Optimizing Locality-aware Memory Management
of Key-value Caches

Xiameng Hu, Student Member, IEEE, Xiaolin Wang, Lan Zhou, Yingwei Luo, Chen Ding, Member, IEEE,
Song Jiang, Zhenlin Wang

Abstract—The in-memory cache system is a performance-critical layer in today’s web server architecture. Memcached is one of the
most effective, representative, and prevalent among such systems. An important problem is on its memory allocation. The default
design does not make the best use of the memory. It is unable to adapt when the demand changes, a problem known as slab

calcification.

This paper introduces locality-aware memory allocation (LAMA), which addresses the problem by first analyzing locality of
Memcached’s requests and then reassigning slabs to minimize the miss ratio or the average response time. By evaluating LAMA using
various industry and academic workloads, the paper shows that LAMA outperforms existing techniques in the steady-state
performance, the speed of convergence, and the ability to adapt to request pattern changes, and overcome slab calcification. The new
solution is close to optimal, achieving over 98% of the theoretical potential. Furthermore, LAMA can also be adopted in resource

partition to guarantee quality-of-service (QoS).

Index Terms—Data Locality, Memory Allocation, Key-value Cache, Quality of Service.

1 INTRODUCTION

N today’s web server architecture, distributed in-memory
Icaches are vital components to ensure low-latency service for
user requests. Many companies use in-memory caches to support
web applications. For example, the time to retrieve a web page
from a remote server can be reduced by caching the web page in
server’s memory since accessing data in memory cache is much
faster than querying a back-end database. Through this cache
layer, the database query latency can be reduced as long as the
cache is sufficiently large to maintain a high hit rate.

Memcached [1] is a commonly used distributed in-memory
key-value cache system, which has been deployed in Facebook,
Twitter, Wikipedia, Flickr, and many other internet companies.
It has been proposed to use Memcached as an additional layer
to accelerate systems such as Hadoop, MapReduce, and even
virtual machines [2], [3], [4]. Memcached splits the memory cache
space into different classes to store variable-sized objects as items.
Initially, each class obtains its own memory space by requesting
free slabs, IMB each, from the allocator. Each allocated slab is
divided into slots of equal size. According to the slot size, the
slabs are categorized into different classes, from Class 1 to Class
n, where the slot size increases exponentially. A newly incoming
item is admitted into a class whose slot size is the best fit of the
item size. If there is no free space in the class, a currently cached
item has to be first evicted from the class of slabs following the
LRU policy. In this design, the number of slabs in each class
represents the memory space that has been allocated to it.

o X Hu, X. Wang, L. Zhou and Y. Luo are with Peking University, Beijing,
China.
E-mail: {hxm,wxl,lanzhou,lyw} @pku.edu.cn

e C. Ding is with University of Rochester, Rochester, NY.
E-mail: cding @cs.rochester.edu

o S. Jiang is with Wayne State University, Detroit, MI.
E-mail: sjiang @wayne.edu

o Z Wang is with Michigan Technological University, Houghton, MI.
E-mail: zlwang @mtu.edu

As memory is much more expensive than external storage
devices, the system operators need to maximize the efficiency
of memory cache. They need to know how much cache space
should be deployed to meet the service-level-agreements (SLAS).
Default Memcached fills the cache at the cold start based on the
demand. We observe that this demand-driven slab allocation does
not deliver optimal performance, which will be explained in Sec-
tion 2.1. Performance prediction [5], [6] and optimization [7], [8],
[9], [10], [11] for Memcached have drawn much attention recently.
Some studies focus on profiling and modeling the performance
under different cache capacities [6]. In the presence of workload
changing, default Memcached server may suffer from a problem
called slab calcification [12], in which the slab allocation cannot
be adjusted to fit the change of access pattern as the old slab
allocation may not work well for the new workload. To avoid
the performance drop, the operator needs to restart the server
to reset the system. Recent studies have proposed adaptive slab
allocation strategies and shown a notable improvement over the
default allocation [13], [14], [15]. We will analyze several state-
of-the-art solutions in Section 2. We find that these approaches are
still far behind a theoretical optimum as they do not exploit the
locality inherent in the Memcached requests.

We propose a novel, dynamic slab allocation scheme, locality-
aware memory allocation (LAMA), based on a recent advance on
measurement of data locality [16] described in Section 2.2. This
study provides a low-overhead yet accurate method to model data
locality and generate miss ratio curves (MRCs). Miss ratio curve
(MRC) reveals relationship between cache sizes and cache miss
ratios. With MRC:s for all classes, the overall Memcached perfor-
mance can be modeled in terms of different class space allocations,
and it can be optimized by adjusting individual classes’ allocation.
We have developed a prototype system based on Memcached-
1.4.20 with the locality-aware allocation of memory space. Further
more, we propose to use the locality analysis framework in LAMA
to guide the server resource partition for latency sensitive applica-

tions. The experimental results show that LAMA can achieve over
98% of the theoretical potential and the server partition method is
quite efficient for QoS guarantee.

2 BACKGROUND

This section summarizes the Memcached’s allocation design and
its recent optimizations, which we will compare against LAMA,
and a locality theory, which we will use in LAMA.

2.1 Memory Allocation in Memcached

Default Design In most cases, Memcached is demand filled. The
default slab allocation is based on the number of items arriving
in different classes during the cold start period. However, we
note that in real world workloads, a small portion of the items
appears in most of the requests. For example, in the Facebook
ETC workload [17], 50% of the items occur in only 1% of all
requests. It is likely that a large portion of real world workloads
have similar data locality. The naive allocation of Memcached may
lead to low cache utilization due to negligence of data locality
in its design. Figure 1 shows an example to illustrate the issue
of a naive allocation. Let us assume that there are two classes
of slabs to receive a sequence of requests. In the example, the
sequence of items for writing into Class 1 is “/23456789...”, and
the sequence into Class 2 is “abcabcabc...”. We also assume that
each slab holds only one item in both classes for the sake of
simplicity, and there are a total of four slabs. If the access rates of
the two classes are the same, the combined access pattern would
be “alb2c3a4b5c6a7b8c9...”. In the default allocation, every class
will obtain two slabs (items) because they both store two objects
during the cold start period. Note that the reuse distance of any
request is larger than two for both classes. The number of hits
under naive allocation would be 0. As the working set size of Class
2 is 3, the hit ratio of Class 2 will be 100% with an allocation of
3 slabs according to the MRC in Figure 1(b). If we reallocate one
slab from Class 1 to Class 2, the working set of Class 2 can be fully
cached and every reference to Class 2 will be a hit. Although the
hit ratio of Class 1 is still 0%, the overall hit ratio of cache server
will be 50%. This is much higher than the hit ratio of the default
allocation which is 0%. This example motivates us to allocate
space to the classes of slabs according to their data locality.

Automove The open-source community has implemented an
automatic memory reassignment algorithm (Automove) in a for-
mer version Memcached [18]. In every 10 seconds window, the
Memcached server counts the number of evictions in each class.
If a class takes the highest number of evictions in three consecutive
monitoring windows, a new slab is reassigned to it. The new
slab is taken from the class that has no evictions in the last
three monitoring stages. This policy is greedy but lazy. In real
workloads, it is hard to find a class with no evictions for 30
seconds. Accordingly, the probability for a slab to be reassigned
is extremely low.

Since Memcached-1.4.25, the slab automover has gotten a
very large update. A background process periodically reclaims the
space held by expired data items and produces free slabs out of
the reclaimed space for future reassignment. The new automover
behaves like a garbage collector. This new feature increases the
amount of free space, and it is orthogonal to reallocation of the
existing space, which is the problem we address.

Default Allocation

Trace: alb2c3a4b5c6a7b8c9

class 1 slabs: 112222222222222222
class 2 slabs: ©11222222222222222
hits: 000000000000000000

[> Total hit: 0

Optimal Allocation

Trace: alb2c3a4b5c6a7b8c9

class 1 slabs: 111111111111111111
class 2 slabs: 333333333333333333
hits: 000000101010101010

[> Total hit: 6

(a) Access detail for different allocation

©
=

Miss Ratio

o
=

o
[N

— «class 1
rl--- class 2
1 2 3 7
Slabs
(b) MRC:s for Class 1&2

o
o

Fig. 1: Drawbacks of default allocation

Twitter Policy To tackle the slab calcification problem, Twitter’s
implementation of Memcached (Twemcache) [13] introduces a
new eviction strategy to avoid frequently restarting the server.
Every time a new item needs to be inserted but there is no free
slabs or expired ones, a random slab is selected from all allocated
slabs and reassigned to the class that fits the new item. This
random eviction strategy aims to balance the eviction rates among
all classes to prevent performance degradation due to workload
change. The operator no longer needs to worry about reconfiguring
the cache server when calcification happens. However, random
eviction is aggressive since frequent slab evictions can cause per-
formance fluctuations, as observed in our experiments in Section 5.
In addition, a randomly chosen slab may contain data that would
have been future hits. The random reallocation apparently does
not consider the locality.

