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Abstract—Distributed denial-of-service (DDoS) defense is still
a difficult problem though it has been extensively studied. The
existing approaches are not capable of detecting various types of
DDoS attacks. In particular, new emerging sophisticated DDoS
attacks (e.g., Crossfire) constructed by low-rate and short-lived
“benign” traffic are even more challenging to capture. Moreover,
it is difficult to enforce realtime defense to throttle these detected
attacks since the attack traffic can be concealed in benign
traffic. Software Defined Networking (SDN) opens a new door
to address these issues. In this paper, we propose RADAR to
detect and throttle DDoS attacks via adaptive correlation analysis
built upon unmodified commercial off-the-shelf (COTS) SDN
switches. It is a practical system to defend against a wide range
of flooding-based DDoS attacks, e.g., link flooding (including
Crossfire), SYN flooding, and UDP-based amplification attacks,
while requiring neither modifications in SDN switches/protocols
nor extra appliances. It accurately detects attacks by identifying
attack features in suspicious flows, and locates attackers (or
victims) to throttle the attack traffic by adaptive correlation
analysis. We implement RADAR prototype using open source
Floodlight controller, and evaluate its performance under various
DDoS attacks by real hardware testbed based experiments. We
observe that our scheme can successfully detect and effectively
defend against various DDoS attacks with acceptable overhead.

I. INTRODUCTION

The Internet has a long history of suffering from DDoS at-

tacks. Recently there is a dramatic escalation in DDoS attacks,

for example, the attacks on Dyn DNS services disconnected

many popular Internet services, e.g., Amazon and GitHub,

on October 21, 2016 [4]. Traditional methods for DDoS

defense [1], [3], [22] have a number of limitations. First, they

often require expensive hardware appliances, thus introducing

extra deployment cost and complex routing hacks [15]. In

addition, they are often unable to detect sophisticated DDoS

attacks, e.g., Crossfire [18], Pulsing DDoS attacks [27], as well

as some real-world DDoS attacks [14], which were constructed

to plague the Internet in a stealthy way. Worse still, it is

extremely difficult to enforce realtime defense against detected

attacks since the attack is stealthy and the attack traffic can

mimic behaviors of benign traffic [14], [17].

Recently, Software Defined Networking (SDN) enables a

new way to defend against DDoS attacks. A natural way
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of design is to rely on SDN switches to collect necessary

flow information and report it to the SDN controller. By

utilizing the controller’s global view on the network-wide flow

features, an SDN-based approach can be potentially effective

to detect and defend against DDoS attacks, and in fact,

such methods have been proposed recently [12], [15], [17],

[28]. Although these approaches have different implementation

details to detect attacks, they share a similar design principle

and architecture, as illustrated in Figure 1(a). A key issue in

the designs is to identify which flow information is necessary

and should be reported to the controller. Note that, due to

its capacity limitation, a controller is not able to receive and

analyze based on original flow counter information for all

network flows from all switches. A natural idea that all current

designs adopt is to rely on switches to perform pre-processing

on flow counter information, generate some brief statistics

(e.g., changes of flow rates), and report such brief information

to the controller.

Such deployments have been shown a number of ad-

vantages, but they are facing some fundamental challenges.

First, an SDN switch is only able to report flow counter

information, but is not designed to accomplish complicated

tasks in flow information pre-processing. Thereby, it has to

rely on extra components (e.g., appliances) to complete them,

which disables the ability to detect DDoS attacks using un-

modified commercial off-the-shelf (COTS) SDN switches and

incurs extra deployment costs. Second, flow pre-processing

in switches (e.g., analysis of changes of flow rates) may

lose important original information and thereby the controller

will mistakenly omit attack flows. This is especially serious

when stealthy attacks (e.g., Crossfire) or non-link-flooding

attacks (e.g., TCP flooding) take place. Under such attacks,

the information of changes of flow rates that switches report

to the controller is always normal, and thus it will be very

difficult for the controller to know if attacks happen. Therefore,

such approaches may neither be able to detect certain attacks,

nor the detection accuracy is questionable. Table I provides

a summary of the above representative approaches built upon

SDN1.

