
SELF: A High Performance and Bandwidth
Efficient Approach to Exploiting Die-stacked

DRAM as Part of Memory

Yuhua Guo¶, Qing Liu§, Weijun Xiao¶, Ping Huang‡, Norbert Podhorszki†, Scott Klasky†, Xubin He¶‡

¶Virginia Commonwealth University, §New Jersey Institute of Technology,
‡Temple University, †Oak Ridge National Laboratory

¶{guoy4,wxiao}@vcu.edu, §qing.liu@njit.edu,
‡{templestorager,xubin.he}@temple.edu, †{pnorbert,klasky}@ornl.gov

Abstract—Die-stacked DRAM (a.k.a., on-chip DRAM) pro-
vides much higher bandwidth and lower latency than off-chip
DRAM. It is a promising technology to break the “memory
wall”. Die-stacked DRAM can be used either as a cache (i.e.,
DRAM cache) or as a part of memory (PoM). A DRAM cache
design would suffer from more page faults than a PoM design
as the DRAM cache cannot contribute towards capacity of main
memory. At the same time, obtaining high performance requires
PoM systems to swap requested data to the die-stacked DRAM.
Existing PoM designs fall into two categories — line-based
and page-based. The former ensures low off-chip bandwidth
utilization but suffers from a low hit ratio of on-chip memory
due to limited temporal locality. In contrast, page-based designs
achieve a high hit ratio of on-chip memory albeit at the cost
of moving large amounts of data between on-chip and off-chip
memories, leading to increased off-chip bandwidth utilization and
significant system performance degradation.

To achieve a similar high hit ratio of on-chip memory as page-
based designs, and eliminate excessive off-chip traffic involved,
we propose SELF, a high performance and bandwidth efficient
approach. The key idea is to SElectively swap Lines in a requested
page that are likely to be accessed according to page Footprint,
instead of blindly swapping an entire page. In doing so, SELF
allows incoming requests to be serviced from the on-chip memory
as much as possible, while avoiding swapping unused lines to
reduce memory bandwidth consumption. We evaluate a memory
system which consists of 4GB on-chip DRAM and 12GB off-
chip DRAM. Compared to a baseline system that has the same
total capacity of 16GB off-chip DRAM, SELF improves the
performance in terms of instructions per cycle by 26.9%, and
reduces the energy consumption per memory access by 47.9% on
average. In contrast, state-of-the-art line-based and page-based
PoM designs can only improve the performance by 9.5% and
9.9%, respectively, against the same baseline system.

I. INTRODUCTION

Recent advances in die-stacking technology have made it

possible to integrate a large amount of DRAM in the same

package of a processor. A processor and on-chip DRAM are

interconnected by a high-density, low-latency through-silicon

vias (TSVs). This technology has the potential to overcome the

memory wall problem [1] by providing an order of magnitude

higher bandwidth and much lower latency for on-chip DRAM.

Prior work [2], [3], [4], [5], [6], [7] has proposed using die-

stacked DRAM as a hardware-managed last-level cache (i.e.,

DRAM cache). As the technology for manufacturing die-

stacked DRAM matures, the size of die-stacked DRAM could

be tens of gigabytes by integrating multiple DRAM stacks

on a 2.5D interposer [8], [9]. Therefore, using die-stacked

DRAM as a DRAM cache would squander a large fraction

of total memory space as the DRAM cache is invisible to the

OS. Without fully exploiting the memory capacity offered,

applications with a large working set would suffer a higher

rate of page faults and therefore slowdown due to frequent

accesses to backend storage.

An alternative to using die-stacked DRAM as a cache is to

use it as part of an OS-visible memory space (i.e., PoM). In

such a heterogeneous memory system, data residing in on-chip

DRAM is serviced at high bandwidth and low latency, while

data residing in off-chip DRAM is serviced at low bandwidth

and high latency. However, naively treating on-chip DRAM as

a part of memory space renders the PoM design less effective.

