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Abstract—Non-volatile main memory (NVRAM) enables
data persistence in memory. However, the existence of transient
CPU caches in modern computer architectures brings a serious
performance issue. In particular, cache lines have to be flushed
frequently to guarantee consistent persistent program states.
Hence, persistence and performance cannot be easily obtained
simultaneously.

In this paper, we optimize data persistence by proposing a
software cache. The software cache first buffers lines that need
to be flushed, and then flushes them out at an appropriate later
time. The software cache aims to maximize the combination
of cache line flushes. We designed a new linear-time algorithm
to calculate cache miss ratio curve (MRC) so as to adaptively
select the best cache capacity at run-time based on program
behavior. We evaluated the software cache on a real-world
memory-based database benchmark, the SPLASH2 benchmark
suite and four micro-benchmarks. Results indicate that the
software cache solution reduces cache write backs to persistent
memory by 12× and improves performance over the state-of-
the-art methods by 2.1× on average, measured on a real system
emulator.

Keywords-NVM persistence; writing caching; timescale
reuse; linear-time MRC

I. INTRODUCTION

Persistent memory or non-volatile memory (NVRAM)
technologies, such as memristors and phase change memory,
are increasingly popular. Micron and Intel have announced
that their non-volatile memory technology, 3D XPoint,
would be productized in the near future.

Persistent memory offers higher density and lower power
than DRAM and much faster access than SSD, and it is
byte-addressable [36]. This in-memory durability model [9]
can greatly change the programming paradigm for many
applications. While an application today typically maintains
an in-memory object format and a separate durable format
for a durable block device, only one format of data will
suffice in this new world.

A problem of NVRAM data persistence is the transient
memories in current computer architectures, such as CPU
caches. As described in [9], at any point of program
execution, some of the updates to persistent memory may
only reside in CPU caches and have not yet propagated to
NVRAM. If there is a failure at this point of execution,
the program state in NVRAM may not be consistent thus
preventing full recovery. The solution is to flush out dirty

cache lines at appropriate program points so that the above
situation cannot occur.

The entire cache can be flushed to memory. For example,
ARM provides “flush entire cache” operations [2]. However,
the cost is often too high and largely unnecessary depending
on the consistency model. In this paper, we consider a
software system, namely Atlas [9], which uses the con-
sistency model called the failure-atomic section (FASE).
To ensure consistent persistency, Atlas writes back the
cache lines written in a FASE before the end of the FASE.
Write-back is implemented in software using the cache line
flush operation. We use the two terms, write-back and flush,
interchangeably.

Two basic solutions are eager and lazy write backs. The
eager solution flushes every store out of cache immediately
after the store finishes, and the lazy solution records the
addresses of modified data and flushes them at the end of
the FASE.

The eager solution has the benefit of hiding memory trans-
fer cost via asynchronous cache line flushes but incurs too
many flushes. We measured this approach for SPLASH2 [45]
benchmark, with the test setup given in Section IV. The
performance drops by 22× on average, as shown in Table I.
On the other hand, the lazy solution flushes each data just
once, but its cost does not overlap with computation. We
found in our tests that the CPU stall at the end of a FASE
severely hurts performance.

Program Slowdown Program Slowdown
barnes 22× fmm 24×
ocean 17× raytrace 6×

volrend 26× water-nsquared 24×
water-spatial 33× average 22×

Table I: The cost to eager data persistence in SPLASH2
benchmarks.

This paper describes a new software cache solution. It
buffers the writes to persistent memory and flushes a cache
line either at each cache eviction or at the end of a FASE.
It benefits from asynchronous cache line flushes and bounds
the stall time at the end of a FASE. In addition, the software
cache can adaptively control its size at run time. This paper
describes a new theory to select the best cache size.
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The paper makes the following contributions:

• We describe a new, software cache solution to reduce
the overhead of NVRAM data persistence.

• We develop a reuse-based locality theory to analyze
the locality of persistent memory writes and choose
the best size for write caching. It includes a linear time
algorithm for efficient online analysis.

• We give a complete system design, including an effi-
cient software cache that can be adapted during execu-
tion, as well as the compiler and run-time support to
ensure consistency semantics.

• We evaluate the software cache on 12 applications and
compare it with four other approaches. Results show
that the software cache approach reduces cache line
flushes by 12× and improves performance by 2.1× over
the previous state-of-the-art solution.

II. ATLAS SOFTWARE CACHE

Our system is built on Atlas, which is the main im-
plementation of the FASE persistency model. This section
describes first the Atlas design and then our new solution.

A. FASE in Atlas

In Atlas programming model, a data structure has a
set of invariants, which must be satisfied for it to be in
a consistent state. A program mutates one or more data
structures and may temporarily violate an invariant. The
programming model requires that all the codes that violate
a program invariant be grouped into a failure-atomic section
(FASE) [9]. Upon a system failure, either all or none of
the updates in a FASE are visible in NVRAM. Therefore,
persistent data is guaranteed to be consistent at the end of
a FASE.
Atlas monitors data writes at cache-line granularity. It

uses a table to record the address of all modified cache
blocks. Upon a write, if its cache-line address is in the table,
Atlas does nothing. Otherwise, the address is inserted. If
the table is full, a previously stored cache-line address is
read and then flushed before the new insertion. The whole
table is flushed at the end of a FASE.

