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Abstract—Die-stacked DRAM (a.k.a., on-chip DRAM) pro-
vides much higher bandwidth and lower latency than off-chip
DRAM. It is a promising technology to break the ‘“memory
wall”. Die-stacked DRAM can be used either as a cache (i.e.,
DRAM cache) or as a part of memory (PoM). A DRAM cache
design would suffer from more page faults than a PoM design
as the DRAM cache cannot contribute towards capacity of main
memory. At the same time, obtaining high performance requires
PoM systems to swap requested data to the die-stacked DRAM.
Existing PoM designs fall into two categories — line-based
and page-based. The former ensures low off-chip bandwidth
utilization but suffers from a low hit ratio of on-chip memory
due to limited temporal locality. In contrast, page-based designs
achieve a high hit ratio of on-chip memory albeit at the cost
of moving large amounts of data between on-chip and off-chip
memories, leading to increased off-chip bandwidth utilization and
significant system performance degradation.

To achieve a similar high hit ratio of on-chip memory as page-
based designs, and eliminate excessive off-chip traffic involved,
we propose SELF, a high performance and bandwidth efficient
approach. The key idea is to SElectively swap Lines in a requested
page that are likely to be accessed according to page Footprint,
instead of blindly swapping an entire page. In doing so, SELF
allows incoming requests to be serviced from the on-chip memory
as much as possible, while avoiding swapping unused lines to
reduce memory bandwidth consumption. We evaluate a memory
system which consists of 4GB on-chip DRAM and 12GB off-
chip DRAM. Compared to a baseline system that has the same
total capacity of 16GB off-chip DRAM, SELF improves the
performance in terms of instructions per cycle by 26.9%, and
reduces the energy consumption per memory access by 47.9% on
average. In contrast, state-of-the-art line-based and page-based
PoM designs can only improve the performance by 9.5% and
9.9%, respectively, against the same baseline system.

I. INTRODUCTION

Recent advances in die-stacking technology have made it
possible to integrate a large amount of DRAM in the same
package of a processor. A processor and on-chip DRAM are
interconnected by a high-density, low-latency through-silicon
vias (TSVs). This technology has the potential to overcome the
memory wall problem [1] by providing an order of magnitude
higher bandwidth and much lower latency for on-chip DRAM.
Prior work [2], [3], [4], [5], [6], [7] has proposed using die-
stacked DRAM as a hardware-managed last-level cache (i.e.,

DRAM cache). As the technology for manufacturing die-
stacked DRAM matures, the size of die-stacked DRAM could
be tens of gigabytes by integrating multiple DRAM stacks
on a 2.5D interposer [8], [9]. Therefore, using die-stacked
DRAM as a DRAM cache would squander a large fraction
of total memory space as the DRAM cache is invisible to the
OS. Without fully exploiting the memory capacity offered,
applications with a large working set would suffer a higher
rate of page faults and therefore slowdown due to frequent
accesses to backend storage.

An alternative to using die-stacked DRAM as a cache is to
use it as part of an OS-visible memory space (i.e., PoM). In
such a heterogeneous memory system, data residing in on-chip
DRAM is serviced at high bandwidth and low latency, while
data residing in off-chip DRAM is serviced at low bandwidth
and high latency. However, naively treating on-chip DRAM as
a part of memory space renders the PoM design less effective.
To obtain high performance, on-chip DRAM needs to play
two roles at the same time in a PoM architecture. The on-chip
DRAM is not only a part of memory space but also a cache
for off-chip DRAM. In other words, requested data is swapped
or migrated to on-chip DRAM and victim data is swapped
out to off-chip DRAM. This swapping process can be done
by either the OS or hardware. For OS-managed approaches,
the OS needs to monitor all page usage and migrate hot
pages to the on-chip DRAM. OS-invoked page migrations
result in page table updates and TLB shoot-downs, which are
costly operations. Therefore, the page migrations under the OS
control cannot occur frequently so that hot pages in a short
period of time could not be migrated to the on-chip DRAM,
resulting in performance loss. In contrast, in a hardware-
managed PoM architecture, the migration is transparent to OS,
and can be initiated at anytime when data is required. Hence,
the hardware-managed PoM is a promising design and we only
consider hardware-managed PoM in this paper.

Current PoM designs [10], [11] fall into two categories
based on the granularity at which they swap data: line-based
and page-based (or segment-based). The line-based design
uses off-chip bandwidth efficiently as all swapped lines are
demanded. However, the line-based design could suffer from



low hit ratio due to poor temporal locality at the main memory
layer as highly referenced cache lines have already been
filtered out by L1 and L2 caches. The page-based design
swaps data at a coarser granularity (typically 1-4KB), thus
achieving a higher hit ratio by exploiting spatial locality in
the large granularity. However, the page-based design would
waste precious off-chip bandwidth as some lines may not be
touched before they are swapped out. The inefficient usage
of off-chip bandwidth could lead to performance degradation,
especially for data-intensive applications.