Periodic Slab Allocation (PSA) Carra et al. [14] address
some disadvantages of Twemcache and Automove by proposing
periodic slab allocation (PSA). At any time window, the number
of requests of Class ¢ is denoted as R; and the number of slabs
allocated to it is denoted as S;. The risk of moving one slab away
from Class 7 is denoted as R;/S;. Every M misses, PSA moves
one slab from the class with the lowest risk to the class with the
largest number of misses. PSA has an advantage over Twemcache
and Automove by picking the most promising candidate classes
to reassign slabs. It aims to find a slab whose reassignment to
another class dose not result in more misses. Compared with
Twemcache’s random selection strategy, PSA chooses the lowest
risk class to minimize the penalty. However, PSA has a critical
drawback: classes with the highest miss rates can also be the ones

with the lowest risks. In this case, slab reassignment will only
occur between these classes. Other classes will stay untouched
and unoptimized since there is no chance to adjust slab allocation
among them. Figure 2 illustrates a simple example where PSA
can get stuck. Assume that a cache server consists of three slabs
and every slab contains only one item. The global access trace
is “(aalaa2baalaalaalbal)*”, which is composed of Class 1
“]21212...” and Class 2 “(aaaabaaaaaaba)*”. If Class 1 has
taken only one slab (item) and Class 2 has taken two items, Class
1 would have the highest miss rate and the lowest risk. The system
will be in a state with no slab reassignment. The overall system
hit ratio under this allocation will be 68%. However, if a slab
(item) were to be reassigned from Class 2 to Class 1, the hit
ratio will increase to 79% since the working set size of Class 1
is 2. Apart from this weak point, in our experiments, PSA shows
good adaptability for slab calcification since it can react quickly
to workload changing. However, since the PSA algorithm lacks a
global perspective for slab assignment, the performance still falls
short when compared with our locality-aware scheme.

Class 1: 121212... Class 2: aaaabaaaaaaba...

Trace: aalaa2baalaa2aaiba2...

PSA Optimal
/ class 2 class 1
class 1 class 2
Slabs: 1 Slabs: 2 Slabs: 2| {Slabs: 1
Hit: 0 Hit: 13 Hit: 6 Hit: 9
R: 6 R: 13 R: 6 R: 13
Risk: 6.5 Risk: 3 Risk: 13

KRisk: 6

Fig. 2: Drawbacks of PSA

Facebook Policy

Facebook’s optimization of Memcached [15] uses adaptive
slab allocation strategy to balance item age. In their design,
if a class is currently evicting items, and the next item to be
evicted was used at least 20% more recently than the average least
recently used item of all other classes, this class is identified as
needing more memory. The slab holding the overall least recently
used item will be reassigned to the needy class. This algorithm
balances the age of the least recently used items among all classes.
Effectively, the policy approximates the global LRU policy, which
is inherently weaker than optimal as shown by Brock et al. using
the footprint theory we will describe next [19].

The policies of default Memcached, Twemcache, Automove,
and PSA all aim to equalize the eviction rate among size classes.
The Facebook policy aims to equalize the age of the oldest
item in size classes. We call the former performance balancing
and the latter age balancing. Later in the evaluation section, we
will compare these policies and show their relative strengths and
weaknesses.

2.2 The Footprint Theory

The locality theory is by Xiang et al., who define a metric called
footprint and propose a linear time algorithm to measure it [16]

3

and a formula to convert it into the miss ratio [20]. Next we give
the definition of footprint and show its use in predicting the miss
ratio.

The purpose of the footprint is to quantify the locality in a
period of program execution. An execution trace is a sequence
of memory accesses, each of which is represented by a memory
address. Accesses can be tagged with logical or physical time. The
logical time counts the number of accesses from the start of the
trace. The physical time counts the elapsed time. An execution
window is a sub-sequence of consecutive accesses in the trace.

The locality of an execution window is measured by the
working-set size , which is the amount of data accessed by all
its accesses [21]. The footprint is a function fp(w) as the average
working-set size for all windows of the same length w. While
different window may have different working-set size, fp(w) is
unique. It is the expected working-set size for a randomly selected
window.

Consider a trace abcca. Each element is a window of length
w = 1. The working-set size is always 1, so fp(1) = 5/5 = 1.
There are 4 windows of length w = 2. Their working-set sizes are
2,2, 1, and 2. The average, i.e., the footprint, is fp(2) = 7/4. For
greater window lengths, we have fp(3) = 7/3 and fp(w) = 3 for
w = 4, 5, where 5 is the largest window length, i.e., the length of
the trace. We also define fp(0) = 0.

Although the footprint theory is proposed to model locality
of data accesses of a program, the same theory can be applied in
modeling the locality of Memcached requests where data access
addresses are replaced by the keys. The linear time footprint
analysis leads to linear time MRC construction and thus a low-
cost slab allocation prediction, as discussed next.

3 LoCALITY-AWARE MEMORY ALLOCATION
This section describes the design details of LAMA.

3.1 Locality-based Caching

Memcached allocates the memory at the granularity of a slab,
which is 1MB in the default configuration. For every size class,
Memcached allocates its items in its collection of slabs. The items
are ordered in a priority list based on their last access time,
forming an LRU chain. The head item of the chain has the most
recent access, and the tail item the least recent access. When all
the allocated slabs are filled, eviction will happen when a new
item is accessed, i.e. a cache miss. When the tail item is evicted,
its memory is used to store the new item, and the new item is
re-inserted at the first position to become the new head.

In a web-service application, some portion of items may be
frequently requested. Because of their frequent access, the hot
items will reside near the top of the LRU chain and hence be given
higher priority to cache. A class’ capacity, however, is important,
since hot items can still be evicted if the amount of allocated
memory is not large enough.

A slab may be reassigned from one size class to another. The
SlabReassign routine in Memcached releases a slab used in a
size class and gives it to another size class. The reassignment
evicts all the items that are stored in the slab and removes these
items from the LRU chain. The slab is now unoccupied and
changes hands to store items for the new size class.

Memcached may serve multiple applications at the same time.
The memory is shared. Since requests are pooled, the LRU chain
gives the priority of all items based on the aggregate access from
all programs.

3.2 MRC Profiling

We split the global access trace into different sub-traces according
to their classes. With the sub-trace of each class, we generate the
MRC:s as follows. We use a hash table to record the last access
time of each item. With this hash table, we can easily compute the
reuse time distribution 7, which represents the number of accesses
with a reuse time ¢. For access trace of length n, if the number of
unique data is m, the average number of items accessed in a time
window of size w can be calculated using Xiang’s formula [16]:

m

O (fi —w)I(fi > w)

=1

+ zm:(zi —w)I(l; > w)

1

folw) =m= T

3 (- wn)

t=w—+1

()

The symbols are defined as:

e fi: the first access time of the i-th datum

e [;: the reverse last access time of the i-th datum. If the last
access is at position z, I; = n + 1 — x, that is, the first
access time in the reverse trace.

e I(p): the predicate function equals to 1 if p is true;
otherwise 0.

e 13 the the number of accesses with a reuse time t.

Now we can profile the MRC using fp distribution. The miss
ratio for cache size of x is the fraction of reuses that have an
average footprint larger than x:

X<y Tt

MRC(x) =1 -

2

For example, we show the footprint-based MRC calculation
for cyclic reference pattern “(abc)*” in Table 1. This is the trace
of Class 2 in Figure 1. If the trace length is infinite, the miss ratio
is 100% if the footprint is greater than the cache size, but 0%
otherwise.

TABLE 1: An example of MRC calculation by footprint

x Of(1]2]3]|>3
fp(x) o 1|23 3
MRCx) | 1 | 1 |10 0

3.3 Target Performance

We consider two types of target performance: the total miss ratio
and the average response time.

If Class ¢ has taken S; slabs, and I; represents the number of
items per slab in Class . Then there should be S; * I; items in this
class. The miss ratio of this class should be M R; = M RC;(S; *
I;). Let the number of requests of Class ¢ be R;. The total miss
ratio is calculated as:

S R x MR; Y0 Rix MRC(S; * 1)

Miss Ratio = 7 7
Zi:l R; Zi:l R; 3)

Let the average request hit time for Class ¢ be T}, (), and the
average request miss time (including retrieving data from database

4

and setting back to Memcached) be T, (7). The average request
time ART; of Class ¢ now can be presented as:

ART, = MR; + Tpy(i) + (1 — MR;) * T (i) (4)
The overall ART of the Memcached server is:
n .+ ART;

ART = 2z i x ART,)

Z?:l R;

We target the overall performance by all size classes rather
than equal performance in each class. The metrics take into
account the relative total demands for different size classes. If we
consider a typical request as the one that has the same proportional
usage, then the optimal performance overall implies the optimal
performance for a typical request.

3.4 Optimal Memory Reallocation

When a Memcached server is started, the available memory is
allocated by demand. Once the memory is fully allocated, we have
a partition among all size classes. LAMA periodically measures
the MRCs and reallocating the memory.

The optimization problem is as follows. Given the MRC for
each size class, how to divide the memory among all size classes
so that the target performance is maximized, i.e., the total miss
ratio or the average response time is minimized?

