
1

Optimizing Locality-aware Memory Management
of Key-value Caches

Xiameng Hu, Student Member, IEEE, Xiaolin Wang, Lan Zhou, Yingwei Luo, Chen Ding, Member, IEEE,
Song Jiang, Zhenlin Wang

Abstract—The in-memory cache system is a performance-critical layer in today’s web server architecture. Memcached is one of the
most effective, representative, and prevalent among such systems. An important problem is on its memory allocation. The default
design does not make the best use of the memory. It is unable to adapt when the demand changes, a problem known as slab
calcification.
This paper introduces locality-aware memory allocation (LAMA), which addresses the problem by first analyzing locality of
Memcached’s requests and then reassigning slabs to minimize the miss ratio or the average response time. By evaluating LAMA using
various industry and academic workloads, the paper shows that LAMA outperforms existing techniques in the steady-state
performance, the speed of convergence, and the ability to adapt to request pattern changes, and overcome slab calcification. The new
solution is close to optimal, achieving over 98% of the theoretical potential. Furthermore, LAMA can also be adopted in resource
partition to guarantee quality-of-service (QoS).

Index Terms—Data Locality, Memory Allocation, Key-value Cache, Quality of Service.

F

1 INTRODUCTION

I N today’s web server architecture, distributed in-memory
caches are vital components to ensure low-latency service for

user requests. Many companies use in-memory caches to support
web applications. For example, the time to retrieve a web page
from a remote server can be reduced by caching the web page in
server’s memory since accessing data in memory cache is much
faster than querying a back-end database. Through this cache
layer, the database query latency can be reduced as long as the
cache is sufficiently large to maintain a high hit rate.

Memcached [1] is a commonly used distributed in-memory
key-value cache system, which has been deployed in Facebook,
Twitter, Wikipedia, Flickr, and many other internet companies.
It has been proposed to use Memcached as an additional layer
to accelerate systems such as Hadoop, MapReduce, and even
virtual machines [2], [3], [4]. Memcached splits the memory cache
space into different classes to store variable-sized objects as items.
Initially, each class obtains its own memory space by requesting
free slabs, 1MB each, from the allocator. Each allocated slab is
divided into slots of equal size. According to the slot size, the
slabs are categorized into different classes, from Class 1 to Class
n, where the slot size increases exponentially. A newly incoming
item is admitted into a class whose slot size is the best fit of the
item size. If there is no free space in the class, a currently cached
item has to be first evicted from the class of slabs following the
LRU policy. In this design, the number of slabs in each class
represents the memory space that has been allocated to it.

• X. Hu, X. Wang, L. Zhou and Y. Luo are with Peking University, Beijing,
China.
E-mail: {hxm,wxl,lanzhou,lyw}@pku.edu.cn

• C. Ding is with University of Rochester, Rochester, NY.
E-mail: cding@cs.rochester.edu

• S. Jiang is with Wayne State University, Detroit, MI.
E-mail: sjiang@wayne.edu

• Z. Wang is with Michigan Technological University, Houghton, MI.
E-mail: zlwang@mtu.edu

As memory is much more expensive than external storage
devices, the system operators need to maximize the efficiency
of memory cache. They need to know how much cache space
should be deployed to meet the service-level-agreements (SLAs).
Default Memcached fills the cache at the cold start based on the
demand. We observe that this demand-driven slab allocation does
not deliver optimal performance, which will be explained in Sec-
tion 2.1. Performance prediction [5], [6] and optimization [7], [8],
[9], [10], [11] for Memcached have drawn much attention recently.
Some studies focus on profiling and modeling the performance
under different cache capacities [6]. In the presence of workload
changing, default Memcached server may suffer from a problem
called slab calcification [12], in which the slab allocation cannot
be adjusted to fit the change of access pattern as the old slab
allocation may not work well for the new workload. To avoid
the performance drop, the operator needs to restart the server
to reset the system. Recent studies have proposed adaptive slab
allocation strategies and shown a notable improvement over the
default allocation [13], [14], [15]. We will analyze several state-
of-the-art solutions in Section 2. We find that these approaches are
still far behind a theoretical optimum as they do not exploit the
locality inherent in the Memcached requests.

We propose a novel, dynamic slab allocation scheme, locality-
aware memory allocation (LAMA), based on a recent advance on
measurement of data locality [16] described in Section 2.2. This
study provides a low-overhead yet accurate method to model data
locality and generate miss ratio curves (MRCs). Miss ratio curve
(MRC) reveals relationship between cache sizes and cache miss
ratios. With MRCs for all classes, the overall Memcached perfor-
mance can be modeled in terms of different class space allocations,
and it can be optimized by adjusting individual classes’ allocation.
We have developed a prototype system based on Memcached-
1.4.20 with the locality-aware allocation of memory space. Further
more, we propose to use the locality analysis framework in LAMA
to guide the server resource partition for latency sensitive applica-



2

tions. The experimental results show that LAMA can achieve over

98% of the theoretical potential and the server partition method is

quite efficient for QoS guarantee.

2 BACKGROUND

This section summarizes the Memcached’s allocation design and

its recent optimizations, which we will compare against LAMA,

and a locality theory, which we will use in LAMA.

2.1 Memory Allocation in Memcached

Default Design In most cases, Memcached is demand filled. The

default slab allocation is based on the number of items arriving

in different classes during the cold start period. However, we

note that in real world workloads, a small portion of the items

appears in most of the requests. For example, in the Facebook

ETC workload [17], 50% of the items occur in only 1% of all

requests. It is likely that a large portion of real world workloads

have similar data locality. The naive allocation of Memcached may

lead to low cache utilization due to negligence of data locality

in its design. Figure 1 shows an example to illustrate the issue

of a naive allocation. Let us assume that there are two classes

of slabs to receive a sequence of requests. In the example, the

sequence of items for writing into Class 1 is “123456789...”, and

the sequence into Class 2 is “abcabcabc...”. We also assume that

each slab holds only one item in both classes for the sake of

simplicity, and there are a total of four slabs. If the access rates of

the two classes are the same, the combined access pattern would

be “a1b2c3a4b5c6a7b8c9...”. In the default allocation, every class

will obtain two slabs (items) because they both store two objects

during the cold start period. Note that the reuse distance of any

request is larger than two for both classes. The number of hits

under naive allocation would be 0. As the working set size of Class

2 is 3, the hit ratio of Class 2 will be 100% with an allocation of

3 slabs according to the MRC in Figure 1(b). If we reallocate one

slab from Class 1 to Class 2, the working set of Class 2 can be fully

cached and every reference to Class 2 will be a hit. Although the

hit ratio of Class 1 is still 0%, the overall hit ratio of cache server

will be 50%. This is much higher than the hit ratio of the default

allocation which is 0%. This example motivates us to allocate

space to the classes of slabs according to their data locality.

Automove The open-source community has implemented an

automatic memory reassignment algorithm (Automove) in a for-

mer version Memcached [18]. In every 10 seconds window, the

Memcached server counts the number of evictions in each class.

If a class takes the highest number of evictions in three consecutive

monitoring windows, a new slab is reassigned to it. The new

slab is taken from the class that has no evictions in the last

three monitoring stages. This policy is greedy but lazy. In real

workloads, it is hard to find a class with no evictions for 30

seconds. Accordingly, the probability for a slab to be reassigned

is extremely low.

Since Memcached-1.4.25, the slab automover has gotten a

very large update. A background process periodically reclaims the

space held by expired data items and produces free slabs out of

the reclaimed space for future reassignment. The new automover

behaves like a garbage collector. This new feature increases the

amount of free space, and it is orthogonal to reallocation of the

existing space, which is the problem we address.

(a) Access detail for different allocation

1 2 3 4

Slabs

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
 R

a
t
io

class 1

class 2

(b) MRCs for Class 1&2

Fig. 1: Drawbacks of default allocation

Twitter Policy To tackle the slab calcification problem, Twitter’s

implementation of Memcached (Twemcache) [13] introduces a

new eviction strategy to avoid frequently restarting the server.

Every time a new item needs to be inserted but there is no free

slabs or expired ones, a random slab is selected from all allocated

slabs and reassigned to the class that fits the new item. This

random eviction strategy aims to balance the eviction rates among

all classes to prevent performance degradation due to workload

change. The operator no longer needs to worry about reconfiguring

the cache server when calcification happens. However, random

eviction is aggressive since frequent slab evictions can cause per-

formance fluctuations, as observed in our experiments in Section 5.

In addition, a randomly chosen slab may contain data that would

have been future hits. The random reallocation apparently does

not consider the locality.