In this paper, we make the following contributions:

e We propose SELF, a high performance and memory
bandwidth efficient approach to using die-stacked DRAM
as a part of memory. To take advantage of both line-
based and page-based PoM designs while avoiding their
respective drawbacks, SELF only swaps those lines in a
requested page that are likely to be accessed according
to its page footprint. In doing so, SELF enables most
incoming requests to be serviced from on-chip memory
while avoiding swapping unused lines to save memory
bandwidth.

o We redesign TLB to record page footprints and predict
the lines in a page that are likely to be accessed again. In
order to achieve partial swap of a page, we design two
remapping tables with different granularities, remapping
page table (RPT) and remapping line table (RLT). RPT
is designed to track page locations after swapping and
the RLT records every line’s physical location within a
page. Moreover, RPT is reused to predict line locations.
If a requested line is predicted in off-chip memory, SELF
will access the predicted location in parallel with the RLT
access to hide the latency of RLT. As a result, the RPT
predicts the physical location of a line with an 85.5%
accuracy.

e We evaluate our system composed of 4GB on-chip
DRAM and 12GB off-chip DRAM. Compared to the
baseline system of 16GB off-chip DRAM only, the state-
of-the-art line-based [11] and page-based [10] PoM de-
signs improve performance by 9.5% and 9.9%, respec-
tively, whereas SELF improves performance by 26.9%
and reduces energy per memory access by 47.9% on
average.

The rest of the paper is organized as follows. We introduce
the background of die-stacked DRAM and analyze advantages
and drawbacks of line-based and page-based PoM designs in
Section II. We detail our design in Section III. We describe our
evaluation methodology and present our experimental results
in Section IV. We discuss related work in Section V and
conclude in Section VI.

II. BACKGROUND AND MOTIVATION

As more cores are integrated into many-core chips to
improve processing capabilities and parallelism, the growth
in core count requires a commensurate increase in memory
bandwidth. However, memory speeds have not kept pace with
CPU performance scaling, which has led to the memory

wall problem [1]. Die-stacked DRAM has been advocated
as a promising technology to break the memory bandwidth
and latency wall. It provides an order of magnitude higher
bandwidth and lower access latency than off-chip DRAM
due to the dense TSVs buses [12]. However, the capacity
of die-stacked DRAM is insufficient to fully replace off-chip
DRAM due to technological constraints [4], [11]. Thus, die-
stacked DRAM and off-chip DRAM will co-exist in future
systems, and die-stacked DRAM can be used either as a
cache or as a part of main memory. Most prior work [3],
[4], [5], [6], [7], [13], [14], [15] advocates using die-stacked
DRAM as a giant cache between the last level cache (LLC)
and main memory, and copes with challenges of tag storage
overhead, hit ratio, hit/miss latency and off-chip traffic etc.
However, DRAM cache is invisible to the OS. In other words,
DRAM cache cannot contribute towards the main memory
capacity, which could lead to non-negligible performance loss
due to increased page faults, especially for modern server
applications with a large working set size (WSS). As the
technology for manufacturing die-stacked DRAM matures, the
size of die-stacked DRAM in each package could be up to tens
of gigabytes. In this case, using die-stacked DRAM as a cache
could waste a large fraction of total memory space.

Therefore, researchers have proposed using die-stacked
DRAM as a part of memory [11], [10], [16], [17] instead of a
cache. However, we can only get marginal benefits if the die-
stacked DRAM is naively treated as a part of memory [17].
To obtain high performance, highly referenced pages or lines
need to be migrated to die-stacked DRAM to take advantage
of its high bandwidth and low access latency. This migration
process can be performed by the OS or hardware.

A. OS-managed PoM

OS-managed PoM approaches need to track page usage
to identify highly referenced pages. For an on-chip DRAM
with a capacity of N pages, the OS should choose the top-
N most referenced pages and map them into the on-chip
memory at run-time. However, the operating system has a
limited capability to get such information from the page
table as the reference bit in each page table entry (PTE)
cannot differentiate which pages are most referenced. A typical
solution is to use a counter in each PTE to record the number
of LLC misses per page, which would require extra hardware
support [18]. At the end of each epoch or interval (e.g. 100K
cycles), the OS sorts pages based on the access count and
migrates the top-N hottest pages which are resident in off-chip
memory to the on-chip memory. At the same time, these pages
which are resident in on-chip DRAM but not belonging to
the top-N hottest pages are migrated back to off-chip DRAM.
Then the OS has to update the page table to reflect new
mappings and invalidate corresponding translation lookaside
buffer (TLB) entries (i.e., TLB shoot-down) for consistency.
Therefore, the data migration under the OS control results
in high overhead of sorting, copying pages back and forth
between on-chip and off-chip memories, and TLB shoot-
downs. As such, OS-managed migration cannot be performed
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Fig. 1: The performance of a state-of-the-art page-based PoM design [10] with different page sizes. All requests are serviced
from on-chip memory in the ideal case. On average, the page-based design performs best at the page size of 4KB.

frequently, which could miss many opportunities to improve
performance by migrating pages that are highly referenced in
short periods of time. In addition, OS-managed data migration
can only occur at a page granularity (typically 4KB). When
a significant fraction of data lines are not referenced, such
page granularity transfers become very inefficient in terms of
off-chip memory bandwidth. In a word, OS-managed PoM
approaches could neither exploit the full benefits of on-chip
DRAM at a coarse-grained interval nor utilize the off-chip
memory bandwidth efficiently at a page granularity.

B. Hardware-managed PoM

Hardware-managed PoM can avoid page table updates, TLB
shoot-downs and page sorting by maintaining a hardware-
managed remapping table, which records real locations af-
ter swapping. The remapping table is updated by hardware
without involving the OS after each data migration completes.
Hence, the data migrations under hardware control could
occur whenever the requested data is not resident in the on-
chip memory, which could potentially improve the system
performance. According to swapping granularity, hardware-
managed PoM designs fall into two categories: line-based and
page-based.