The reallocation algorithm has two steps:

Step 1: Cost Calculation First we split the access trace into
sub-traces based on their classes. For each sub-trace T'[i] of Class
i, we use the procedure described in Section 3.2 to calculate the
miss ratio M R[i][j] when allocated j slabs, 0 < j < MAX,
where MAX is the total number of slabs. We compute the cost for
different optimization targets.

To minimize total misses, C'ost[i][7] is the number of misses
for Class ¢ given its allocation j as follows:

Costli][j] + M RJ[i][j] * length(T][i]).

To minimize ART, Cost[i][j] is the average access time of
Class ¢ as follows:

Costli][j] + (M R[i][j] * Trm[i]+
(1 — MRIi][j]) * Tn[i]) * length(T[i])

Algorithm 1 Locality-aware Memory Allocation

Input: Cost[][] // cost function, could be OPT_MISS or
OPT_ART
Input: M AX // total number of slabs
Ensure: Slabs;e.,[] // optimal slabs allocation
1: function OPTIMALALLOCATION(Cost]][], Sotal], M AX)

22 F[J[] + 4+
3: > F'[][] minimal cost for Class 1..7 using j slabs
4: for i < 1..n do
5: for j < 1.MAX do
6: for k < 0..j do
7: Temp < F[i —1][j — k] + Cost[i][k]
8: > Give k slabs to Class i.
9: if Temp < F[i][j] then
10: F[i][j] + Temp
11 BJi][j] « k
12: > B[][] saves the slab allocation.
13: end if
14: end for
15: end for
16: end for
17: Temp +— MAX
18: for i <— n..1do
19: Slabspew[i] < Bli][Temp]
20: Temp < Temp — Bli][Temp)
21: end for
22 return S1abs;eq, ||

23: end function

Step 2: Reallocation We design a dynamic programming algo-
rithm to find new memory allocation (Algorithm 1). Lines 4 to 16
show a triple nested loop. The outermost loop iterates the set of
size classes ¢ from 1 to n. The middle loop iterates the number
of slabs j from 1 to MAX. The target function, F'[i][j], stores the
optimal cost of allocating j slabs to ¢ size classes. The innermost
loop iterates the allocation for the latest size class to find this
optimal value.

Once the new allocation is determined, it is compared with
the previous allocation to see if the performance improvement is
above a certain threshold. If it is, slabs are reassigned to change the
allocation. Through this procedure, LAMA reorganizes multiple
slabs across all size classes. The dynamic programming algorithm
is similar to Brock et al. [19] but for a different purpose.

In real deployment of the algorithm, we can set /N as an upper
bound on the number of reassignments for each repartitioning and
each reassignment is limited to 1 slab (In Section 5.4, we will
discuss a reassignment granularity of 7 slabs). This will avert
the cost of reassigning too many slabs at one time. At each
reallocation, we choose N slabs with the lowest risk. We use
the risk definition of PSA, which is the ratio between reference
rate and number of slabs for each class. The reallocation is global,
since multiple candidate slabs are selected from possibly many
size classes. In contrast, PSA selects a single candidate from one
size class. With the reassignment constraint, the performance drop
due to massive eviction of useful data is avoid. This design also
narrows the search space of possible solutions in Algorithm 1. As
we can infer from the triple nested loop, the time complexity of
the optimization is O(n * MAX?), where n is the number of size
classes and MAX is the total number of slabs. With the reassigning
upper bound N, the inner loop from line 6 to 14 do not have to

5

search the whole memory space, but the space with a radius of
N slabs from current allocation. Therefore, the time complexity
of Algorithm 1 can be improved to O(n * MAX % N'), which is
efficient in large scale system.

The bound NV is the maximal number of reassignments. In
the steady state, the reallocation algorithm may decide that the
current allocation is the best possible and does not reassign any
slab. The number of actual reassignments can be 0 or any number
not exceeding V.

Algorithm 1 optimizes the overall performance. The solution
may not be fair, i.e., different miss ratios across size classes.
Fairness is not a concern at the level of memory allocation.
Facebook solves the problem at a higher level by running a
dedicated Memcached server for critical applications [17]. We
introduce locality-aware server partition to guarantee the QoS
of a critical application in Section 4. If fairness is a concern,
Algorithm 1 can use a revised cost function to discard unfair
solutions and optimize both for performance and fairness. A recent
solution is the baseline optimization by Brock et al. [19] and Ye
et al. [22].

3.5 Performance Prediction

Despite the optimal allocation, the locality analysis framework
in LAMA can also be adopted to predict the performance of
the default Memcached under different memory space. This can
avoid frequently restarting sever for performance testing. Using
Equation 1 in Section 3.2, the average footprint of any window
size can be obtained. For a stable access pattern, we define the
request ratio of Class ¢ as g;. Let the number of requests during
the cold start period be M. The allocation for Class i by the
default Memcached is the number of items it requests during this
period. We predict this allocation as fp; (M * g;). The length M
of the cold-start period, i.e., the period during which the memory
is completely allocated, satisfies the following equation:

n
> (M xq)=C (©6)

i=1
Once we get the expected items (slabs) each class can take, the
system performance can be predicted by Equation 3. By predicting
M and the memory allocation for each class, we can predict the
performance of default Memcached for all memory sizes. The
predicted allocation is similar to the natural partition of CPU
cache memory, as studied in [19]. Using the footprint theory,
our approach delivers high accuracy and low overhead. This is
important for a system operator to determine how many caches
should be deployed to achieve required Quality of Service (QoS).

4 LOCALITY-AWARE SERVER PARTITION

A typical Memcached cluster can be shared by multiple applica-
tions or web services of different data access patterns. Each of
them may have different quality-of-service (QoS) requirements.
In each Memcached server, its cached data blocks come from
different applications sharing the server. They are all managed
by the LRU eviction policy in individual size classes. In this
scenario, applications in the same Memcached server compete for
the same memory. The memory occupation of each application is
determined by factors including access frequency or reuse distance
distribution. As observed, Facebook applications negatively inter-
fere with each other [15]. For example, an application with a high

/ Memcached Cluster \

web
server

server

\ Pool A Pool B J

Fig. 3: Inter-Server Partition

access frequency may occupy more memory than an application
with a low access frequency. Because of this sharing, one may not
be able to guarantee the QoS of performance-critical applications.
Among web services, some applications are latency sensitive and
require a fast user response. For these applications, a high hit ratio
in the cache layer is necessary to guarantee QoS. They should
be prevented from sharing a Memcached server with unknown
applications. Instead, they should be allocated dedicated memory.

To guarantee the QoS of performance-critical applications, one
solution is to partition Memcached servers into separate pools
and dedicate some of the pools for certain applications. Absent
of sharing, these applications are not affected by interference
from dynamic memory sharing. This design has been adopted by
Facebook to protect the valuable keys by a memory pool [15].
Figure 3 illustrates the layout of this inter-server partition scheme.

For smaller scale deployment of Memcached, a finer grain
way to do the isolation is partitioning the memory space within
each server. Instead of assigning servers among applications, all
Memcached servers serve all applications. The partition happens
in the memory of each server, as shown in Figure 4. The dif-
ference between sharing a server and partitioning a server is
similar to CPU cache partition and sharing (for a recent study,
see [19]). Every slab in a Memcached server is assigned to a
specific application (or a group of applications). In a partitioned
server, an application can have its exclusive LRU chain, which
is constructed for the slabs allocated to it. This design is similar
to multiple Memcached instances running on a single physical
server, each instance only manages its own memory for one or
several applications.

/ Memcached Cluster \

1
web
web
server
server
memcached memcached

memcached

/ﬁ*\ T

memcached /

Fig. 4: Intra-Server Partition

6

The intra-server partition provides isolation for different ap-
plications in a single server. Although they are still “sharing”
the Memcached server, partition protects the valuable data in
a performance-critical application from being evicted by other
applications. This design also provides the ability of dynamically
adjusting the partition to respond to demand changes.

Although an improved eviction policy, CAMP [23], is pro-
posed to take size and cost into consideration to prevent the
eviction of valuable data from performance-critical applications,
the design motivation of CAMP is to avoid human involvement
to partition the available memory into disjoint pools. It shows that
heuristic memory partition is suboptimal compare to well designed
eviction policy. But this is a less predictable strategy. It is hard to
predict and control the hit ratios of several applications when they
are running and sharing the same memory space. However, with
our performance prediction technique, we will show how QoS
predictable memory partition can be done dynamically.