Modern computers provide support for flushing out a
given cache line. For example, on x86 processors, clflush
and clflushopt flush and invalidate a cache line. A new
instruction clwb flushes without invalidating a cache line.
Hence, clwb may cause other threads to access a stale value.
Atlas uses clflush.

A flush operation has a non-trivial cost. In addition, since
Atlas uses clflush and invalidates the cache line, the
next access will be a cache miss. For both its direct and
indirect costs, the number of cache line flushes is highly
correlated with running time.

B. Software Cache

To avoid conflating hardware and software cache, we use
the word “cache” and “software cache” interchangeably to
mean software cache and “hardware cache” otherwise.

The Atlas table is equivalent to a direct-mapped, fixed
size cache. In the new solution, we use a fully associative
LRU-based resizable cache implemented in software. The
goal of software cache is to minimize the number of flushes
by buffering the writes to the same cache line and by adapt-
ing its size, i.e. being workload aware. It would minimize not
only the direct cost of flush operations but also the indirect
cost due to the subsequent misses on the flushed data.

The software cache is per thread. Figure 1 shows its basic
execution model. For a program with two threads, it has
two software caches. Each time a thread running in a FASE
writes to persistent memory, the thread stores the cache line
address to its software cache. When two threads write to
the same cache line, they each stores its address in its own
cache. There is no data sharing between software caches.

Because there is no data sharing, software caches are
isolated from each other. Each thread independently ma-
nipulates its own cache. Because of the isolation, the cost
of software caches is fully distributed and does not affect
program scalability. In addition, the implementation of cache
is efficient because it does not use locking.

Figure 1: Illustration of the software cache. The software
cache of Thread 1 has two blocks and is full. When Thread
1 accesses a new cache line 0x600, the address is inserted
into the cache, 0x400 is evicted from the software cache,
and the cache line flushed out of the hardware cache.

Software cache does not affect original program states. It
is placed in the faster DRAM, rather than NVRAM.

When a software cache is full, it chooses the least recently
accessed cache-line address. Its thread then issues the flush
command to write back the cache line from hardware cache
to NVRAM. Figure 1 shows that the local store of thread 1
is full, and after inserting the new cache line address 0x600,
thread 1 uses the flush operation to force the hardware cache
to evict 0x400 and write it back to NVRAM.

It is well known that cache often does not yield benefits
proportional with capacity. This is often shown using the
miss ratio curve (MRC). Figure 2 shows the MRC of
the software cache of the water-spatial program in the
SPLASH2 benchmark. Software cache would choose 23
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since it is the most cost effective. Although a larger size
means fewer cache misses, it also increases the stall time at
the end of a FASE. Section III-C describes how to choose
the best cache size at run time.
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Figure 2: The MRC of water-spatial program. It has a few
“knees,” where cache miss ratio dramatically drops. In this
case, we choose 23 as the software cache size, since it
corresponds to the knee that has the smallest cache miss
ratio and is not overly large.

III. OPTIMIZED ADAPTIVE WRITE CACHING

Locality theory is useful in studying memory systems
because it gives a precise reading of the locality of a program
or a system and provides the basis for optimization. This
section formulates the theory of write caching, which we
use to determine the best cache size.

A. Write Caching
Traditionally, cache has been optimized for fast reads.

For persistent memory, the software cache we use stores
only modified data. Furthermore, its performance is defined
entirely by data writes, more precisely, how many writes are
combined while the data resides in cache. Indeed, previous
Atlas table does not consider data reads at all. As an
extension, write caching considers only data writes. We call
the cache write-combining.

In write-combining cache, a reuse happens when there is a
write to an existing data block in cache. Since the existence
implies an earlier write, the reuse enables the cache to
combine this write. Therefore, maximizing the performance
of write caching is equivalent to maximizing the number of
data reuses in the write-combining cache.

For optimization, we may build on two types of locality
theories. The first is reuse distance, which measures the
locality of a memory access [34]. The second is the working-
set size, which measures data usage in a time window [14].
We call the first type access locality and the second timescale
locality. Both locality types have been used to optimize the
cache size. However, reuse distance is costly to measure,
especially online for CPU caches. Recent solutions use
timescale locality [17, 41, 46]. A key advantages is the
asymptotic time complexity, which is linear for timescale
locality but more than linear for reuse distance.

Next we extend timescale locality to model reuses in
write caching and show that the new model has the same
asymptotic efficiency.

B. Reuse-based Timescale Locality

We consider an execution as a sequence of data accesses
(writes). A logical time is assigned to each data access. A
time window is designated by two data accesses and includes
all intervening accesses. The length of a window is the
number of accesses it contains.