1) Line-based PoM: The line-based design swaps data at
a line granularity. The small line granularity ensures a low
utilization of off-chip bandwidth, since all lines swapped
into the on-chip memory are demanded without wasting off-
chip bandwidth. However, the line-based design falls short of
exploiting abundant spatial locality, and temporal locality at
the main memory layer is usually very poor as it has already
been filtered out by the L1 and L2 caches. As a result, the
line-based design suffers from a high miss rate of on-chip
memory, accessing off-chip memory with low bandwidth and
long access latency frequently.

2) Page-based PoM: The page-based design swaps data at
a page (1-4KB) granularity. Compared to the line granularity,
the large page granularity exploits abundant spatial locality,
which could result in a higher hit ratio. Hence, the performance

can be potentially improved as most misses in the LLC will
likely be serviced from the on-chip memory at high memory
bandwidth and low access latency. However, the large swap
granularity could increase off-chip traffic as some unneeded
lines of a swap-in page are also swapped in on-chip memory.
The increase of off-chip traffic prolongs latency of off-chip
accesses as the off-chip bandwidth is often overloaded, thus
offsetting the benefit of hight hit ratio. Figure 1 shows the
performance of state-of-the-art page-based PoM design while
varying page size from 256B to 4KB. The results show that
there is no one page size that can fit all cases. Smaller page
sizes even degrade performance in some applications (e.g.,
dedup). On average, the page-based design performs best at
the page size of 4KB. However, there is still a big performance
gap between the best page-based design and the ideal case.
The root cause is that the coarse page granularity cannot
avoid wasting off-chip bandwidth, leading to saturation. In the
case of off-chip bandwidth saturation, all requests to off-chip
memory need to wait a long time in the transaction queue of
memory controller, and are serviced sequentially, significantly
degrading system performance.

In conclusion, the line-based design uses off-chip memory
bandwidth efficiently but suffers from a low hit ratio due to
limited temporal locality. In contrast, the page-based design
provides a higher hit ratio by exploiting spatial locality, while
wasting off-chip bandwidth due to swapping useless data. To
take advantages of both line-based and page-based designs
while avoiding their drawbacks, we propose SELF, a high
performance and bandwidth efficient approach to using on-
chip DRAM as a part of memory.

ITII. SELF: ARCHITECTURE AND DESIGN

In order to gain similar high hit ratio as the page-based
design while avoiding unnecessary off-chip traffic due to
swapping useless data lines, we propose to selectively swap
data lines of a page that are likely accessed during the page’s
residency in on-chip memory instead of blindly swapping an
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Fig. 2: Direct remapping and corresponding remapping tables.

entire page. However, current remapping table of the page-
based design does not support partial swapping as it cannot
differentiate which data line has been swapped due to its page
granularity.

A. Remapping Table Design

To achieve partial swapping of a page, we design two
remapping tables at the granularity of page and line, called
remapping page table (RPT) and remapping line table (RLT),
respectively. The RPT is used to track pages’ physical lo-
cations after swapping while the RLT records all data lines’
physical locations in each page. In other words, the RPT tells
where the requested page is and the RLT further indicates
where the requested line is. With the cooperation of RPT
and RLT, SELF can only swap those lines in a page that
are likely accessed in the future to save off-chip bandwidth.
In the PoM design, each LLC miss must first look up the
remapping table to determine the actual physical location of
the requested data. Then the memory controller can decide
where to fetch the requested data from either on-chip memory
or off-chip memory. In theory, data in the off-chip memory can
be swapped to any location of on-chip memory in a similar
way to a fully associative cache. In this case, we may need
to search the entire remapping table in the worst case. As
accessing the remapping table is on the critical path, searching
the whole remapping table could cause excessive latency. To
reduce the remapping table lookup time, we adopt direct-
remapping, which is similar to the direct mapped concept in
a cache design. In other words, a page or a data line in the
off-chip memory can only be swapped to a specific location
in the on-chip memory.

Figure 2 shows direct remapping applied in an example of
memory system, in which the on-chip memory has a capacity
of N pages, and the off-chip memory has 3N pages. Figure 2a
shows direct page-remapping and corresponding RPT. Under
the direct page-remapping, a page is only allowed to be
swapped with another page mapped to the same entry of the
RPT. For example, page A, page B, page C, page D are