To obtain high performance, on-chip DRAM needs to play

two roles at the same time in a PoM architecture. The on-chip

DRAM is not only a part of memory space but also a cache

for off-chip DRAM. In other words, requested data is swapped

or migrated to on-chip DRAM and victim data is swapped

out to off-chip DRAM. This swapping process can be done

by either the OS or hardware. For OS-managed approaches,

the OS needs to monitor all page usage and migrate hot

pages to the on-chip DRAM. OS-invoked page migrations

result in page table updates and TLB shoot-downs, which are

costly operations. Therefore, the page migrations under the OS

control cannot occur frequently so that hot pages in a short

period of time could not be migrated to the on-chip DRAM,

resulting in performance loss. In contrast, in a hardware-

managed PoM architecture, the migration is transparent to OS,

and can be initiated at anytime when data is required. Hence,

the hardware-managed PoM is a promising design and we only

consider hardware-managed PoM in this paper.

Current PoM designs [10], [11] fall into two categories

based on the granularity at which they swap data: line-based

and page-based (or segment-based). The line-based design

uses off-chip bandwidth efficiently as all swapped lines are

demanded. However, the line-based design could suffer from



low hit ratio due to poor temporal locality at the main memory

layer as highly referenced cache lines have already been

filtered out by L1 and L2 caches. The page-based design

swaps data at a coarser granularity (typically 1-4KB), thus

achieving a higher hit ratio by exploiting spatial locality in

the large granularity. However, the page-based design would

waste precious off-chip bandwidth as some lines may not be

touched before they are swapped out. The inefficient usage

of off-chip bandwidth could lead to performance degradation,

especially for data-intensive applications.

In this paper, we make the following contributions:

• We propose SELF, a high performance and memory

bandwidth efficient approach to using die-stacked DRAM

as a part of memory. To take advantage of both line-

based and page-based PoM designs while avoiding their

respective drawbacks, SELF only swaps those lines in a

requested page that are likely to be accessed according

to its page footprint. In doing so, SELF enables most

incoming requests to be serviced from on-chip memory

while avoiding swapping unused lines to save memory

bandwidth.

• We redesign TLB to record page footprints and predict

the lines in a page that are likely to be accessed again. In

order to achieve partial swap of a page, we design two

remapping tables with different granularities, remapping

page table (RPT) and remapping line table (RLT). RPT

is designed to track page locations after swapping and

the RLT records every line’s physical location within a

page. Moreover, RPT is reused to predict line locations.

If a requested line is predicted in off-chip memory, SELF

will access the predicted location in parallel with the RLT

access to hide the latency of RLT. As a result, the RPT

predicts the physical location of a line with an 85.5%

accuracy.

• We evaluate our system composed of 4GB on-chip

DRAM and 12GB off-chip DRAM. Compared to the

baseline system of 16GB off-chip DRAM only, the state-

of-the-art line-based [11] and page-based [10] PoM de-

signs improve performance by 9.5% and 9.9%, respec-

tively, whereas SELF improves performance by 26.9%

and reduces energy per memory access by 47.9% on

average.

The rest of the paper is organized as follows. We introduce

the background of die-stacked DRAM and analyze advantages

and drawbacks of line-based and page-based PoM designs in

Section II. We detail our design in Section III. We describe our

evaluation methodology and present our experimental results

in Section IV. We discuss related work in Section V and

conclude in Section VI.