Algorithm 2 Performance Guarantee Partition

Input: MR, // Miss ratio requirement for QoS guarantee
Input: U P // The upper bound of slabs occupation
Ensure: Slabs,.,[] // Number of slabs required

1: function SERVERPARTITION(M R,., UP)

2: Left <0

3: Right + UP

4: Slabsyeq[] < Optimal Allocation(Cost[][], UP)
5 MR, <0

6: for i +— n..1 do

7: MRy < MRyeor + MR[i][Slabs,qt]]

8: end for

9: if MRy ey > MR, then

10: return MMORE_SPACE_REQUIRED

11: end if

12: while Left + 1 < Right do

13: Mid + (Left + Right)/2

14: Slabsyeq|| < Optimal Allocation(Cost[][], Mid)
15: MR,cp, < 0

16: for i <— n..1do

17: MRy e < MRy + MRJi][S1abs,cq]1]]
18: end for

19: if M Rye0 > M R,cq then
20: Left < Mid
21: else
22: Right < Mid
23: end if
24: end while
25. Slabs,eq] < Optimal Allocation(Cost|][], Right)
26: return Slabs, .||

27: end function

We use intra-server partition to isolate the latency-sensitive
application in order to satisfy its QoS requirement. Since the
intra-server partition does not change the key-to-server mapping,
the partition is determined by each individual Memcached server.
There is no need for a global scheduler to gather MRC information
from all applications. During the execution, each sever keeps
tracking the access pattern to make sure that the current partition
is effective and efficient. The optimal memory allocation we de-
scribed in Section 3.4 is used here to partition the memory among
size classes within an application. The intra-server partition is an

upper-level partition that partitions the memory for performance-
critical applications. The memory is partitioned at two levels
first for QoS among applications and then for optimal allocation
among size classes. Both are based on the same locality analysis.
Algorithm 2 shows the intra-server partition algorithm. It uses
binary search to find the least number of slabs required for a QoS
target. When given the number of slabs, Algorithm 1 is invoked to
conduct the optimal slab allocation for the minimal miss ratio. A
higher or lower miss ratio requires searching into more space or
less space, respectively. If the required slab partition (Slabs,cq)
is smaller than current partition, the application will release the
extra slabs. Otherwise, the system will assign new slabs to it.
To prevent any application from taking all the slabs and starving
other applications, an upper bound of slab occupation for each
application may be set. If there are multiple applications that are
critical and require QoS at the same time, and the Memcached
servers cannot provide enough memory to satisfy all of their
requirements, a priority-based scheduling may be used.

5 EVALUATION

In this section, we evaluate LAMA in detail, including describing
the experimental setup for evaluation and comprehensive evalua-
tion results and analysis.

5.1 Experimental setup

LAMA Implementation We have implemented LAMA in
Memcached-1.4.20 (Section 5.2 to 5.7). To evaulate LAMA la-
tencies and compare it with the most recent Automove design,
we have also implemented LAMA in a more recent version of
Memcached-1.4.29 (Section 5.8), which adopts a garbage collector
to recollect expired items. For MRC analysis, we used to record
the access trace using a circular buffer. This is space consuming
and requires a mutex lock for each thread to update the buffer.
We replace this design by a lock free hash table to track the first
reference and last reference as well as the reuse time for each item.
The other statistics to calculate footprint are updated by every
access in a lock free manner too. This avoids recording the trace
and the mutex lock for every thread. Beside, the MRC calculation
is much faster from those updated data structures than a buffered
trace. In our test, when we need MRCs for repartition, all the
MRCs can be calculated with in a second. The space cost of these
data structures depends on the size of the items being analyzed.
It is 1% - 2% of all memory depending for the workload we
use. The MRCs calculation and slab reassignment (Algorithm 1)
are performed in the slab rebalancer thread of Memcached. The
overhead is negligible, both in time and in space.

System Setup To evaluate the efficiency of LAMA and other
strategies, we use a single node, Intel(R) Core(TM) 17-3770
machine with 4 cores, 3.4GHz, 8MB shared LLC with 16GB
memory. To evaluate the scalability of LAMA, we use a Dell
PowerEdge R720 with ten-core 2.50GHz Intel Xeon E5-2670 v2
processors and 256 GB of RAM.

For small scale test, we measure both the miss ratio and the
response time, as defined in Section 3.4. In order to measure the
latter, we set up a database as the backing store to the Memcached
server. The response time is the wall-clock time used for each
client request by the server, including the cost of the database
access. For scalability test, we measure the maximum throughput
of Memcached with LAMA, as well as the 95% tail latency to

7

verify the overhead of LAMA in a large scale system. In our
evaluation, all the Memcached instances are running on local ports
with 4 server threads and the database is running from another
server on the local network.

Workloads Three workloads are used for different aspects of the
evaluation:

e The Facebook ETC workload to test the steady-
state performance. It is generated using Mutilate [24],
which emulates the characteristics of the ETC workload
at Facebook. ETC is the closest workload to a general-
purpose one, with the highest miss ratio in all Facebook’s
Memcached pools. It is reported that the installation at
Facebook uses hundreds of nodes in one cluster [17]. We
set the workload to have 50 million requests to 7 million
data objects.

o A three-phase workload to test dynamic allocation. It is
constructed based on Carra et al. [14]. It has 200 million
requests to data items in two working sets, each of which
has 7 million items. The first phase only accesses the first
set following a generalized Pareto distribution with loca-
tion 6§ = 0, scale ¢ = 214.476 and shape k = 0.348238,
based on the numbers reported by Atikoglu et al. [17].
The third phase only accesses the second set following the
Pareto distribution = 0, ¢ = 312.6175 and k£ = 0.05.
The middle, transition phase increasingly accesses data
objects from the second set.

o A large-scale-test workload to test scalability. We use the
Data Caching Benchmark of CloudSuite [25]. It simulates
the behavior of a Twitter caching server using the twitter
dataset. The original dataset consumes 300MB of server
memory, while we scale up the dataset to 150GB (scaling
factor of 500). We set up the benchmark loader with 200
TPC/IP connections, and a get/set ration of 0.8.

5.2 Facebook ETC Performance

We test and compare LAMA with the policies of default Mem-
cached, Automove, PSA, Facebook, and Twitter’s Twemcache
(described in Section 2). In our experiments, Automove finds no
chance of slab reassignment, so it has the same performance as
Memcached. LAMA has two variants: LAMA_OPT_MR, which
tries to minimize the miss ratio; and LAMA_OPT_ART, which
tries to minimize the average response time. Figures 5 and 6 show
the miss ratio and ART over time from the cold-start to steady-
state performance. The total memory is 512MB.

The default Memcached and PSA are designed to balance the
miss ratio among size classes. LAMA tries to minimize the total
miss ratio. Performance optimization by LAMA shows a large
advantage over performance balancing by Memcached and PSA.
If we compare the steady-state miss ratio, LAMA_OPT_MR is
47.20% and 18.08% lower than Memcached and PSA. If we
compare the steady-state ART, LAMA_OPT_ART is 33.45% and
13.17% lower.

There is a warm-up time before reaching the steady state.
LAMA repartitions at around every 300 seconds and reassigns up
to 50 slabs. We run PSA at 50 times the LAMA frequency, since
PSA reassigns 1 slab each time. LAMA, PSA and Memcached
converge to the steady state at the same speed. Our implementation
of optimal allocation (Section 4.6) shows that this speed is the
fastest.

1.0 ; ; ;
e—e LAMA OPT_MR
0.9 =—= LAMA_OPT_ART
~— Memcached/Automove |{
a-a PSA
o0 Twemcache
v-v Facebook
9 M 9 o 0
A 1“A ¥ A v“’/.\' A' A_' A
0% 20 40 60 80 100
Request(%)

Fig. 5: Miss ratio from cold-start to steady state

800, ‘ ‘ ‘
o —- LAMA OPT_MR
£ 700 == LAMA OPT ART
g 1 +~— Memcached/Automove
F 600} Loe PSA
o ; oo Twemcache
%500}‘« v--v Facebook
o %\ % ° M ¢ N 0 ° 0
>
& 400¢ -
g 'y 'V"\,.‘h_f {\v.-‘.v.A,'..‘..A
<< 300¢ -

0 20 40 60 80 100
Request(%)

Fig. 6: Average response time from cold-start to steady state

0.9 : : : :

0.8 M- Il Twemcache [l LAMA_OPT_MR |4

0.7 M 5 E Memcached [LAMA_OPT_ART|q
o 0.6} E E g E=3 PSA B TUB A
< 051 M H H £ i B Facebook]
@ 0.4 M H H H H = 1
= o3 BH H H H H H - ,

031 i g i i i i i N

0.2 M H H H H H H H H s .

H H H H H H H H H H i

0.1r]]]]]]]]]]] H H H L, B

ol i [i i i [i i i I 0 A WA N Mo

! 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Memory Space(MB)

Fig. 7: Steady-state miss ratio with different memory sizes

800 T T T T
% 7001 M BN Twemcache [LAMA_OPT_MR |
£ 600l B a B Memcached [Z@ LAMA OPT ART|.
E 500} g i =3 PSA EEE TUB l
% 400l MH H H H 0 i Bl Facebook)l
% 300} E E E E E E H L i
& g g g g g g g g i g I
o 200" B £ £ £ £ £ £ H H H i i H g - 1
< 100 M H H H H H H H H H H I H I H I H I H I i
|} |} |} |} |} |} |} | | | | | | |} |}
|} |} |} |} |} |} |} | | | | | | |} |}
0 H - - H H - - H H H H H H - -
128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Memory Space(MB)

Fig. 8: Steady-state average response time when using different amounts of memory

The Facebook method differs from others in that it seeks
to equalize the age of the oldest items in each size class. In
the steady state, it performs closest to LAMA, 5.4% higher
than LAMA_OPT_MR in the miss ratio and 6.7% higher than
LAMA_OPT_ART in the average response time. The greater
weakness, however, is the speed of convergence, which is about 4
times slower than LAMA and the other methods.