mapped to entry O of the RPT, thus they can be swapped
with each other. Figure 2b shows direct line-remapping and
corresponding RLT. It works in a similar way of the direct
page-remapping. Due to the use of direct remapping, every
remapping information can be retrieved with a single access
to a corresponding entry. The RPT is indexed by the least
significant [ogs N bits of the requested physical page number
(PPN) and the RLT is indexed by the least significant loga64N
bits of the requested line address. However, both RPT and RLT
are on the critical path, each LLC miss needs to go through
them sequentially. How to reduce or hide access latency of
these two remapping tables plays an important role to the
system performance. The RPT is small due to the use of coarse
granularity. For the evaluated memory system consisting of
4GB on-chip DRAM and 12GB off-chip DRAM, the number
of the RPTs entries is one million and each entry is a four
elements tuple with two bits for each element. Therefore, the
size of RPT is 1MB. However, the RPT could be more than
ten megabytes as the on-chip DRAM keeps increasing. In
order to be scalable and reduce access latency, we store the
RPT in the on-chip memory and use a small SRAM (32KB),
called RPT cache, to cache it. The RPT cache is indexed by
the least significant logs K bits of the physical page number,
where K is the total number of sets in the RPT cache. And
the least significant logo N bits of the PPN is used as a tag.
The RPT cache is expected to gain a high hit ratio because
of a good spatial locality provided by the page granularity. In
contrast, the RLT has a poor spatial locality due to the use
of fine-grained granularity and it is very large (64MB in our
evaluated system). Therefore, we choose to store the RLT in
the on-chip memory only without caching it, which causes
an extra access to the on-chip memory as each request must
first look up the RLT to determine the physical location of
the requested line. To hide the access latency of RLT, SELF
co-locates each data line with its corresponding RLT entry.
This technique is also used in [3], [11]. To implement the
co-located RLT, we sacrifice memory space of one data line
in each 2KB DRAM row, and use it to store RLT entries for
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Fig. 3: The data layout of on-chip memory after co-locating
each data line with its corresponding RLT entry.

other 31 data lines. Thus, each RLT entry can have up to 2
bytes, leaving 2 bytes unused in each row. Figure 3 shows
the data layout of on-chip memory after co-locating each data
line with its corresponding RLT entry. In order to support
the co-located RLT, we reserve 1/32 off-chip memory space.
The reserved space could be used for data that will not be
swapped. Therefore, for a requested line address X in on-
chip memory, its actual physical address equals to X + X/31.
In doing so, a data line and its corresponding RLT entry can
be streamed out in one access. If the requested line is present
in the on-chip memory by checking the RLT entry, we can
directly use the data line just read out together with the RLT
entry, without any extra access to the on-chip memory. If the
RLT entry identifies that the requested line is in the off-chip
memory, then a second access for the desired location in off-
chip memory is performed.

B. Page Swapping

In the direct page-remapping, some pages (e.g., 4 pages in
our system) are mapped to the same entry, and they compete
for one location in the on-chip memory. When and which page
should be swapped to the on-chip memory depends on the
swapping policy. Ideally, the swapping policy should choose
the hottest page in a certain period of time to be swapped
to the on-chip memory, so that most incoming requests can
be serviced from the on-chip memory. The most direct way
is to record the number of accesses to each page during an
interval by associating a counter with each page, then choose
the page with the highest number of accesses to be swapped
to the on-chip memory. However, the ideal swapping policy is
too costly to implement in hardware. The simplest way is to
swap the page to on-chip memory once it is demanded, which
could cause frequent page swapping, especially when two
pages mapped to the same entry are accessed in an interleaved
fashion. As a result, the requested two pages are swapped
back and forth, leading to saturating the off-chip bandwidth
and wasted energy. In fact, pages residing in off-chip memory,
called off-chip pages, are competing with the page residing in
on-chip memory, called on-chip page. An off-chip page should
be swapped to the on-chip memory as long as it is hotter than
an on-chip page. Based on that, we employ a cost effective
way by using a competing counter (CC) [10] to record the
relative number of accesses. If the requested page is in the
on-chip memory, the CC is decreased by 1, otherwise it is

increased by 1. Once the CC is larger than the swap threshold,
the off-chip page which is being accessed is swapped with the
on-chip page. In our system the swap threshold is set to 8
(Section IV-G), so each CC only needs 4 bits. Due to address
alignment, each CC is allocated 8 bits, some of which can be
reserved for future use. To track page activity, each RPT entry
is appended a CC.

C. Page Footprints

To achieve partial swap of a page, we need to predict
which data lines in the page will be requested between two
consecutive swap-in operations of the page and only swap
those lines to reduce memory bandwidth consumption when
a page swapping occurs. A lot of previous work [19], [20],
[21], [22] demonstrate repetitive access patterns in commercial
workloads. In other word, a data line that was accessed in
current interval will likely be accessed in next interval. A page
footprint records which data lines were accessed between two
consecutive swap-in operations of the page. Based on that, we
use page footprints to predict which lines in a page are likely
accessed, which is similar to the Footprint Cache [4]. However,
in main memory there is no tag array that can be used to record
page footprints. Therefore, we redesign TLB to add a bit vector
in each TLB entry to record a page footprint and also add a bit
vector in each page table entry accordingly. The number of bits
in a bit vector is equal to the page size divided by the data line
size, thus each page footprint is typically 64 bits. If each core
has a TLB of 32 entries, the storage cost of page footprints in
the TLB is 256 bytes per core. The additional storage cost for
page footprints in the page table is negligible since the page
table is stored in main memory or disk. As all data requests
have to lookup TLB, SELF can set the corresponding bits
of the bit vector without extra accesses to the TLB, and the
page footprint obtained from TLB can be directly used in the
page swapping process without extra accesses to the page table
either. Thus, recording page footprints in the TLB is a cost
effective way.

