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Abstract—On multi-core processors, applications are run sharing the cache. This paper presents optimization theory to co-locate
applications to minimize cache interference and maximize performance. The theory precisely specifies MRC-based composition,
optimization, and correctness conditions. The paper also presents a new technique called footprint symbiosis to obtain the best shared
cache performance under fair CPU allocation as well as a new sampling technique which reduces the cost of locality analysis. When
sampling and optimization are combined, the paper shows that it takes less than 0.1 second analysis per program to obtain a co-run
that is within 1.5% of the best possible performance. In an exhaustive evaluation with 12870 tests, the best prior work improves co-run
performance by 56% on average. The new optimization improves it by another 29%. Without single co-run test, footprint symbiosis is
able to choose co-run choices that are just 8% slower than the best co-run solutions found with exhaustive testing.
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1 INTRODUCTION

As multi-core processors become commonplace and cloud com-
puting gains acceptance, applications are increasingly run in a
shared environment. Many techniques have addressed the prob-
lem of job co-location, including symbiotic scheduling [25], co-
scheduling [12], contention-aware scheduling [13], [38], task
placement [18], and cache-conscious task regrouping [33]. Most
techniques use testing and heuristics. Here we use the terminology
of Snavely and Tullsen and solve symbiotic scheduling as an
optimization problem.

Optimization is difficult given the complexity and dynamics
of cache sharing. The traditional metric, the cache miss rate, is
measured under fixed cache size. It is insufficient for shared cache
because the portion of cache used by a program may be arbitrary.
Furthermore, the miss rate does not always correlate with cache
contention. Once the memory bandwidth is saturated, the miss
rate will stop increasing even though the cache contention can still
increase when more programs join a co-run. Finally, the miss rate
is not composable. We cannot compute the co-run miss rate from
solo-run miss rates.

This paper develops optimal footprint symbiosis. It uses the
recent footprint theory to predict aggregate locality of a group of
programs from their individual footprints. To enable optimization,
it defines a logical miss ratio based on a standardized logical time
called common logical time. It formulates the linearity assumption,
which states that co-run slowdown is linearly proportional to the
common-logical-time miss ratio. Then optimization is to find the
co-run grouping that minimizes total logical miss ratio.
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Optimal footprint symbiosis depends on footprint measure-
ment, which is costly. The paper develops adaptive bursty foot-
print (ABF) sampling which minimizes the cost of measurement
for a given precision threshold. The paper makes four main
contributions:

1) Theory: A theory of optimal footprint symbiosis to
combine non-linear locality composition with linear per-
formance optimization.

2)  Algorithm: Dynamic programming algorithms to find the
optimal co-run schedule that enables optimized sharing of
cache and equal use of CPU.

3) Technique: Adaptive bursty footprint sampling to enable
dynamic co-run optimization with negligible analysis
overhead.

4) Evaluation: Evaluation of the cost of sampling and the
performance benefit of optimal symbiosis, compared with
best previous approaches.

The study has limitations: We only treat cache sharing for
applications that do not share data, and the derivation of optimal
symbiosis assumes fully-associative LRU cache, even though
hardware replacement implementations usually employ set as-
sociativity and a pseudo-LRU policy. The second limitation is
mitigated, however, by the fact that modern 8-way or higher
associativity designs give effectively the same performance as
a fully associative cache [5]. In addition, reuse distance can be
used to statistically estimate the effect of associativity [24], and
as Sen and Wood showed, reuse distance can be used to model
the performance of non-LRU policies [23]. Next we introduce the
theory of footprint and its relation with reuse distance.

2 OPTIMAL SYMBIOTIC GROUPING

In this section, we introduce the footprint theory, which we use
to compute shared-cache locality. Then we formalize the linearity
assumption, which relates shared-cache locality to shared-cache
performance. Finally we describe the symbiotic optimization.



2.1 Background: Footprint Theory

Given a window, the working set size (WSS) is the amount of
data accessed in this window, i.e. the size of the “active” data.
The working set size may change from window to window. To be
deterministic, we define the footprint as the average size for all
windows of equal length. Given a data access trace of length n,
the footprint fp(t) is the average working set size for all windows
of length ¢, ¢ € [1..n].

Figure 1 shows the reuse distance (rd), working set size
(wss) and footprint (fp) of length-3 windows in stack and stream
accesses. Both rd and fp quantify locality and show stack accesses
have better locality. The difference is that fp is composable across

programs while rd is not.
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Fig. 1: Reuse distance (rd), working set size (wss) and footprint
(fp) of length-3 windows in stack and stream accesses

The footprint theory gives the conversion between footprint
fp(x) and miss ratio mr(c), where x is the logical time and ¢ is
the cache size, using the following formula [34]:

mr(c) = fp(z + 1) — fp(z)

where ¢ = fp(x).

Intuitively, the conversion equates the miss ratio of the cache
with the growth rate of the working set, i.e. the working set
grows at and only at the next cache miss, when the working set
size equals the cache size. For fully-associative LRU cache, the
working set fills the entire cache. The time it takes to incur the
next miss is the average miss interval (inter-miss time) [34].

Statistically, footprint is the average working set size. The
preceding formula equates the growth of the average working set
size, fp(x + 1) — fp(x), with the average growth of the working
set size, i.e. the miss ratio mr(c).

Mathematically, the conversion is well defined. Xiang et al.
first showed that the footprint as a function is monotone [32]. Then
they proved that it is actually concave [34]. As its “derivative”, the
miss-ratio function is non-negative and monotone.

2.2 Common Logical Time Miss Ratio

The parameter x in footprint fp(x) represents a timescale. It can
be logical, e.g. memory accesses, or physical, i.e. seconds. For
symbiosis, we use the logical time of memory accesses.

The primary benefit of footprint is composability: the footprint
of a co-run can be computed from the footprint of solo-runs.
However, we must first normalize the logical time of participating
programs.

Let g; be a program in group G, and the access rate ary,
be the average number of accesses g; makes per second in a
solo-run. In the group run, the access rates are combined. We
assume the slowdown of each program in a co-run group is
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equal. Their relative access ratio in co-run environment follows
their solo-run access rates. The common logical time (or common
time) is advanced by accesses from all programs. The footprint is
converted from individual time (fp;;) into common time (fp,.,) as
follows:

T X arg,

)

After conversion to common logical time, the group footprint is
simply the sum of individual footprints.

fpct(giax) :fpit(gia S
i argi

fp(G7 x) = Zi fpct(gi7 Z‘)

The co-run miss ratio mr(G, ¢) is the derivative of the group
footprint, using the formula given earlier. The only difference is
that the logical time is changed from individual to common time.

2.3 From Miss Ratio To Execution Time

The symbiotic optimization assumes that a program’s co-run
slowdown is linear to the group’s logical co-run miss ratio, where
the logical co-run miss ratio is based on common logical time.
We call this the linearity assumption. Because the logical co-run
miss ratio is composed based on equal slowdown assumption of
footprint conversion (Section 2.2). The linearity assumption also
clarifies the slowdown of a co-run group is linear to its logical
co-run miss ratio.

Let g; be a program in group G, mr(G, ¢) represents the group
co-run miss ratio in shared cache of size c. t4,(g;, ¢) is the solo-
run time of the program with dedicated cache and t.,(g;, G, ¢)
is the co-run time of the program. we define the slowdown of
program g; in the co-run as:

t(zo (gia Ga C)
tso(gi7 C)

and we define the slowdown of group G as:

slowdown(g;, G, c) =

slowdown (G, ¢) = Z slowdown(g;, G, c) = |G|+axmr(G,c)
1

where « is a constant coefficient that relates co-run miss ratio to

co-run group slowdown, and |G| is the size of the group.

The linearity assumption enables performance ranking. Intu-
itively, the miss ratio measures cache contention. The higher the
miss ratio is, the greater the cache contention is, and the slower a
program executes because of the contention.