Twemcache uses random rather than LRU replacement. In this
test, the performance does not stabilize as well as the other meth-
ods, and it is generally worse than the other methods. Random
replacement can avoid slab calcification, which we consider in
Section 5.5.

Next we compare the steady-state performance for memory
sizes from 128MB to 1024MB in 64MB increments. Figures 7
and 8 show that the two LAMA solutions are consistently the best
at all memory sizes. The margin narrows in the average response
time when the memory size is large. Compared with Memcached,
LAMA reduces the average miss ratio by 41.9% (22.4%-46.6%)
for the same cache size, while PSA and Facebook reduce the miss

ratio by 31.7% (9.1%-43.9%) and 37.6% (21.0%—47.1%). For the
same or lower miss ratio, LAMA saves 40.8% (22.7%—66.4%)
memory space, PSA and Facebook save 29.7% (14.6%—-46.4%)
and 36.9% (15.4%-55.4%) respectively.

Heuristic solutions show strength in specific cases. Facebook
improves significantly over PSA for smaller memory sizes (in the
steadstate). With 832MB and larger memory, PSA catches up and
slightly outperforms Facebook. At 1024MB, Memcached has a
slightly faster ART than both PSA and Facebook. The strength of
optimization is universal. LAMA maintains a clear lead against all
other methods at all memory sizes.

Compared to previous methods on different memory sizes,
LAMA converges among the fastest and reaches a greater steady-
state performance. The steady-state graphs also show the the-
oretical upper bound performance (TUB), which we discuss in
Section 5.6.

1.

0.8 ~—e Real_MRC_classl
= == Real MRC_class5
20'6 +— Real_MRC_class9
$0.4 Footprint MRC
s

0.2

0. 50 100 150 200

Slabs

Fig. 9: MRC:s for class 1&5&9

TABLE 2: prediction miss ratio vs. real miss ratio

Capacity Real Prediction Accuracy
128MB 87.56% 88.21% 99.26%
256MB 74.68% 75.40% 99.05%
384MB 62.34% 62.63% 99.54%
512MB 50.34% 50.83% 99.04%
640MB 39.36% 39.52% 99.60%
768MB 29.04% 29.27% 99.21%
896MB 20.18% 20.61% 97.91%
1024MB 13.36% 13.46% 99.26%

5.3 MRC Accuracy

To be optimal, LAMA must have the accurate MRC. We compare
the LAMA MRC, obtained by sampling and footprint version,
with the actual MRC, obtained by measuring the full-trace reuse
distance. We first show the MRC in individual size classes of
Facebook ETC workload. There are 32 size classes. The MRCs
differ in most cases. Figure 9 shows three MRCs to demonstrate.
The three curves have different shapes and positions in the plots,
which means that data locality differs in different size classes. The
shape of the middle curve is not entirely convex, which means that
the traditional greedy solution, i.e. Stone et al. [26] in Section 6,
cannot always optimize, and the dynamic-programming method in
this work is necessary.

Figure 9 shows that the prediction is identical to the actual
miss ratio for these size classes. The same accuracy is seen in
all size classes. Table 2 shows the overall miss ratio of default
Memcached for memory sizes from 128MB to 1024MB and
compares between the prediction and the actual. The steady-state
allocation prediction for default Memcached uses Equation 6 in
Section 3.5. The prediction miss ratio uses Equation 4 based on
predicted allocation. The actual miss ratio is measured from each
run. The overall miss ratio drops as the memory size grows. The
average accuracy in our test is 99.0%. The high MRC accuracy
enables the effective optimization that we have observed in the
last section.

5.4 LAMA Parameters

LAMA has two main parameters as explained in Section 3.4: the
repartitioning interval M, which is the number of items accessed
before repartitioning; and the reassignment upper bound N, which
is the maximal number of reassignments at repartitioning. We have
tested different values of M and NN to study their effects. In this
section, we show the performance of running the Facebook ETC
workload with 512MB memory.

Figure 10 shows the dynamic miss ratio over the time. In
all cases, the miss ratio converges to a steady state. Different

9

M, N parameters affect the quality and speed of convergence.
Three values of M are shown: 1, 2, and 5 million accesses. The
smallest M shows the fastest convergence and the lowest steady-
state miss ratio. They are the benefits of frequent monitoring
and repartitioning. Four values of N are shown: 10, 20, 50, and
512. Convergence is faster with a larger N. However, when [V is
large, 512 in particular, the miss ratio has small spikes before it
converges, caused by the increasing cost of slab reassignment. Fre-
quent repartitioning speeds up the convergence but will increase
the monitoring overhead.

In a real deployment, these two parameters can be adjusted
according to the scale of the workload and Memcached server.
Another design option is the size of reallocation unit. In our small
scale test, every reassignment will move one slab from one class
to another. However, in large scale deployments, a larger-grained
reallocation unit leads to higher efficiency. It will bound the search
space of Algorithm 1. Based on our experience on different-scale
tests, the reallocation granularity can be set to r slabs, where 7
is the memory size of the Memcached server divided by 1GB.
For example, if the size of cache server is 10GB, the unit of
reallocation will increase correspondingly by 10 times to 10 slabs
(10MB) for each reassignment. The reassignment upper bound
N can be set to 50, so the total reassignments are limited to 50
times and each reassignment will move 10 slabs from one class
to another. With this design, the number of solutions in the search
space of Algorithm 1 is always bounded to n x 1024 % 50 (n is the
number of classes). In our test machine, it only takes 0.01 seconds
to determine the best allocation.

Now we discuss how to determine the repartitioning interval
M in other cache sizes. With the reassignment upper bound, the
interval should be long enough for each class to measure the miss
ratio up to N * r slabs above or below the current allocation.
However, if the current allocation of some classes is smaller
than the reassignment upper bound, miss ratio measurement up
to this bound is meaningless. Meanwhile, doubling the current
space allocation rarely happens in any class, so we choose to only
measure miss ratios for up to 2 times of the current allocation.
Assuming that the miss ratio of Class ¢ is mr;, and the probability
of a reference to Class 7 is p;, we can derive the following
relationship:

min(2 % S;,S; + N *r) * I;

M) >=
* p(l) mr;

)

where S; is the current slabs allocation of Class i, I; is the
number of items in each slab of Class 7. If we want to measure
miss ratio curve of Class 7, we use the number of distinct items
that fill the desired slab allocation divides the current miss ratio to
get the number of accesses to this class that should be monitored.
With the above analysis, now we can determine the repartitioning
interval M for a system of any scale:

min(2 % S;,S; + N *r) * I;
mr; * p(4)

In real deployments, we can ignore those classes with few or
no misses in Equation 8. Their current allocations are already suf-
ficient to cache all the items being used. Miss ratio measurement
for a larger allocation is not necessary.

M = max
1<i<n

) ®)

5.5 Slab Calcification

LAMA does not suffer from slab calcification. Partly to compare
with prior work, we use the three-phase workload (Section 5.1) to

N=20

o—e M=1eb|
& A M=2e6 |

20 40 66) 80 1000'20 20 40 ?_% 80 100

1.0 T T T 1.0 T T T

0.9 o—e M=1eb6|{ 0.9 o—e M=1eb|-
008 & -A M=2e6({ 0.8 & A M=2e6 |
0.7 = -8 M=5e6|{ 0.7 » -8 M=5e6/|]

0.6
0.5
0.4
0.3

0 20 40 60 80 1000'20 20 40 60 80 100

Request(%)

Fig. 10: Different combinations of the repartitioning interval M
and the reassignment upperbound N

test how LAMA adapts when the access pattern changes from one
steady state to another. The workload is the same as the one used
by Carra et al. [14] using 1024MB memory cache to evaluate the
performance of different strategies. Figure 11 shows the miss ratio
over time obtained by LAMA and other policies. The two vertical
lines are phase boundaries.

0.5 -
—e [AMA
i a-a PSA
0.41E — Memcached|]
| o—¢ Twemcache
20 3 v.-v Facebook
chatk
o | YL
01l \;&‘ T Y kA A A A A A A
phase 1 phase 2 phase 3|
0.0 20 40 60 80 100
Request(%)

Fig. 11: Miss ratio over time by different policies

LAMA has the lowest miss ratio in all three phases. In the
transition Phase 2, the miss ratio has 3 small, brief increases due to
the outdated slab allocation based on the previous access pattern.
The allocation is quickly updated by LAMA repartitioning among
all size classes. In LAMA, the slabs are “liquid” and not calcified.