II. BACKGROUND AND MOTIVATION

As more cores are integrated into many-core chips to

improve processing capabilities and parallelism, the growth

in core count requires a commensurate increase in memory

bandwidth. However, memory speeds have not kept pace with

CPU performance scaling, which has led to the memory

wall problem [1]. Die-stacked DRAM has been advocated

as a promising technology to break the memory bandwidth

and latency wall. It provides an order of magnitude higher

bandwidth and lower access latency than off-chip DRAM

due to the dense TSVs buses [12]. However, the capacity

of die-stacked DRAM is insufficient to fully replace off-chip

DRAM due to technological constraints [4], [11]. Thus, die-

stacked DRAM and off-chip DRAM will co-exist in future

systems, and die-stacked DRAM can be used either as a

cache or as a part of main memory. Most prior work [3],

[4], [5], [6], [7], [13], [14], [15] advocates using die-stacked

DRAM as a giant cache between the last level cache (LLC)

and main memory, and copes with challenges of tag storage

overhead, hit ratio, hit/miss latency and off-chip traffic etc.

However, DRAM cache is invisible to the OS. In other words,

DRAM cache cannot contribute towards the main memory

capacity, which could lead to non-negligible performance loss

due to increased page faults, especially for modern server

applications with a large working set size (WSS). As the

technology for manufacturing die-stacked DRAM matures, the

size of die-stacked DRAM in each package could be up to tens

of gigabytes. In this case, using die-stacked DRAM as a cache

could waste a large fraction of total memory space.

Therefore, researchers have proposed using die-stacked

DRAM as a part of memory [11], [10], [16], [17] instead of a

cache. However, we can only get marginal benefits if the die-

stacked DRAM is naively treated as a part of memory [17].

To obtain high performance, highly referenced pages or lines

need to be migrated to die-stacked DRAM to take advantage

of its high bandwidth and low access latency. This migration

process can be performed by the OS or hardware.

A. OS-managed PoM

OS-managed PoM approaches need to track page usage

to identify highly referenced pages. For an on-chip DRAM

with a capacity of N pages, the OS should choose the top-

N most referenced pages and map them into the on-chip

memory at run-time. However, the operating system has a

limited capability to get such information from the page

table as the reference bit in each page table entry (PTE)

cannot differentiate which pages are most referenced. A typical

solution is to use a counter in each PTE to record the number

of LLC misses per page, which would require extra hardware

support [18]. At the end of each epoch or interval (e.g. 100K

cycles), the OS sorts pages based on the access count and

migrates the top-N hottest pages which are resident in off-chip

memory to the on-chip memory. At the same time, these pages

which are resident in on-chip DRAM but not belonging to

the top-N hottest pages are migrated back to off-chip DRAM.

Then the OS has to update the page table to reflect new

mappings and invalidate corresponding translation lookaside

buffer (TLB) entries (i.e., TLB shoot-down) for consistency.

Therefore, the data migration under the OS control results

in high overhead of sorting, copying pages back and forth

between on-chip and off-chip memories, and TLB shoot-

downs. As such, OS-managed migration cannot be performed





page A page B

…

page J

page A

…

page K

page C

…

page I

page D

…

page H

location 3location 1 location 2location 0

IK HJ

……… …

DCBAentry 0

…

entry N-1

on-chip memory off-chip memory remapping page table (RPT)

location 0 location 1 location 2 location 3

0

N-1

N

2N-1

2N

3N-1

3N

4N-1

(a) Direct page-remapping and remapping page table.

page A line N

…

line X

line M

…

line W

line O

…

line Y

line P

…

line Z

location 3location 2location 1location 0

YW ZX

……… …
PONMentry 0

…

entry 64N-1

on-chip memory off-chip memory remapping line table (RLT)

location 0 location 1 location 2 location 3

(b) Direct line-remapping and remapping line table.

Fig. 2: Direct remapping and corresponding remapping tables.

entire page. However, current remapping table of the page-

based design does not support partial swapping as it cannot

differentiate which data line has been swapped due to its page

granularity.

A. Remapping Table Design

To achieve partial swapping of a page, we design two

remapping tables at the granularity of page and line, called

remapping page table (RPT) and remapping line table (RLT),

respectively. The RPT is used to track pages’ physical lo-

cations after swapping while the RLT records all data lines’

physical locations in each page. In other words, the RPT tells

where the requested page is and the RLT further indicates

where the requested line is. With the cooperation of RPT

and RLT, SELF can only swap those lines in a page that

are likely accessed in the future to save off-chip bandwidth.