The miss ratio mr(G, ¢) is logical. It can increase without
a bound, so can the co-run time t.,(g;), €.g. when too many
programs overtax the cache. In contrast, a miss rate in physical
time, i.e. misses per second, has an upper bound set by the machine
memory bandwidth. Once the memory bandwidth is saturated, the
miss rate will stop increasing even though the cache contention
can still increase when more programs join a co-run.

Consider a program which chooses one of the groups to join.
The linearity assumption states that the best choice is the group
that has the lowest co-run miss ratio, because the lowest miss ratio
implies the lowest co-run slowdown.

The assumption simplifies the complex phenomenon of perfor-
mance, to which many factors contribute. We model shared cache
by the miss ratio, but different misses have different time costs.
On modern processors, the timing effect is increasingly complex.
Sun and Wang categorized a large number of factors including



pipelining, prefetching, multi-bank cache, non-blocking cache,
out-of-order execution, branch prediction, and speculation [26].

The linearity assumption classifies performance factors in
two types. The first type is unaffected by cache sharing; for
example, instruction parallelism and the CPU clock frequency.
The other type depends linearly on cache sharing. For example, the
contention due to memory bandwidth is assumed to grow linearly
with the cache contention.

A linear model is a simplification, but it has important benefits
for optimization. For example, all performance factors are con-
sidered: it is fine that we do not know all linear factors because
we do not need the precise co-efficient of the linear relation. For
optimization, it is sufficient that the aggregate effect be linear.

2.4 Optimized Symbiotic Grouping

With the performance ranking model, we now consider program
scheduling on multi-core machine. For K programs on P cores,
we define a basic symbiotic grouping divides K programs into
P-program co-run groups that minimize their co-run slowdown.
In this basic problem, we assume P divides /. Symbiosis is
communal, not individual. It is sufficient for a program to join
a group with the lowest cache contention. However, we must run
every task in the program set, so the problem is to run all tasks
with the least slowdown.

Given a set of programs G = {g1, g2...}. Let fp(gi, «) be the
common-time footprint. s = {G;} represents a valid grouping,
where every program is assigned to a co-run group G; sharing the
same cache. As will become clear in Section 2.6, it is useful to
define a metric for a schedule called the aggregate miss ratio. It is
simply the sum of all co-run group miss ratios of schedule s:

mr(s,c) = 3,;mr(G,,c)

For example, if a schedule has two co-run groups, the aggre-
gate miss ratio is the sum of the two co-run miss ratios. Note that
the aggregate miss ratio is not a miss ratio in the strict sense; it can
be greater than 1. It is simply the metric of merit for comparing
the performance between different schedules.

Among all possible groupings, a symbiotic grouping is the
one that has the lowest aggregate miss ratio. This is the goal of
symbiotic optimization.

The optimality is a conjecture. It depends on the linearity
assumption. Moreover, it has to deal with the following problems.

Non-uniform Slowdowns There are two types of non-uniform
slowdown: inter-group non-uniform slowdown, and intra-group
non-uniform slowdown.

In inter-group non-uniform slowdown, all programs within the
same group have the same slowdown, but different groups have
different slowdowns. By the linearity assumption, optimality holds
in this case: if the sum of the miss ratios Zmr(gi) is minimal, the
total slowdown Yamr(g;) is minimal, even though each group g;
has a different co-run miss ratio and a different slowdown.

In intra-group non-uniform slowdown, different programs in
the same group have a different slowdown as shown by Kim
et al. [39]. This scenario, however, is not consistent with the
linearity assumption. However, our evaluation shows individual
slowdown differences are insignificant in most groups (discussed
in Section 5.4.3). Besides, the intra-group non-uniformity does not
affect the efficiency of logical co-run miss ratio as a performance
ranking factor (discussed in Section 5.2).
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For symbiotic grouping, we use a basic dynamic programming
(basic DP) algorithm to find the best P-program groups. The
process is to build up solution gradually until a complete grouping
is found. Each intermediate step is an optimal partial schedule of
the complete schedule. The dynamic programming (DP) formu-
lation is recursive. The intermediate problem is to schedule nP
programs, 1 < n < K/P. Let A be a set of nP programs. The
lowest cost of the set is represented by function F(A). Assuming
that the cost of each P-program co-run group G is known as
cost(G), e.g. the co-run miss ratio, we specify the lowest cost for
A recursively from the lowest cost for all its subsets with (n—1) P
programs:

F(A) = éngig{F(A — G) + cost(G)}

Let’s consider an example where K = 6, P = 2. We want
to divide six programs A = {¢0, g1, ... g5} into three pairs that
with the lowest cost. There are (g) = 15 possible pairs. For each
co-run pair G, the right-hand side of the equation computes the
cost when G is part of a schedule, which is the cost of G plus the
lowest cost for the remaining 4 programs. The 4-program solution
is obtained by recursion. In dynamic programming, we record the
cost of partial solution to prevent recomputing. Once the lowest
cost of the whole set is found, we construct the symbiotic groups
by backtracking.

In implementation, we need to enumerate all nP-program
groups, 1 < n < K/P. We represent a K-element set using
a K -bit vector. We call it a state vector. When K < 32, the state
vector can be implemented by a 32-bit integer. We enumerate all
program sets by traversing the range [0. .. (2% — 1)] and picking
out the valid sets, i.e. the number of bits should be a multiple of
P. Modern processors have a special instruction to count bits, e.g.
PopCnt on x86. In our implementation, the validity check takes
just three instructions.

2.5 The Performance Ranking Model

The goal of symbiosis is to minimize the contention between
programs in shared cache. While the objective is absolute perfor-
mance, the model is relative: instead of predicting the performance
directly, the model predicts the ranking of performance. We call it
the ranking model.

It is well established that the effect of shared cache interaction
is asymmetrical and non-linear [11]. The ranking model divides
this complexity into two parts. The first is non-linear miss-ratio
composition, building on the footprint theory and extending it with
the common-time logical miss ratio. The second is linear perfor-
mance correlation. The following summarizes the key components
and their relations:

e Common logical time, which allows us to compute (add)
and compare logical miss ratios.

e Logical miss ratio, which includes co-run miss ratio (per
group) and aggregate miss ratio (summed over multiple
groups). Co-run miss ratio represents cache contention.
Aggregate miss ratio represents the performance of co-run
grouping.

e Footprint theory, which allows us to compute the co-run
and aggregate miss ratio from individual footprints without
parallel testing.

e Linearity assumption, which establishes the relation be-
tween co-run performance and the logical miss ratio.



e Footprint sampling, which will measure individual foot-
print efficiently in real time.

2.6 The Case of Multi-threaded Programs

The performance ranking model is not limited to sequential pro-
grams. The same symbiosis can be used in the cases where multi-
threaded programs are in a co-run group. When a multi-threaded
program is sharing LLC with other programs, the data behavior
observed in the LLC for all threads become one sequence and
thus can be regarded as a sequential flow. Modeling the footprint
of a multi-threaded program as a whole is the same as modeling it
as a sequential program. Because symbiosis with the existence of
multi-threaded programs can be converted to sequential programs,
for simplicity, we will only discuss the scheduling of sequential
programs in the rest of the paper.

3 SvymBIloTIC FAIR SCHEDULING

With the performance ranking model and symbiotic grouping,
we can schedule tasks in a more cache-friendly manner. In this
section, we propose a general multi-core scheduler based on
the grouping technique discussed in Section 2. We have solved
the problem of dividing K programs into P-member symbiotic
groups in Section 2. We consider the general problem of fair
scheduling in a batch processing system where programs start
and finish dynamically while maintain equal CPU time usage.
We call this problem fair scheduling. Although there are many
different ways to achieve fairness, such as fair slowdown proposed
by Kim et al. [39]. Choosing CPU fairness as our schedule target is
motivated by the Completely Fair Scheduler (CFS) of Linux [15].
Its task picking logic is based on the virtual runtime of each task,
which is the actual runtime normalized to the total number of
running tasks. CFS always tries to run the task with the least
virtual runtime (i.e., the task which has executed least so far),
so it balances the expected CPU time each task should get and
enable fairness in the task group. Compared to the regular task
scheduling policy, SCHED_NORMAL, the batch scheduling pol-
icy, SCHED_BATCH, of CFS allows tasks to run in a longer time
slice to make better use of caches but at the cost of interactivity.
This design is well suited for batch jobs that pay attention to
throughput and performance. Our fair scheduling technique adopts
the same CPU time fairness guarantee with symbiotic grouping.