Periodic Slab Allocation (PSA) Carra et al. [14] address

some disadvantages of Twemcache and Automove by proposing

periodic slab allocation (PSA). At any time window, the number

of requests of Class i is denoted as Ri and the number of slabs

allocated to it is denoted as Si. The risk of moving one slab away

from Class i is denoted as Ri/Si. Every M misses, PSA moves

one slab from the class with the lowest risk to the class with the

largest number of misses. PSA has an advantage over Twemcache

and Automove by picking the most promising candidate classes

to reassign slabs. It aims to find a slab whose reassignment to

another class dose not result in more misses. Compared with

Twemcache’s random selection strategy, PSA chooses the lowest

risk class to minimize the penalty. However, PSA has a critical

drawback: classes with the highest miss rates can also be the ones



3

with the lowest risks. In this case, slab reassignment will only

occur between these classes. Other classes will stay untouched

and unoptimized since there is no chance to adjust slab allocation

among them. Figure 2 illustrates a simple example where PSA

can get stuck. Assume that a cache server consists of three slabs

and every slab contains only one item. The global access trace

is “(aa1aa2baa1aa2aa1ba2 )∗”, which is composed of Class 1

“121212...” and Class 2 “(aaaabaaaaaaba)∗”. If Class 1 has

taken only one slab (item) and Class 2 has taken two items, Class

1 would have the highest miss rate and the lowest risk. The system

will be in a state with no slab reassignment. The overall system

hit ratio under this allocation will be 68%. However, if a slab

(item) were to be reassigned from Class 2 to Class 1, the hit

ratio will increase to 79% since the working set size of Class 1

is 2. Apart from this weak point, in our experiments, PSA shows

good adaptability for slab calcification since it can react quickly

to workload changing. However, since the PSA algorithm lacks a

global perspective for slab assignment, the performance still falls

short when compared with our locality-aware scheme.

Fig. 2: Drawbacks of PSA

Facebook Policy
Facebook’s optimization of Memcached [15] uses adaptive

slab allocation strategy to balance item age. In their design,

if a class is currently evicting items, and the next item to be

evicted was used at least 20% more recently than the average least

recently used item of all other classes, this class is identified as

needing more memory. The slab holding the overall least recently

used item will be reassigned to the needy class. This algorithm

balances the age of the least recently used items among all classes.

Effectively, the policy approximates the global LRU policy, which

is inherently weaker than optimal as shown by Brock et al. using

the footprint theory we will describe next [19].

The policies of default Memcached, Twemcache, Automove,

and PSA all aim to equalize the eviction rate among size classes.

The Facebook policy aims to equalize the age of the oldest

item in size classes. We call the former performance balancing

and the latter age balancing. Later in the evaluation section, we

will compare these policies and show their relative strengths and

weaknesses.

2.2 The Footprint Theory
The locality theory is by Xiang et al., who define a metric called

footprint and propose a linear time algorithm to measure it [16]

and a formula to convert it into the miss ratio [20]. Next we give

the definition of footprint and show its use in predicting the miss

ratio.
The purpose of the footprint is to quantify the locality in a

period of program execution. An execution trace is a sequence

of memory accesses, each of which is represented by a memory

address. Accesses can be tagged with logical or physical time. The

logical time counts the number of accesses from the start of the

trace. The physical time counts the elapsed time. An execution

window is a sub-sequence of consecutive accesses in the trace.
The locality of an execution window is measured by the

working-set size , which is the amount of data accessed by all

its accesses [21]. The footprint is a function fp(w) as the average

working-set size for all windows of the same length w. While

different window may have different working-set size, fp(w) is

unique. It is the expected working-set size for a randomly selected

window.
Consider a trace abcca. Each element is a window of length

w = 1. The working-set size is always 1, so fp(1) = 5/5 = 1.

There are 4 windows of length w = 2. Their working-set sizes are

2, 2, 1, and 2. The average, i.e., the footprint, is fp(2) = 7/4. For

greater window lengths, we have fp(3) = 7/3 and fp(w) = 3 for

w = 4, 5, where 5 is the largest window length, i.e., the length of

the trace. We also define fp(0) = 0.
Although the footprint theory is proposed to model locality

of data accesses of a program, the same theory can be applied in

modeling the locality of Memcached requests where data access

addresses are replaced by the keys. The linear time footprint

analysis leads to linear time MRC construction and thus a low-

cost slab allocation prediction, as discussed next.

3 LOCALITY-AWARE MEMORY ALLOCATION

This section describes the design details of LAMA.

3.1 Locality-based Caching
Memcached allocates the memory at the granularity of a slab,

which is 1MB in the default configuration. For every size class,

Memcached allocates its items in its collection of slabs. The items

are ordered in a priority list based on their last access time,

forming an LRU chain. The head item of the chain has the most

recent access, and the tail item the least recent access. When all

the allocated slabs are filled, eviction will happen when a new

item is accessed, i.e. a cache miss. When the tail item is evicted,

its memory is used to store the new item, and the new item is

re-inserted at the first position to become the new head.
In a web-service application, some portion of items may be

frequently requested. Because of their frequent access, the hot

items will reside near the top of the LRU chain and hence be given

higher priority to cache. A class’ capacity, however, is important,

since hot items can still be evicted if the amount of allocated

memory is not large enough.
A slab may be reassigned from one size class to another. The

SlabReassign routine in Memcached releases a slab used in a

size class and gives it to another size class. The reassignment

evicts all the items that are stored in the slab and removes these

items from the LRU chain. The slab is now unoccupied and

changes hands to store items for the new size class.
Memcached may serve multiple applications at the same time.

The memory is shared. Since requests are pooled, the LRU chain

gives the priority of all items based on the aggregate access from

all programs.



4

3.2 MRC Profiling
We split the global access trace into different sub-traces according
to their classes. With the sub-trace of each class, we generate the
MRCs as follows. We use a hash table to record the last access
time of each item. With this hash table, we can easily compute the
reuse time distribution rt, which represents the number of accesses
with a reuse time t. For access trace of length n, if the number of
unique data is m, the average number of items accessed in a time
window of size w can be calculated using Xiang’s formula [16]:

fp(w) = m− 1

n− w + 1
(

m∑
i=1

(fi − w)I(fi > w)

+
m∑
i=1

(li − w)I(li > w)

+
n−1∑

t=w+1

(t− w)rt) (1)

The symbols are defined as:

• fi: the first access time of the i-th datum
• li: the reverse last access time of the i-th datum. If the last

access is at position x, li = n + 1 − x, that is, the first
access time in the reverse trace.

• I(p): the predicate function equals to 1 if p is true;
otherwise 0.

• rt: the the number of accesses with a reuse time t.

Now we can profile the MRC using fp distribution. The miss
ratio for cache size of x is the fraction of reuses that have an
average footprint larger than x:

MRC(x) = 1−
∑
{t|fp(t)<x} rt

n
(2)

For example, we show the footprint-based MRC calculation
for cyclic reference pattern “(abc)∗” in Table 1. This is the trace
of Class 2 in Figure 1. If the trace length is infinite, the miss ratio
is 100% if the footprint is greater than the cache size, but 0%
otherwise.

TABLE 1: An example of MRC calculation by footprint

x 0 1 2 3 > 3

fp(x) 0 1 2 3 3
MRC(x) 1 1 1 0 0

3.3 Target Performance
We consider two types of target performance: the total miss ratio
and the average response time.

If Class i has taken Si slabs, and Ii represents the number of
items per slab in Class i. Then there should be Si ∗Ii items in this
class. The miss ratio of this class should be MRi =MRCi(Si ∗
Ii). Let the number of requests of Class i be Ri. The total miss
ratio is calculated as:

Miss Ratio =

∑n
i=1Ri ∗MRi∑n

i=1Ri
=

∑n
i=1Ri ∗MRCi(Si ∗ Ii)∑n

i=1Ri
(3)

Let the average request hit time for Class i be Th(i), and the
average request miss time (including retrieving data from database

and setting back to Memcached) be Tm(i). The average request
time ARTi of Class i now can be presented as:

ARTi =MRi ∗ Tm(i) + (1−MRi) ∗ Th(i) (4)

The overall ART of the Memcached server is:

ART =

∑n
i=1Ri ∗ARTi∑n

i=1Ri
(5)

We target the overall performance by all size classes rather
than equal performance in each class. The metrics take into
account the relative total demands for different size classes. If we
consider a typical request as the one that has the same proportional
usage, then the optimal performance overall implies the optimal
performance for a typical request.

3.4 Optimal Memory Reallocation

When a Memcached server is started, the available memory is
allocated by demand. Once the memory is fully allocated, we have
a partition among all size classes. LAMA periodically measures
the MRCs and reallocating the memory.

