). Note that for € {0,11],

i
e T o0, ¢} - vz, &) = / [—e¥v' (D, e} ~ v"(y, 0)]dy.
0

Differentiating cv' = f + gw, we find that, in view of {5.6) and (4.10) for W_{(e),

RT ’
o ‘I‘([fv 3 gp'“)?ul +glt.-‘j) - [fl? + .(Ilfuiléf +9m] + gu’ 0(1)
C [ [«

Here O(1) is bounded by a constant depending only on a,b, and 4, but not on ¢ and
&. It then follows that

le” "0, e} — v'(x, ¢)] & Oy,
Consequently, by the definition of 5, we find that

nle) = O(1)ry B1+z

" ming p, ) v'(-) o,

Qvdv < O(1)e.

Copyright ® by SIAM. Unauthorized reproduction of this article is prohibited.
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Now let {¢s,vs,w,) be the solution of the associated singular problem discussed
in the previous section. Assume that ¢ € fe; — E, 25 + /€. Then we have

jle) = Ble) — 8 — Bnle) = B(c) — Bles) + O{g) = B'{e) (o —eq) + Ofe)

Thus, when ¢ is sufficiently amall, j{cs — &) < 0 < j{ca + ). By the mean value
theorem, there exists ¢ € {cs — A&, cs + \/E] such that j{c:) = 0. As B'(c,) > 0 and
7 = 0(&), we find that ¢ = ¢; + O(g). Thus, ¢ = ¢ is a solution of (5.9}, from which
we obtain a traveling wave solution of (3.2). Denoting the corresponding solution by
{ve, we), one can show that

(5.11) e — | + [Joe — vsllnoo(my + llwe — wellLoemy = O(1)e.
5.3. Uniqueness of the solution. The equation j(c} = 0 can be written as
Ble) = {1+ 0O{1)e}8,

where (}(1) ig a quantity bounded by a constant depending only on a,b, and 8, but
not on ¢ and £. Thus, the equation j{e) = 0 implies that ¢ = e5 + O(&}.

To establish the uniqueness of the solution, we need only establish the smallness
of the variation of 5 with respect to ¢. For this, we use the phase plane, taking v as
the independent variable. Since dv/de # 0 at z = 0,v = 8y, we can invert de/dr
and express « as a function of v, say X (v,c}, and by the chain rule, express, w,p as
functions of (v, ¢), say W(x, ¢}, P(v,c). Hence, we write the system

¥

dv _ f) +glope (—llj: =p ;_j'_ = w — G{v} for € [0, 5]

dx c Yode T
as
[ J[Fea] : o

vvvvv -1 Win e B T T P for vef, 0+,

d'U P({‘U:C}) ) fl:u) + g(l?)‘{i 1’{" _ ;D)Q{U) § ! : -
X{(by.c} i 0
Wl.c) | = | W_o{c)
P(o),c) | W_{c)

Differentiating with respect to ¢ and denoting (X, P, Q) as the partial derivative of
(X, Q, P} with respect to ¢, we find that

a x)ifits'f:; _ (o) + g(n)W — co{u)We }7 I A — 13
@ | piwe) )+ 9wl W g | SOEIOW | |

Xe{bs,¢) 0
Weltr,e) | = | wio |.
Py, e) WL(c)

. < . .
Since fgl’ [H{v)dv = 1, we can solve the lnear system to obtain

Xey W, Po=0O(1}
Since Xo(#,¢) = 0 and X1 = O(1), we find that Xc(z,¢) = O(1)z. In addition, we
can differentiate the first equation with respect ta ¢ to obtain

d®X (v, ¢}
dv®
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Now we calculate the variation of n(e) with respect to £

Sibe T X L 1 By 4s o~ Xiwa) ity

' X7{01,¢ XT(e, e X'y, ¢

nic) = / i s1 a3 (=2} Quydv :/ ——-}ﬁ———){g(y)du -1,
142 X0 @ AV

dnie) /’g* FE Xely, e} Xo(®, e} Xo{v,0) ~ [Xo (01, ) Xvelw, €] = Xo(0, e} X a0, )]
3 — 3 : S -
dc  Ja, XE(01, c)eX (02) Q{v)de
81+
= (&) Qvyde = O(1)s.
&1

Henee, j'{c) = B'{c) + Ofg) » 0 when ¢ = ¢5 + o(1). This implies that the solution is
unique. This completes the proof of Theorem 2.