In the PoM design, each LLC miss must first look up the

remapping table to determine the actual physical location of

the requested data. Then the memory controller can decide

where to fetch the requested data from either on-chip memory

or off-chip memory. In theory, data in the off-chip memory can

be swapped to any location of on-chip memory in a similar

way to a fully associative cache. In this case, we may need

to search the entire remapping table in the worst case. As

accessing the remapping table is on the critical path, searching

the whole remapping table could cause excessive latency. To

reduce the remapping table lookup time, we adopt direct-

remapping, which is similar to the direct mapped concept in

a cache design. In other words, a page or a data line in the

off-chip memory can only be swapped to a specific location

in the on-chip memory.

Figure 2 shows direct remapping applied in an example of

memory system, in which the on-chip memory has a capacity

of N pages, and the off-chip memory has 3N pages. Figure 2a

shows direct page-remapping and corresponding RPT. Under

the direct page-remapping, a page is only allowed to be

swapped with another page mapped to the same entry of the

RPT. For example, page A, page B, page C, page D are

mapped to entry 0 of the RPT, thus they can be swapped

with each other. Figure 2b shows direct line-remapping and

corresponding RLT. It works in a similar way of the direct

page-remapping. Due to the use of direct remapping, every

remapping information can be retrieved with a single access

to a corresponding entry. The RPT is indexed by the least

significant log2N bits of the requested physical page number

(PPN) and the RLT is indexed by the least significant log264N
bits of the requested line address. However, both RPT and RLT

are on the critical path, each LLC miss needs to go through

them sequentially. How to reduce or hide access latency of

these two remapping tables plays an important role to the

system performance. The RPT is small due to the use of coarse

granularity. For the evaluated memory system consisting of

4GB on-chip DRAM and 12GB off-chip DRAM, the number

of the RPTs entries is one million and each entry is a four

elements tuple with two bits for each element. Therefore, the

size of RPT is 1MB. However, the RPT could be more than

ten megabytes as the on-chip DRAM keeps increasing. In

order to be scalable and reduce access latency, we store the

RPT in the on-chip memory and use a small SRAM (32KB),

called RPT cache, to cache it. The RPT cache is indexed by

the least significant log2K bits of the physical page number,

where K is the total number of sets in the RPT cache. And

the least significant log2N bits of the PPN is used as a tag.

The RPT cache is expected to gain a high hit ratio because

of a good spatial locality provided by the page granularity. In

contrast, the RLT has a poor spatial locality due to the use

of fine-grained granularity and it is very large (64MB in our

evaluated system). Therefore, we choose to store the RLT in

the on-chip memory only without caching it, which causes

an extra access to the on-chip memory as each request must

first look up the RLT to determine the physical location of

the requested line. To hide the access latency of RLT, SELF

co-locates each data line with its corresponding RLT entry.

This technique is also used in [3], [11]. To implement the

co-located RLT, we sacrifice memory space of one data line

in each 2KB DRAM row, and use it to store RLT entries for



64B…64B 64B64B

64B…64B 64B64B

DRAM row (2KB)

data line RLT entry (2B)

…

31 x (data line + RLT entry) = 2046 bytes

Fig. 3: The data layout of on-chip memory after co-locating

each data line with its corresponding RLT entry.

other 31 data lines. Thus, each RLT entry can have up to 2

bytes, leaving 2 bytes unused in each row. Figure 3 shows

the data layout of on-chip memory after co-locating each data

line with its corresponding RLT entry. In order to support

the co-located RLT, we reserve 1/32 off-chip memory space.

The reserved space could be used for data that will not be

swapped. Therefore, for a requested line address X in on-

chip memory, its actual physical address equals to X+X/31.