However, recording page footprints in the TLB could cause
incoherent problem in a multi-core system. As the page foot-
prints’ incoherency would not affect programs’ correctness, we
do not take any coherent action except any of these two cases
occurs to reduce maintenance overhead of page footprints.
1) When a TLB entry is evicted, the page footprint from
TLB bitwise OR with its corresponding page footprint in
the page table and the result is saved in the page table but
not synchronized with TLBs to improve prediction accuracys;
2) When a page is swapped to on-chip memory, its page
footprints both in TLBs and the page table are reset to store
the latest access information to reduce overpredictions (i.e.
a data line is not requested but it was predicted). In either
case, the related page table entry is updated. We update the
page table through a system call to the page table walk. In
the second case, the physical address is converted to a virtual
address before the page table walk. We maintain a modified
inverted page table to translate physical addresses to virtual
addresses. Different virtual page mapped to the same physical
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page are stored in a linked list. Since updating the page table
is not on the critical path and the page table can be accessed
concurrently, the impacts of updating page table is negligible
on the performance.

D. Line Location Prediction

As discussed in Section III-A, we can save one access to
the on-chip memory when the requested line is resident in
on-chip memory by streaming the data line and RLT entry
together. However, for the off-chip access (i.e., the requested
line is resident in the off-chip memory), the RLT in the on-
chip memory is accessed first to get the physical location of the
requested line, then the off-chip memory is accessed according
to the physical location. In this case, the off-chip access is
serialized and occurs only after accessing on-chip memory.
To break the serialized off-chip accesses, we reuse the RPT
to predict line locations as the RPT itself has the information
about page locations and most data lines in a page are likely
to have the same location as its page. We use page locations
obtained from the RPT to predict the locations of requested
lines. If the line is predicted to be in off-chip memory, the
predicted location in the off-chip memory will be accessed in
parallel with on-chip access. If the prediction is correct, the
line from off-chip location is used and the latency of RLT
access is hidden. If the requested line is found in on-chip
memory by checking the RLT entry, then the prediction is
ignored. In the worst case, the requested line is in off-chip but
it is predicted to be in a wrong off-chip location, a second
access to the off-chip location still need to be performed.

E. Put Everything Together

The SELF integrates all techniques presented in above
sections, as shown in Figure 4, where the on-chip memory
accounts for a quarter of the total capacity. For other ratios,
SELF works similarly, but the storage overhead of the RPT
and RLT may be slightly different. @ A request from the
processor accesses the TLB to get its physical address (PA)
of the requested data, and set corresponding bit in its page
footprint at the same time. ® The RPT cache is accessed if
the request is missed in the LLC. If the request is a cache miss,
then a corresponding RPT entry is loaded to the RPT cache.

Otherwise, a RPT entry related to the request is accessed.
According the real location of the requested page, the CC
of the accessed RPT entry is updated. If the CC is larger
than the swap threshold, SELF selectively swaps those lines
of the requested page to on-chip memory according to its page
footprint obtained from step @ and resets its CC and page
footprint. Otherwise, SELF uses the page location to predict
the requested line location. If the requested line is predicted
in off-chip memory, the predicted location in off-chip will
be accessed in parallel with on-chip access, or only on-chip
access will be issued if the requested line is predicted in on-
chip memory. ® The RLT entry and a data line are returned
together from the on-chip memory. According to the RLT
entry, if the real location of the requested line is in the on-chip
memory, the data line is used to service the request directly
and ignore any prediction. If the real location of the requested
line is in the off-chip memory and was predicted correctly,
memory controller only needs to wait until the requested data
returned from the off-chip memory. In this case, latency of
retrieving the RLT is avoided as it was issued in parallel with
off-chip access to the predicted location in step ®. However, if
the real location of the requested line is in the off-chip memory
and was wrongly predicted, then an access to the real location
in the off-chip memory is performed.

In a word, all techniques applied in SELF work in concert
to enable most incoming requests to be serviced from on-chip
memory while avoiding swapping unused lines to save mem-
ory bandwidth. SELF also reduces latency of off-chip accesses
by smartly reusing the RPT as a line location predictor.

E Overhead Comparison

We compare the storage overhead of SELF with state-of-
the-art line-based and page-based designs, called CAMEO [11]
and PoM [10], respectively. Table I shows the storage overhead
of these three designs under a memory system composed of
4GB on-chip DRAM and 12GB off-chip DRAM. In such a
system, there are 1 million entries in the RPT. Each entry
occupies 2 bytes (one byte is allocated to a CC and the
other byte is used to store page locations). Thus, the storage
overhead of the RPT is 2MB. Moreover, as discussed in
Section III-A, each DRAM row needs to sacrifice one data



line out of 32 data lines to implement the co-located RLT.
Therefore, the total storage overhead of RPT and RLT is
4GB/32 + 2MB = 130MB. Compared to CAMEO and PoM,
first, SELF requires additional storage space in the TLB, 256
bytes per core, to record page footprints. Second, SELF needs
more SRAM space than CAMEO. However, SELF could have
higher prediction accuracy as CAMEO only uses 512 bytes to
record last accessed locations and relies on them to predict
requested line locations. Third, SELF consumes more space
of on-chip DRAM than PoM and CAMEO, but it is still
negligible, only 3.2% of the total capacity. In summary, SELF
introduces more storage overhead than CAMEO and PoM, but
it achieves two conflicting goals of high hit ratio of on-chip
memory and low off-chip traffic.