Reuse locality is measured by the number of data reuses
in a time window. Counting the number of intra-window
reuses is the same as counting number of reuse intervals
that fall within the window. We define the following:

Definition 1. Reuse interval and Intra-window reuse The
time interval between a data access and its next access to the
same datum is defined as a reuse interval. If a reuse interval
is enclosed within a window, we say that the window has an
intra-window reuse.

Different windows may contain different numbers of
reuses. We define the timescale reuse reuse(k) as the average
number of intra-window reuses of all windows of length k.
We call the length k the timescale parameter. Given any
trace, reuse(k) is uniquely defined.

For example, the trace “abb” has two windows of length
two. They have 0 and 1 intra-window reuses, respectively.
Thus, reuse(2) = 1

2 . It is straightforward to measure reuse(k)
for any single k. As a locality measure, however, we need
the value for all k ≥ 0. Assume a trace of n data accesses.
Consider all windows of all lengths (1 ≤ k ≤ n). The
number of these windows is n-choose-2 or n(n+1)

2 . Instead
of counting reuses in all windows, we transform the problem
to make it solvable in linear time O(n).

Instead of counting reuse intervals in each window w, we
count the number of windows enclosing each reuse interval,
[si, ei], whereby si is the start time of the interval and ei
the end time. The total of the two counts are the same, as
shown in Eq. 1.

reuse(k) =
∑

all window w (number of reuse intervals in w)

n− k + 1

=

∑
all interval i,ei-si≤k windows enclosing (i)

n− k + 1

(1)

Let’s consider how to count the number of k-length
windows enclosing a reuse interval, [si, ei]. Obviously we
must have ei − si ≤ k; otherwise the count is 0. Figure 3
shows four cases for this counting. Case 1, si ≥ k and
ei ≤ n− k + 1, is an “internal” case, while the other three
are boundary cases. For Case 1, the windows starting from
ei − k − 1 to si are all counted, therefore the number is
k − (ei − si) + 1. The counts of the other three cases are
given by the formulas in Figure 3.
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Figure 3: Four cases of window counting for a reuse interval,
that is, the number of k-length windows that enclose an
interval [s, e].

Given a trace of length of n accesses and r distinct reuse
intervals, [si, ei] (i = 1 . . . r), Eq. 2 shows the complete
formal solution. The function I is a predicate, which equals
to 1 if the condition is true and otherwise 0. In the equation,
I(ei − si ≤ k) counts only reuse intervals not longer than
k.

reuse(k) =
∑r

i=1 I(ei-si ≤ k)(min(n-k, si)-max(k, ei)+k+1)
n− k + 1

(2)

The solution of interval counting is based on our prior
work of all-window liveness [27]. In liveness analysis, each
interval is the life of a memory object from allocation to free.
Hence, Eq. 2 is mathematically equivalent to the liveness
count in [27] Eq. 2 is linear time O(r) to compute for each
timescale k. We need to compute reuse(k) in linear time for
all k. For this, we refer to the solution in [27].

From Reuse to Cache Hit Ratio: At any moment t in
fully associative LRU cache, the content consists of data
referenced by previous k accesses for some k. reuse(k) is
the average number of reuses in each k consecutive data
accesses. It follows that on average, there are k-reuse(k)
distinct data in these accesses. The next access is a hit
if it is a reuse; otherwise, it is a miss. The difference,
reuse′(k)=reuse(k+1) - reuse(k), shows the average portion
of times that the next access is a reuse. Hence, the hit ratio
of cache of size (k - reuse(k)) is the derivative of reuse(k)
at k, as shown in Eq. 3.

hr(c) = reuse′(k) = reuse(k+1)− reuse(k) (3)

where c = k − reuse(k). To illustrate, consider an example
pattern “abab...” that is is infinitely repeating. The following
table shows discrete values of reuse(k) and hit ratio, where
c denotes cache size, i.e. k-reuse(k).

k reuse(k) c hr
1 0 1 0
2 0 2 1
3 1 2 1
4 2 2 1

Reuse vs. Footprint Locality: The working-set size
(WSS) of a time window is the number of distinct data
accessed in the window. Footprint fp(k) is the average WSS
in all windows of length k [46]. Xiang et al. give the
following (linear-time) formula to compute fp(k) for all k.

fp(k) = m− 1
n− k + 1

(
m∑

i=1

(fi − k)I(fi > k)

+
m∑

i=1

(li − k)I(li > k) + n
n−1∑

t=k+1

(t− k)P (rt = t))(4)

where m is the number of distinct data, fi the first access
time, li the last access time, P (rt = t) the fraction of
accesses with a reuse time t, and I the predicate function.