In doing so, a data line and its corresponding RLT entry can

be streamed out in one access. If the requested line is present

in the on-chip memory by checking the RLT entry, we can

directly use the data line just read out together with the RLT

entry, without any extra access to the on-chip memory. If the

RLT entry identifies that the requested line is in the off-chip

memory, then a second access for the desired location in off-

chip memory is performed.

B. Page Swapping

In the direct page-remapping, some pages (e.g., 4 pages in

our system) are mapped to the same entry, and they compete

for one location in the on-chip memory. When and which page

should be swapped to the on-chip memory depends on the

swapping policy. Ideally, the swapping policy should choose

the hottest page in a certain period of time to be swapped

to the on-chip memory, so that most incoming requests can

be serviced from the on-chip memory. The most direct way

is to record the number of accesses to each page during an

interval by associating a counter with each page, then choose

the page with the highest number of accesses to be swapped

to the on-chip memory. However, the ideal swapping policy is

too costly to implement in hardware. The simplest way is to

swap the page to on-chip memory once it is demanded, which

could cause frequent page swapping, especially when two

pages mapped to the same entry are accessed in an interleaved

fashion. As a result, the requested two pages are swapped

back and forth, leading to saturating the off-chip bandwidth

and wasted energy. In fact, pages residing in off-chip memory,

called off-chip pages, are competing with the page residing in

on-chip memory, called on-chip page. An off-chip page should

be swapped to the on-chip memory as long as it is hotter than

an on-chip page. Based on that, we employ a cost effective

way by using a competing counter (CC) [10] to record the

relative number of accesses. If the requested page is in the

on-chip memory, the CC is decreased by 1, otherwise it is

increased by 1. Once the CC is larger than the swap threshold,

the off-chip page which is being accessed is swapped with the

on-chip page. In our system the swap threshold is set to 8

(Section IV-G), so each CC only needs 4 bits. Due to address

alignment, each CC is allocated 8 bits, some of which can be

reserved for future use. To track page activity, each RPT entry

is appended a CC.

C. Page Footprints

To achieve partial swap of a page, we need to predict

which data lines in the page will be requested between two

consecutive swap-in operations of the page and only swap

those lines to reduce memory bandwidth consumption when

a page swapping occurs. A lot of previous work [19], [20],

[21], [22] demonstrate repetitive access patterns in commercial

workloads. In other word, a data line that was accessed in

current interval will likely be accessed in next interval. A page

footprint records which data lines were accessed between two

consecutive swap-in operations of the page. Based on that, we

use page footprints to predict which lines in a page are likely

accessed, which is similar to the Footprint Cache [4]. However,

in main memory there is no tag array that can be used to record

page footprints. Therefore, we redesign TLB to add a bit vector

in each TLB entry to record a page footprint and also add a bit

vector in each page table entry accordingly. The number of bits

in a bit vector is equal to the page size divided by the data line

size, thus each page footprint is typically 64 bits. If each core

has a TLB of 32 entries, the storage cost of page footprints in

the TLB is 256 bytes per core. The additional storage cost for

page footprints in the page table is negligible since the page

table is stored in main memory or disk. As all data requests

have to lookup TLB, SELF can set the corresponding bits

of the bit vector without extra accesses to the TLB, and the

page footprint obtained from TLB can be directly used in the

page swapping process without extra accesses to the page table

either. Thus, recording page footprints in the TLB is a cost

effective way.

However, recording page footprints in the TLB could cause

incoherent problem in a multi-core system. As the page foot-

prints’ incoherency would not affect programs’ correctness, we

do not take any coherent action except any of these two cases

occurs to reduce maintenance overhead of page footprints.