3.1

With the basic symbiotic grouping, we can enable the fair schedul-
ing in a batch processing system, which executes a set of G
(|G| = K) sequential jobs on a processor with P cores sharing
the last-level cache (LLC). A fair scheduler has two goals. First,
it makes full use of the hardware by keeping all cores running
whenever K > P. Second, it gives the same amount of CPU time
to all the programs that are being scheduled. Although a realistic
scheduler may consider many other factors, our focus is the shared
cache. We limit our concerns to only two factors: full utilization
and fairness.

We define a fair schedule as a sequence of co-run groups
{s1, 82, 83, ...S1}, where each s; is a subset of G with the size
|s;] = P and the length L = K/ged(K, P) (ged is the greatest
common divisor). The scheduler cyclically runs each group for T’
seconds until moving to the next group. When one of the jobs
finishes, the job set GG is updated, and a new schedule created.

Fair Scheduling
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TABLE 1: Number of possible schedules for different X and P

K P=3 P=4 P=6
6 20 90 1

9 1680 3.150 x 1014 1680
12 369600 34650 924
18 | 1.372 x 1011 > 1015 17153136

Consider a group of 4 SPEC CPU2006 programs, G = {lbm,
mcf, namd, dealII} on P = 2 cores, not all possible pairings
are symbiotic. For example, [bm, mcf use cache intensely, and
mcf is sensitive to cache interference. It is not wise to co-run
mcf with [bm. In experiments, the pairing { [Ibm, mcf], [namd,
dealll] } takes 10% more total CPU time than {[lbm, dealll],
[mcf, namd] }. A symbiotic scheduler starts the execution with the
best symbiotic grouping (Section 2.4). When one of them finishes
execution, the scheduler has 3 programs left to run on 2 cores. To
be fair, it create 3 groups of 2 programs. Each of these 3 programs
only appears in 2 different groups. It means each program will run
2 times in every schedule cycle. This guarantees a fair usage of
the CPU.

Now we are ready to state the condition for fairness: if we
count the cumulative running time of each program, the difference
between them can be at most one scheduling quantum (7). In a
fair schedule, every program appears the same number of times.
More precisely, the schedule includes L = K/gcd(K, P) co-run
groups, and each program appears in U = P/ged(K, P) of them.
To ensure fairness, we require that the same program is not run
again unless all other programs have been run, so the maximal
“unfairness” in CPU time is 7.

In some cases such as K = 3, P = 2, there is only one
fair schedule. In other cases, symbiotic grouping can be used to
maximize total co-run performance. Previously in Section 2, we
use a K -bit vector to enumerate schedule groups, each element in
the state vector is a binary bit (0 or 1) because each program only
appears in one group. However, when P does not divide K, each
program appears U = P/gcd(K, P) times in the schedule. Here
we set each element in the state vector to be an integer with range
[0...U].

3.2 Symbiotic Scheduling

If P does not divide K, basic DP is also able to give a fair schedule
of optimal performance. The sub-solution in the DP formulation
now represents the number of times that every program already
appears. It is a state vector with K elements ranging from 0 to
U = P/gcd(K, P). However, When P, K are large, the basic
DP may be too expensive for online scheduling because its huge
solution space. Table 1 shows the number of possible schedules
for a set of K, P values. When P does not divide K, the number
of possible schedules quickly exceeds 10**. We need to handle
this case to implement fair scheduling. Next, we introduce two
improvements to reduce the time cost.

3.2.1 Recursive Dynamic Programming

We solve the difficult case (where P does not divide K) faster
by recursively solving a series of special cases (where P divides
K). We call it recursive DP in short. While the previous solution
uses base U + 1 numbers as state vectors, recursive DP uses only
binary bit vectors.



Let r = K%P, r is the smallest value such that P divides
K — r. We call the general problem a (K, P) problem. Recursive
DP transforms the general (K, P) problem into two special
problems: (K — r, P) and (K, 7).

Take the special case that r divides K. We can apply basic
DP (Section 2.4) on this (K, r) problem to find the best schedule,
but the cost function of every r-programs should be re-defined. For
each group, we take its complement set of K —r programs, run the
DP algorithm for (K — r, P) to find the best schedule, and use its
cost as the cost of the r-program group. By this definition, the best
(K, r) schedule leads to the locally optimal schedule for (K, P)
problem. For every group in the best (K, r) schedule, we place
the optimal (K — r, P) schedule groups into the local solution of
(K, P) problem. A single r-program group now becomes Kor
groups of P programs each. For example, let K = 10, P = 4 and
the set of programs be G = (go, ¢1, ---, g9 ). Recursive DP changes
the problem to X' = 10,7 = 2 and solves it with basic DP since
2 divides 10. Suppose the solution of (K = 10, P = 2) problem
includes the group (gs,go). We can express it as a negation,
(—gs, —go9), which represents its complement set (go, g1, ---, g7)-
Recursive DP replaces(—gs, —gg) with the optimal division of
(90,91, ---,97) in two 4-program groups. The latter is solved by
basic DP since 4 divides 8.

The locally optimal (K, P) schedule is fair. If a program
appears in a (K, r) group, it does not appear in its replacement
groups. The same frequency of appearance in (K, ) means the
same frequency of no-appearance in (K, P) and hence the same
frequency of appearance in (K, P).

Now we relax the assumption on 7. If 7 does not divide K,
we solve the (K, r) problem through recursion, that is, we split it
into two problems: (K — r1,7) and (K, r1) where 1y = K%r.
We continue the process 1 = K%P,r; = K%r,..., until
rey1 = K%ry = 0 and (K,7;) can be solved by basic DP.
This recursion stops after at most P — 1 steps. Hence recursive
DP always terminates.

The efficiency of recursive DP depends on how basic DP is
used to solve (K — r, P). For each r subset, we need to solve
(K —r, P), which is costly if we call it for every r subset. Instead,
we use DP once for the (K, P) problem. It does not provide
a valid solution (when P doesn’t divide K), but it provides all
solutions of (K — r, P) for all r subsets.

Recursive DP is not global optimal. It splits the general
problem (K, P) into (K,r) problems. However, the basic DP
of (K,r) problem cannot explore all the possible solutions of
(K, P). It has a narrower search space than the whole solution
space. Even though (K, r) is optimally solved, it may miss the
optimal solution of (K, P). However, searching the complete
solution space is time consuming. For example, it takes over 4
days for problem of (K = 18, P = 6), but recursive DP gives a
locally optimal solution within a second.

3.2.2 Randomized Dynamic Programming

As we know, the search space grows exponentially with the in-
creasing of K. In the third technique, we sample the job group and
then use basic DP to optimize the sample. We call it randomized
dynamic programming or randomized DP for short.

Given K programs, a sample is a random subset of the K
programs. Based on sampled subset, we create the shortest fair
schedule by basic DP. To make use of basic DP, we create random
subsets that contains n.P programs. For each subset, we use basic
DP to solve (nP, P) problem optimally. To limit the time it takes
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for basic DP, we set n = |min(16,K)/P]. For example if
P = 8, K > 16, randomized DP creates random subsets of 16
programs and calls basic DP to schedule each subset to find the
optimal solution.

The search space of randomize DP can be as large as needed.
The optimality of the solution is monotonically non-decreasing
with the growing of search space. Randomize DP is a best-effort
algorithm that it gives the best solution under a time constraint. In
contrast, recursive DP does not provide a working solution until
it runs to a finish. When K is too large for recursive DP, we use
randomized DP to limit the time to solution.