The optimization problem is as follows. Given the MRC for
each size class, how to divide the memory among all size classes
so that the target performance is maximized, i.e., the total miss
ratio or the average response time is minimized?

The reallocation algorithm has two steps:

Step 1: Cost Calculation First we split the access trace into
sub-traces based on their classes. For each sub-trace T [i] of Class
i, we use the procedure described in Section 3.2 to calculate the
miss ratio MR[i][j] when allocated j slabs, 0 ≤ j ≤ MAX,
where MAX is the total number of slabs. We compute the cost for
different optimization targets.

To minimize total misses, Cost[i][j] is the number of misses
for Class i given its allocation j as follows:

Cost[i][j]←MR[i][j] ∗ length(T [i]).

To minimize ART, Cost[i][j] is the average access time of
Class i as follows:

Cost[i][j]← (MR[i][j] ∗ Tm[i]+
(1−MR[i][j]) ∗ Th[i]) ∗ length(T [i])



5

Algorithm 1 Locality-aware Memory Allocation

Input: Cost[][] // cost function, could be OPT MISS or
OPT ART

Input: MAX // total number of slabs
Ensure: Slabsnew[] // optimal slabs allocation

1: function OPTIMALALLOCATION(Cost[][], Sold[],MAX)
2: F [][]← +∞
3: . F [][] minimal cost for Class 1..i using j slabs
4: for i← 1..n do
5: for j ← 1..MAX do
6: for k ← 0..j do
7: Temp← F [i− 1][j − k] + Cost[i][k]
8: . Give k slabs to Class i.
9: if Temp < F [i][j] then

10: F [i][j]← Temp
11: B[i][j]← k
12: . B[][] saves the slab allocation.
13: end if
14: end for
15: end for
16: end for
17: Temp←MAX
18: for i← n..1 do
19: Slabsnew[i]← B[i][Temp]
20: Temp← Temp−B[i][Temp]
21: end for
22: return Slabsnew[]
23: end function

Step 2: Reallocation We design a dynamic programming algo-
rithm to find new memory allocation (Algorithm 1). Lines 4 to 16
show a triple nested loop. The outermost loop iterates the set of
size classes i from 1 to n. The middle loop iterates the number
of slabs j from 1 to MAX. The target function, F [i][j], stores the
optimal cost of allocating j slabs to i size classes. The innermost
loop iterates the allocation for the latest size class to find this
optimal value.

Once the new allocation is determined, it is compared with
the previous allocation to see if the performance improvement is
above a certain threshold. If it is, slabs are reassigned to change the
allocation. Through this procedure, LAMA reorganizes multiple
slabs across all size classes. The dynamic programming algorithm
is similar to Brock et al. [19] but for a different purpose.

In real deployment of the algorithm, we can set N as an upper
bound on the number of reassignments for each repartitioning and
each reassignment is limited to 1 slab (In Section 5.4, we will
discuss a reassignment granularity of r slabs). This will avert
the cost of reassigning too many slabs at one time. At each
reallocation, we choose N slabs with the lowest risk. We use
the risk definition of PSA, which is the ratio between reference
rate and number of slabs for each class. The reallocation is global,
since multiple candidate slabs are selected from possibly many
size classes. In contrast, PSA selects a single candidate from one
size class. With the reassignment constraint, the performance drop
due to massive eviction of useful data is avoid. This design also
narrows the search space of possible solutions in Algorithm 1. As
we can infer from the triple nested loop, the time complexity of
the optimization is O(n ∗ MAX2), where n is the number of size
classes and MAX is the total number of slabs. With the reassigning
upper bound N , the inner loop from line 6 to 14 do not have to

search the whole memory space, but the space with a radius of
N slabs from current allocation. Therefore, the time complexity
of Algorithm 1 can be improved to O(n ∗ MAX ∗ N), which is
efficient in large scale system.

The bound N is the maximal number of reassignments. In
the steady state, the reallocation algorithm may decide that the
current allocation is the best possible and does not reassign any
slab. The number of actual reassignments can be 0 or any number
not exceeding N .

Algorithm 1 optimizes the overall performance. The solution
may not be fair, i.e., different miss ratios across size classes.
Fairness is not a concern at the level of memory allocation.
Facebook solves the problem at a higher level by running a
dedicated Memcached server for critical applications [17]. We
introduce locality-aware server partition to guarantee the QoS
of a critical application in Section 4. If fairness is a concern,
Algorithm 1 can use a revised cost function to discard unfair
solutions and optimize both for performance and fairness. A recent
solution is the baseline optimization by Brock et al. [19] and Ye
et al. [22].

3.5 Performance Prediction
Despite the optimal allocation, the locality analysis framework
in LAMA can also be adopted to predict the performance of
the default Memcached under different memory space. This can
avoid frequently restarting sever for performance testing. Using
Equation 1 in Section 3.2, the average footprint of any window
size can be obtained. For a stable access pattern, we define the
request ratio of Class i as qi. Let the number of requests during
the cold start period be M . The allocation for Class i by the
default Memcached is the number of items it requests during this
period. We predict this allocation as fpi(M ∗ qi). The length M
of the cold-start period, i.e., the period during which the memory
is completely allocated, satisfies the following equation:

n∑
i=1

fpi(M ∗ qi) = C (6)

Once we get the expected items (slabs) each class can take, the
system performance can be predicted by Equation 3. By predicting
M and the memory allocation for each class, we can predict the
performance of default Memcached for all memory sizes. The
predicted allocation is similar to the natural partition of CPU
cache memory, as studied in [19]. Using the footprint theory,
our approach delivers high accuracy and low overhead. This is
important for a system operator to determine how many caches
should be deployed to achieve required Quality of Service (QoS).

4 LOCALITY-AWARE SERVER PARTITION

A typical Memcached cluster can be shared by multiple applica-
tions or web services of different data access patterns. Each of
them may have different quality-of-service (QoS) requirements.
In each Memcached server, its cached data blocks come from
different applications sharing the server. They are all managed
by the LRU eviction policy in individual size classes. In this
scenario, applications in the same Memcached server compete for
the same memory. The memory occupation of each application is
determined by factors including access frequency or reuse distance
distribution. As observed, Facebook applications negatively inter-
fere with each other [15]. For example, an application with a high



6

Fig. 3: Inter-Server Partition

access frequency may occupy more memory than an application

with a low access frequency. Because of this sharing, one may not

be able to guarantee the QoS of performance-critical applications.

Among web services, some applications are latency sensitive and

require a fast user response. For these applications, a high hit ratio

in the cache layer is necessary to guarantee QoS. They should

be prevented from sharing a Memcached server with unknown

applications. Instead, they should be allocated dedicated memory.

To guarantee the QoS of performance-critical applications, one

solution is to partition Memcached servers into separate pools

and dedicate some of the pools for certain applications. Absent

of sharing, these applications are not affected by interference

from dynamic memory sharing. This design has been adopted by

Facebook to protect the valuable keys by a memory pool [15].

Figure 3 illustrates the layout of this inter-server partition scheme.

For smaller scale deployment of Memcached, a finer grain

way to do the isolation is partitioning the memory space within

each server. Instead of assigning servers among applications, all

Memcached servers serve all applications. The partition happens

in the memory of each server, as shown in Figure 4. The dif-

ference between sharing a server and partitioning a server is

similar to CPU cache partition and sharing (for a recent study,

see [19]). Every slab in a Memcached server is assigned to a

specific application (or a group of applications). In a partitioned

server, an application can have its exclusive LRU chain, which

is constructed for the slabs allocated to it. This design is similar

to multiple Memcached instances running on a single physical

server, each instance only manages its own memory for one or

several applications.

Fig. 4: Intra-Server Partition

The intra-server partition provides isolation for different ap-

plications in a single server. Although they are still ”sharing”

the Memcached server, partition protects the valuable data in

a performance-critical application from being evicted by other

applications. This design also provides the ability of dynamically

adjusting the partition to respond to demand changes.

Although an improved eviction policy, CAMP [23], is pro-

posed to take size and cost into consideration to prevent the

eviction of valuable data from performance-critical applications,

the design motivation of CAMP is to avoid human involvement

to partition the available memory into disjoint pools. It shows that

heuristic memory partition is suboptimal compare to well designed

eviction policy. But this is a less predictable strategy. It is hard to

predict and control the hit ratios of several applications when they

are running and sharing the same memory space. However, with

our performance prediction technique, we will show how QoS

predictable memory partition can be done dynamically.