1) When a TLB entry is evicted, the page footprint from

TLB bitwise OR with its corresponding page footprint in

the page table and the result is saved in the page table but

not synchronized with TLBs to improve prediction accuracy;

2) When a page is swapped to on-chip memory, its page

footprints both in TLBs and the page table are reset to store

the latest access information to reduce overpredictions (i.e.

a data line is not requested but it was predicted). In either

case, the related page table entry is updated. We update the

page table through a system call to the page table walk. In

the second case, the physical address is converted to a virtual

address before the page table walk. We maintain a modified

inverted page table to translate physical addresses to virtual

addresses. Different virtual page mapped to the same physical



…

…

…00010101…

01010100…

…

page footprint

TLB

LLC

PA

p
ro

c
e
s
s
o

r

❶ ❷

miss

R
P

T
 C

a
c
h

e

on-chip memory

off-chip 
memory

RPT

hit

❸ s
w

a
p

miss

010000001000 10 11

………… …

10 11010000000010

location
3

location
2

location 
1

location 
0

CC

The requested line

is predicted in

o
ff-chip m

em
ory

Fig. 4: Overview of SELF architecture. When the competing counter (CC) is larger than the swap threshold, SELF selectively

swaps lines in the requested page according to its page footprint. Otherwise, SELF uses page location to predict the requested

line location to reduce latency of off-chip accesses.

page are stored in a linked list. Since updating the page table

is not on the critical path and the page table can be accessed

concurrently, the impacts of updating page table is negligible

on the performance.

D. Line Location Prediction

As discussed in Section III-A, we can save one access to

the on-chip memory when the requested line is resident in

on-chip memory by streaming the data line and RLT entry

together. However, for the off-chip access (i.e., the requested

line is resident in the off-chip memory), the RLT in the on-

chip memory is accessed first to get the physical location of the

requested line, then the off-chip memory is accessed according

to the physical location. In this case, the off-chip access is

serialized and occurs only after accessing on-chip memory.

To break the serialized off-chip accesses, we reuse the RPT

to predict line locations as the RPT itself has the information

about page locations and most data lines in a page are likely

to have the same location as its page. We use page locations

obtained from the RPT to predict the locations of requested

lines. If the line is predicted to be in off-chip memory, the

predicted location in the off-chip memory will be accessed in

parallel with on-chip access. If the prediction is correct, the

line from off-chip location is used and the latency of RLT

access is hidden. If the requested line is found in on-chip

memory by checking the RLT entry, then the prediction is

ignored. In the worst case, the requested line is in off-chip but

it is predicted to be in a wrong off-chip location, a second

access to the off-chip location still need to be performed.

E. Put Everything Together

The SELF integrates all techniques presented in above

sections, as shown in Figure 4, where the on-chip memory

accounts for a quarter of the total capacity. For other ratios,

SELF works similarly, but the storage overhead of the RPT

and RLT may be slightly different. ¶ A request from the

processor accesses the TLB to get its physical address (PA)

of the requested data, and set corresponding bit in its page

footprint at the same time. · The RPT cache is accessed if

the request is missed in the LLC. If the request is a cache miss,

then a corresponding RPT entry is loaded to the RPT cache.

Otherwise, a RPT entry related to the request is accessed.

According the real location of the requested page, the CC

of the accessed RPT entry is updated. If the CC is larger

than the swap threshold, SELF selectively swaps those lines

of the requested page to on-chip memory according to its page

footprint obtained from step ¶ and resets its CC and page

footprint. Otherwise, SELF uses the page location to predict

the requested line location. If the requested line is predicted

in off-chip memory, the predicted location in off-chip will

be accessed in parallel with on-chip access, or only on-chip

access will be issued if the requested line is predicted in on-

chip memory. ¸ The RLT entry and a data line are returned

together from the on-chip memory. According to the RLT

entry, if the real location of the requested line is in the on-chip

memory, the data line is used to service the request directly

and ignore any prediction. If the real location of the requested

line is in the off-chip memory and was predicted correctly,

memory controller only needs to wait until the requested data

returned from the off-chip memory. In this case, latency of

retrieving the RLT is avoided as it was issued in parallel with

off-chip access to the predicted location in step ·. However, if

the real location of the requested line is in the off-chip memory

and was wrongly predicted, then an access to the real location

in the off-chip memory is performed.