It is the lack of deployability on COTS SDN switches, as

well as our pursuit of high effectiveness and generality of

defense, that motivate our research. We would like to ask:

· Is it possible to develop an SDN-based approach to effec-

tively detect and defend against a wide range of DDoS attacks

by using COTS SDN switches without extra appliances?

1We want to point out that though Bohatei seems not require switch
modifications, it does not detect DDoS attacks but defend against them
assuming such attacks are already detected.



TABLE I
COMPARISON WITH EXISTING DDOS DEFENSE BUILT UPON SDN.

Scheme
Functionality1 Deployment Cost

TCP UDP/link flooding Crossfire Defense COTS SDN No Appliance Deployability Comm.

RADAR ✧ ✧ ✧ ✧ ✧ ✧ w/o changes low

BROCADE [12] N/A2 ✧ ✩ ✧ ✩ (sFlow)3 ✩ (sFlow) customized systems medium

SPIFFY [17] ✩ ✧ ✧ N/A ✩ (Sketch) ✧ customized systems medium

Bohatei [15] ✩ ✩ ✩ ✧ ✧ ✩ (DC/NFV) w/o changes N/A
1 TCP represents TCP SYN flooding detection, UDP and link flooding represents UDP amplification detection and traditional link flooding detection,

Crossfire represents detection of sophisticated DDoS attacks, and defense represents if a scheme is able to throttle the attacks in realtime.
2 N/A indicates the metric of the scheme is unknown or the scheme is not comparable to others.
3 sFlow requires extra equipment to collect sFlow data.

Fig. 1. DDoS defense enabled by SDN.

Our answer is yes. We propose RADAR (Reinforcing

Anti-DDoS Actions in Realtime), whose architecture is il-

lustrated in Figure 1(b). Comparing with the conventional

approaches, we have some fundamental innovations. First, we

enable interactions between controllers and switches so that

aggregated anomaly pattern in network-wide traffic triggers

collecting traffic in the controller and adaptively zooming in

the suspicious set. Thereby, the controller can dynamically

tell each switch which flows (instead of all flows) to in-

vestigate. Second, based on these limited number of flows

under investigation, the switches do not need to pre-process

flow information anymore but directly report original flow

counter information to the controller. Since the controller only

receives such flow counter information of limited flows being

investigated, it is able to analyze it and keep itself scalable

even in a large-scale network. In other words, facing the

scalability challenge, traditional approaches rely on switches

to simplify the flow information (which is costly and may

lose important information) of all network-wide traffic, while

our approach relies on the controller to dynamically identify

only a partial set of suspicious flows, instruct the switches to

monitor them and report original flow counter information of

such partial flows to the controller. We enable RADAR’s new

features on deployability, generality, and effectiveness by:

• Interactions between Switches and Controllers allow

controllers to instruct switches on how to collect partial

information, such that switches can perform collection

tasks by themselves without requiring appliances. Flow

filtering is achieved by the controller based on original

flow information, and thus it is more accurate without

omitting attack flows.

• Adaptive Correlation Analysis performed on Con-

trollers enables identifying and locating a wide range of

DDoS attacks (e.g., sophisticated link flooding like Cross-

fire, amplification, and SYN flooding attacks) based on

original flow counts collected from switches in realtime.

We also point out that SDN approaches are often with

scalability concerns. RADAR uses a distributed flow rule

placement to significantly reduce the number of rules needed

in each switch, and we will show it is highly scalable. In

summary, our contributions are three-fold:

• We design the RADAR architecture to detect a wide

range and sophisticated/stealthy DDoS attacks without

any modifications in SDN protocols or COTS switches.