4 ADAPTIVE BURSTY FOOTPRINT SAMPLING

For shared-cache locality analysis, the original footprint theory is
based on full-trace measurement. The time and space overhead
may be too high for a task scheduler. Hence, we introduce a
footprint sampling technique which is efficient and low-cost.

As we know, the perennial problem of sampling technique is
the trade-off between cost and accuracy. The goal is to obtain the
best accuracy with the lowest overhead. In footprint sampling, it is
achieved by controlling two parameters: the length and frequency
of sampling.

In program analysis, a common technique is called bursty
sampling [1], [4], [7]. Each sample is a burst, and the dormant
period between two samples is called hibernation. The cost of
a sampling depends on the length of a burst and the length of
hibernation between bursts. We use the terms burst interval and
hibernation interval and symbolize them as bi and hi.

We apply bursty sampling to collect sampled access traces to
calculate sampled footprint sfp and add three novel techniques—
limited sensitivity, bounded cost and adaptation. We call it adap-
tive bursty footprint sampling or ABF sampling for short.

The first technique is limited sensitivity. We set the sensitivity
threshold h, which is the minimal miss ratio we would predict.
The purpose of h is to constrain the length of the sampled access
trace, i.e. the burst interval bi. Assume that the cache size is c,
and the predicted miss ratio is pmr(c). The interval should be long
enough to measure the miss ratio equal or higher than h. Here
“long enough” means the access trace should be able to fill the
cache during the interval bi, i.e., pmr(c) X bi > c. At the minimal
miss ratio h, we have h X bi = c. Hence, the sample length is at
most bi = c/h.

The second technique is bounded cost. The bound is relative,
i.e. no more than 1% of the time of the execution. This is achieved
by controlling the sampling frequency. We represent the frequency
by the ratio of hibernation and burst interval, Z{ If the hi/bi
ratio is 1000, the sampled execution is about 0.1% of the total
execution. In ABF sampling, we use the hi/bi ratio to bound the
cost. The higher the ratio is, the lower is the maximal cost.

The third technique is adaptive sampling. After each hiber-
nation, ABF checks the actual miss ratio (amr) and compares
it with the prediction. A new sample is collected if and only if
the difference is more than d’, which we call the phase-change
threshold.

The algorithm for ABF sampling is given in Algorithm 1. We
use the binary instrumentation Pin tool to sample the access trace
online. When bursty sampling is enabled, the procedure is called
after each hibernation. The branch at Line 3 tests for phase change
and decides whether to take a new sample or not. Sampling is
done by forking a second process and attaching the Pin tool to



it. Footprint analysis is the same as Xiang et al., so is the use of
fork [34]. Such parallel analysis has been pioneered by shadow
profiling [20], [28].

Algorithm 1 Adaptive bursty footprint (ABF) sampling

Input: The L2 cache size c¢; The sensitivity threshold /; The
hiberation ratio r, hi/bi; The phase-change threshold d’. This
procedure is called after each hibernation (hi = r % bi =
r * ¢/h accesses).

Qutput: The algorithm updates the sampled footprint sfp so far.

The output is the updated footprint sfp.

obtain amr(c) using the hardware counter

compute pmr(c) using sfp (Initially pmr(c) = 0)

if |amr(c) — pmr(c)| < d’ then
update sfp using the last sample

else
pid < fork()
if pid = 0 then

attach Pin and sample for bi (¢/h) accesses

update sfp using the new sample

exit > terminate sampling process
end if

end if

: reset the timer to interrupt after hibernation

> take a new sample
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All sampled access traces are used to calculate sfp for miss
ratio prediction, i.e. pmr(c) in the algorithm. Because of limited
sensitivity, pmr(c) may not be accurate if it is less than h. In this
case, its error should be at most h.

In summary, ABF sampling takes 4 parameters. The first two
are the cache size ¢ and the sensitive threshold h, which are used to
set the sample length bi. The third is the hi/bi ratio, which is used
to set the length of hibernation hi. The last is the phase-change
threshold for adaptive sampling. The total cost is bounded by the
hi /bi ratio, but may be much lower because of the adaptation. We
will show that most of test programs need just one sample.

5 EVALUATION

This section evaluates symbiotic optimization and compares it
with alternative solutions.

5.1 Experimental Setup

We use SPEC CPU2006 benchmark suite for program grouping
and scheduling. The choice is one of evaluation. Our symbiotic
optimization is not limited to compute-intensive programs. In
Sections 5.2 and 5.3, we use 16 SPEC CPU2006 programs
(arbitrarily chosen): perlbench, bzip2, mcf, zeusmp, namd, dealll,
soplex, povray, hmmer, sjeng, h264ref, tonto, lbm,omnetpp, wrf,
sphinx3. For every program, We only choose the first reference
input provided by SPEC. We use an Intel(R) Core(TM) i7-3770
with four cores, 3.40GHz, 25.6GB/s bandwidth, 256KB private
L2, and 8M shared LLC, with prefetching enabled. It runs Fedora
18 and GCC 4.7.2.

5.2 Linearity Between Miss Ratio and Slowdown

Symbiotic optimization is formulated assuming a linear relation
between the common logical time miss ratio and co-run perfor-
mance. We evaluate this assumption before testing optimization.

4 4 |ogical co-run group miss ratio
e @ actual co-run miss rate
sum solo miss rate
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Fig. 2: Correlation with the co-run slowdown by three types of
miss metrics: logical co-run miss ratio, actual co-run miss rate,
sum of solo-run miss rate

To verify the assumption, We exhaustively test all co-run groups
of the 16 SPEC CPU2006 programs.

Let G = {g;} be a group of co-run programs. Let the co-run
execution time and solo execution time of a group member g; be
corun(g;), solo(g;). We define the co-run slowdown of group G
by the sum of the individual slowdowns:

slowdown(G) =

Z slowdown(g;)
i€G
corun(g;)
Z solo(g;)

We enumerate all 4-program subsets of the 16 programs, which
gives us 1820 co-run groups. Since the test programs in a group
have different running times, to measure co-run performance, we
run each program repeatedly and measure their slowdown when
they are overlapping with each other, a method used in previous
work [13], [25], [34], [35]. The method produces stable results
and avoids the problem of run-to-run performance variation. This
variability can be predicted using the method of Sandberg et
al. to model the effect of different overlappings of applications’
phases [21].

Figure 2 plots the performance of 1820 groups (all 4-program
subsets of 16 benchmarks), for which the z-axis shows the logical
miss ratio of the group (deduced by footprint analysis), and the
y-axis shows the co-run slowdown of the group. The miss ratio
ranges from 0% to 1.2%. The slowdown ranges from 4 to 11. By
our definition, a slowdown of 4 means no program is affected by
co-run, and 16 or larger means that parallel execution of the group
is slower than sequential execution.

The logical co-run group miss ratio shows a consistent cor-
relation with co-run slowdown: the higher the miss ratio, the
greater the slowdown. The correlation coefficient of them is 0.88.
We see two distinct rates in the correlation, divided vertically at
2 = 0.6%. We run linear fitting in both groups and combine them
into an adjusted relation. The adjusted correlation has a correlation
coefficient of 0.938 and is almost linear, as shown in Figure 3.

The linear relation is not strict: a slightly higher miss ratio
does not always mean a greater slowdown. When the miss ratios
differ significantly, however, the cache effect becomes dominant.
For example, in Figure 2, the best (lowest) slowdown for a group
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Fig. 3: Correlation between adjusted co-run group miss ratio and
co-run slowdown. The correlation coefficient is 0.938.

with 0.8% miss ratio is higher than the worst (highest) slowdown
at 0.6% miss ratio. In Figure 3, the worst slowdown at x = 5 is
better than the best slowdown at x = 6.5.