For each window, it is obvious that the working-set size
plus the number of reuses is total number of accesses. It
follows that the average WSS and average reuse have the
same relation. Thus we have,

reuse(k) + fp(k) = k (5)

The relation in Eq. 5 shows that reuse and footprint are
dual metrics of cache locality. Mathematically, the simple
form is highly interesting, because the equations to compute
reuse(k), fp(k) are complex and completely different. The
reuse calculation, Eq. 2, uses the start and ending time of
reuse intervals, while the footprint calculation, Eq. 4, uses
the length of reuse intervals. The simple relation, although
obvious from the definitions, would have been completely
unexpected to someone who looked only at the equations.

Xiang et al. showed that the miss ratio is the derivative of
footprint and called this and other conversions the higher-
order theory of locality (HOTL) [46]. Using Eq. 5, we can
easily derive their result as follows:

reuse′(k) = 1− fp′(k) = 1− mr(c) = hr(c) (6)

where c is k - reuse(k), and fp′(k) denotes the derivation
of fp(k).

Correctness: Xiang et al. gave a correctness condition
for the miss-ratio conversion. It is called reuse-window
hypothesis, which states that the WSS distribution in all
reuse windows is the same as the WSS distribution in all
windows [46]. From Eq. 6, we conclude that the hit-ratio
conversion in Eq. 3 has the same correctness condition.

In this section, we have presented a new formulation
of the timescale locality based on data reuses. The result
is mathematically derivable from footprint, so it is not
new. However, the formulation is new and has not been
considered in past work. The new derivation gives a new
linear-time algorithm to calculate cache performance. It is
more intuitive for understanding write caching. In addition,
it is the first mathematical connection between the theory of
locality [46](data caching) and the theory of liveness [27]
(memory allocation).
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Adaptation to FASE Semantics: To use the reuse lo-
cality for FASEs, we make two modifications. The first
is obvious — we analyze only the sequence of persistent
writes. The next is more subtle. Consider a trace under the
FASE semantics ab|ab|ab..., where a | denotes the end of
a FASE. If we ignore the FASEs, the trace is ababab....
reuse(2) = 0 and reuse(3) = 1, thus cache hit ratio of
size 2 cache is 100%. However, since we flush a, b at
every |, every write is actually a miss, whatever the cache
size is. In essence, the FASE semantics invalidates all data
reuses across a FASE boundary. The problem cannot be
solved online by flushing the content of cache at the end
of FASE, because we need the locality for all cache sizes.
We modify a write trace so the writes from different FASEs
use completely different addresses. In other words, the same
address cannot be used in more than one FASE. In this
example, the trace will be converted into abcdef... before
locality analysis.

C. Adaptive Caching Implementation
This section gives the implementation of the adaptive

software write-combining cache, including MRC analysis,
online cache size selection, and compiler support to for
FASE code.

The Cache: A software cache is created for each
thread. Each cache includes a hash map and a doubly linked
list. Each node of the list stores a cache block. The hash
table maps memory address to the cache block. All cache
operations have O(1) time complexity: including search
using the hash map; insertion, update and deletion using
the linked list. A similar data structure is used in Linux to
manage pages [20], whereby a red-black tree for insertion,
update and deletion and a doubly linked list for traversal.
Our cache is faster by using a hash map rather than a red-
black tree.

MRC Analysis: Online MRC analysis is based on
bursty sampling [3, 11]. It partitions a program execution
into bursts and hibernation periods. At a burst, we monitor
the sequence of persistent writes. At the end of a burst
period, we calculate MRC and then adjust the cache capacity,
In the evaluation, a burst has 64M writes. We found it is suf-
ficient to analyze MRC just once, so we set the hibernation
to an infinite length. Offline analysis uses the whole-trace
of persistent writes and chooses the best cache size after
profiling and before the testing run. The offline choice is
the best single cache size for the whole execution. Both
online and offline calculations use the formula discussed
in Section III-B, whose time complexity is linear (actually
constant in online analysis).

We assume that threads have different cache behavior and
analyze MRC for each thread. To reduce the overhead, we
could group threads with similar write locality and calculate
one MRC for each group. We will consider it in our future
work.

Cache Size Optimization: We set 8 as the default cache
size and choose the best cache size once we have the MRC.
To avoid excessive stalls due to cache flushes at the end of a
FASE, we bound the maximal cache size. Based on testing,
we set the maximal cache size to 50. From the MRC, we find
inflection points or “knees”. First, we calculate the decrease
in miss ratio for every cache size increase (i.e. the gradient),
rank the decreases, and pick the top few as candidate knees.
We then choose the knee that has the largest cache size.
For example, Figure 2 has five inflection points. We choose
23. If a MRC does not have obvious inflection points, we
choose the maximal cache size.

Compiler Support: We implemented a pass in
LLVM [22] to instrument all memory stores and FASE lock-
ing and unlocking operations. At run time, these operations
are monitored by the software cache. The same compiler
support is used by Atlas [9].