5.4. Numerical results. We numerically compute the solution to the equation

o Gy 4 g8,
(5.12) { f18) + g(B),

i

w = w— B~ ),

where (1 (8 ))2
_ L oos(rtfe))” T
Qo) = TSN g,

and is zero outside of this region. Note that we center ) around f; rather than
choosing & as the left endpoint of its support. As e — 01 Q(8) approaches the Dirac
delta function. Q(f) is also €2, which is useful for the numerical solution. To solve
{5.12}, we compute the heteroclinic orbit via shooting and then continue with AUTO,
With a = tan{0.28), 8; = 1.5, ¢ = 0.2, we show how the velocity varies with g in
Figure 6. The plcture is quite similar to Figure 5A.

'y

Fig. 6. Numerical computation of the velovity of the traveling wave solution to (5.12) where
g = 05, 8y = 1.5, 5 = 0.2, and 3 varics.

6. Extensions. After formally deriving (2.6}, we considered three simplifications
of the model: we assumed that the convolution kernel was J{x) = exp(~|z{)/2; we
assumed that Q{u) was either 2 Dirac function or that it had compact support in a
very small neighborhood around 8 = #; and we ignored the “subthreshold” part of the
equation, H{u}. A patural question is whether or not we can still construct solutions
{either rigorously, or numerically} for traveling waves to the more general nonlocal

Copyright @ by SIAM. Unauthorized reproduction of this article is prohibited.
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equations. If the kernel is exponential, then we reduce the existence of the traveling
waves to finding a heteroclinic orbit to (5.12). For general kernels, we consider the
case of Q{u) = 6(u—61) as before, but now we allow J{x) to be any symmetric kernel
that is integrable on |0, 0o). The traveling wave equation is

du

(6.1) e flu(z)) + BJ(x)g(u(s)),
with
xl_x'{x‘; u(r) =27 — {i},
lim ufz) = - (i),
Ty —00

and u{0} = #;. The parameter B = 3/u/(0). So for given B, if we can find a solution to
(6.1}, then we evaluate «/(0) and use this to get the appropriate value of 3. Equation
(6.1} is a scalar nonautonomous equation, so it may be possible to use phase-plane
methods again on this equation. Since J{r} — 0 as z - oo and 27 ~ 8 is a stable
equilibrium for en! = f(u), then as long as u{r) integrated forward in time deoes not
increase too quickly (e.g., J{x) decreases quickly), then u{z) will land in the basin of
attraction of 2x — 6y. Thus, the forward r integration will not be a problem for this
generalization. However, the backward integration for © = 0 does present a problem
since for large negative z, we have cu’ = f{u) and the equilibrium —uy is a repellor as
- —o0. We would like to show that there is a value of ¢ so that condition (i) holds.
We have not been able to prove this rigorously; however, we can solve the problem
using a numerical method as follows. Let © = Py be a scaling of z. We solve

b pliu) + BI(Py)glul/e
dy
with u(0) = 8; on 0 < y < 1, and we vary ¢ until u{l) = —6fp. Once we have

solved this boundary valie problem, we numerically continue it (using e.g., XPPAUT
[7]) by increasing P (equivalent to letting = — P) and then continue the large P
solution as we vary, say, B. Then, we use the relationship between B and 3 to get
the corresponding 3. As examples, we have chosen J{x} = e / /7 {Gaussian) and
J(r) = /2/72/(1 + z') (Power) along with our default kernel, J(x) = exp(—|z]|}/2.
The results of these calculations are shown in Figure 7. There are several clear
differences. First, both the power law and Gaussian kernels produce waves at lower
values of 3. We expect that the reason for this is that they are concentrated close to
z = {} s0 that the impact of the active part of the wave is larger and can push the
unexcited tissue past the threshold ;. On the other hand, the fact that the exponential
is more “spread out” allows it to effectively excite more distant areas once 3 is large
enough, leading to a faster velocity for a given value of 3. Interestingly, the power law
kernel combines a lower minimum value of 8 for propagation with fast velocity.