TABLE I: Storage Overhead Comparison

| Strage [ CcAMEO | PoM |  SELF |
TLB N/A N/A 256B/core
SRAM 512B 32KB 32KB

on-chip DRAM 128MB (3.1%) | 2MB (0.05%) | 130MB (3.2%)

1V. EVALUATION
A. Evaluation Methodology

We use a full system and cycle accurate simulator,
MARSSx86 [23], with a detailed DRAM simulator, DRAM-
Sim2 [24], for our evaluations. The DRAMSim?2 is modified to
support multiple memory instances. We use two instances of
DRAMSim2 with different configurations [25] to model both
on-chip DRAM and off-chip DRAM. The evaluated memory
system consists of 4GB on-chip memory and 12GB off-chip
memory. We use a system composed of 16GB off-chip DRAM
without on-chip DRAM as our baseline system. Table II shows
the system configuration in our study.

TABLE II: System Configuration

CPU
Core 8 cores, 3.2GHz out-of-order, 4 issue width
L1-D/L1-I cache 8-way, 128KB/128KB, 2 cycles
L2 cache 8-way, private IMB, 8 cycles
L3 16-way, shared 16MB, 24 cycles
RPT cache 4-way, 32KB, 2 cycles, LRU replacement

Die-stacked DRAM
1.6GHz (DDR 3.2GHz)
8/1/8
128 bits per channel
11-11-11-28
Off-chip DRAM
800MHz (DDR 1.6GHz)
2/1/8
64 bits per channel
11-11-11-28

Bus frequency
Channels/Ranks/Banks
Bus Width
tCAS-tRCD-tRP-tRAS

Bus frequency
Channels/Ranks/Banks
Bus Width
tCAS-tRCD-tRP-tRAS

We use the PARSEC 2.1 [26] benchmark suite to evaluate
our design. PARSEC 2.1 includes emerging applications rang-
ing from computer vision to financial analytics. And it is a
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Fig. 5: Performance comparisons. On average, CAMEO and
PoM improve performance by 9.5% and 9.9%, respectively,
while SELF improves performance by 26.9%, which is 85%
of the ideal case.

multi-threaded and memory-sharing benchmark suite, thus it
is suitable for evaluating memory system. Each benchmark of
PARSEC has defined a range of interest (ROI) to represent
the workload and we checkpoint each benchmark at the
beginning of the ROI. We launch simulations from checkpoints
with warmed caches and page footprints to achieve a steady
state. Each benchmark runs for 500 million instructions with
simlarge input dataset to collect statistical data.

B. Performance Results

We compare SELF with CAMEO [11] and PoM [10]. We
also compare these three designs against an ideal memory
system composed of all on-chip DRAM without off-chip
DRAM. The ideal memory system is also set to 16GB for
fair comparison. We use instructions per cycle (IPC) as our
performance metric. Figure 5 shows the performance results of
various designs, which are normalized to the baseline system.
On average, SELF improves performance by 26.9%, which is
85% of the ideal case. However, CAMEO and PoM improve
performance by 9.5% and 9.9%, respectively. From the figure
we can see CAMEO in some benchmarks, e.g., fregmine and
raytrace, is even worse than the baseline system. There are two
possible reasons for the surprising results. On the one hand, the
temporal locality of these workloads is very poor, thus most
requests are serviced from the off-chip memory. On the other
hand, the line location predictor (LLP) used in CAMEO cannot
work well with these workloads as the LLP simply uses last
accessed location to predict the requested line location. The
two aspects together cause the worse performance than the
baseline system. PoM in some workloads, e.g., fluidanimate,
also performs worse than the baseline system. The main reason
is that these workloads have a poor spatial locality which
causes PoM to exhibit a low hit ratio of on-chip memory
although it swaps at a page granularity. In this case, the coarse
swap granularity could easily saturate the off-chip bandwidth,
leading to a long latency for off-chip accesses. However, SELF
performs steadily in all benchmarks by combining all benefits
from CAMEO and PoM while avoiding their shortcomings.
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Fig. 6: Two import performance metrics (a) hit ratio of on-chip memory and (b) off-chip traffic. All results are normalized
to the baseline. SELF achieves an average hit ratio of 76% while reducing off-chip traffic to 46% of the baseline system.
Although PoM obtains the highest hit ratio, 89% on average, it also causes the highest off-chip traffic, 153% on average.

C. Hit Ratio and Off-chip Traffic

To further understand the above performance results, we
collect data about two important performance metrics, hit ratio
of on-chip memory and off-chip traffic, as shown in Figure
6. Figure 6a shows the percentage of requests serviced from
the on-chip memory. Figure 6b shows how much data is
read from the off-chip memory. We simulate write requests
in the evaluation but write traffic is not calculated as write
requests are not on the critical path. We compare SELF with
CAMEO and PoM, all results are normalized to the baseline.
For simplicity, we analyze these three designs respectively.

First, CAMEO gains the lowest hit ratio of on-chip memory
among these three designs, only 28% on average. As CAMEO
can only capture temporal locality due to the fine-grained line
granularity used to swap data from off-chip memory to on-
chip memory. Therefore, the strength of workloads’ temporal
locality decides the hit ratio of on-chip memory. The fregmine
and swaptions have a very low hit ratio, less than 5%, thus
most requests are serviced from off-chip memory. That is why
their off-chip traffic is almost the same as the baseline. In
general, CAMEO produces the least off-chip traffic, 37% of
the baseline, as every data line read from the off-chip memory
are demanded although it gains the lowest hit ratio of on-chip
memory.