IV. EVALUATION

A. Experimental Methodology
Emulation System: Intel and Micron announced that

their NVRAM technology 3D XPoint [23] will be produc-
tized in the near future. Because real NVRAM is not yet
available, we used an emulator that uses DRAM to simulate
NVRAM. The test platform is a machine shipped with 60
Intel Xeon E7-4890 cores at 2.8GHz, running Linux OS
3.10. We use tmpfs [42] to allocate persistent data. At the
start of a process, it is directly memory mapped into the
address space. Data in tmpfs survives process termination
and hence can be used or shared by another process. Hence,
the emulation system provides a directly mapped, byte-
addressable persistent memory across process terminations,
which mimics the functionality of NVRAM for persistence
across failures.

Persistent Data Caching: We have implemented and
tested six techniques of persistent data caching. The first,
SC, is the online solution that measures the MRC and adjusts
the cache size as a program executes. For comparison, the
second uses the MRC measured offline. We call it SC-
offline.

We compare SC and SC-offline with four alternatives. The
first approach is the state-of-the-art Atlas approach [9]
(AT),as described in Section II. The second is the eager ap-
proach (ER), which flushes cache lines instantly every time
a persistent store happens. The third is the lazy approach
(LA), which flushes all cache lines at the end of a FASE. LA
gives the lowest possible. The last is the approach that does
not flush any cache lines at all (BEST). BEST is not a valid
solution but approximates the effect of optimal caching, i.e.
minimal number of flushes and perfect flush scheduling to
overlap computation and memory transfer. Obviously, BEST
is the upper bound of the optimal caching. To compare these
six solutions, we time their executions and take the averages
of five runs.

116



B. Applications

Memory-mapped database (MDB): MDB [12] is a
read-optimized key-value store based on B+-tree to service
the OpenLDAP [38] backend. Compared with the Berkeley-
DB, MDB is more excellent in many aspects. MDB supports
transactions and uses Multi-Version Concurrency Control
(MVCC). A memory-mapped file of in-disk key-value pairs
is used for gets and puts. Readers start with the snapshot
at the beginning of a transaction and run in parallel with
writers. Writers use copy-on-write policy. A reader always
sees a valid B+-tree without having to acquire locks. A write
transaction is required to acquire an exclusive lock to update
an old version to a new version. MDB gives us a sense of
tradeoff between persistence and performance in the cloud-
level applications.

SPLASH2: All applications from the SPLASH2 [45]
benchmark suite are evaluated except for radiosity, which
we couldn’t compile on our system. The basic statistics
of SPLASH2 benchmark is shown in Table III. Variations
shown by problem sizes and the number of FASEs demon-
strate that they are good representatives. We persist all
data structures in SPLASH2 that are not stack-allocated
to create the most demand for data durability, since the
cost of durability is often proportional to the amount of
persisted data [9], and then to give us a fair idea of the
performance we are able to obtain while maintaining the
worst-case consistent durability. The benchmarks can be run
with up to 32 threads.

Micro benchmarks: To understand the cost of cache
line flushes and the effect of cache size on that cost, we
start with a simple sequential program persistent-array. It
has only one FASE, which consists of a two-level nested
loop. The inner loop iterates 400 times and writes in iteration
i to the i-th element of an array of integers. The outer loop
repeats the inner loop 2500 times. On the tested machine,
a cache block has 64 bytes, i.e. 16 (4-byte) integers. The
inner loop accesses 25 (cache line aligned) or 26 (not cache
line aligned) cache blocks, which is the working set. Atlas
uses table size of 8, and removes around 15/16 data flushes,
due to cache spatial locality. Hence, the data flush ratio is
0.0625, However, the software cache captures the best cache
size, 26, which further optimizes the data flush ratio to only
0.00003. These numbers are shown in Table III.

The queue is a multithreaded benchmark we wrote based
on the blocking algorithm of Michael and Scott [35]. The
hash is a single-threaded open-source hash table [13]. The
singly linked-list is a multi-threaded benchmark, whereby
a total of N elements are inserted in a perfect shuffle
pattern for a given number of elements added atomically at
each step. A concurrent queue is perhaps the most common
parallel data structure used by a concurrent application. We
measure it as a micro-benchmark to show the performance of
making a concurrent queue persistent. All micro-benchmarks

can be found in the Atlas Github repository [21].

C. Case study: MDB

We use the Mtest workload, from the MDB test
suite [12], to evaluate performance. The workload inserts 1
million key/value pairs along with many traversals and dele-
tions. In the entire execution, there are 65558123 persistent
memory stores. The number of durable FASEs is 100516.
Each has 652 persistent memory stores on average.

Method ER AT SC SC-o BEST
Time(sec) 24.58 8.36 4.84 4.39 3.54
Speedup 1 2.94x 5.07x 5.60x 6.94x

Table II: Execution times of Mtest on MDB. SC-o denotes
SC-offline.

Table II shows the execution times of the five techniques
and the speedups normalized to ER. The speedup of the
state-of-the-art AT is 2.9×. SC is 5.1× faster, further im-
proving performance by 1.7×.