If we include the subthreshold part of (2.6), R{u), then with an exponential kernel,
we can still numerically construct the traveling waves by shooting. If we eliminate the
delta function part in (2.6} (that is, dy = 0), then all we have coupling the neurons
is R(u), which is a monotone function, so we expect that the results of [4] may be
applied. Numerically, we have found that there are traveling waves to (2.6) with
dy = 0 and ¢, very large, but they are not simple translation-invariant waves; rather,
they have a spatial periodicity reminiscent of the breathing waves seen in [12]. The
remaining question then is by what means could we numerically find a solution to the
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06

a4

0.2+

Fis. 7. The speed of the wave for (6.1) for three different kernels (shown in the inset, and
defined in the tert) as 3 varies with Oy = 05,8 = 2.5,

general kernel, J(x), a general pulse function, Q{u}, and including R{u}. As above,
we write

W) = J(x) % glx),
where g{x} is some function that has a Fourler transform (e.g., Q(8{r))). Using the
convolution theorem for Fourler transforms, we get

W(k) = J(kjg(k),

and inverting this, we find X

W{ky/J(k) = g{k).
If we approximate JIJ\) as a rational function of k2, say N(k)/D(k}, where N(k), D(k)
are even degree polynomials in &, then we find

D(k)ﬁv"(k) = N{k)g(k).
Inverting the transform leads to
LpW(x) = LnQ(8(z)),

where Lp, Ly are linear constant coeflicient differential operators. For example, for
the exponential kernel, LpW{z) = W’ — W and Ly = 1. Thus, with such an ap-
proximation, we could conceivably compute the numerical speed of the waves using
shooting. This transform trick was used in [21] to solve some nonlocal neural equations

in two space dimensions.

7. Discussion and conclusions. In this paper, we studied a nonlocally coupled
model for pulse waves that was motivated by a reduction of a neural network near a
eritical bifurcasion. For sufficiently strong coupling, we showed that there were two
different wave speeds: a fast wave and a slow wave. We have not proven this, but,
presumably, the fast wave iz stable, and the slow wave is unstable. The numerical
solution of the spatially diseretized nonloeal equation shown in Figure 2B indicates
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that it is the fast wave that is stable, This paper is not the first to examine traveling
waves in the theta model. Osan, Rubin, and Ermentrout {23] studied the following

equation:
df o

= [0} +g(0)8 | J(E —ylaly/c) dy,

(71} CE .

where aft) satisfies
o' + (o + be + aba =0

along with (0) = 0, o'(0) = 1 with a{y) = 0 for y < 0. They showed that there
were solutions to this equation for 8 large enough such that (i) #{—co) = —8p and
(i) §(0) = =. In addition, they proved that there were no solutions that satisfied
(i}, (it) such that 8(+co) = 2w — fy. We have shown in this paper that by letting
#(0} = #; < m, there are such solutions which [23] called single pulse solutions.
“urthermore, by relaxing the requirement in [23] that #(0) = =, in this paper we
were able to get very good bounds on the regions in parameter space where there are
solutions and also good estimates of how the velocity of both the slow and fast waves
depends on parameters. Wen et al. [28] avoided the issue of the overshoot of the
waves in (7.1) by considering only one-directional coupling that lasts a finite amount
of time.

As is well known with pulses in reaction-diffusion systems such as the Hodgkin-
Huxley model [22], in addition to a solitary pulse wave, there is a family of traveling
periodic waves that travel with a speed that depends on their wavelength forming the
so-called dispersion curve. Thus, a natural question to ask about the theta model is
whether such waves also exist. Specifically, is there a solution to

ot = f18) + Bg(6)J x Q(H)
such that 8(—~L/2) = 6{L/2) + 27 for each L? Katriel [20] considered (7.1) on a

ring and showed the existence of traveling periodic wave trains. In a follow-up paper,
we will prove that such waves exist, thus completing the analogy between nonlocally
coupled excitable systems and their reaction-diffusion analogies.

Appendix. The following algebraic relations will be useful in the proofs of the
lemmas:

ff

g(s) 2}
fls)=(1—-a%)— (1 +a)coss = g(s)(tanQ ; - ag),

fetin (~80,60), f >0 in (8,27 — &), fl(—~8a) = ~2a.

5 8 ds 5
14 ooss = Doos? = —— =tan— + C
X

Proof of Lemma 1.

Proaf. We divide the proof into several steps.