Algorithm 2 Performance Guarantee Partition

Input: MRreq // Miss ratio requirement for QoS guarantee

Input: UP // The upper bound of slabs occupation

Ensure: Slabsreq[] // Number of slabs required

1: function SERVERPARTITION(MRreq, UP )

2: Left ← 0
3: Right ← UP
4: Slabsreq[] ← OptimalAllocation(Cost[][], UP )
5: MRnew ← 0
6: for i ← n..1 do
7: MRnew ← MRnew +MR[i][Slabsreq[i]]
8: end for
9: if MRnew > MRreq then

10: return MORE SPACE REQUIRED
11: end if
12: while Left+ 1 < Right do
13: Mid ← (Left+Right)/2
14: Slabsreq[] ← OptimalAllocation(Cost[][],Mid)
15: MRnew ← 0
16: for i ← n..1 do
17: MRnew ← MRnew +MR[i][Slabsreq[i]]
18: end for
19: if MRnew > MRreq then
20: Left ← Mid
21: else
22: Right ← Mid
23: end if
24: end while
25: Slabsreq[] ← OptimalAllocation(Cost[][], Right)
26: return Slabsreq[]
27: end function

We use intra-server partition to isolate the latency-sensitive

application in order to satisfy its QoS requirement. Since the

intra-server partition does not change the key-to-server mapping,

the partition is determined by each individual Memcached server.

There is no need for a global scheduler to gather MRC information

from all applications. During the execution, each sever keeps

tracking the access pattern to make sure that the current partition

is effective and efficient. The optimal memory allocation we de-

scribed in Section 3.4 is used here to partition the memory among

size classes within an application. The intra-server partition is an



7

upper-level partition that partitions the memory for performance-
critical applications. The memory is partitioned at two levels
first for QoS among applications and then for optimal allocation
among size classes. Both are based on the same locality analysis.
Algorithm 2 shows the intra-server partition algorithm. It uses
binary search to find the least number of slabs required for a QoS
target. When given the number of slabs, Algorithm 1 is invoked to
conduct the optimal slab allocation for the minimal miss ratio. A
higher or lower miss ratio requires searching into more space or
less space, respectively. If the required slab partition (Slabsreq)
is smaller than current partition, the application will release the
extra slabs. Otherwise, the system will assign new slabs to it.
To prevent any application from taking all the slabs and starving
other applications, an upper bound of slab occupation for each
application may be set. If there are multiple applications that are
critical and require QoS at the same time, and the Memcached
servers cannot provide enough memory to satisfy all of their
requirements, a priority-based scheduling may be used.

5 EVALUATION

In this section, we evaluate LAMA in detail, including describing
the experimental setup for evaluation and comprehensive evalua-
tion results and analysis.

5.1 Experimental setup

LAMA Implementation We have implemented LAMA in
Memcached-1.4.20 (Section 5.2 to 5.7). To evaulate LAMA la-
tencies and compare it with the most recent Automove design,
we have also implemented LAMA in a more recent version of
Memcached-1.4.29 (Section 5.8), which adopts a garbage collector
to recollect expired items. For MRC analysis, we used to record
the access trace using a circular buffer. This is space consuming
and requires a mutex lock for each thread to update the buffer.
We replace this design by a lock free hash table to track the first
reference and last reference as well as the reuse time for each item.
The other statistics to calculate footprint are updated by every
access in a lock free manner too. This avoids recording the trace
and the mutex lock for every thread. Beside, the MRC calculation
is much faster from those updated data structures than a buffered
trace. In our test, when we need MRCs for repartition, all the
MRCs can be calculated with in a second. The space cost of these
data structures depends on the size of the items being analyzed.
It is 1% - 2% of all memory depending for the workload we
use. The MRCs calculation and slab reassignment (Algorithm 1)
are performed in the slab rebalancer thread of Memcached. The
overhead is negligible, both in time and in space.

System Setup To evaluate the efficiency of LAMA and other
strategies, we use a single node, Intel(R) Core(TM) I7-3770
machine with 4 cores, 3.4GHz, 8MB shared LLC with 16GB
memory. To evaluate the scalability of LAMA, we use a Dell
PowerEdge R720 with ten-core 2.50GHz Intel Xeon E5-2670 v2
processors and 256 GB of RAM.

For small scale test, we measure both the miss ratio and the
response time, as defined in Section 3.4. In order to measure the
latter, we set up a database as the backing store to the Memcached
server. The response time is the wall-clock time used for each
client request by the server, including the cost of the database
access. For scalability test, we measure the maximum throughput
of Memcached with LAMA, as well as the 95% tail latency to

verify the overhead of LAMA in a large scale system. In our
evaluation, all the Memcached instances are running on local ports
with 4 server threads and the database is running from another
server on the local network.

Workloads Three workloads are used for different aspects of the
evaluation:

• The Facebook ETC workload to test the steady-
state performance. It is generated using Mutilate [24],
which emulates the characteristics of the ETC workload
at Facebook. ETC is the closest workload to a general-
purpose one, with the highest miss ratio in all Facebook’s
Memcached pools. It is reported that the installation at
Facebook uses hundreds of nodes in one cluster [17]. We
set the workload to have 50 million requests to 7 million
data objects.

• A three-phase workload to test dynamic allocation. It is
constructed based on Carra et al. [14]. It has 200 million
requests to data items in two working sets, each of which
has 7 million items. The first phase only accesses the first
set following a generalized Pareto distribution with loca-
tion θ = 0, scale φ = 214.476 and shape k = 0.348238,
based on the numbers reported by Atikoglu et al. [17].
The third phase only accesses the second set following the
Pareto distribution θ = 0, φ = 312.6175 and k = 0.05.
The middle, transition phase increasingly accesses data
objects from the second set.

• A large-scale-test workload to test scalability. We use the
Data Caching Benchmark of CloudSuite [25]. It simulates
the behavior of a Twitter caching server using the twitter
dataset. The original dataset consumes 300MB of server
memory, while we scale up the dataset to 150GB (scaling
factor of 500). We set up the benchmark loader with 200
TPC/IP connections, and a get/set ration of 0.8.

5.2 Facebook ETC Performance

We test and compare LAMA with the policies of default Mem-
cached, Automove, PSA, Facebook, and Twitter’s Twemcache
(described in Section 2). In our experiments, Automove finds no
chance of slab reassignment, so it has the same performance as
Memcached. LAMA has two variants: LAMA OPT MR, which
tries to minimize the miss ratio; and LAMA OPT ART, which
tries to minimize the average response time. Figures 5 and 6 show
the miss ratio and ART over time from the cold-start to steady-
state performance. The total memory is 512MB.

The default Memcached and PSA are designed to balance the
miss ratio among size classes. LAMA tries to minimize the total
miss ratio. Performance optimization by LAMA shows a large
advantage over performance balancing by Memcached and PSA.
If we compare the steady-state miss ratio, LAMA OPT MR is
47.20% and 18.08% lower than Memcached and PSA. If we
compare the steady-state ART, LAMA OPT ART is 33.45% and
13.17% lower.

There is a warm-up time before reaching the steady state.
LAMA repartitions at around every 300 seconds and reassigns up
to 50 slabs. We run PSA at 50 times the LAMA frequency, since
PSA reassigns 1 slab each time. LAMA, PSA and Memcached
converge to the steady state at the same speed. Our implementation
of optimal allocation (Section 4.6) shows that this speed is the
fastest.



8

0 20 40 60 80 100
Request(%)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
is

s
 R

a
ti

o
LAMA_OPT_MR

LAMA_OPT_ART

Memcached/Automove

PSA

Twemcache

Facebook

Fig. 5: Miss ratio from cold-start to steady state

0 20 40 60 80 100
Request(%)

300

400

500

600

700

800

A
v
e
ra

g
e
 R

e
q
u
e
s
t 

T
im

e
(m

s
) LAMA_OPT_MR

LAMA_OPT_ART

Memcached/Automove

PSA

Twemcache

Facebook

Fig. 6: Average response time from cold-start to steady state

128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Memory Space(MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
is

s
 R

a
ti

o

Twemcache

Memcached

PSA

Facebook

LAMA_OPT_MR

LAMA_OPT_ART

TUB

Fig. 7: Steady-state miss ratio with different memory sizes

128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Memory Space(MB)

0

100

200

300

400

500

600

700

800

A
v
g
 R

e
q
u
e
s
t 

T
im

e
(m

s
) Twemcache

Memcached

PSA

Facebook

LAMA_OPT_MR

LAMA_OPT_ART

TUB

Fig. 8: Steady-state average response time when using different amounts of memory

The Facebook method differs from others in that it seeks

to equalize the age of the oldest items in each size class. In

the steady state, it performs closest to LAMA, 5.4% higher

than LAMA OPT MR in the miss ratio and 6.7% higher than

LAMA OPT ART in the average response time. The greater

weakness, however, is the speed of convergence, which is about 4

times slower than LAMA and the other methods.