The performance improvement primarily results from the
reduction in cache line flushes, as shown in Table III. mdb
has 66 millions total writes. AT’s write-back frequency is
around 30% (20 millions), while SC reduces the number of
write backs to 7.4 millions, 11% of total writes and 37%
of AT’s. The lower bound is LA, which has 3.3 millions
write backs. However, due to LA flushes all cache lines at
the end of a FASE, its performance is extremely bad. We
will show an example later. That’s why we didn’t measure
its execution time here.

Fewer write backs lead to smaller hardware cache miss
ratios, as explained in Section II. For example, the L1
hardware cache miss ratio is 83.21% for AT and 68.50%
for SC . The time difference between SC and SC-offline
shows that the overhead of online cache size selection is
0.45 seconds, near 10% of execution time of SC. It is cost
effective, since SC leads to almost 4 seconds reduction in
running time, compared with AT.

D. The Write-Back Reduction

Table III shows statistics of all benchmarks under certain
problem sizes, and compares the write-back ratios of the
six techniques. The number of FASEs ranges from 1 to 300
thousands and the number of cache write backs ranges from
50 thousands to 391 millions.

The write-back frequency of ER is 1, since it flushes the
cache line at every store. LA reaches the lowest possible,
16%, since it maximally combines write backs. However,
since all cache lines are written back at the end of a
FASE, CPU resources are wasted and hence performance
is extremely bad. For example, for volrend program, LA is
slower than AT by 17.8×. Hence, we omit the performance
report of LA, but instead only show its data flush ratio to
give the lower bound for comparison.
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Benchmarks Problem Size Total FASEs Total Flushes ER LA AT SC AT/SC SC/LA
linked-list 10000 10K 49999 1.00000 0.60001 0.60001 0.60001 1× 1×

persistent-array 100000 1 1000001 1.00000 0.00003 0.06250 0.00003 2083.333× 1×
queue 400000 300K 400006 1.00000 0.62500 0.62500 0.62500 1× 1×
hash 4000 7K 83061 1.00000 0.50092 0.62128 0.59531 1.044× 1.188×

barnes 16384 69K 270762562 1.00000 0.00295 0.08206 0.00391 20.987× 1.325×
fmm 16384 43K 87711754 1.00000 0.00246 0.01683 0.00328 5.131× 1.333×
ocean 1026 648 25242763 1.00000 0.09203 0.40290 0.16467 2.447× 1.789×

raytrace car 346K 65509589 1.00000 0.07140 0.13952 0.07918 1.762× 1.108×
volrend head 45 391692398 1.00000 0.00219 0.03189 0.00219 14.561× 1×

water-nsquared 512 2.1K 45338822 1.00000 0.00107 0.05334 0.00411 12.978× 3.748×
water-spatial 512 77 40981496 1.00000 0.00103 0.07122 0.00157 45.363× 1.524×

mdb 1000000 100K 65558123 1.00000 0.05163 0.30140 0.11289 2.669× 2.223×
average - 65.1K 77420588 1.00000 0.16256 0.25066 0.18268 11.882× 1.427×

Table III: The benchmark statistics and data flush ratios of different techniques. The number of flushes is almost identical
for SC and SC-offline, which is shown by SC. The average is arithmetic for all tests except for persistent-array, which is
artificial, and linked-list and queue, which are already optimal.

AT vastly decreases data flushes, but there is still big room
to improve. Excluding persistent-array, SC outperforms AT
by 10× significantly, as a result of selection of the best cache
size. We will show that different programs choose different
cache sizes in Section IV-G. SC is as good as AT on linked-
list and queue, since they both achieve the lowest possible
write-back frequency for the two programs. However, SC
can choose the smallest cache size among all sizes that have
the lowest possible. What’s more, SC achieves the best for
persistent-array and volrend. volrend especially shows the
benefit. AT reduces the write-back frequency to 3%. Still, SC
goes one step further and is able to remove all unnecessary
write backs to the lowest possible (LA).

E. The Running Time

The performance in execution time is compared in Fig-
ure 4, which shows AT, SC, SC-offline and BEST by their
speedups over ER. In this comparison, all programs are
measured for single-thread runs except for mdb, which uses
eight threads.

Over ER, the speedup of SC ranges from 1.4× to 34.2×,
with an average of 9.6×, Over half of them are over 5×, 4
programs are more than 15×, and 2 programs are over 20×.
The greatest speedup is volrend, 34.2×. For comparison, AT
outperforms ER by 4.5× on average.

SC is uniformly better than AT. The average speedup
over AT is 2.1× and the greatest speedup reaches 4.3×
on water-nsquared program. The data flush ratio reduction
shown in Table III explains the reason that SC significantly
outperforms AT. For persist-array, though AT has 2082×
more flushes than SC, most of the flushes overlap with
computation. Hence, the execution time of SC is just slightly
less than AT.

SC-offline is faster than SC. The speedup of SC-offline
over ER ranges from 1.9× to 36.2×, with an average of
10.3×. SC is slightly slower than SC-offline, by 7% on
average. The slowdown results from two parts. One is the

Figure 4: Comparison of ER, AT, SC, SC-offline and BEST
performance, measured by speedups over ER. water-n. de-
notes water-nsquared. water-s. denotes water-spatial.

overhead of online sampling of MRC. The other is that SC
starts program execution with cache size of 8 by default,
which results in worse performance than after selecting the
best cache size. We will clearly show more data regarding
the overhead of online cache size selection in Section IV-G.