Second, PoM design obtains the highest hit ratio of the fast
memory, 89% on average. However, it also causes the highest
off-chip traffic, 153% on average. Both high hit ratio and heavy
off-chip traffic are attributed to the large page granularity used
to swap data between on-chip and off-chip memories. Figure
6b shows swaptions and fluidanimate workloads have a very
high off-chip traffic, especially for the fluidanimate workload,
which causes almost an order of magnitude higher off-chip
traffic than the baseline system. The high off-chip traffic could
easily lead to saturating the off-chip bandwidth. As a result,
requests missed in the on-chip memory need to wait for a

very long time in the transaction queue of memory controller,
which explains why fluidanimate gets the worst performance
with PoM design, as shown in Figure 5.

Last, our proposed SELF achieves an average hit ratio of
76%, which is close to PoM design, and meanwhile reduces
the off-chip traffic to 46% of the baseline system. The high hit
ratio indicates page footprint has a low rate of underprediction,
i.e., a data line is demanded but it was not predicted. In
contrast, the low off-chip traffic indicates page footprint has
a low rate of overprediction, i.e., a data line is not demanded
but it was predicted. Therefore, the page footprint is a good
predictor for a page’s spatial pattern. SELF takes advantage
of page footprint to do partial swapping of a page to achieve
both high hit ratio of on-chip memory and low off-chip traffic.
Moreover, SELF reuses the RPT to predict line locations of
off-chip accesses to shorten access latency. These techniques
together ensures that SELF outperforms CAMEO and PoM
designs on average.

D. Prediction Accuracy

In SELF, we reuse the RPT to predict the requested line
location based on the location of page which the requested line
belongs to. For assessing the accuracy of RPT, we first describe
five possible cases that can occur: 1) the requested line is in
the on-chip memory and the RPT predicted correctly; 2) the
requested line is in the on-chip memory but the RPT predicted
wrong; 3) the requested line is in the off-chip memory but it
was predicted in the on-chip memory; 4) the requested line is
resident in the off-chip memory and the RPT gave a right oft-
chip location; 5) the requested line is resident in the off-chip
memory but the RPT gave a wrong off-chip location. Case 2, 3
and 5 are mispredicted cases, but have different misprediction
penalties. In case 2, the request can still be serviced from the
on-chip memory quickly, but energy and off-chip bandwidth
consumed by off-chip access is wasted. In case 3, off-chip
access is performed after on-chip access. Thus, the latency



TABLE III: Cost analysis under different scenarios

Served by Prediction I Percentage l Latency I Energy Off-chip traffic
Onchip On-chip 75.5% Lon—chip Fon—chip 0
Off—Chlp 4.1% Lonfchip Eonfchip + Eofffchip 64B
On-chip 4.8% Lonfchip + Lofffchip Eonfchip + Eofffchip 64B
Off-chip Off-chip (right) 10% Loff—chip Eon_chip + Eoff—chip 64B
Off-chip (wrong) 5.6% Lonfchip + Lofffch,ip Eonfch,ip + 2% Eofffchip 1288

of RLT access cannot be hidden. The penalty of case 5 is
the sum of case 2 and 3. Table III summaries the cost under
five cases in terms of latency, energy and off-chip traffic. The
Lon—chip and L,ypr_cpip denote on-chip access latency and
off-chip access latency, respectively. Similarly, the F,,_cnip
and E,f s cnip denote energy consumed by one on-chip access
and one off-chip access, respectively. In summary, the RPT
achieves an average accuracy of 85.5% across all workloads.

E. Energy Analysis

Figure 7 compares various designs in terms of energy per
access. The energy per access is defined as total energy con-
sumed by on-chip and off-chip memories without considering
peripheral wires divided by the number of read and write
requests. The results are normalized to the baseline system.
We calculate power consumption based on the Micron Power
Calculator [27] and the Micron DDR3 data sheet [25]. We
modify power parameters according to the power number
reported in [28] for the on-chip memory. The results show
that CAMEO, PoM and SELF reduce energy consumption
by 31.3%, 27.6% and 47.9%, respectively. Comparing these
designs, CAMEOQO has zero overprediction while PoM has
the most overpredictions among these three designs. Each
overprediction wastes energy and increases off-chip traffic.
The increased off-chip traffic may prolong the execution time,
resulting in more static energy consumption. Therefore, PoM
consumes more energy than CAMEO on average, especially
for the fluidanimate workload as it causes the highest off-
chip traffic, as shown in Figure 6b. Running the fregmine
workload, CAMEO even consumes more energy than the
baseline system. As this workload gets a very low hit rate of
on-chip memory, most requests still need to access the off-chip
memory to get the requested data after first accessing the on-
chip memory, which causes a lot of extra on-chip accesses,
compared to the baseline system where each request only
requires one off-chip access. These extra on-chip accesses
cause CAMEO to consume more energy than the baseline
system. However, SELF reduces energy consumption across
all workloads due to its high hit ratio of on-chip memory and
low off-chip traffic.