It is the first system built upon COTS SDN switches that

can detect and throttle various DDoS attacks.

• We develop detailed algorithms in RADAR so that vari-

ous DDoS attacks are detected and throttled in realtime.

• We implement RADAR prototype in the Floodlight con-

troller, and perform experiments on a real hardware

testbed with real traces. The experiment results demon-

strate that it can effectively detect and throttle DDoS

attacks in realtime and is shown to be scalable.

II. BACKGROUND

A. DDoS Attacks

A distributed denial-of-service (DDoS) attack occurs when

attack traffic floods the bandwidth or resources of a targeted

system. Although the traffic patterns of traditional DDoS

attacks are well defined, it is still difficult to practically defend

against them in realtime. Sophisticated DDoS attacks are

recently created, e.g., Crossfire [18] and Coremelt attacks [30].

Instead of directly flooding victims, these attacks flood back-

bone links of ISPs and create a large number of attack flows

crossing the links that connect the victims to the Internet. By

congesting the links, the victim networks are disconnected

from the Internet. The attackers leverage different bots to

generate low-rate traffic with real IP addresses, making the

detection very difficult. Such attacks have attracted interests,

and some potential techniques [17], [19], [20] have been

proposed. However, up to now we are not aware of any existing

deployment that can effectively defend against such type of

DDoS attacks.

Example. Let us use a simple example to illustrate how

Crossfire attack works. In Figure 2, a victim node of such

attack has N paths to connect to the Internet. Let us first focus

on one particular path, i.e., path 1 composed of two serial

links, i.e., A and B. Two bots with addresses 32.0.0.1/24 and

240.0.0.1/24 generate traffic with real addresses to two decoy

servers that can be reached through A and B, respectively. Two

bots cooperate to generate traffic, such that the traffic shifts
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Fig. 2. A simple example of Crossfire attack

between A and B and the links are periodically congested (as

shown in the right part of Figure 2)2. Thereby, the path to

the victim composed of A and B is always congested. For

ease of illustration, here we only focus on path 1, while in

practice, a large number of bots generate various attack flows

on all possible links so as to congest the paths, and then the

victim is completely disconnected. In fact, there are real-world

attacks [14], [16] similar to Crossfire attacks, which use short-

lived and small flows to construct DDoS attacks.

B. Problem Statement

We aim to propose a practical system built upon SDN to

defend against a wide range of flooding-based DDoS attacks,

i.e., link flooding (including sophisticated attacks, e.g., Cross-

fire), SYN flooding, and UDP-based amplification attacks. The

proposed system does not need to modify the current packet

forwarding diagram and it is compatible with the current IP

data plane. With same assumptions as in the BROCADE DDoS

defense products [12] and the software-defined measurement

approaches [23], [34], we use SDN switches capable of large

flow rule entries so as to throttle attacks. Such powerful

switches are achievable in the market [7]. Based our exper-

imental results (see Section VI), we observe that scalability is

not a big concern.

In this paper, we use OpenFlow [9] as a representative of

network control APIs of SDN and study how SDN can be

leveraged to efficiently detect various DDoS attacks. It directly

leverages standard SDN (or OpenFlow) APIs without any

modifications in any protocols or implementations of SDN. It

can work with various releases of SDN controllers, e.g., Open-

Daylight [8] and Floodlight [5], and various brands of COTS

switches that comply with OpenFlow specifications. Therefore,

it can be deployed with one or multiple (or distributed) con-

trollers in large scale networks. Moreover, it does not require

any collaborations among ISPs. Consider a particular victim

of an attack. The attack traffic will be eventually aggregated

in the local network containing the victim. We can detect and

throttle the attack traffic to the victim by only investigating

this local network, even if the attacks originate from different

places of the wide area network.

2Both bots can generate any amount of traffic to either decoy server, i.e.,
a particular bot can vary its traffic on A and B from time to time, as long as
the total traffic generated by both bots periodically congests A and B, making
the attacks more stealthy.