In a word, all techniques applied in SELF work in concert

to enable most incoming requests to be serviced from on-chip

memory while avoiding swapping unused lines to save mem-

ory bandwidth. SELF also reduces latency of off-chip accesses

by smartly reusing the RPT as a line location predictor.

F. Overhead Comparison

We compare the storage overhead of SELF with state-of-

the-art line-based and page-based designs, called CAMEO [11]

and PoM [10], respectively. Table I shows the storage overhead

of these three designs under a memory system composed of

4GB on-chip DRAM and 12GB off-chip DRAM. In such a

system, there are 1 million entries in the RPT. Each entry

occupies 2 bytes (one byte is allocated to a CC and the

other byte is used to store page locations). Thus, the storage

overhead of the RPT is 2MB. Moreover, as discussed in

Section III-A, each DRAM row needs to sacrifice one data











VII. ACKNOWLEDGMENTS

We would like to thank our shepherd, Djordje Jevdjic, and

the anonymous reviewers for their insightful feedback and

comments. This work is sponsored in part by U.S. National

Science Foundation grants CCF-1547804, CNS-1702474 and

CNS-1700719.

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall: Implications
of the Obvious,” ACM SIGARCH Computer Architecture News, vol. 23,
no. 1, pp. 20–24, March 1995.

[2] G. H. Loh and M. D. Hill, “Efficiently Enabling Conventional Block
Sizes for Very Large Die-stacked DRAM Caches,” in Proceedings of

the 44
th Annual IEEE/ACM International Symposium on Microarchi-

tecture(MICRO’11), 2011.
[3] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-offs

in Architecting DRAM Caches,” in Proceedings of the 45
th Annual

IEEE/ACM International Symposium on Microarchitecture(MICRO’12),
2012.

[4] D. Jevdjic, S. Volos, and B. Falsafi, “Die-Stacked DRAM Caches for
Servers Hit Ratio, Latency, or Bandwidth? Have It All with Footprint
Cache,” in Proceedings of the 40

th International Symposium on Com-

puter Architecture(ISCA’13), 2013.
[5] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison Cache: A

Scalable and Effective Die-Stacked DRAM Cache,” in Proceedings of

the 47
th Annual IEEE/ACM International Symposium on Microarchi-

tecture(MICRO’14), 2014.
[6] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan, “Bi-

Modal DRAM Cache: Improving Hit Rate, Hit Latency and Bandwidth,”
in Proceedings of the 47

th Annual IEEE/ACM International Symposium

on Microarchitecture(MICRO’14), 2014.
[7] C.-C. Huang and V. Nagarajan, “ATCache: Reducing DRAM cache

Latency via a Small SRAM Tag Cache,” in Proceedings of the 23
rd

International Conference on Parallel Architectures and Compilation

Techniques(PACT’14), 2014.
[8] Micron Technology, “Hybrid Memory Cube,”

https://www.micron.com/products/hybrid-memory-cube/short-reach-
hmc/4GB.

[9] JEDEC STANDARD, “High Bandwidth Memory (HBM) DRAM,”
https://www.jedec.org/standards-documents/results/jesd235.

[10] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim,
“Transparent Hardware Management of Stacked DRAM as Part of
Memory,” in Proceedings of the 47

th Annual IEEE/ACM International

Symposium on Microarchitecture(MICRO’14), 2014.
[11] C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO:A Two-Level

Memory Organization with Capacity of Main Memory and Flexibility
of Hardware-Managed Cache,” in Proceedings of the 47

th Annual

IEEE/ACM International Symposium on Microarchitecture(MICRO’14),
2014.