Compared with LAMA, the miss ratio of the default Mem-
cached is about 4% higher in Phase 1, and the gap increases
to about 7% in Phase 3, showing the effect in Phase 3 of the
calcified allocation made in Phase 1. PSA performs very well but
also sees its gap with LAMA increases in Phase 3, indicating

10

50

,3457 LN PR T

2\/407 llnu..uunnun.......»..-..T

%35—

g 30

v 25

520 = LAMA

& %g «1s Memcached ||
I3 . L - -
0 20 40 60 80 100

Request(%)

Fig. 12: Cpu usage over time by LAMA and default Memcached

that PSA does not completely eradicate calcification. Facebook
uses global LRU. Its miss ratio drops slowly, reaches the level of
PSA in Phase 2, and then increases fairly rapidly. The reason is
the misleading LRU information when the working set changes.
The items of the first set stay a long time in the LRU chain. The
random eviction by Twemcache does not favor the new working
set over the previous working set. There is no calcification, but
the performance is significantly worse than others (except for the
worst of Facebook).

To verify the CPU cost of LAMA. We monitor the CPU usage
over time by LAMA and default Memcached in last test. For every
10° requests, the average CPU usage is recorded in Figure 12.
As we can observe, LAMA has lower CPU cost than defalut
Memcached for most of the time. In Figure 11, LAMA reduces
the miss ratio compare to default Memcached, the CPU cost is
also reduced because the querying and setting for missed data is
less with lower miss ratio.

5.6 Theoretical Upper Bound

To measure the theoretical upper bound (TUB), we first measure
the actual MRCs by measuring the full-trace reuse distance in the
first run, compute the optimal slab allocation using Algorithm 1,
and re-run a workload to measure the performance. The results
for Facebook ETC were shown in Figures 7 and 8. The theoretical
upper bound (TUB) gives the lowest miss ratio/ART and shows the
maximal potential for improvement over the default Memcached.
LAMA realizes 97.6% of the potential in terms of miss ratio and
92.1% in terms of ART.

We have also tested the upper bound for the three-phase
workload. TUB shows the maximal potential for improvement
over the default Memcached. In this test, LAMA realizes 99.2%
of the potential in phase 3, while the next best technique, PSA,
realizes 41.5%. At large memory sizes, PSA performs worse than
the default Memcached. It shows the limitation of heuristic-based
solutions. A heuristic may be more or less effective compared to
another heuristic, depending on the context. Through optimization,
LAMA matches or exceeds the performance of all heuristic
solutions.

5.7 QoS Guarantee Server Partition

With the intra-server partition we proposed in Section 4, the
desired memory space and slab allocation for performance-critical
application can be calculated. Given a hit ratio requirement,
LAMA can dynamically adjust the slabs partition to maintain the
desired performance if the slab resources are sufficient. With the
application’s performance requirement increasing or declining, the
number of slabs in the pool can be tuned for usage efficiency.

To demonstrate the effect of intra-server partition, we choose
the three-phase workload (APP1) to run with Facebook ETC
workload (AP P2) in the same Memcached cluster. Because the
hit ratio of AP P1 drops from Phase 2 to Phase 3, it is reasonable
to apply the dynamic intra-server partition to prevent the perfor-
mance degradation. To balance the lengths of the two workloads,
the ratio of their reference rates is set to 4:1. We evaluate the space
occupation (Figure 13) and miss ratio (Figure 14) over time of two
workloads under two configurations: (1) enabling LAMA without
intra-server partition. All keys in both workloads are mapped to
one Memcached server of 1024MB. (2) enabling LAMA and intra-
server partition in the same time and make a hit ratio guarantee
of APP1 at 85% and 80%. In the implementation, we set up two
Memcached instances and limit their total memory to 1024MB.
The initial memory space for each instance is 512MB.

In the first configuration (APP1_LAM A), where the opti-
mization target is the overall miss ratio of the server. LAMA
dynamically adjusts the slab allocation for each size class. The two
workloads freely compete for memory. The memory occupation
varies as the access pattern changes. The first phase of APP1
reaches a hit ratio of 80%, but it drops to 78% after the phase
transition. In the second configuration, the memory is partitioned
at the beginning. To guarantee the hit ratio of APP1, every 107
accesses, we adjust the slabs partition using Algorithm 2. As the
phase changes from 1 through 2 to 3, the slabs requirement of
APP1 increases gradually. As we can observe, the performance
degradation in the third phase is avoided. Except for a short miss
ratio increase (up to 1.3%) in the transition stage of Phase 2, the
miss ratio of the three phases maintains at the desired level. The
performance of AP P2 is sacrificed to satisfy the QoS requirement
of APP1.

It should be pointed out that in the first half of Phase 2 the hit
ratio of AP P1 with shared but not-explicitly-partitioned memory
and that with partitioned memory and 80%-QoS are very close.
But the performance of AP P2 during this time period is different.
APP?2 in partitioned memory shows a lower miss ratio while
using less memory space. This demonstrates negative interference
suffered by AP P2 when sharing the memory. LAMA optimizes
the slab allocation in shared memory according to the combined
pattern of both workloads. For partitioned memory, APP2 is
optimized only according to its own reference pattern. It performs
better with an exclusive use of the memory. Memory partitioning
brings benefits to APP1 (QoS guarantee) and AP P2 (hit ratio)
at the same time.

5.8 LAMA Scalability

In practice, memory demand of Memcached workloads can easily
exceed the memory capacity of computer servers. For example,
with 64GB memory on each server of Facebook’s Memcached
cluster, almost all memory is filled and a large number of misses
are observed [17].

To evaluate the scalability of LAMA, we run the data caching
benchmark program in the CloudSuite benchmark suite to simulate
behavior of a Twitter caching server using a scaled Twitter dataset
of 150GB. We set up two 32GB servers (64GB memory in
total), each running a four-thread Memcached, to evaluate the
performance under the heavy load of the benchmark. In this
test, we are concerned only the differences of throughput and
tail latency produced by large-scale Memcached with and without
using LAMA. The data caching benchmark focuses on the stress

11

! ! |
1200 e— APP1_LAMA - APP2|]
~— APP1_80% s APP2
1000r +— APP1_85% v-v APP2 |
800} "
%] Y N
® eSS - h
5 600
4000 kg dpowaaa,
o eeeree $ihg e 0000 0.0
:‘o-..;_.‘._ v L R O S}
200F - Ty,
3 AEREZER FEL PR PR
0 phase 1 _phase 2 | _lphase 3
0 20 40 60 80 100
Request(%)
Fig. 13: Slabs occupation over time of different configuration
1.0 : ‘ -
—— APP1_LAMA e-e APP2
e] ~— APP1.80% s-s APP2
08 = ~— APP1.85% *-v APP2||
o .;.- y_;,,’"'v""‘"""‘,"“'"'
] t vl
o £ SRR RO LTI
@ St L it I
504 N
P O R L
0.2 I
'S S S Sy S SN
phase 1 phase 2 phase 3
0-0 20 20 60 80 100

Request(%)

Fig. 14: Miss ratio over time of different configuration

test for Memcached. Upon every GET miss, it does not bring
the missed data in cache. Since there is no data reuse, we cannot
measure the miss ratio in this test and therefore cannot evaluate the
benefit of LAMA. We use this experiment to evaluate the overhead
of LAMA.

The benchmark is network-intensive. We use two 10Gbit
Ethernet cards on each server. Two servers are configured with
the same socket, but different IP address. We also run server-side
Memcached and the client-side benchmark on different sockets
of the same machine in order to remove the network bottleneck.
After warming up the servers, we run the benchmark on the client
side to test server performance with different number of threads.
In the setup, there are 200 TPC/IP connections, and the GET/SET
ratio is 0.8.

In Table 3, we adopt the most recent Memcached-1.4.29 with
background garbage collector (automover) enabled to test the
highest throughput and tail latency of the Memcached servers
when LAMA is enabled or disabled. Under different request
pressure, corresponding to number of threads used at the client,
the Memcached servers with LAMA enabled exhibit performance
similar to Memcached servers with LAMA disabled. Small differ-
ences between their throughput, average and tail latencies indicate
small overhead of LAMA. In our test, higher workload pressure
leads to higher request latency observed at the client. The peak

TABLE 3: The overhead of LAMA in large-scale Memcached severs reported by data caching benchmark of CloudSuite