1. First we establish the well-posedness of problem (4.3). For this, on the v-w
phase plane, we consider the dynamical system, for fixed positive constant ¢,

(7.2) e = flv) +wgle), w'=w

It is easy to check that {—8p,0) is a saddle point, so there is a unique trajectory,
~, that leaves the saddle point in the [1,{1 + a?)(a + §)} direction of the unstable
manifold.
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Checking the velocity field on the boundary of the domain

Q= {{v,w) I v » g, w > a? — tan? gu—nizﬂ}.
one sees that Q is positively invariant. Hence, v € 0. This implies that f(v)+wg(e) =
0, 500" > 0 and w' = 0 on B It is easy to check that (w(z), v{x)) — (o0, 00) as
x — oc. Hence, we can fix the translation by setting +{0) = ;. In conclusion, {4.3)
admits a unique solution, which satisfies +' > 0 and w' > 0 on (~o00,0]. We denote
the solution restricted on (—oc, 0] by (v(-,¢), w(s, c)).

2. Next we study a monotonic dependence of (u(-, ¢), w(-, ¢} with respect to e
Since both » and w are strictly increasing, + is a graph, so we can express v as
w = W{n,¢). Since f and g are analytic and (—#,0) is a saddle, it is known that in
two-dimensional systems, the unstable manifold W is analytic in both v and ¢ {16].

Denote Fs,Z) = f(s) + Zg(s). Then we have
dW(s,c)  cW(s¢)
ds  F(s,W{s,c))

_____I*V(s,ge) = lim _-___a’.l'f/;is?c) = (1 + (1.2) (a,+ %)

i
Sy=0e 8 4 By 2~ Op ]

=0 ¥s> 0,

By continuous dependence of solutions with respect to parameters, we have

d (mv(s, ¢) ) - of OW W

ds de T F? e +?‘
. 1 OWis,e) 1442
Iim = .
a8y 8+ 8y Oe 2

It then follows that W (s,c)/0c = 0 for every ¢ > 0 and 5 > —A.
3. We study the asymptotic behavior of W as ¢ ™, 0. Since (s, W(s,c)) € Q, we
have

5

¢ -3 .
Wi(s,¢) = a® - tan? — 57 = min{s, 0},

5 3]

[\

Also, for each fixed £ > 0, one can verify that W(s) = a? — tan? &- + ce® is a
supersolution when ¢ is sufficiently small. (See (27, sect. 1.5] for definitions of super-
and subsolutions.) Thus, for each 5 > —#g,

: 58 P n & a8
a? —tan? 2~ £ lim Wis, e} % hm (a,“’ —tan? 2 4 EEB) =na? — tan? =,
9 eyl £ 2 9
This in particular implies that W(8;,0+) = a2
4. We investigate the function W (., ¢). Assume that ¢ > 2a.
Let (s} = tan § + a, where s € {~8p, 7) and ¥ € [0, 00). Then
dW ds W

dW (s, i
(s T ds dy T WA gy =0 =0

Introduce a change of variable from W(s, ¢} to k(¢ ¢) by

(7.3) Wis, e} = let 2a}¢

, 8
, W= tan ;2— + a.
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One can verify that the equation for W(s, <) with s € [~8), 7} becomes
dkf;;s:,c) _ (e )- {c})z{: + k(?zﬁ+ 2c -k} Vi >0,
9T T A (- B
kD, ¢} = 2a + 2c.

It is easy to see that k = 2a + 2¢ is a supersolution and k = ¢ is a subsolution so
¢ < k{y) < 2a + 2 for all ¢ > 0. Substituting this estimate of & into (7. 3) and
evalufxmng 1t at W{B;,e) = W_(c} and ¢(f;) = a + b, we then obtain the second

estimate in (4.10).
Next, find a better lower bound of k. Consider the function

ol 0) = e+ \f(a— 397 + & +ac— (o~ a)
It is the larger of the two roots of the guadratic equation
(7.4) (¢~ koYt + ko(2a + 2 — k) =

We find that ko(0,¢) = 2a + 2¢; k(¢ 2) < 0 for all ¥ > 0; and kg(co,¢) = ¢. Since
&y < 0, it 1s easy to see that kg is a subsolution, so we have

{7.5) kol o) < k{b,e) <20 +2¢ V=0
5. We find a lower bound for W’ For this consider ¢ := 24880 _ W80 Noge
that
d¢{s,c) cf OW " W W
ds  F2 8  F  {c+2a)F
_¢c f«; Llid o, 2aW
F? =) ("sl’ 2 "+c-{-2a)‘
Using (7.3} with k& & ¢, we obtain
2alW 2aqf 2 e~ 2a + 4 }
B2 i 1) = 1;2— {1 — =
Y 2a¢)+c+23531{ Zay + 1_4_% P

One can derive that ({s,¢) = O*) as ¢ ~, 0. Thus, by an integrating factor, we

find that ¢ » 0. The assertion of the lemma for W_{c} := W (8, ¢} thus follows.
6. Finally, we study B{c} defined in (4.8} for ¢ 3 2a. Using % > c;‘?ﬂ and

W (o2

T/ Ve have

(1 + 82 dB(e) dW_

; : — (B~ a® + QW)W
4 L.