Twemcache uses random rather than LRU replacement. In this

test, the performance does not stabilize as well as the other meth-

ods, and it is generally worse than the other methods. Random

replacement can avoid slab calcification, which we consider in

Section 5.5.

Next we compare the steady-state performance for memory

sizes from 128MB to 1024MB in 64MB increments. Figures 7

and 8 show that the two LAMA solutions are consistently the best

at all memory sizes. The margin narrows in the average response

time when the memory size is large. Compared with Memcached,

LAMA reduces the average miss ratio by 41.9% (22.4%–46.6%)

for the same cache size, while PSA and Facebook reduce the miss

ratio by 31.7% (9.1%–43.9%) and 37.6% (21.0%–47.1%). For the

same or lower miss ratio, LAMA saves 40.8% (22.7%–66.4%)

memory space, PSA and Facebook save 29.7% (14.6%–46.4%)

and 36.9% (15.4%–55.4%) respectively.

Heuristic solutions show strength in specific cases. Facebook

improves significantly over PSA for smaller memory sizes (in the

steadstate). With 832MB and larger memory, PSA catches up and

slightly outperforms Facebook. At 1024MB, Memcached has a

slightly faster ART than both PSA and Facebook. The strength of

optimization is universal. LAMA maintains a clear lead against all

other methods at all memory sizes.

Compared to previous methods on different memory sizes,

LAMA converges among the fastest and reaches a greater steady-

state performance. The steady-state graphs also show the the-

oretical upper bound performance (TUB), which we discuss in

Section 5.6.



9

0 50 100 150 200
Slabs

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
 R

a
ti

o
Real_MRC_class1

Real_MRC_class5

Real_MRC_class9

Footprint_MRC

Fig. 9: MRCs for class 1&5&9

TABLE 2: prediction miss ratio vs. real miss ratio

Capacity Real Prediction Accuracy

128MB 87.56% 88.21% 99.26%
256MB 74.68% 75.40% 99.05%
384MB 62.34% 62.63% 99.54%
512MB 50.34% 50.83% 99.04%
640MB 39.36% 39.52% 99.60%
768MB 29.04% 29.27% 99.21%
896MB 20.18% 20.61% 97.91%

1024MB 13.36% 13.46% 99.26%

5.3 MRC Accuracy
To be optimal, LAMA must have the accurate MRC. We compare

the LAMA MRC, obtained by sampling and footprint version,

with the actual MRC, obtained by measuring the full-trace reuse

distance. We first show the MRC in individual size classes of

Facebook ETC workload. There are 32 size classes. The MRCs

differ in most cases. Figure 9 shows three MRCs to demonstrate.

The three curves have different shapes and positions in the plots,

which means that data locality differs in different size classes. The

shape of the middle curve is not entirely convex, which means that

the traditional greedy solution, i.e. Stone et al. [26] in Section 6,

cannot always optimize, and the dynamic-programming method in

this work is necessary.

Figure 9 shows that the prediction is identical to the actual

miss ratio for these size classes. The same accuracy is seen in

all size classes. Table 2 shows the overall miss ratio of default

Memcached for memory sizes from 128MB to 1024MB and

compares between the prediction and the actual. The steady-state

allocation prediction for default Memcached uses Equation 6 in

Section 3.5. The prediction miss ratio uses Equation 4 based on

predicted allocation. The actual miss ratio is measured from each

run. The overall miss ratio drops as the memory size grows. The

average accuracy in our test is 99.0%. The high MRC accuracy

enables the effective optimization that we have observed in the

last section.

5.4 LAMA Parameters
LAMA has two main parameters as explained in Section 3.4: the

repartitioning interval M , which is the number of items accessed

before repartitioning; and the reassignment upper bound N , which

is the maximal number of reassignments at repartitioning. We have

tested different values of M and N to study their effects. In this

section, we show the performance of running the Facebook ETC

workload with 512MB memory.

Figure 10 shows the dynamic miss ratio over the time. In

all cases, the miss ratio converges to a steady state. Different

M,N parameters affect the quality and speed of convergence.

Three values of M are shown: 1, 2, and 5 million accesses. The

smallest M shows the fastest convergence and the lowest steady-

state miss ratio. They are the benefits of frequent monitoring

and repartitioning. Four values of N are shown: 10, 20, 50, and

512. Convergence is faster with a larger N . However, when N is

large, 512 in particular, the miss ratio has small spikes before it

converges, caused by the increasing cost of slab reassignment. Fre-

quent repartitioning speeds up the convergence but will increase

the monitoring overhead.

In a real deployment, these two parameters can be adjusted

according to the scale of the workload and Memcached server.

Another design option is the size of reallocation unit. In our small

scale test, every reassignment will move one slab from one class

to another. However, in large scale deployments, a larger-grained

reallocation unit leads to higher efficiency. It will bound the search

space of Algorithm 1. Based on our experience on different-scale

tests, the reallocation granularity can be set to r slabs, where r
is the memory size of the Memcached server divided by 1GB.

For example, if the size of cache server is 10GB, the unit of

reallocation will increase correspondingly by 10 times to 10 slabs

(10MB) for each reassignment. The reassignment upper bound

N can be set to 50, so the total reassignments are limited to 50

times and each reassignment will move 10 slabs from one class

to another. With this design, the number of solutions in the search

space of Algorithm 1 is always bounded to n ∗ 1024 ∗ 50 (n is the

number of classes). In our test machine, it only takes 0.01 seconds

to determine the best allocation.

Now we discuss how to determine the repartitioning interval

M in other cache sizes. With the reassignment upper bound, the

interval should be long enough for each class to measure the miss

ratio up to N ∗ r slabs above or below the current allocation.

However, if the current allocation of some classes is smaller

than the reassignment upper bound, miss ratio measurement up

to this bound is meaningless. Meanwhile, doubling the current

space allocation rarely happens in any class, so we choose to only

measure miss ratios for up to 2 times of the current allocation.

Assuming that the miss ratio of Class i is mri, and the probability

of a reference to Class i is pi, we can derive the following

relationship:

M ∗ p(i) >=
min(2 ∗ Si, Si +N ∗ r) ∗ Ii

mri
(7)

where Si is the current slabs allocation of Class i, Ii is the

number of items in each slab of Class i. If we want to measure

miss ratio curve of Class i, we use the number of distinct items

that fill the desired slab allocation divides the current miss ratio to

get the number of accesses to this class that should be monitored.

With the above analysis, now we can determine the repartitioning

interval M for a system of any scale:

M = max
1<i<n

(
min(2 ∗ Si, Si +N ∗ r) ∗ Ii

mri ∗ p(i) ) (8)

In real deployments, we can ignore those classes with few or

no misses in Equation 8. Their current allocations are already suf-

ficient to cache all the items being used. Miss ratio measurement

for a larger allocation is not necessary.

5.5 Slab Calcification
LAMA does not suffer from slab calcification. Partly to compare

with prior work, we use the three-phase workload (Section 5.1) to



10

Fig. 10: Different combinations of the repartitioning interval M
and the reassignment upperbound N

test how LAMA adapts when the access pattern changes from one

steady state to another. The workload is the same as the one used

by Carra et al. [14] using 1024MB memory cache to evaluate the

performance of different strategies. Figure 11 shows the miss ratio

over time obtained by LAMA and other policies. The two vertical

lines are phase boundaries.

Fig. 11: Miss ratio over time by different policies

LAMA has the lowest miss ratio in all three phases. In the

transition Phase 2, the miss ratio has 3 small, brief increases due to

the outdated slab allocation based on the previous access pattern.

The allocation is quickly updated by LAMA repartitioning among

all size classes. In LAMA, the slabs are “liquid” and not calcified.

Compared with LAMA, the miss ratio of the default Mem-

cached is about 4% higher in Phase 1, and the gap increases

to about 7% in Phase 3, showing the effect in Phase 3 of the

calcified allocation made in Phase 1. PSA performs very well but

also sees its gap with LAMA increases in Phase 3, indicating

Fig. 12: Cpu usage over time by LAMA and default Memcached

that PSA does not completely eradicate calcification. Facebook

uses global LRU. Its miss ratio drops slowly, reaches the level of

PSA in Phase 2, and then increases fairly rapidly. The reason is

the misleading LRU information when the working set changes.

The items of the first set stay a long time in the LRU chain. The

random eviction by Twemcache does not favor the new working

set over the previous working set. There is no calcification, but

the performance is significantly worse than others (except for the

worst of Facebook).

To verify the CPU cost of LAMA. We monitor the CPU usage

over time by LAMA and default Memcached in last test. For every

105 requests, the average CPU usage is recorded in Figure 12.