[12] B. Akin, F. Franchetti, and J. C. Hoe, “Data Reorganization in Memory
Using 3D-stacked DRAM,” in Proceedings of the 42

nd International

Symposium on Computer Architecture(ISCA’15), 2015.
[13] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell,

Y. Solihin, and R. Balasubramonian, “CHOP: Adaptive Filter-Based
DRAM Caching for CMP Server Platforms,” in Proceedings of the

16
th IEEE International Symposium on High Performance Computer

Architecture(HPCA’10), 2010.
[14] S. Franey and M. Lipasti, “Tag Table,” in Proceedings of the 21

st

IEEE International Symposium on High Performance Computer Archi-

tecture(HPCA’15), 2015.
[15] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee, “A

Fully Associative, Tagless DRAM Cache,” in Proceedings of the 42
nd

International Symposium on Computer Architecture(ISCA’15), 2015.
[16] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski,

and G. H. Loh, “Heterogeneous Memory Architectures: A HW/SW Ap-
proach for Mixing Die-stacked and Off-package Memories,” in Proceed-

ings of the 21
st IEEE International Symposium on High Performance

Computer Architecture(HPCA’15), 2015.
[17] M. Oskin and G. H. Loh, “A Software-managed Approach to Die-

stacked DRAM,” in Proceedings of the 24
th International Conference

on Parallel Architectures and Compilation Techniques(PACT’15), 2015.

[18] G. H. Loh, N. Jayasena, J. Chung, S. K. Reinhardt, J. M. OConnor,
and K. McGrath, “Challenges in Heterogeneous Die-Stacked and Off-
Chip Memory Systems,” in Proceedings of 3

rd Workshop on SoCs,

Heterogeneous Architectures and Workloads (SHAW’12), 2012.
[19] K. Chen, S. Li, J. H. Ahn, N. Muralimanohar, J. Zhao, C. Xu, S. O,

Y. Xie, J. B. Brockman, and N. P. Jouppi, “History-Assisted Adaptive-
Granularity Caches (HAAG$) for High Performance 3D DRAM Archi-
tectures,” in Proceedings of the 29

th ACM International Conference on

Supercomputing(ICS’15), 2015.
[20] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,

“Spatial Memory Streaming,” in Proceedings of the 33
rd International

Symposium on Computer Architecture(ISCA’06), 2006.
[21] C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos, “Accurate and

Complexity-Effective Spatial Pattern Prediction,” in Proceedings of the

10
th IEEE International Symposium on High Performance Computer

Architecture(HPCA’04), 2004.
[22] S. Kumar and C. Wilkerson, “Exploiting Spatial Locality in Data Caches

using Spatial Footprints,” in Proceedings of the 25
th International

Symposium on Computer Architecture(ISCA’98), 1998.
[23] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A Full System

Simulator for x86 CPUs,” in Proceedings of the 48
th ACM/EDAC/IEEE

Design Automation Conference(DAC’11), 2011.
[24] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle

Accurate Memory System Simulator,” IEEE Computer Architecture

Letters, vol. 10, no. 1, pp. 16–19, January 2011.
[25] Micron Technology, “8Gb: x4, x8 1.5V TwinDie DDR3 SDRAM,” 2011.
[26] C. Bienia and K. Li, “PARSEC 2.0: A New Benchmark Suite for

Chip-Multiprocessors,” in Proceedings of the 5
th Annual Workshop on

Modeling, Benchmarking and Simulation, 2009.
[27] Micron Technology, “Calculating Memory System Power for DDR3,”

Tech. Rep. TN-41-01, 2007.
[28] B. Giridhar, M. Cieslak, D. Dugga, R. Dreslinski, H. M. Chen, R. Patti,

B. Hold, C. Chakrabarti, T. Mudge, and D. Blaauw, “Exploring DRAM
Organizations for Energy-Efficient and Resilient Exascale Memories,” in
Proceedings of the IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis(SC’13), 2013.
[29] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi, “Simple but Ef-

fective Heterogeneous Main Memory with On-Chip Memory Controller
Support,” in Proceedings of the IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis(SC’10),
2010.