BEST shows the upper bound performance, which is
16.1× speedup over ER. It is even faster than the optimal
persistent caching, as explained in Section IV-A. SC is
slower than BEST. The ocean is the worst, near 91%
slowdown. In mdb, SC is very close to BEST, just 6%
slower. On average, SC is 41% slower than BEST. The
narrow difference sets a discouraging bound on any further
improvement over SC but suggests SC is effectively near
optimal in practice.

F. Parallel Performance
Figure 5 compares performance of SC and SC-offline with

the state-of-art AT for different thread counts from 1 to
32. In 85% (36 out of 42) of tests, SC is better than AT.
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Figure 5: Parallel performance SC and SC-offline for different numbers of threads, shown as speedups over the parallel
performance of AT. water-n. denotes water-nsquared. water-s. denotes water-spatial.

The greatest speedup is 4.13× on water-nsquared with 4
threads. The speedup of SC over AT increases steadily with
the number of threads for raytrace and volrend but decreases
in the other programs. SC uniformly outperforms AT in all
programs at small thread counts from 1 to 8. SC is better
than AT for 16 and 32 threads counts for all programs but
fmm and water-spatial. We will analyze the reason in details.
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Figure 6: Slowdown of SC over BEST. water-n. denotes
water-nsquared. water-s. denotes water-spatial.

We divide the overhead of adaptive caching in two parts:
the instruction overhead and cache contention. The first
part is measured by the performance slowdown of SC over
BEST, which is shown in Figure 6 for 7 programs. Ocean
starts with a large slowdown around 11 which drops linearly
to 3. The slowdown for other programs are between 1
and 2 and is almost constant across the thread counts.
The slowdown of barnes increases slightly at thread count
32. The measurement shows that the overhead of adaptive
caching does not increase with the thread count.

Part of the instruction overhead is MRC analysis. As
Figure 5 shows, SC-offline is better than AT in 90% (38
out of 42) of tests, 2 more than SC (36 out of 42). In these
two tests, MRC analysis is counter productive, compared to
AT. The loss, however, is very small.

The second overhead is cache contention at L1 data cache,
as more threads are run sharing the same cache space. This is

why SC performs worse than AT in fmm and water-spatial.
We analyze water-spatial in detail in Table IV.

Threads 1 2 4 8 16 32
inst. AT 3.34 3.39 3.47 3.55 3.67 3.96

(billions) SC 3.55 3.66 3.71 3.79 3.96 4.32
BE 2.56 2.60 2.63 2.66 2.79 2.96

flush AT 2.61% 4.03% 4.77% 5.53% 5.48% 5.91%
ratio SC 0.43% 0.44% 0.48% 0.55% 0.71% 1.00%

BE 0% 0% 0% 0% 0% 0%
hw L1 AT 58.16% 71.14% 73.95% 72.72% 75.97% 76.44%
cache SC 30.78% 43.47% 58.99% 65.73% 68.48% 72.24%

mr BE 20.25% 25.21% 33.79% 55.48% 63.31% 70.61%

Table IV: Performance of water-spatial: instruction count in
billions, cache line flushes, measured in software, and L1
cache miss ratios, measured using Linux Perf tool [39]. BE
denotes BEST.

Table IV shows performance analysis data of water-
spatial program for different thread counts, either by soft-
ware accounting or by hardware performance counters [39].

The SPLASH2 benchmark is strong scaling. A fixed
amount of work partitioned among all threads. Hence, the
total persistent memory stores stay almost the same regard-
less of the thread count. However, the amount of FASEs is
proportional to the thread count. Since the software cache
is cleared at the end of a FASE, more FASEs incur more
(compulsory) software cache misses and cache line flushes.
Therefore, the data flush ratio slightly increases with the
number of threads. This is confirmed in Table IV by the
flush ratios of SC.

We assumed that performance is proportional to the
amount of cache line flushes in normal cases. The number
of cache line flushes affects the hardware cache miss ratio,
because the flushed data block is evicted from the hardware
cache, as explained in Section II. By comparing flush ratios
of SC and AT in Table IV, SC consistently outperforms AT
by 6× to 10×. Hence, SC should have had similar speedups
over AT for different thread counts.

However, for water-spatial, hardware cache contention
becomes severe as more threads are run. The contention
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Figure 7: The comparison between actual MRC, full-trace
(offline) MRC and sampled (online) MRC of four programs.