As we can observe, LAMA has lower CPU cost than defalut

Memcached for most of the time. In Figure 11, LAMA reduces

the miss ratio compare to default Memcached, the CPU cost is

also reduced because the querying and setting for missed data is

less with lower miss ratio.

5.6 Theoretical Upper Bound

To measure the theoretical upper bound (TUB), we first measure

the actual MRCs by measuring the full-trace reuse distance in the

first run, compute the optimal slab allocation using Algorithm 1,

and re-run a workload to measure the performance. The results

for Facebook ETC were shown in Figures 7 and 8. The theoretical

upper bound (TUB) gives the lowest miss ratio/ART and shows the

maximal potential for improvement over the default Memcached.

LAMA realizes 97.6% of the potential in terms of miss ratio and

92.1% in terms of ART.

We have also tested the upper bound for the three-phase

workload. TUB shows the maximal potential for improvement

over the default Memcached. In this test, LAMA realizes 99.2%

of the potential in phase 3, while the next best technique, PSA,

realizes 41.5%. At large memory sizes, PSA performs worse than

the default Memcached. It shows the limitation of heuristic-based

solutions. A heuristic may be more or less effective compared to

another heuristic, depending on the context. Through optimization,

LAMA matches or exceeds the performance of all heuristic

solutions.

5.7 QoS Guarantee Server Partition

With the intra-server partition we proposed in Section 4, the

desired memory space and slab allocation for performance-critical

application can be calculated. Given a hit ratio requirement,

LAMA can dynamically adjust the slabs partition to maintain the

desired performance if the slab resources are sufficient. With the

application’s performance requirement increasing or declining, the

number of slabs in the pool can be tuned for usage efficiency.



11

To demonstrate the effect of intra-server partition, we choose

the three-phase workload (APP1) to run with Facebook ETC

workload (APP2) in the same Memcached cluster. Because the

hit ratio of APP1 drops from Phase 2 to Phase 3, it is reasonable

to apply the dynamic intra-server partition to prevent the perfor-

mance degradation. To balance the lengths of the two workloads,

the ratio of their reference rates is set to 4:1. We evaluate the space

occupation (Figure 13) and miss ratio (Figure 14) over time of two

workloads under two configurations: (1) enabling LAMA without

intra-server partition. All keys in both workloads are mapped to

one Memcached server of 1024MB. (2) enabling LAMA and intra-

server partition in the same time and make a hit ratio guarantee

of APP1 at 85% and 80%. In the implementation, we set up two

Memcached instances and limit their total memory to 1024MB.

The initial memory space for each instance is 512MB.

In the first configuration (APP1 LAMA), where the opti-

mization target is the overall miss ratio of the server. LAMA

dynamically adjusts the slab allocation for each size class. The two

workloads freely compete for memory. The memory occupation

varies as the access pattern changes. The first phase of APP1
reaches a hit ratio of 80%, but it drops to 78% after the phase

transition. In the second configuration, the memory is partitioned

at the beginning. To guarantee the hit ratio of APP1, every 107

accesses, we adjust the slabs partition using Algorithm 2. As the

phase changes from 1 through 2 to 3, the slabs requirement of

APP1 increases gradually. As we can observe, the performance

degradation in the third phase is avoided. Except for a short miss

ratio increase (up to 1.3%) in the transition stage of Phase 2, the

miss ratio of the three phases maintains at the desired level. The

performance of APP2 is sacrificed to satisfy the QoS requirement

of APP1.

It should be pointed out that in the first half of Phase 2 the hit

ratio of APP1 with shared but not-explicitly-partitioned memory

and that with partitioned memory and 80%-QoS are very close.

But the performance of APP2 during this time period is different.

APP2 in partitioned memory shows a lower miss ratio while

using less memory space. This demonstrates negative interference

suffered by APP2 when sharing the memory. LAMA optimizes

the slab allocation in shared memory according to the combined

pattern of both workloads. For partitioned memory, APP2 is

optimized only according to its own reference pattern. It performs

better with an exclusive use of the memory. Memory partitioning

brings benefits to APP1 (QoS guarantee) and APP2 (hit ratio)

at the same time.

5.8 LAMA Scalability

In practice, memory demand of Memcached workloads can easily

exceed the memory capacity of computer servers. For example,

with 64GB memory on each server of Facebook’s Memcached

cluster, almost all memory is filled and a large number of misses

are observed [17].

To evaluate the scalability of LAMA, we run the data caching

benchmark program in the CloudSuite benchmark suite to simulate

behavior of a Twitter caching server using a scaled Twitter dataset

of 150GB. We set up two 32GB servers (64GB memory in

total), each running a four-thread Memcached, to evaluate the

performance under the heavy load of the benchmark. In this

test, we are concerned only the differences of throughput and

tail latency produced by large-scale Memcached with and without

using LAMA. The data caching benchmark focuses on the stress

0 20 40 60 80 100
Request(%)

0

200

400

600

800

1000

1200

S
la

b
s

phase 1 phase 2 phase 3

APP1_LAMA

APP1_80%

APP1_85%

APP2

APP2

APP2

Fig. 13: Slabs occupation over time of different configuration

0 20 40 60 80 100
Request(%)

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
 R

a
ti

o

phase 1 phase 2 phase 3

APP1_LAMA

APP1_80%

APP1_85%

APP2

APP2

APP2

Fig. 14: Miss ratio over time of different configuration

test for Memcached. Upon every GET miss, it does not bring

the missed data in cache. Since there is no data reuse, we cannot

measure the miss ratio in this test and therefore cannot evaluate the

benefit of LAMA. We use this experiment to evaluate the overhead

of LAMA.

The benchmark is network-intensive. We use two 10Gbit

Ethernet cards on each server. Two servers are configured with

the same socket, but different IP address. We also run server-side

Memcached and the client-side benchmark on different sockets

of the same machine in order to remove the network bottleneck.

After warming up the servers, we run the benchmark on the client

side to test server performance with different number of threads.

In the setup, there are 200 TPC/IP connections, and the GET/SET

ratio is 0.8.

In Table 3, we adopt the most recent Memcached-1.4.29 with

background garbage collector (automover) enabled to test the

highest throughput and tail latency of the Memcached servers

when LAMA is enabled or disabled. Under different request

pressure, corresponding to number of threads used at the client,

the Memcached servers with LAMA enabled exhibit performance

similar to Memcached servers with LAMA disabled. Small differ-

ences between their throughput, average and tail latencies indicate

small overhead of LAMA. In our test, higher workload pressure

leads to higher request latency observed at the client. The peak



12

TABLE 3: The overhead of LAMA in large-scale Memcached severs reported by data caching benchmark of CloudSuite

Threads Throughput (Kreqs/sec) Average Latency 90th 95th 99th Min Max

Disabled 8 373 7.3 ms 7.7 ms 7.8 ms 7.9 ms 6.4 ms 8.1 ms

Enabled 8 370 7.5 ms 7.9 ms 8.0 ms 8.1 ms 6.7 ms 8.2 ms

Disabled 16 383 16.4ms 26.8 ms 28.2 ms 30.2 ms 6.5 ms 33.8 ms

Enabled 16 378 16.6 ms 28.1 ms 30.7 ms 31.4 ms 6.8 ms 35.2 ms

Disabled 32 351 25.7 ms 28.2 ms 29.2 ms 31.0 ms 18.8 ms 33.2 ms

Enabled 32 343 27.1 ms 30.4 ms 32.1 ms 33.3 ms 20.2 ms 35.3 ms

throughput is observed when 16 threads, rather than 32 threads, are

used at the client. The throughput degradation is due to the lower

response time, which is caused by the inter-thread contention of

Memcached server. As revealed in the experiment results, the

MRC monitoring operations impose very limited overhead on the

Memcached server. The overhead is especially small when clients

and servers are not on the same machine and the network latency

is dominant. LAMA’s operations are performed only when the

system is warming up or when the request pattern changes. Once

the system reaches its optimal allocation, the MRC monitoring

routine can stay idle incurring almost zero overhead until substan-

tial performance change is detected.

To investigate how LAMA responds to slab calcification in a

larger scale setup, we create a slab calcification scenario using the

same twitter dataset as the one used in the pressure test. First,

we warm up the Memcached server with the same dataset but

increase each value size by a factor of 1.2. The purpose of this

size increase is to create a different distribution of KV items

across the size classes during cache warming up period. After

the cache server is filled, we issue the original dataset with 100%

GET commands and measure the miss ratio and throughput of the

Memcached severs. This produces a slab calcification scenario, as

the data pattern that determines the slabs allocation is different

from the following access pattern exhibited after the cache warms

up. We use libMemcached [27] to implement a multi-thread client

to produce the same access pattern of CloudSuite. In order to

measure the miss ratio of the system, we issue a SET command

right after each GET miss to add the missed data into Memcached

sever. To simulate the cache miss penalty, we add a 850ms

latency with each GET miss. This latency is the average miss

penalty observed in the experiment shown in Section 5.2, where

it is caused by the back-end database query for re-generating the

missed KV items.