Weak Correlation with Co-run Miss Rate Miss rate is based
on physical time, i.e. misses per second. The z-axis in Figure 2
is overloaded with the actual miss rate. The figure plots the 1820
co-run groups with their co-run miss rate, and with the sum of
their solo-run miss rates. Their correlation coefficients with co-
run slowdown are 0.48 and 0.65 respectively. Unlike logical miss
ratio, miss-rate correlation shows multiple trends. Unless there
is a way to associate the right program with the right trend, we
conclude that miss rate is not usable for symbiotic optimization.

The inherent problem of miss rate is the physical time. While
co-run slowdown is unbounded, the miss rate is bounded (by the
memory bandwidth). One may argue that we can use the hardware
counters to measure the miss ratio in real-time, but it defeats
the purpose since our goal is to optimize the miss ratio without
exhaustive testing.

We do not show measured miss ratios in the plots because
our machine has prefetching and no hardware counter that can
count all memory transfers (OFFCORE RESPONSE 0.DATA
IN.LOCAL DRAM used in [34]).

Solo-run Miss Rates Cannot Compose Co-run Miss Rate It
is clear that we cannot predict the co-run miss rate by the sum
of the solo-run miss rate. In a recent survey paper, Ding et al.
showed that miss rate is not composable [11]. Here is an empirical
confirmation that solo-run miss rate is not usable for symbiotic
optimization.

Linearity Assumption Validated The correlation started as
a conjecture in Section 2.3 and now has been verified by ex-
periments: although the performance of modern software and
hardware is exceedingly complex, the effect of cache sharing is the
dominant factor. The linearity assumption here is an observation,
and it is the scientific basis for optimal symbiotic scheduling.

5.3 ABF Sampling

Before we present the evaluation of our scheduling technique, we
first use the same 16-program set in Section 5.1 to verify the
efficiency and accuracy of ABF sampling. In our experiments, we
set the phase-change threshold to 1%, the sensitivity threshold to
1%, and hi/bi ratio to 1000. Since the size of shared cache on our
test machine is 8MB, there are 8 M/ /64 = 131072 cache lines. To
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fill the cache with at least 1% miss ratio, it needs 131072/0.01 =
1.3 * 107 memory accesses, hence we set the length of sampled
trace is bi = 107 and the length of hibernation hi = 10*°

To compare different parameters, we evaluate under-sampling,
where the sample length is 10 times shorter, and over-sampling,
where the length is 10 times longer. The parameters of all config-
urations are shown in Table 2.

configurations bi (accesses) | hi (accesses)
ABF sampling 107 1010
under-sampling 108 10°
over-sampling 108 101t

TABLE 2: Burst/hibernation intervals of 3 sampling methods

Table 3 shows the the sampling cost for the 16 benchmarks,
as well as the solo execution time (without sampling) and the
number of samples collected by ABF. ABF sampling takes 0.1
seconds or less for all programs except soplex, which takes 0.12
seconds. Under-sampling and over-sampling are roughly 10 times
faster and slower respectively, since the cost of analysis is linear
to the length of the sample.

bench- t-solo | over-sampling ABF under-sampling
mark (sec) p t (sec) p t (sec) p t (sec)
h264ref 51 1 0.77 1 0.076 1 0.0082
bzip2 78 1 0.78 1 0.075 16 0.0081
soplex 121 1 1.2 1 0.12 10 0.01

povray 137 1 0.85 1 0.083 1 0.0082
perlbench 148 1 0.76 1 0.073 3 0.0097
hmmer 179 1 0.76 1 0.074 1 0.0078
Ibm 214 1 0.88 1 0.086 9 0.0089
mcf 232 1 1.3 7 0.102 15 0.011
dealll 242 3 0.82 5 0.08 23 0.0084
omnetpp 279 1 1.01 1 0.1 11 0.01

zeusmp 322 1 0.78 17 0.08 17 0.0081
namd 323 1 0.86 1 0.085 1 0.008
sjeng 423 1 0.89 1 0.087 1 0.0098
wrf 431 4 0.79 6 0.079 52 0.008
sphinx3 461 1 0.86 1 0.087 11 0.0087
tonto 485 5 0.89 5 0.09 46 0.01

arith avg 257 1.56 0.88 3.18 | 0.086 | 13.62 | 0.0089

TABLE 3: Cost (¢) and phase count (p) of ABF sampling,
compared with under- and over-sampling. Programs are sorted by
the solo execution time.

Table 3 also shows the average solo execution time of all
programs, which is 257 seconds. For the same benchmark set,
Xiang et al. reported the average slowdowns of 38, 153, and 23
times respectively for full-trace simulation (simulating one cache
configuration), reuse distance profiling and footprint profiling [34].
A simple extrapolation suggests that for the average running time
of around 4 minutes, the average analysis times are 3 hours for
simulation, 11 hours for reuse distance and 1.6 hour for footprint
analysis.

We compare the miss ratios for all cache sizes up to 8MB (at
the increment of one cache block). The collection of miss ratios is
called the miss-ratio curve (MRC). Previous techniques had to use
much coarser grained MRCs, e.g. cache partitioning [16], [27],
when measured using hardware counters or OS support. Footprint
and reuse distance MRCs have a much greater resolution and
hence support symbiosis at the finest granularity.

We show the comparison for the 16 test programs with one
graph each in Figure 4. Each graph shows 6 MRC results. To make
it easy to distinguish, points of the same MRC are connected into
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Fig. 4: Miss ratios of the 16 test programs in fully-associative LRU cache of all sizes, at the increment of one cache block, from 256KB
to 8MB, including the accurate results by full-trace reuse distance analysis (full rd) and approximate results by full-trace footprint (full
fp) and three sampling techniques: ABF, over- and under-sampling. The average overhead per program is 11 hours for reuse distance
(full rd), 1.6 hour for footprint (full fp), and 0.09 seconds for ABF (Table 3).

a curve. There are 6 curves in each graph comparing 6 techniques.
Two are full-trace analysis, including reuse distance and footprint.
As estimated in the last section, their total runtime overheads
are 11 hours and 1.6 hour respectively. Reuse distance MRC is
completely accurate (for fully associative LRU cache). Footprint
MRC requires the reuse hypothesis to be correct [34]. The goal of
sampling is to approximate the full-trace footprint MRC.

As we can observe, the miss ratios of the first 7 programs are
mostly over 1%. ABF sampling produces results close to full-trace
footprint analysis. In lbm, sampling captures the near vertical drop
of miss ratio from over 6% to under 4% when the cache size is
around 6MB. In sphinx3, full-trace analysis shows a steep (but
not vertical) drop of miss ratio from over 4% to near 0% when
the cache size increases from 2MB to 8MB. ABF sampling shows
a vertical drop from 4% to 1% when the cache size is 4MB. The
errors at larger cache sizes are within 1%. The worst error happens
in soplex. The miss ratio follows a gradual decline from 11% to
5%. ABF sampling miss ratios are 3% higher. However, the error
is almost constant. The prediction captures the variation almost
perfectly.

In perlbench, the reuse distance miss ratio is mostly under
0.2%. However, it is a singular case that full-trace footprint mis-
predicts, showing over 0.8% miss ratios for cache sizes up to SMB.
Interestingly, ABF sampling shows near 0 miss ratios for all cache
sizes, which is relatively more accurate than full-trace footprint.
The reason is that the conversion from footprint to miss ratio is
usually but not always accurate. The results of perlbench suggests

that the accuracy may be improved through sampling.

The miss ratios in the other 8 programs are mostly under 1%.
ABF sampling is not configured to give accurate results. Still,
the sampling results are mostly accurate, including the capture of
(relatively) sharp drop of 0.3% miss ratio in h264ref at 2MB cache
size, 0.5% drop of miss ratio in hmmer, and near perfect prediction
in sjeng in all cache sizes. In bzip2 and dealll, ABF sampling does
not detect the miss ratio drop but predict the (basically) correct
miss ratio for larger cache sizes.