Figure 8: The time percentage of online cache selection
overhead. water-n. denotes water-nsquared. water-s. denotes
water-spatial.

is shown by L1 cache miss ratios of BEST in Table IV.
BEST has no cache line flush, thus its L1 cache miss ratio
only results from the contention caused by the program, not
the software cache. Such contention might be caused by
OS task scheduling. As a result of the contention, SC does
not improve the L1 cache performance by reducing the data
flush ratio. Hence, the performance is improved a little by
SC flush reduction at large thread counts. In contrast, for
this program, AT has similarly high hardware cache miss
ratios for all thread counts, thus its performance relative to
ER remains steady. Therefore, the speedup of SC over AT
varies. The speedup variations of SC over AT in barnes,
fmm, ocean and water-nsquared are due to similar reasons.

When hardware cache misses are similar, the number of
instructions executed dominates performance. Because of the
software cache, SC obviously runs more instructions than
AT, which according to Table IV is 8% more on average.
Therefore, AT is faster than SC at large thread counts, e.g.
for water-spatial.

G. MRC Analysis Precision and Overhead
Figure 7 shows the accuracy of MRC prediction in four

programs. Sampled MRC is not as precise as the accurate
MRC. But in terms of cache size selection, it is sufficiently
good, since the sampled MRC has the same inflection points
as accurate MRC. Sampling overhead is negligible, which
makes it fast and effective for online analysis.

Based on MRCs, the selected cache sizes of barnes, fmm,
ocean, raytrace, volrend, water-nsquared, water-spatial, and
mdb are 15, 10, 2, 8, 3, 28, 23 and 20, respectively.
Surprisingly, these small cache sizes are sufficient to achieve
very small data flush ratios, as shown in Table III. In
addition, we can see that there is no one-fits-for-all solution
for cache size selection. Cache size needs to be workload-
aware. This is a major reason that SC outperforms AT.

Figure 8 shows the online overhead for 1 thread and
8 threads. To compute the overhead, we run SC with the
best cache size and compute the difference of the running
time between using the preset size and finding the size
online. Sampling analyzes 64 millions memory stores and
then compute the MRC and choose the best cache size. The
cost of online sampling and adaptation is almost a fixed
amount. The relative overhead ranges from 1% to 10%,
due to different execution times in different programs. The
average overhead is 0.52 seconds, and hence 6.78% of the
program execution time for all thread counts.

V. RELATED WORK

Systems such as Mnemosyne [43] and NV-heaps [43]
built durable transactions on top of persistent regions.
Atlas [9] uses a lock-based model, i.e. failure-atomic
sections (FASEs). A FASE is more general than transactions
because of nesting, which permits more parallelism as well
as updates to persistent memory outside an atomic section.
The design space of FASE-based persistence is explored
later especially the trade-off between semantics and imple-
mentation efficiency [6]. In addition, Echo added durability
to key-value stores [4], and Makalu supported recoverable
memory management [5]. The notion of failure atomic
updates has recently been extended by the formalism called
durable linearizability, which guarantees safe composition
of atomic operations and unifies persistent atomicity and
recoverable linearizability [19].

A major obstacle to data persistence is the volatile cache.
Some systems assume hardware whole-cache flushing at a
power failure or machine crash. These include Echo [4] and
JUSTDO logging, which resumes and finishes (lock-based)
FASEs following a failure [18]. In the absence of whole-
cache flushing, incremental cache write backs are necessary.
Mnemosyne relied on hardware support, in particular the x86
write-combining buffers [1]. NV-heaps had short transactions
and hence no need for write combining [43]. The software
solution is pioneered in Atlas as a 8-entry table to store the
address of modified cache lines. It combines data writes with
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a minimal performance cost because of its simple design. In
this work, we present the general solution of software write
caching and uses the flexibility of software control to adapt
the cache size based on how a program reuses its data.

We first discussed the basic idea in this work at a
workshop [25]. To distinguish, this paper exclusively covers
Atlas semantics, a complete description of reuse-based
locality theory and its linear-time calculation and correctness
proofs, system implementation, and rigorous evaluation.
This paper studies writing caching. Chen et al. defined write
locality by write reuse distance and write reuse time [10].
Brock et al. considered the asymmetric cost of read- and
write-caching on persistent memory [7].

Mattson et al. [34] were first to define LRU stack reuse
distance, which is commonly called reuse distance in short.
The efficiency has steadily improved. Recent techniques
include sampling [8, 17, 40, 44] and parallelization [37].
Xiang et al. [46] defined footprint as the average working-
set size, and developed a higher order theory (HOTL) to
formalize the relation between footprint, miss ratio and reuse
distance. This work complements the footprint theory by
exploring the relation between timescale reuse and miss
ratio. Footprint and timescale reuse are both timescale
metrics, which are a new type of statistics broadly studied
recently [15, 16, 24, 26, 27, 28, 29, 30, 31, 32, 33].

VI. SUMMARY

We have developed a software cache solution minimizing
the cache flush overhead of NVRAM data persistence, using
a reuse-based locality theory and a linear time algorithm for
efficient online analysis to select the best cache size. We
extensively evaluated the effect of write caching and found
it efficient and effective, reducing the number of cache line
flushes by 12× and improves the running time by 2.1× for
both sequential and parallel applications.
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