Figure 15 shows the performance of Memcached servers

(Memcached-1.4.29) before LAMA is enabled as well as the

performance after calcification is resolved by LAMA. The Mem-

cached servers with calcification produce a hit ratio of 79.5%.

When LAMA is enabled and the optimal repartition is performed

in both servers, the new partition delivers a hit ratio of 86.3%.

Under different number of threads used by the client, the through-

put of optimal partitioned Memcached servers is higher than the

severs with calcification. Because higher hit ratio leads to smaller

miss penalty, LAMA substantially improves system performance

when calcification is observed. In this experiment, the reallocation

granularity is 32 slabs. With the reassignment upper bound, the

repartitioning can be completed within two seconds. It takes

several such repartitioning operations before the system reaches its

best performance. When LAMA is enabled, the additional space

consumption is around 400MB in each server, which is 1.2% of

entire memory space. When optimal partition is reached, LAMA

can be disabled and the additional space can be freed.

Fig. 15: The performance of Memcached servers with and without

LAMA

6 RELATED WORK

We have discussed related techniques on memory allocation in

Section 2. Below we discuss additional related work in two other

areas.

MRC Measurement Fine-grained MRC analysis is based on

tracking the reuse distance or LRU stack distance [28]. Many

techniques have been developed to reduce the cost of MRC profil-

ing, including algorithmic improvement [29], hardware-supported

sampling [30], [31], reuse-distance sampling [32], [33], [34], and

parallel analysis [35], [36], [37]. Several techniques have used

MRC analysis in online cache partitioning [38], [39], [31], page

size selection [40], and memory management [41], [42]. The

online techniques are not fine-grained. For example, RapidMRC

has 16 cache sizes [31], and it requires special hardware for

address sampling.

Given a set of cache sizes, Kim et al. divided the LRU stack

to measure their miss ratios [42]. The cost is proportional to the

number of cache sizes. Recently for Memcached, Bjornsson et

al. developed MIMIR, which divides the LRU stack into variable

sized buckets to efficiently measure the hit ratio curve (HRC) [6].

Both methods assume that items in cache have the same size,

which is not the case in Memcached.

Recent work shows a faster solution using the footprint (Sec-

tion 2.2), which we have extended in LAMA (Section 3.2). It

can measure MRCs at per-slab granularity for all size classes

with a negligible overhead (Section 5). For CPU cache MRC, the

correctness of footprint-based prediction has been evaluated and

validated initially for solo-use cache [16], [20]. Later validation

includes optimal program symbiosis in shared cache [43] and a

study on server cache performance prediction [44]. In Section 4.3,



13

we have evaluated the prediction for Memcached size classes and
shown a similar accuracy.

MRC-based Cache Partitioning The classic method in CPU
cache partitioning is described by Stone et al. [26]. The method
allocates cache blocks among N processes so that the miss-rate
derivatives are as equal as possible. They provide a greedy solu-
tion, which allocates the next cache block to the process with the
greatest miss-rate derivative. The greedy solution is of linear time
complexity. However, the optimality depends on the condition that
the miss-rate derivative is monotonic. In other words, the MRC
must be convex. Suh et al. gave a solution which divides MRC
between non-convex points [45]. Our results in Section 5.3 show
that the Memcached MRC is not always convex.

LAMA is based on dynamic programming and does not
depend on any assumption about MRC curve property. It can
use any cost function not merely the miss ratio. We have shown
the optimization of ART. Other possibilities include fairness and
QoS. The LAMA optimization is a general solution for optimal
memory allocation and partition. A similar approach has been
used to partition CPU cache for performance and fairness [22],
[19].

7 CONCLUSION

This paper has described LAMA, a locality-aware memory al-
location for Memcached. The technique measures the MRC for
all size classes periodically and reallocate the memory to reduce
the miss ratio or the average response time. Compared with the
default Memcached, LAMA reduces the miss ratio by 42% using
the same amount of memory, or it achieves the same memory
utilization (miss ratio) with 41% less memory. It outperforms four
previous techniques in steady-state performance, the convergence
speed, and the ability to adapt to phase changes. LAMA predicts
MRCs with a 99% accuracy. As a result, its solution is close to
optimal, realizing 98% of the performance potential in a steady-
state workload and 99% of the potential in a phase-changing
workload. LAMA has also been used to partition memory in
a Memcached cluster to guarantee QoS for performance-critical
applications.

ACKNOWLEDGMENTS

The research is supported in part by the National Science
Foundation of China (No. 61232008, 61272158, 61328201,
61472008 and 61170055); the 863 Program of China under Grant
No.2012AA010905, 2015AA015305; the Research Fund for the
Doctoral Program of Higher Education of China under Grant
No.20110001110101; the National Science Foundation (No. CNS-
1319617, CCF-1116104, CCF-0963759, CCF-0643664, CSR-
1422342, CCF-0845711, CNS1217948).

REFERENCES

[1] Brad Fitzpatrick. Distributed caching with memcached. Linux journal,
2004(124):5, 2004.

[2] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Shengzhong
Feng. Accelerating mapreduce with distributed memory cache. In
Parallel and Distributed Systems (ICPADS), 2009 15th International
Conference on, pages 472–478. IEEE, 2009.

[3] Jinho Hwang, Ahsen Uppal, Timothy Wood, and Howie Huang. Mortar:
filling the gaps in data center memory. In Proceedings of the 10th
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, pages 53–64. ACM, 2014.

[4] Gurmeet Singh and Puneet Chandra Rashid Tahir. A dynamic caching
mechanism for hadoop using memcached.

[5] Steven Hart, Eitan Frachtenberg, and Mateusz Berezecki. Predicting
memcached throughput using simulation and modeling. In Proceedings
of the 2012 Symposium on Theory of Modeling and Simulation-DEVS
Integrative M&S Symposium, page 40. Society for Computer Simulation
International, 2012.

[6] Hjortur Bjornsson, Gregory Chockler, Trausti Saemundsson, and Ymir
Vigfusson. Dynamic performance profiling of cloud caches. In Proceed-
ings of the 4th annual Symposium on Cloud Computing, page 59. ACM,
2013.

[7] Kevin Lim, David Meisner, Ali G Saidi, Parthasarathy Ranganathan,
and Thomas F Wenisch. Thin servers with smart pipes: designing
soc accelerators for memcached. In Proceedings of the 40th Annual
International Symposium on Computer Architecture, pages 36–47. ACM,
2013.

[8] Jithin Jose, Hari Subramoni, Krishna Kandalla, Md Wasi-ur Rahman,
Hao Wang, Sundeep Narravula, and Dhabaleswar K Panda. Scalable
memcached design for infiniband clusters using hybrid transports. In
Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM
International Symposium on, pages 236–243. IEEE, 2012.

[9] Bin Fan, David G Andersen, and Michael Kaminsky. Memc3: Compact
and concurrent memcache with dumber caching and smarter hashing. In
NSDI, pages 371–384, 2013.

[10] Jinho Hwang and Timothy Wood. Adaptive performance-aware dis-
tributed memory caching. In ICAC, pages 33–43, 2013.

[11] Wei Zhang, Jinho Hwang, Timothy Wood, KK Ramakrishnan, and Howie
Huang. Load balancing of heterogeneous workloads in memcached clus-
ters. In 9th International Workshop on Feedback Computing (Feedback
Computing 14). USENIX Association, 2014.

[12] Caching with twemcache. https://blog.twitter.com/2012/
caching-with-twemcache, 2014. [Online].

[13] Twemcache. https://twitter.com/twemcache, 2014. [Online].
[14] Damiano Carra and Pietro Michiardi. Memory partitioning in mem-

cached: An experimental performance analysis. Communications (ICC),
2014 IEEE International Conference on, pages 1154–1159, 2014.

[15] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, et al. Scaling memcache at facebook. In NSDI, pages 385–398,
2013.

[16] Xiaoya Xiang, Bin Bao, Chen Ding, and Yaoqing Gao. Linear-time mod-
eling of program working set in shared cache. In Parallel Architectures
and Compilation Techniques (PACT), 2011 International Conference on,
pages 350–360. IEEE, 2011.

[17] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In ACM
SIGMETRICS Performance Evaluation Review, volume 40, pages 53–64.
ACM, 2012.

[18] Memcached-1.4.11. https://code.google.com/p/memcached/wiki/
ReleaseNotes1411, 2014. [Online].