= (b - a? + W_)o—p

- (b —a? 4+ 2W_ )e"W’m
-~ c+ 2a

— (b — a? + W_yWL

W, s 3
= - 7 e 1
5 [(( 2)W_ —2a(b? ~a )}
W oo de+2a)b+al L a0
> o [(a - 2a.)»_~~_-i~;-b.i—ﬂ --------- —%a(® —a }]

W_ [b+ alle{c? — 2ab — 2a?) ~ 2a(b? - a® )f
{c+ 2a){c+ b+ a)
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Thus, if ¢ 2 b+ g, then B'{c) = 0.
Next we estimate B. For ¢ 2 2a, using

(u»}-?a.)z}b ~1f(: s
(= T R et il = o Oyl 1 — b .
W_(c) = W(,c) e (¢ + 2a)p(1 kw)wg)lw:m,

we obtain from {4.8) that

(B _ (et & N, (et 2a)y
4(a + b)? h e (1 k + zp) (,L ty k -+ )

) (c+ 7 f‘w)a [t = e+ bk = 2~ 20)] ).

o

First we replace & by its subsolution kg defined by (7.4). We find that

{1+ 6%} B{c) .

Next we replace k by its supersolution & = 2a + 2¢. We obtain

(1 +b?)B(e) Lot 2a (C (a+b)2c+ 2(1‘))

4((1 + b)? {2¢ + 3a + b)2
— B{b 4+ 3a} + ala — b) (e + 2a)?
St T B kb (et 3a (@ A F (b= a)
f&"c‘+2a~+—é(—b—j———3c—1¥)—— mc+'2a+-———bg .
204 83a + b 14 ?F(,%

This proves (4.11}.
Finally, suppose 3 = 3*(fy,61) and 8 = B(r) with ¢ 2 2a. Then we have
(1+6%3 _ (L+8)3 _ (1+6%)B(e)

gb + da = 2o+ 2a +
27T 4a+b)? T dla+b)? Ha+0)2 '

2
1 B+ie

This implies that

3 b 3 b
¢ ghtas g bt das b g 42

3 b 3
c> =h+ 20— ———— » —b+ 20 b+ 2a
7 T 2 e

Finally, since B'(:} > 0 on {a+b, 0o), we see that the solution ¢ of 3 = B(e) on [2a, o)
is unique. This completes the proof of Lemma 1. 0
Proof of Lemma 2.
Proof. We divide the proof into several ateps.
1. We consider the dynamical system
{7.8) e = flo)y +wglv), w' = —w,
One can check that (2% — 6,0} s a stable node. The linearized system around the
equilibrium ean be written ag X/ = AX | where A has cigenpairs
-1

2a ~1
A== 912[ ] dg=-1, ep= (1+a%)(§5~a) |

0

We consider three cages:
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. 0 < ¢ < 2a. In this case, all trajectories, except those with w = 0, can only
enter the equilibrium in the ep direction; this implies that if the solution of
{4.4) with h > 0 enters the equilibrium, then ¢/ is eventually negative.

. ¢ = 2a. In this case, eg = e1. All trajectories with w > 0 can only enter
the equilibrium in the £ey direction. If limg_y oo v(z) = 2w — f, then using
w(r) = w(0}e™*, v(r) = [2r — ] + Olze™ ), and an integrating factor, we
can derive that

o) = o o) + e (O 4 1) o

that is, the solution of (4.4) with h > 0 does not satisfy (4.6).

3. ¢ > 2a. In this case, there exists exactly one trajectory that enters the equi-

librium in the tey direction; all other trajectories enter the equilibrium in
the +eq direction. We denote by v, the unique trajectory of (7.6} that ap-
proaches the equilibrium in the ey direction. Note that the region

D= {{pywe) |w > 0,0 < 27 — g}

is negatively invariant. Thus, v, € D. As f{v)+wglv) > 0 when v € [fp, 27~
fg) and w > 0, y, crosses the vertical line v = 8y exactly once. We denote the
intersection point by (6, Wi (c)). Then %, 1 {{v,w) |8 K v < 2r — Gy} isa
strictly decreasing smooth curve with endpoints (#1, Wy (<)) and (27 — 8,0},
The open region enclosed by #,, the vertical line v = f, and the horizontal
line w = 0 is positively Invariant, and in it +/ > 0. Thus, for each h €
(D, W,()), the solution of (4.4) satisfies (4.6). On the other hand, if h >
W*{(c), the trajectory is above 7,, and therefore the solution does not satisfy

(4.6).