The other sampling methods are not as effective as ABF
sampling. Over-sampling is more accurate when miss ratios are
small, e.g. around 0.4% in namd and near 0% in povray. This
is expected because over-sampling has a higher precision, i.e.
approximation threshold lowered to 0.1%. However, the improved
accuracy, 0.4% in namd and 0.2% in povray, comes at 10 times
the cost. Furthermore, since the sample length is 10 times greater,
the hibernation length is also 10 times longer. As a result, over-
sampling performs much worse on all programs with phase behav-
ior, mcf, wrf, zeusmp. In zeusmp, over-sampling predicts almost
1% below the actual miss ratio, while ABF sampling is almost
entirely accurate (and finds 17 phases, shown in Table 3).

Under-sampling is faster than ABF but the precision is signifi-
cantly worse. The results give strong evidence that ABF sampling
is an efficient solution for precise prediction.



5.4 Symbiotic Optimization

In this section, we evaluate symbiotic grouping and fair schedul-
ing. We have implemented a general fair scheduler based on the
combination of recursive DP and randomize DP, which will be
tested for footprint symbiosis as well as other co-run optimization
techniques for comparison.

5.4.1 DP Algorithms: Cost and Effect

We first evaluate the cost and effect of three DP algorithms. We
randomly choose K = 6, ..., 20 programs from SPEC CPU2006
and use basic DP, recursive DP and randomized DP to find the fair
schedule with the minimal average co-run miss ratio on P = 4,6
cores. The two graphs in Figure 5 shows the average logical co-
run miss ratios (y-axis) in each schedule of three solutions over
different K. For comparison, we also present the best, worst, and
average of random solution, we limit the searching time of random
solutions to 1 second. The number of processors is P = 4 in the
left-hand side graph and P = 6 in the right-hand side graph. The
miss ratio between different K's is not comparable since it is for
different task groups. We connect the points of the same technique
for a better (visual) comparison.

As we discussed in Section 3, basic DP is optimal, but
after K = 10 it becomes too slow. It takes 2.1 seconds for
(K =10, P = 6) problem, over a minute for (K = 11, P = 6)
and over 4 days for (K = 18, P = 6). Recursive DP is
indistinguishable from basic DP in its optimization result but runs
in less than 0.1 seconds for K < 16 and up to 39 seconds for
K < 20. Randomized DP is set to run for 1 second. It begins
to deviate from recursive DP at K = 17 in the left-hand graph
and K = 16 in the right-hand graph. All three DP algorithms are
better than the best of 1-second random testing (which examines
at least 1 million solution selected at random). The advantage is
magnified after K = 16.

Hence, in our fair scheduler, we combine recursive DP for
K < 16 for practically optimal results and randomized DP for
larger K for best effort results. The cost is less than 0.1 seconds
for recursive DP and 1 second for randomized DP.

5.4.2 Group and Scheduling Techniques

We compare our footprint-based symbiosis with four other tech-
niques in two tests. Grouping is to divide 8 programs into two
4-program co-run groups. Scheduling is to execute a set of 20
programs in a fair schedule.

Bounded-Bandwidth Footprint Symbiosis Footprint symbiosis
as described in Section 3 finds the best co-run schedule with
minimal co-run miss ratio. In practice, however, memory band-
width plays a decisive role as shown earlier in Figure 2. The
co-run slowdown increases at slower rate when the miss ratio
is below 0.6% and then at a much faster rate afterwards. The
reason is memory bandwidth, which starts to saturate at that
point (37% of the peak memory bandwidth on the test machine).
In symbiotic optimization, we want to avoid such group that
take much bandwidth. Therefore we set an upper bound on the
miss ratio. We first require that no co-run miss ratio exceed the
threshold in the symbiotic schedule. If no such schedule exists,
we gradually lift the threshold until we find a schedule. Based on
the results in Figure 2, we set the initial threshold to 0.6%.
Without the bandwidth ceiling, an optimal schedule may be
arbitrarily unbalanced. For example, when dividing 4 programs
into two pairs, the solution with minimal total co-run miss ratio
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may contain the program pair that incurs all the misses and over-
burden the memory bus. However, upper bounding differs from
balancing. Under the bandwidth ceiling, the best schedule may
still be unbalanced. This is an important consequence of non-
linearity when optimizing for shared cache. Because the non-linear
aggregate effect, imbalance is inevitable in optimization.

Distributed Intensity (DI) Distributed intensity (DI) was de-
veloped by Zhuravle et al. [38]. It sorts co-run programs by
decreasing solo-run miss rate (misses per million instructions)
and assigns them round-robin into each group. The resulting
schedule effectively balances the sum of the miss rates in each
group. For reproducible results, we use the DI defined miss rate
measured in complete solo executions. DI does not compute
the co-run miss rate. Its goal is to balance rather than to op-
timize. It banishes imbalance but does not rank the remaining
schedules (by shared-cache performance). For example, in group
G = (mcf,mcf,libqguantum,dealll), mcf has the highest
solo-run miss rate. When dividing them into two pairs, grouping
mef,libquantum gives 3% worse performance than grouping
dealll, libquantum, but DI cannot differentiate between them.

Multi-threaded Bubble-up Mars et al. used two metrics, pressure
and sensitivity, to characterize a program in shared cache [18].
Pressure is how much a program affects the performance of
others, and sensitivity is how much the program is affected by
the pressure of others. The two metrics are determined by running
a program against two probe programs. The bubble program exerts
an escalating level of interference. The reporter program measures
the performance loss caused at each level of pressure.

The original design was for two-program co-runs [18]. A sin-
gle bubble program cannot create sufficient pressure on our quad-
core system. We implement a multi-threaded bubble (mt bubble)
program, which runs the original bubble in 1..P — 1 threads.
Then we test the sensitivity. We measure complete executions of
benchmarks to obtain their pressure and sensitivity values, use
them to build the mt bubble predictor, and use it in DP to minimize
the predicted total slowdown.

The following two are used only in scheduler testing.

SOS SOS creates the fair schedule from 10 random permutations,
runs each for 200ms, and then selects the one that has the maximal
IPC. Unlike the other methods, whose analysis is all offline, SOS
is implemented online with sampling. Since the total running time
is in thousands of seconds, the cost of sampling is negligible. SOS
uses the maximal IPC and does not need to know the solo time.

Random In fair scheduler testing, we randomly generate 100
permutations of the 20 benchmarks. For each permutation, we
rotate to create a fair scheduling. These 100 permutations show
the range of performance without optimization.

5.4.3 Symbiotic Grouping

There are 12870 subsets of 8 programs in our test suite of 16
programs. We take each 8-program set as a scheduling problem:
how to divide the 8 programs to run on our 4-core test machine to
minimize the total slowdown. As we mentioned earlier, because
programs have different execution times, we run each program
repeatedly and measure its speed when it is overlapping with other
programs.

We simply compute all the results by testing all 4-program co-
runs (1820 groups). We use these 4-program groups to evaluate
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the effect of 8-program symbiotic grouping. Then, we rank all
the solutions by their relative slowdown, which is defined as
difference of co-run slowdown compared to the best solution. 0
relative slowdown means optimal symbiotic grouping.

Figure 6 shows the (cumulative) distribution of relative slow-
downs of different grouping technique in all 12870 tests, with the
slowdown on the z-axis and the cumulative percentage on the y-
axis. An (x,y) point means that y portion of relative slowdowns
is less than or equal to x.

Full-trace footprint symbiosis has the best performance. 11%
of its relative slowdowns are 0 (optimal), 62% within 0.1, and
92% within 0.2. ABF sampling is the second best, equally as good
as the full-trace footprint for 90% tests. The deviation for the
remaining 10% is not significant.