[19] Jacob Brock, Yechen Li, Chencheng Ye, and Chen Ding. Optimal cache
partition-sharing : Dont ever take a fence down until you know why it
was put up. robert frost. In Proceedings of ICPP, 2015.

[20] Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao. HOTL: a higher order
theory of locality. In ASPLOS, pages 343–356, 2013.

[21] Peter J. Denning. The working set model for program behavior. Com-
munications of the ACM, 11(5):323–333, May 1968.

[22] Chencheng Ye, Jacob Brock, Chen Ding, and Hai Jin. Recu: Rochester
elastic cache utility – unequal cache sharing is good economics. In
Proceedings of NPC, 2015.

[23] Shahram Ghandeharizadeh, Sandy Irani, Jenny Lam, and Jason Yap.
Camp: a cost adaptive multi-queue eviction policy for key-value stores.
In Proceedings of the 15th International Middleware Conference, pages
289–300. ACM, 2014.

[24] Mutilate. https://github.com/leverich/mutilate, 2014. [Online].
[25] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,

Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the clouds:
a study of emerging scale-out workloads on modern hardware. In
Proceedings of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’12, pages 37–48, New York, NY, USA, 2012. ACM.

[26] Harold S Stone, John Turek, and Joel L. Wolf. Optimal partitioning
of cache memory. Computers, IEEE Transactions on, 41(9):1054–1068,
1992.

[27] libmemcached. http://libmemcached.org/libMemcached.html, 2014.
[Online].

https://blog.twitter.com/2012/caching-with-twemcache
https://blog.twitter.com/2012/caching-with-twemcache
https://twitter.com/twemcache
https://code.google.com/p/memcached/wiki/ReleaseNotes1411
https://code.google.com/p/memcached/wiki/ReleaseNotes1411
https://github.com/leverich/mutilate
http://libmemcached.org/libMemcached.html


14

[28] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM System Journal, 9(2):78–117,
1970.

[29] Yutao Zhong, Xipeng Shen, and Chen Ding. Program locality analysis
using reuse distance. ACM Transactions on Programming Languages
and Systems (TOPLAS), 31(6):20, 2009.

[30] J Torrellas, Evelyn Duesterwald, Peter F Sweeney, and Robert W Wis-
niewski. Multiple page size modeling and optimization. In Parallel
Architectures and Compilation Techniques, 2005. PACT 2005. 14th
International Conference on, pages 339–349. IEEE, 2005.

[31] David K Tam, Reza Azimi, Livio B Soares, and Michael Stumm.
Rapidmrc: approximating l2 miss rate curves on commodity systems for
online optimizations. In ACM SIGARCH Computer Architecture News,
volume 37, pages 121–132. ACM, 2009.

[32] Kristof Beyls and Erik H DHollander. Discovery of locality-improving
refactorings by reuse path analysis. In High Performance Computing and
Communications, pages 220–229. Springer, 2006.

[33] Derek L Schuff, Milind Kulkarni, and Vijay S Pai. Accelerating multicore
reuse distance analysis with sampling and parallelization. In Proceedings
of the 19th international conference on Parallel architectures and com-
pilation techniques, pages 53–64. ACM, 2010.

[34] Yutao Zhong and Wentao Chang. Sampling-based program locality
approximation. In Proceedings of the 7th international symposium on
Memory management, pages 91–100. ACM, 2008.

[35] Huimin Cui, Qing Yi, Jingling Xue, Lei Wang, Yang Yang, and Xiaobing
Feng. A highly parallel reuse distance analysis algorithm on gpus. In
Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th
International, pages 1080–1092. IEEE, 2012.

[36] Saurabh Gupta, Ping Xiang, Yi Yang, and Huiyang Zhou. Locality
principle revisited: A probability-based quantitative approach. Journal
of Parallel and Distributed Computing, 73(7):1011–1027, 2013.

[37] Qingpeng Niu, James Dinan, Qingda Lu, and P Sadayappan. Parda: A
fast parallel reuse distance analysis algorithm. In Parallel & Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International, pages
1284–1294. IEEE, 2012.

[38] G Edward Suh, Srinivas Devadas, and Larry Rudolph. Analytical cache
models with applications to cache partitioning. In Proceedings of the
15th international conference on Supercomputing, pages 1–12. ACM,
2001.

[39] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page
coloring-based multicore cache management. In Proceedings of the 4th
ACM European conference on Computer systems, pages 89–102. ACM,
2009.

[40] Calin Cascaval, Evelyn Duesterwald, Peter F. Sweeney, and Robert W.
Wisniewski. Multiple page size modeling and optimization. In Pro-
ceedings of the International Conference on Parallel Architecture and
Compilation Techniques, pages 339–349, 2005.

[41] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,
Yuanyuan Zhou, and Sanjeev Kumar. Dynamic tracking of page miss
ratio curve for memory management. In ACM SIGOPS Operating
Systems Review, volume 38, pages 177–188. ACM, 2004.

[42] Yul H Kim, Mark D Hill, and David A Wood. Implementing stack
simulation for highly-associative memories, volume 19. ACM, 1991.

[43] Xiaolin Wang, Yechen Li, Yingwei Luo, Xiameng Hu, Jacob Brock, Chen
Ding, and Zhenlin Wang. Optimal footprint symbiosis in shared cache.
In CCGRID, 2015.

[44] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas JA Harvey, An-
drew Warfield, and Coho Data. Characterizing storage workloads with
counter stacks. In Proceedings of the 11th USENIX conference on Op-
erating Systems Design and Implementation, pages 335–349. USENIX
Association, 2014.

[45] G. Edward Suh, Larry Rudolph, and Srinivas Devadas. Dynamic
partitioning of shared cache memory. The Journal of Supercomputing,
28(1):7–26, 2004.

Xiameng Hu received his B.S. degree from
Tianjin University in 2013.He is currently work-
ing towards the PhD degree in the school of
electronics engineering and computer science at
Peking University. His research interests include
distributed computing, memory system optimiza-
tion and data locality theory etc.

Xiaolin Wang received his B.S. and Ph.D. de-
grees from Peking University in 1996 and 2001
respectively. He is an associate professor in
Peking University. His research interests include
system software, virtualization technologies and
distributed computing, etc.

Lan Zhou received his B.S. degree from Peking
University in 2015. He is studying for a mas-
ter’s degree in Peking University. His research
interests include system software, virtualization
technologies and distributed computing, etc.

Yingwei Luo received his B.S. degree from
Zhejiang University in 1993, and his M.S. and
Ph.D. degrees from Peking University in 1996
and 1999 respectively. He is a professor in
Peking University. His research interests include
system software, virtualization technologies and
distributed computing, etc.

Chen Ding received Ph.D. from Rice University,
M.S. from Michigan Tech, and B.S. from Beijing
University before joining University of Rochester
in 2000. His research received young investiga-
tor awards from NSF and DOE. He co-founded
the ACM SIGPLAN Workshop on Memory Sys-
tem Performance and Correctness (MSPC) and
was a visiting researcher at Microsoft Research
and a visiting associate professor at MIT. He
is an external faculty fellow at IBM Center for
Advanced Studies.



15

Song Jiang received his BS and MS degrees in
computer science from the University of Science
and Technology of China in 1993 and 1996,
respectively, and received his PhD in computer
science from the College of William and Mary in
2004. He is currently an associate professor at
the Department of Electrical and Computer Engi-
neering of Wayne State University. His research
interests are in the areas of operating systems,
file and storage systems, and high performance
computing.

Zhenlin Wang received his BS degree in 1992
and MS degree in 1995 both in Computer Sci-
ence and from Peking University, China. He re-
ceived his PhD in Computer Science in 2004
from the University of Massachusetts, Amherst.
He is currently a professor of the Department
of Computer Science at Michigan Technological
University. His research interests are broadly in
the areas of compilers, operating systems and
computer architecture with a focus on memory
system optimization and system virtualization.


	Introduction
	Background
	Memory Allocation in Memcached
	The Footprint Theory

	Locality-aware Memory Allocation
	Locality-based Caching
	MRC Profiling
	Target Performance
	Optimal Memory Reallocation
	Performance Prediction

	Locality-aware Server Partition
	Evaluation
	Experimental setup
	Facebook ETC Performance
	MRC Accuracy
	LAMA Parameters
	Slab Calcification
	Theoretical Upper Bound
	QoS Guarantee Server Partition
	LAMA Scalability

	Related Work
	Conclusion
	References
	Biographies
	Xiameng Hu
	Xiaolin Wang
	Lan Zhou
	Yingwei Luo
	Chen Ding
	Song Jiang
	Zhenlin Wang