12

Threads | Throughput (Kreqs/sec) | Average Latency 90th 95th 99th Min Max

Disabled 8 373 7.3 ms 7.7 ms 7.8 ms 7.9 ms 6.4 ms 8.1 ms
Enabled 8 370 7.5 ms 7.9 ms 8.0 ms 8.1 ms 6.7 ms 8.2 ms
Disabled 16 383 16.4ms 26.8ms | 28.2ms | 30.2 ms 6.5 ms 33.8 ms
Enabled 16 378 16.6 ms 28.1ms | 30.7ms | 31.4 ms 6.8 ms 35.2 ms
Disabled 32 351 25.7 ms 282ms | 292ms | 31.0ms | 18.8 ms | 33.2ms
Enabled 32 343 27.1 ms 304ms | 32.1ms | 333ms | 202ms | 353 ms

throughput is observed when 16 threads, rather than 32 threads, are

used at the client. The throughput degradation is due to the lower —*—Default (79.5%) LAMA (86.3%)

response time, which is caused by the inter-thread contention of 140

Memcached server. As revealed in the experiment results, the

MRC monitoring operations impose very limited overhead on the < 120

Memcached server. The overhead is especially small when clients é_ 100

and servers are not on the same machine and the network latency e

is dominant. LAMA’s operations are performed only when the =60

system is warming up or when the request pattern changes. Once é 60

the system reaches its optimal allocation, the MRC monitoring §> 40

routine can stay idle incurring almost zero overhead until substan- £

tial performance change is detected. Fo20

To investigate how LAMA responds to slab calcification in a 0
larger scale setup, we create a slab calcification scenario using the 8 16 32
Threads

same twitter dataset as the one used in the pressure test. First,
we warm up the Memcached server with the same dataset but
increase each value size by a factor of 1.2. The purpose of this
size increase is to create a different distribution of KV items
across the size classes during cache warming up period. After
the cache server is filled, we issue the original dataset with 100%
GET commands and measure the miss ratio and throughput of the
Memcached severs. This produces a slab calcification scenario, as
the data pattern that determines the slabs allocation is different
from the following access pattern exhibited after the cache warms
up. We use libMemcached [27] to implement a multi-thread client
to produce the same access pattern of CloudSuite. In order to
measure the miss ratio of the system, we issue a SET command
right after each GET miss to add the missed data into Memcached
sever. To simulate the cache miss penalty, we add a 850ms
latency with each GET miss. This latency is the average miss
penalty observed in the experiment shown in Section 5.2, where
it is caused by the back-end database query for re-generating the
missed KV items.

Figure 15 shows the performance of Memcached servers
(Memcached-1.4.29) before LAMA is enabled as well as the
performance after calcification is resolved by LAMA. The Mem-
cached servers with calcification produce a hit ratio of 79.5%.
When LAMA is enabled and the optimal repartition is performed
in both servers, the new partition delivers a hit ratio of 86.3%.
Under different number of threads used by the client, the through-
put of optimal partitioned Memcached servers is higher than the
severs with calcification. Because higher hit ratio leads to smaller
miss penalty, LAMA substantially improves system performance
when calcification is observed. In this experiment, the reallocation
granularity is 32 slabs. With the reassignment upper bound, the
repartitioning can be completed within two seconds. It takes
several such repartitioning operations before the system reaches its
best performance. When LAMA is enabled, the additional space
consumption is around 400MB in each server, which is 1.2% of
entire memory space. When optimal partition is reached, LAMA
can be disabled and the additional space can be freed.

Fig. 15: The performance of Memcached servers with and without
LAMA

6 RELATED WORK

We have discussed related techniques on memory allocation in
Section 2. Below we discuss additional related work in two other
areas.

MRC Measurement Fine-grained MRC analysis is based on
tracking the reuse distance or LRU stack distance [28]. Many
techniques have been developed to reduce the cost of MRC profil-
ing, including algorithmic improvement [29], hardware-supported
sampling [30], [31], reuse-distance sampling [32], [33], [34], and
parallel analysis [35], [36], [37]. Several techniques have used
MRC analysis in online cache partitioning [38], [39], [31], page
size selection [40], and memory management [41], [42]. The
online techniques are not fine-grained. For example, RapidMRC
has 16 cache sizes [31], and it requires special hardware for
address sampling.

Given a set of cache sizes, Kim et al. divided the LRU stack
to measure their miss ratios [42]. The cost is proportional to the
number of cache sizes. Recently for Memcached, Bjornsson et
al. developed MIMIR, which divides the LRU stack into variable
sized buckets to efficiently measure the hit ratio curve (HRC) [6].
Both methods assume that items in cache have the same size,
which is not the case in Memcached.

Recent work shows a faster solution using the footprint (Sec-
tion 2.2), which we have extended in LAMA (Section 3.2). It
can measure MRCs at per-slab granularity for all size classes
with a negligible overhead (Section 5). For CPU cache MRC, the
correctness of footprint-based prediction has been evaluated and
validated initially for solo-use cache [16], [20]. Later validation
includes optimal program symbiosis in shared cache [43] and a
study on server cache performance prediction [44]. In Section 4.3,

we have evaluated the prediction for Memcached size classes and
shown a similar accuracy.

MRC-based Cache Partitioning The classic method in CPU
cache partitioning is described by Stone et al. [26]. The method
allocates cache blocks among N processes so that the miss-rate
derivatives are as equal as possible. They provide a greedy solu-
tion, which allocates the next cache block to the process with the
greatest miss-rate derivative. The greedy solution is of linear time
complexity. However, the optimality depends on the condition that
the miss-rate derivative is monotonic. In other words, the MRC
must be convex. Suh et al. gave a solution which divides MRC
between non-convex points [45]. Our results in Section 5.3 show
that the Memcached MRC is not always convex.

LAMA is based on dynamic programming and does not
depend on any assumption about MRC curve property. It can
use any cost function not merely the miss ratio. We have shown
the optimization of ART. Other possibilities include fairness and
QoS. The LAMA optimization is a general solution for optimal
memory allocation and partition. A similar approach has been
used to partition CPU cache for performance and fairness [22],
[19].

7 CONCLUSION

This paper has described LAMA, a locality-aware memory al-
location for Memcached. The technique measures the MRC for
all size classes periodically and reallocate the memory to reduce
the miss ratio or the average response time. Compared with the
default Memcached, LAMA reduces the miss ratio by 42% using
the same amount of memory, or it achieves the same memory
utilization (miss ratio) with 41% less memory. It outperforms four
previous techniques in steady-state performance, the convergence
speed, and the ability to adapt to phase changes. LAMA predicts
MRCs with a 99% accuracy. As a result, its solution is close to
optimal, realizing 98% of the performance potential in a steady-
state workload and 99% of the potential in a phase-changing
workload. LAMA has also been used to partition memory in
a Memcached cluster to guarantee QoS for performance-critical
applications.

ACKNOWLEDGMENTS

The research is supported in part by the National Science
Foundation of China (No. 61232008, 61272158, 61328201,
61472008 and 61170055); the 863 Program of China under Grant
No.2012AA010905, 2015AA015305; the Research Fund for the
Doctoral Program of Higher Education of China under Grant
No0.20110001110101; the National Science Foundation (No. CNS-
1319617, CCF-1116104, CCF-0963759, CCF-0643664, CSR-
1422342, CCF-0845711, CNS1217943).

REFERENCES

[1] Brad Fitzpatrick. Distributed caching with memcached. Linux journal,
2004(124):5, 2004.

[2] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Shengzhong
Feng. Accelerating mapreduce with distributed memory cache. In
Parallel and Distributed Systems (ICPADS), 2009 15th International
Conference on, pages 472—478. IEEE, 2009.

[3] Jinho Hwang, Ahsen Uppal, Timothy Wood, and Howie Huang. Mortar:
filling the gaps in data center memory. In Proceedings of the 10th
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, pages 53—64. ACM, 2014.

[4]
(3]

(6]

(71

(8]

[9]

[10]

(11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

13

Gurmeet Singh and Puneet Chandra Rashid Tahir. A dynamic caching
mechanism for hadoop using memcached.

Steven Hart, Eitan Frachtenberg, and Mateusz Berezecki. Predicting
memcached throughput using simulation and modeling. In Proceedings
of the 2012 Symposium on Theory of Modeling and Simulation-DEVS
Integrative M&S Symposium, page 40. Society for Computer Simulation
International, 2012.

Hjortur Bjornsson, Gregory Chockler, Trausti Saemundsson, and Ymir
Vigfusson. Dynamic performance profiling of cloud caches. In Proceed-
ings of the 4th annual Symposium on Cloud Computing, page 59. ACM,
2013.

Kevin Lim, David Meisner, Ali G Saidi, Parthasarathy Ranganathan,
and Thomas F Wenisch. Thin servers with smart pipes: designing
soc accelerators for memcached. In Proceedings of the 40th Annual
International Symposium on Computer Architecture, pages 36-47. ACM,
2013.

Jithin Jose, Hari Subramoni, Krishna Kandalla, Md Wasi-ur Rahman,
Hao Wang, Sundeep Narravula, and Dhabaleswar K Panda. Scalable
memcached design for infiniband clusters using hybrid transports. In
Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM
International Symposium on, pages 236-243. IEEE, 2012.

Bin Fan, David G Andersen, and Michael Kaminsky. Memc3: Compact
and concurrent memcache with dumber caching and smarter hashing. In
NSDI, pages 371-384, 2013.

Jinho Hwang and Timothy Wood. Adaptive performance-aware dis-
tributed memory caching. In /ICAC, pages 33-43, 2013.

Wei Zhang, Jinho Hwang, Timothy Wood, KK Ramakrishnan, and Howie
Huang. Load balancing of heterogeneous workloads in memcached clus-
ters. In 9th International Workshop on Feedback Computing (Feedback
Computing 14). USENIX Association, 2014.

Caching with twemcache. https://blog.twitter.com/2012/
caching-with-twemcache, 2014. [Online].

Twemcache. https://twitter.com/twemcache, 2014. [Online].