Unlike the two footprint (full-trace and sampling) techniques,
which aim to optimize, DI is a heuristic to seek balance. Among all
its solutions, 4.8% is optimal, 38% within 0.1, and 62% within 0.2.
mt-bubble is worse than DI, the three percentages are 4%, 27% and
48%. DI is as good as optimization (full-trace footprint and ABF
sampling) for half of the tests, which means balancing is sufficient
for 50% of the cases (with no or little relative slowdown), but
optimization can further improve performance for the other 50%,
especially the ones with larger slowdowns. Across all 12870 tests,
the arithmetic average relative slowdown is 0.08 for full-trace
symbiosis, 0.12 for ABF, 0.24 for DI and 0.44 for mt-bubble.
The difference between symbiotic optimal and actual optimal is
0.08 for 8 programs or just 0.01 per program. ABF sampling is
per program 0.5% worse than full-trace analysis and 1.5% worse
than optimal solutions.

The figure also gives the relative slowdown distribution of the
median, worst (ranked by relative slowdown) solutions (out of 35
solutions) as well as the average relative slowdown of all solutions
of the 12870 tests. The median solution indicates the expected
performance of a random solution. The average relative slowdown
of median solutions is 0.55. DI reduces the slowdown gap by
56%, while ABF sampling reduces 78%, and full-trace symbiosis
reduces 85%.

The median distribution shows that the difference between
the optimal and the median solutions is less than 0.1 in 50%
of cases but increases quickly and dramatically to over 50% in
the remaining cases. It means that the first 50% of the groups

are not very sensitive to co-run scheduling, but the other groups
are. For the remaining 50%, sensitive groups, the average relative
slowdown is 0.14 for full-trace symbiosis, a slight increase from
0.08, and ABF sampling goes from 0.12 to 0.19. DI performs
significantly worse, from 0.24 to 0.42, and so does mt-bubble,
from 0.44 to 0.79. It shows that optimization is highly beneficial
for sensitive tasks.

Worst-case Analysis In our evaluation, we notice that there
are six 8-program tests for which symbiosis has over 0.5 relative
slowdown. In all of these tests, symbiosis made the wrong decision
by picking the group bzip2, zeusmp, lbm, omnetpp. The error
occurs because the slowdown is uneven within the group. It makes
the co-run miss ratio prediction inaccurate.

There are five tests for which DI has 1.8 or higher relative
slowdown. In these groups, DI picks the group bizp2, soplex,
Ibm, sphinx3, and their individual slowdowns are: 1.97, 2.4, 1.63,
2.22. They are among the most cache-sensitive programs but all
have a low solo-run miss rate. However, the miss rate increases
dramatically when they co-run with others. Since DI assumes the
same miss rate in co-run as in solo run, it cannot foresee these
cases.

Evenness in Co-run Slowdown Although the performance
ranking model is based on even slowdown assumption. The intra-
group non-uniform slowdown exits in most cases. To evaluate
the degree of uneven slowdown in co-run group, we define the
uneveness of group G as:

>, Islowdown(g;) — average(G)|
average(G) * |G|

where average(G) = Y. slowdown(g;)/|G| is its average
slowdown of this group. When everyone’s slowdown equals to
group average, unevenness is 0. Otherwise, unevenness gives the
average relative deviation of each program from the group average.

Figure 7 shows a histogram of unevenness values from all 1820
cases of 4-program co-run groups. As we can observe, 73.7% of
them have 10% or less deviation from the group average. 92% of
them are below 20%. The most uneven groups are 9 cases (0.5%)
whose deviation is between 30% and 35%. One of them is the
group bzip2, zeusmp, lbm, omnetpp, mentioned previously in the
worst case analysis. Their co-run slowdowns are 1.71, 1.40, 1.29,
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uneveness(G) =



and 2.11. Their group average slowdown is 1.62, and the average
deviation, i.e. unevenness, is 17%. Although our performance
ranking model is based on even slowdown assumption. The intra-
group non-uniform slowdown truly exits in most groups. But the
unevenness in most cases is insignificant. The results in Figure 6
verify the efficiency of the performance of ranking model even
though there is certain level of non-uniform slowdown in a group.

5.4.4 Symbiotic Scheduling

In this test, the fair scheduler (Section 3.1) takes a set of 20 pro-
grams (randomly chosen from SPEC CPU2006). At each moment,
it runs the next K unfinished programs based on the best schedule
found by recursive DP or randomize DP. The scheduling quantum
T is set to 10 seconds, which is the same order of magnitude of the
CFS scheduler under batch scheduling policy (1.5 seconds). Every
time a benchmark finishes, the optimal schedule is re-computed.
When the remaining tasks are fewer than P, it stops scheduling
and waits for the last program to finish and compute the elapsed
total wall-clock time.

Fair scheduling gives repeatable running times. For the same
input sequence and the same scheduling method, different runs
have almost the same total wall-clock time, at most five seconds
difference for the totals in thousands of seconds. We test four
symbiotic methods: footprint symbiosis, DI, mt-bubble, and SOS.

Figure 8 shows the finish times of different method for (K =
16, P = 4). It also shows the results of 100 random scheduling in
the sorted order (on x-axis) from fastest, 6284 seconds, to slowest,
6947 seconds (11% difference). There is no randomness in the
symbiotic methods. Their times are shown by horizontal lines.

Footprint symbiosis performs the best, which is expected from
exhaustive testing results. It takes 6147 seconds, faster than the
best heuristic solution DI by 179 seconds (2.9%) and random
average by 344 seconds (5.6%) respectively. What’s remarkable
is that it is better than random best by 137 seconds or 2.2%. The
reason for this is that a scheduler test involves multiple schedul-
ing decisions, so footprint symbiosis has more opportunities to
optimize while other techniques have a higher risk of choosing a
schedule far from the best.

In Section 5.4.3, we have analyzed footprint symbiosis, DI,
and mt-bubble. Here we examine SOS. As K becomes larger, the
number of possible schedules increases exponentially. SOS uses
the same number of samples but can still improve performance

full fp i
ABF
~—a DI |
mt-bubble
median
average
worst

Percentage

8.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Relative Slowdown

Fig. 6: Distribution of relative slowdowns (compared to best
schedule) by optimization using full-trace footprint and ABF,
compared with balancing by DI, pressure-sensitivity by mt-bubble,
and the median, average and worst of 100 random groupings.
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Fig. 8: Finish times of different methods for K = 16, P = 4

as K increases from 12 to 20. However, further increasing the
number of samples from 10 to 100 does not further improve
performance. More sampling incurs extra cost. More importantly,
the search space is too large for the additional 90 samples to make
a significant difference.

Figure 8 shows footprint symbiosis at its best for this test.
At the other K values, footprint symbiosis takes a longer time,
shown in Figure 9. The z-axis shows K values from 6 to 20.
Just three results, minimal, median, and maximal, of random for
K = 20 are shown. It shows the performance of a fifth method,
cache-conscious task regrouping [33], in the curve marked CCTR.
Footprint symbiosis is consistently the best and except for K =
10, outperforms the best of 100 random schedules, finishing under
6284 seconds, at least 73 seconds faster than the random best.
The performance increases in larger K, slower than 6220 seconds
when K < 14 but faster than 6184 seconds when K > 16. DI
and mt-bubble also show a greater benefit for larger K.

As we showed in Figure 6, the majority of programs are not
affected significantly by co-run scheduling, but some programs
are. While a better scheduler can improve these co-run sensitive
programs, the overall improvement is much smaller because it
is averaged over all programs. This is shown by both DI and
footprint symbiosis. If we compare DI with the median of random
in Figures 8 and 9, we see that the average improvement by
DI is around 2% compared to the median of random schedules.
Although the average improvement is small, the individual im-
provements are much larger for the portion of programs that are
co-run sensitive. As shown in Figure 6, footprint symbiosis makes
further improvements, reducing the slowdown (compared to best)
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by a factor of two or more over DI, for over 30% of program
groups. In Figures 8 and 9, we see the effect of these additional
improvements on overall performance. We have two benefits from
the additional complexity of optimization. In practice, it doubles
the overall improvement of the best prior method. In theory, it
shows how much further improvement is possible through co-
run scheduling, which was an important open question left by
prior work. Furthermore, footprint symbiosis is efficient. Table 3
shows that the runtime overhead for each program is less than 0.1
seconds. With randomize DP, the optimal solution searching can
be done in 1 second. The runtime overhead of footprint symbiosis
is comparable to DI.