FE. Sensitivity to RPT Cache Size

We adopt a RPT cache to shorten access latency of the
RPT. If a request hit in the RPT cache, the requested page
location can be obtained quickly. Otherwise, the request needs
to access the on-chip memory instead to get a corresponding
RPT entry, which causes a much longer latency. Therefore,
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Fig. 7: Energy consumption. On average, CAMEOQO, PoM and
SELF reduce energy per access by 31.3%, 27.6% and 47.9%,
respectively.

the effectiveness of the RPT cache is crucial to the system
performance. Figure 8 shows the hit ratio of the RPT cache
when we change its size from 8KB to 64KB. From the figure,
all workloads can get a high hit ratio even with a 8KB RPT
cache. On average, the hit ratio is 77.5%, 83.5%, 85.8% and
87%, respectively. The hit ratio of the RPT cache can be
improved marginally by increasing the cache size after the
RPT cache reaches 32KB. Thus, we choose 32KB as the RPT
cache size.

O8KB O16KB M32KB M64KB f

Hit ratio of RPT cache
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Fig. 8: Hit ratio of RPT cache across different cache size.

G. Sensitivity to Swap Threshold

In SELF system, page swapping occurs when the CC is
larger than the swap threshold. Thus, the swap threshold is
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Fig. 9: Performance sensitivity to the swap threshold.

closely related to the system performance. We perform a sen-
sitivity study of swap threshold on the system performance and
Figure 9 shows the results. There is no one swap threshold that
can fit all workloads. For example, ferret and swaptions prefer
small swap threshold as their spatial localities are strong. The
earlier requested page is swapped to the on-chip memory, the
better performance SELF can achieve. In contrast, for fregmine
and raytrace benchmarks, the performance is improved as the
swap threshold increases. However, the performance becomes
worse in most workloads when the swap threshold is set to
16. The high swap threshold could make most pages have
no chance to be swapped to on-chip memory, causing most
requests to be serviced from off-chip memory. In this case,
SELF could be degraded to the baseline system. For example,
the performance of ferret is close to the baseline system when
the swap threshold is set 16. Therefore, the ideal value of
swap threshold should be configured according to the access
pattern of each workload. However, we set it to 8 as a good
trade-off since SELF achieves the best performance on average
in this case. To improve the adaptability of swap threshold
in the future, we are trying to use several small regions
in on-chip memory as sampling regions and apply different
swap thresholds for them. The swap threshold which can
produce the highest benefit in current interval is adopted for
the next interval. In doing this, the swap threshold is changed
dynamically to adapt to the access pattern.

V. RELATED WORK

DRAM Cache. A large body of previous work [2], [3],
[4], [5], [6], [71, [13], [14], [15], [29] has proposed using on-
chip DRAM as a hardware-managed cache between the LLC
and main memory. DRAM caches can also be classified into
two categories by caching granularity: line-based and page-
based. These two categories have the same problems stated in
this paper. To alleviate the over-fetching problem of the page-
based design, Footprint Cache [4] and Unison Cache [5] use a
footprint predictor to identify and fetch only those lines within
a page that will be requested during the page’s residency in the
DRAM cache. In doing so, they eliminate the excessive off-
chip traffic associated with page-based cache designs, while

preserving their high hit ratio. They are similar to our work
but the on-chip DRAM is used as a cache and the tag array
provides sufficient information about page footprints while this
kind of information is missing in the main memory layer.

Part-of-Memory (PoM). DRAM cache has the advantage
of being transparent to the OS. However, DRAM cache cannot
contribute towards capacity of main memory, which could lead
to non-negligible performance loss. Thus, many researchers
advocate using die-stacked DRAM as a part of memory.
Some hybrid approaches managed by both software and
hardware have been proposed besides the hardware-managed
PoM designs. Meswani et al. [16] propose the first-touch hot-
page (FTHP) approach to managing a heterogeneous memory
architecture (HMA). This approach needs support from both
hardware and software. An access count is added to each TLB
and page table entry to track the number of page accesses. At
the end of an epoch, all pages whose access count is larger than
the hotness threshold 6 are treated as hot pages. The OS selects
first N (N is the size of the die-stacked DRAM) hot pages to
place in the stacked memory and updates corresponding PTEs.
If the number of hot pages is more than N, the OS increases
the hotness threshold, otherwise decreases it. In the case when
the size of hot pages is less than N, the OS adopts first-touch
policy to allocate requested pages in the stacked memory until
it is used up. Although this approach makes use of hardware to
fasten page profiling, the page table updates and TLB shoot-
downs handled by the OS are still very costly, as discussed
in Section II-A. Thereby, page migrations cannot happen so
frequently that many opportunities to improve performance
could be missed.

Oskin et al. [17] propose a software-managed and hardware-
assisted approach to use die-stacked DRAM as a part of
memory. This approach leverages two techniques to make it be
feasible. The first is a hardware-assisted TLB shoot-down to
accelerate this process; the second is a software-implemented
prefetcher that extends classic hardware prefetching algorithms
to the page level. This approach requires simpler hardware
than our approach, however, it performs data migration be-
tween on-chip and off-chip memories at a granularity of page,
resulting in waste of the off-chip memory bandwidth.

VI. CONCLUSION

In this paper, we propose a high performance and bandwidth
efficient approach, called SELF, to exploit on-chip DRAM as
a part of memory. SELF selectively swaps lines in a requested
page according to its page footprint instead of swapping an
entire page blindly. In doing so, SELF enables most incoming
requests to be serviced in on-chip memory while avoiding
swapping unnecessary lines to reduce memory bandwidth
consumption. Moreover, SELF reuses the RPT to predict line
location to reduce latency of off-chip accesses. As a result,
SELF improves performance by 26.9% while reducing energy
per access by 47.9% on average, compared to the baseline
system of the same capacity.
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