Damiano Carra and Pietro Michiardi. Memory partitioning in mem-
cached: An experimental performance analysis. Communications (ICC),
2014 IEEE International Conference on, pages 1154-1159, 2014.
Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, et al. Scaling memcache at facebook. In NSDI, pages 385-398,
2013.

Xiaoya Xiang, Bin Bao, Chen Ding, and Yaoqing Gao. Linear-time mod-
eling of program working set in shared cache. In Parallel Architectures
and Compilation Techniques (PACT), 2011 International Conference on,
pages 350-360. IEEE, 2011.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In ACM
SIGMETRICS Performance Evaluation Review, volume 40, pages 53—64.
ACM, 2012.

Memcached-1.4.11. https://code.google.com/p/memcached/wiki/
ReleaseNotes1411, 2014. [Online].

Jacob Brock, Yechen Li, Chencheng Ye, and Chen Ding. Optimal cache
partition-sharing : Dont ever take a fence down until you know why it
was put up. robert frost. In Proceedings of ICPP, 2015.

Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao. HOTL: a higher order
theory of locality. In ASPLOS, pages 343-356, 2013.

Peter J. Denning. The working set model for program behavior. Com-
munications of the ACM, 11(5):323-333, May 1968.

Chencheng Ye, Jacob Brock, Chen Ding, and Hai Jin. Recu: Rochester
elastic cache utility — unequal cache sharing is good economics. In
Proceedings of NPC, 2015.

Shahram Ghandeharizadeh, Sandy Irani, Jenny Lam, and Jason Yap.
Camp: a cost adaptive multi-queue eviction policy for key-value stores.
In Proceedings of the 15th International Middleware Conference, pages
289-300. ACM, 2014.

Mutilate. https://github.com/leverich/mutilate, 2014. [Online].

Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the clouds:
a study of emerging scale-out workloads on modern hardware. In
Proceedings of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’12, pages 3748, New York, NY, USA, 2012. ACM.

Harold S Stone, John Turek, and Joel L. Wolf. Optimal partitioning
of cache memory. Computers, IEEE Transactions on, 41(9):1054—-1068,
1992.
libmemcached.
[Online].

http://libmemcached.org/libMemcached.html, 2014.

https://blog.twitter.com/2012/caching-with-twemcache
https://blog.twitter.com/2012/caching-with-twemcache
https://twitter.com/twemcache
https://code.google.com/p/memcached/wiki/ReleaseNotes1411
https://code.google.com/p/memcached/wiki/ReleaseNotes1411
https://github.com/leverich/mutilate
http://libmemcached.org/libMemcached.html

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM System Journal, 9(2):78-117,
1970.

Yutao Zhong, Xipeng Shen, and Chen Ding. Program locality analysis
using reuse distance. ACM Transactions on Programming Languages
and Systems (TOPLAS), 31(6):20, 2009.

J Torrellas, Evelyn Duesterwald, Peter F Sweeney, and Robert W Wis-
niewski. Multiple page size modeling and optimization. In Parallel
Architectures and Compilation Techniques, 2005. PACT 2005. 14th
International Conference on, pages 339-349. IEEE, 2005.

David K Tam, Reza Azimi, Livio B Soares, and Michael Stumm.
Rapidmrc: approximating 12 miss rate curves on commodity systems for
online optimizations. In ACM SIGARCH Computer Architecture News,
volume 37, pages 121-132. ACM, 2009.

Kristof Beyls and Erik H DHollander. Discovery of locality-improving
refactorings by reuse path analysis. In High Performance Computing and
Communications, pages 220-229. Springer, 2006.

Derek L Schuff, Milind Kulkarni, and Vijay S Pai. Accelerating multicore
reuse distance analysis with sampling and parallelization. In Proceedings
of the 19th international conference on Parallel architectures and com-
pilation techniques, pages 53—64. ACM, 2010.

Yutao Zhong and Wentao Chang. Sampling-based program locality
approximation. In Proceedings of the 7th international symposium on
Memory management, pages 91-100. ACM, 2008.

Huimin Cui, Qing Yi, Jingling Xue, Lei Wang, Yang Yang, and Xiaobing
Feng. A highly parallel reuse distance analysis algorithm on gpus. In
Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th
International, pages 1080-1092. IEEE, 2012.

Saurabh Gupta, Ping Xiang, Yi Yang, and Huiyang Zhou. Locality
principle revisited: A probability-based quantitative approach. Journal
of Parallel and Distributed Computing, 73(7):1011-1027, 2013.
Qingpeng Niu, James Dinan, Qingda Lu, and P Sadayappan. Parda: A
fast parallel reuse distance analysis algorithm. In Parallel & Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International, pages
1284-1294. IEEE, 2012.

G Edward Suh, Srinivas Devadas, and Larry Rudolph. Analytical cache
models with applications to cache partitioning. In Proceedings of the
15th international conference on Supercomputing, pages 1-12. ACM,
2001.

Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page
coloring-based multicore cache management. In Proceedings of the 4th
ACM European conference on Computer systems, pages 89-102. ACM,
2009.

Calin Cascaval, Evelyn Duesterwald, Peter F. Sweeney, and Robert W.
Wisniewski. Multiple page size modeling and optimization. In Pro-
ceedings of the International Conference on Parallel Architecture and
Compilation Techniques, pages 339-349, 2005.

Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,
Yuanyuan Zhou, and Sanjeev Kumar. Dynamic tracking of page miss
ratio curve for memory management. In ACM SIGOPS Operating
Systems Review, volume 38, pages 177-188. ACM, 2004.

Yul H Kim, Mark D Hill, and David A Wood. [Implementing stack
simulation for highly-associative memories, volume 19. ACM, 1991.
Xiaolin Wang, Yechen Li, Yingwei Luo, Xiameng Hu, Jacob Brock, Chen
Ding, and Zhenlin Wang. Optimal footprint symbiosis in shared cache.
In CCGRID, 2015.

Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas JA Harvey, An-
drew Warfield, and Coho Data. Characterizing storage workloads with
counter stacks. In Proceedings of the 11th USENIX conference on Op-
erating Systems Design and Implementation, pages 335-349. USENIX
Association, 2014.

G. Edward Suh, Larry Rudolph, and Srinivas Devadas. Dynamic
partitioning of shared cache memory. The Journal of Supercomputing,
28(1):7-26, 2004.

14

Xiameng Hu received his B.S. degree from
Tianjin University in 2013.He is currently work-
ing towards the PhD degree in the school of
electronics engineering and computer science at
Peking University. His research interests include
distributed computing, memory system optimiza-
tion and data locality theory etc.

Xiaolin Wang received his B.S. and Ph.D. de-
grees from Peking University in 1996 and 2001
respectively. He is an associate professor in
Peking University. His research interests include
system software, virtualization technologies and
distributed computing, etc.

Lan Zhou received his B.S. degree from Peking
University in 2015. He is studying for a mas-
ter’'s degree in Peking University. His research
interests include system software, virtualization
technologies and distributed computing, etc.

Yingwei Luo received his B.S. degree from
Zhejiang University in 1993, and his M.S. and
Ph.D. degrees from Peking University in 1996
and 1999 respectively. He is a professor in
Peking University. His research interests include
system software, virtualization technologies and
distributed computing, etc.

Chen Ding received Ph.D. from Rice University,
M.S. from Michigan Tech, and B.S. from Beijing
University before joining University of Rochester
in 2000. His research received young investiga-
tor awards from NSF and DOE. He co-founded
the ACM SIGPLAN Workshop on Memory Sys-
tem Performance and Correctness (MSPC) and
was a visiting researcher at Microsoft Research
and a visiting associate professor at MIT. He
is an external faculty fellow at IBM Center for
Advanced Studies.

Song Jiang received his BS and MS degrees in
computer science from the University of Science
and Technology of China in 1993 and 1996,
respectively, and received his PhD in computer
science from the College of William and Mary in
2004. He is currently an associate professor at
the Department of Electrical and Computer Engi-
neering of Wayne State University. His research
interests are in the areas of operating systems,
file and storage systems, and high performance
computing.

Zhenlin Wang received his BS degree in 1992
and MS degree in 1995 both in Computer Sci-
ence and from Peking University, China. He re-
ceived his PhD in Computer Science in 2004
from the University of Massachusetts, Amherst.
He is currently a professor of the Department
of Computer Science at Michigan Technological
University. His research interests are broadly in
the areas of compilers, operating systems and
computer architecture with a focus on memory
system optimization and system virtualization.

15

	Introduction
	Background
	Memory Allocation in Memcached
	The Footprint Theory

	Locality-aware Memory Allocation
	Locality-based Caching
	MRC Profiling
	Target Performance
	Optimal Memory Reallocation
	Performance Prediction

	Locality-aware Server Partition
	Evaluation
	Experimental setup
	Facebook ETC Performance
	MRC Accuracy
	LAMA Parameters
	Slab Calcification
	Theoretical Upper Bound
	QoS Guarantee Server Partition
	LAMA Scalability

	Related Work
	Conclusion
	References
	Biographies
	Xiameng Hu
	Xiaolin Wang
	Lan Zhou
	Yingwei Luo
	Chen Ding
	Song Jiang
	Zhenlin Wang