6 RELATED WORK

This section reviews mainly techniques of program symbiosis and
locality sampling.

The Footprint Theory The footprint theory was built on earlier
models of shared cache, Suh et al. [41] for time-sharing systems
and Chandra et al. [40] for multicore processors. The footprint was
estimated but not measured, a problem that was later solved in the
higher-order theory of locality (HOTL) [34]. As a metric, footprint
quantifies the active data usage in all timescales. The HOTL theory
shows that as the window size increases, the footprint is not only
monotone [31] but also concave [34]. Hence it is strictly increasing
unless it reaches a plateau. If it reaches a plateau, it will stay flat.
The concavity is useful in two ways. First, the inverse function
is well defined, which is the data residence time in cache [34].
Second, the footprint can be used to compute other locality metrics
including the miss ratio curve and the reuse distance [34]. In
HOTL conversion, the concavity of the footprint ensures the
monotonicity of the miss ratio. The HOTL conversion connects
the two classic theories of locality: the working set theory by
Denning et al. for primary memory [9], [10] and the theory of stack
algorithms by Mattson et al. for cache memory [19]. These and
related theories are recently surveyed in [11]. This paper extends
the theory with the notion of common logical time. Furthermore,
it defines a linear model between locality and performance. These
extensions are necessary for symbiotic optimization.

In this study, we have re-implemented the footprint analysis,
and the results confirm that the footprint theory is largely accurate
(Figure 4). Through another independent implementation, Wires
et al. recently showed that the footprint analysis can be used for
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disk access traces to predict the server cache performance with a
high accuracy [29].

Program Symbiosis in Shared Cache Zhuravlev et al. developed
distributed intensity (DI) scheduling, which equalizes the sum of
solo-run miss rates in each group [38]. Mars et al. developed
Bubble-up [18] to improve QoS in addition to throughput. The
model is based on execution time. Many other techniques address
the problem of contention in a shared multicore processor through
data-driven analysis, e.g. machine learning [8]. They do not
aim to optimize co-run performance. Jiang et al. showed that
optimal group scheduling is NP-complete [14]. They gave an
exact solution based on integer programming. Such a solution
requires knowing the co-run performance beforehand. Xiang et
al. composed cache sharing performance using reuse distance
and footprint and showed the benefit of cache-conscious task
regrouping in two tests [33]. The relation between miss ratio and
performance was qualitative rather than quantitative. Some tech-
niques, e.g. DI and Bubble-up, require a dedicated environment
for training, and new training is needed for each machine. Our
model is based entirely on footprint. It is machine independent
and does not require solo testing (except for measuring the access
rate).

Footprint Sampling Xiang et al. gave the first technique for
footprint sampling [34]. It sets the sample length and frequency
as follows. Once a sample is started, the sampling continues until
the analysis has seen the amount of data equal to the cache size.
This length is the cache lifetime, which is the resident time of an
accessed cache block, i.e. between the last time of access and the
time of its eviction. Xiang et al. set the hibernation interval to be
10 seconds. The sampling time ranges between 0% and 80% of
the original run time, with an average of 19%. Although 18% is
hidden by shadow profiling, the interference between the sampling
task and the original program can slow down a program by as
much as 2.1%. Xiang et al. used sampling to predict solo-run miss
ratios. ABF sampling has four differences. The first is approximate
prediction. As a result, the sample length is bounded for a given
cache size, while the lifetime in Xiang et al. is unbounded, e.g.
when the working set of a program is smaller than cache. Second,
the total cost is also bounded in ABF sampling (by the hi/bi
ratio) but not in Xiang et al. Third, ABF sampling does not collect
a sample unless a program has multiple phases, while Xiang et
al. always takes a sample. Finally, ABF sampling is used for
symbiotic optimization, while Xiang et al. evaluated only miss
ratio prediction.

Reuse Distance Sampling Zhong and Chang [36] adopted the
approach of bursty sampling [1], [4], [7] to measure reuse dis-
tance. An execution is divided into occasional sampling “bursts”
separated by long hibernation periods. The scale-tree algorithm of
reuse distance analysis [37] is adapted to use a single node for a
hibernation period. They found that sampling was 99% accurate
and reduced the measurement overhead by as much as 34 times
and on average 7.5 times.

In multicore reuse distance, Schuff et al. modeled locality
in multi-threaded code for both private and shared cache [22].
Wu et al. called them private and concurrent reuse distances
(PRD/CRD) [30]. Schuff et al. combined the sampling tech-
nique of Zhong and Chang with parallel analysis to reduce the
measurement overhead to the level of the fastest single-threaded
analysis [22].



Reuse distance sampling causes a program to slow down by at
least a integer factor, while the cost of ABF sampling is mostly
less than 1%. There are two main reasons for the difference.
Asymptotically, reuse distance takes more than linear time to
measure but footprint takes linear time. Second, the hibernation
period in reuse distance sampling is still instrumented and its
memory accesses analyzed, but the hibernation period in ABF
sampling has zero overhead.

Address Sampling Using the virtual memory paging support,
StatCache collects the access trace to sampled addresses to esti-
mate the cache miss ratio [2]. As part of the IBM framework for
continuous program optimization (CPO), Cascaval et al. sampled
TLB misses to approximate reuse distance [6]. IBM PowerPC
has hardware support so a program can track accesses to specific
memory locations. They studied the relation between the sampling
rate and the accuracy. They found that marking every fiftieth
instruction gathers about every thousandth address. The measured
reuse distances are treated as a probability density function. The
accuracy is defined by Hellinger Affinity Kernel (HAK), which
gives the probability that two density functions are the same.
Similar hardware support of address sampling is used by Tam et
al. to estimate the miss ratio curve [27] and by the HPCToolkit for
locality optimization, e.g. array regrouping [17]. These techniques
are fast but require hardware or OS support. In addition, the metric
measured, especially reuse distance, is not composable, so it would
require co-run testing to optimize shared cache symbiosis [11].

Time Sampling Beyls and D’Hollander developed efficient
sampling in the SLO tool for program tuning [3]. A modified
GCC compiler is used to instrument every reference to arrays and
heap data. To uniformly select samples, it skips every k accesses
before taking the next address as a sample. To track only reuses, it
keeps a sparse vector 200MB indexed by lower-order bits. When
being sampled, the index of the chosen address is inserted into the
vector. A full check is called whenever the same index is accessed.
The overhead comes from two sources. The first is when a full
check is called, but it is infrequent. The algorithm uses reservoir
sampling which means that the frequency in theory is constant
regardless of the length of the execution. The second is address
and counter checking, which are two conditional statements for
each memory access. Using sampling, they reduced the analysis
overhead from 1000-fold slowdown to only a factor of 5 and the
space overhead to within 250MB of extra memory [3]. Using the
tool, they were able to double the speed of five already hand-
optimized SPEC2000 benchmarks. The SLO tool measures reuse
time which is not a direct measure of locality or cache usage.

7 SUMMARY

In this work, we have defined common logical time and co-run
miss ratio based on the common logical time. We have validated
the linearity assumption that co-run performance correlates lin-
early with the logical miss ratio. It enables for the first time
to minimize co-run slowdown without co-run testing. We have
developed the footprint symbiosis technique based on the linearity
assumption as well as a fair CPU scheduler for program schedul-
ing on multi-core machine. In addition, we propose ABF sampling
to bound the analysis error and the total cost of footprint analysis.
Experimental evaluation shows that ABF sampling takes less
than 0.1 seconds per program. Through exhaustive and scheduler
testing, we show that footprint symbiosis is on average 8% away
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from optimal co-run (for 8 programs), it can outperform the best
possible system co-run (for 20 programs), and it improves the
previous techniques in both performance and robustness.
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