In conclusion, the solution of (4.4) satisfies (4.6} if and only if ¢ > 22 and h €
(0, W, {c)].

2. Now we investigate the function W,(-}, which is a smooth function defined on
{(2a,00). Fix ¢ > 2a. We express 7, by the graph w = W, {v,c) for v € (1,27 — Ba}
Then W (c) = W, {0, c) and

, Wils,e) ‘ VL
oA o B — Bo] — 5 (t+e?) (5 -9):
dW, (s,c})  —cW,

= ey <0 Ve lon2n - ).

Bv continuous dependence of solutions with respect to parameters, we have, with
o ¥ 3

F = Fl{v,W,),

It then follows that —5=— = 0 for every s € [y, 2 — fa).

i(?ﬁf:ﬂ:?}fl) _ cfOW. W,

ds\" "8 )T TF g TF

i 1 W, (s,c) 1+a?

lim N ‘
2wty [ - 9(]} - e 9

oW, {s,c] .
Ix—&

3. Next we find a lower bound for W,. For s € [f), 2r — 8], set ¢(s) = tan =55~ =
—tan §. Then

dW.is,c} W,

T Ve @eUles b, Wilia =0,
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When ¢ € (a, 00f, consider the function

—aje
W= {c- Qa)(w(iéj‘g:%
We have W, — w = O([¢ — a]*) as s \, 6y Also,
dw cw B 2e - 2a){¢ — a)
dp  w+¢?—a _[c-f‘cz’)——a}q(,.ic——Qa] + [¢ +alle +¢;’)~a])
It then follows that W, = w when & € {w, 2 — #). This in particular implies that

Wome) 3 wWpmeo = & — 2ac.

Next consider the case s € [8y, ] Le, ¢ € {—oc,—b]. Since qt) s ag, z_-wiT_T i3
an inereasing function of z » 0, and W, (s el > FV (r,c) for s £ {#y, %), we have

W,(8y,¢) — W, {m,c) - W e,
- - SUISUNORA VY 1 .
1€ me / W, 5 :52 e Rl /m W, ¥ 42 dep

—b
- eW, {m,c) dé
- /—w W(m c) + o7 i

& b
= oW T, e){ — — arctan ———
Vi3 W.(r, c)}
- C"—T \_T ,,,,,,,,,,,,,,, _
# 5 W (r, e} - ch.

It then follows that, since W {m, ¢) = (¢ — 2u)e and W, {c) = W,(8y, ),
Wole) = Wi, e) + ‘; VWm0 —ch e {(, —Qa—b4 o \/ ‘Zar}

Finally, lime 20 W (c} exists since W > 0 on (2a,00). The limit must be zero
since otherwise the solution of (4.4) with ¢ = 2¢ and h = limg\o4 W, (c) would
satisfy (4.6), contradicting the nonexistence conclusion from linear analysis for the
equilibrium (27 — 5, 0). This completes the proof of Lemma 2. C

Proof of Lemma 3.

Proof. By the upper bound of W_{(¢} in (4.10} and the lower bound of W, (¢) in
(4.13), we find that, for each ¢ > 2a,

T o e D b
Wile) — W_(c) > L{C_ % — b+ = \/————} fe+ a)ni;r b) H{a,&g) |
1+ 2a+2c 1+ 2a4+2c
where
o= e ) e~ 20-00 5V} e k0

When ¢ 2 b+ 2a, we have %‘Z > ¢~ {a+ b} > 0. Hence, setting p = a/b e (0, 1},
we have

H(a,b,c) . H(a,bb+ 2a)

b2 = b2
1 + 9 .........................
= (1+20)(1+ ("1+3:)) V130~ (1+30)(1 +p) > 1.3,
Here the lower bound 1.3 is obtained by plotting the function of p for ¢ & [0, 1]. Thus,
when ¢ 2 b+ 2a, W_(c) < Wi{e) C
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