III. ARCHITECTURE

In this section, we propose the architecture of RADAR.

RADAR is designed as an application, which can be embedded

into an SDN facility. Recall that RADAR allows COTS

switches to report flow counter information of a subset of

network-wide flows to the controller. To achieve this, switches

need to know which flow information is required by the

controller. The key challenge is to design an online and unified

detection architecture which is able to capture attacks based

on a limited number of counters for a wide range of attacks

without any prior knowledge. In principle, this is possible

because we have the following important observation.

Key Observation: Given the flooding victims of a particular

DDoS attack, any attack flow always correlates with the

attack traffic aggregated on the victims irrespective of flow

dynamicity.

Although flows from any individual client can be very

small, the aggregated traffic from groups of clients at the

targeted links is not, which is the attack goal. Aggregated

traffic allows us to capture the traffic anomalies. Further,

the detected anomalies notify the controller to dynamically

collect and analyze the traffic correlating with the aggregated

traffic, and thus the controller can detect the attack traffic.

In practice, in order to have such online architecture to

capture the correlation, we develop three main components

in RADAR, i.e., the collector, the detector, and the locator,

which adaptively interact with each other to collect a limited

number of required flow counters (see Figure 3).
• RADAR collector receives collection rules from the

detector and the locator depending on what type of

attack is of interest, and instructs the switches to collect

their interested flows from network-wide traffic, which is

triggered by the aggregated traffic.

• RADAR detector receives flow statistics from the col-

lector, and each modular in the detector performs the

correlation analysis of its suspicious flows to adaptively

generate fine-grained collection rules and detect attacks.

• RADAR locator receives signals from the detector, and

then adaptively generates collection rules to collect the

suspicious flows. It performs adaptive correlation analysis

between single suspicious flow and flows aggregated in

victims to locate and throttle attack traffic.
Note that, RADAR requires switches to be deployed close to

the victims. RADAR captures the attack flows by analyzing the

correlation between the flow captured at various locations and

the aggregated traffic close to the victim. Since the Crossfire

attack is one of the most sophisticated DDoS attacks, in the

rest of this section, we will use it as a typical case to illustrate

how RADAR detector works. Under Crossfire attacks, it is not

easy to identify attack packets even if the switches close to the

attack sources can capture the increase of flows. In particular,

by interactions among the three components, RADAR adap-

tively correlates traffic captured at different locations such that

it detects various attacks without any prior knowledge of the

attack flows.

The approach of Crossfire detection can be simplified to de-

tect other attacks. For instance, SYN flooding can be captured

by analyzing the ratio of the number of SYN packets to that
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Fig. 3. The architecture of RADAR

TABLE II
NOTATIONS USED IN ALGORITHMS

Notation Meaning
i the round of the statistic retrieval

root the root pointer of the trie
Ld, Pd a set of victim links and victim paths, respectively
Fq [] an array with each element Fq [l] being the change

frequency of link l
Fs a set of possible tuples 〈fj , cfj 〉 collected by switch s,

with the first element of a tuple being a suspicious flow
fj and the second element being the counter number of
this flow fj

Ps a set of possible tuples 〈pj , cpj 〉 collected by switch
s, with the first element of a tuple being a port pj
delivering suspicious flows and the second element
being the counter number of all flows at this port pj

C1s[][] a matrix with each element C1s[j][i] being the counter
number of flow fj in round i at switch s

C2s[][] a matrix with each element C2s[j][i] being the counter
number of all flows at port pj in round i at switch s

R1s[][] a matrix with each element R1s[j][i] being the rate of
the change of the counter number of flow fj in round i
at switch s

R2s[][] a matrix with each element R2s[j][i] being the rate of
the change of the counter number of all flows at port pj
in round i at switch s

ℵ[][] a matrix of link congestion indicators where an element
ℵ[j][i] equals 1 if there is a link congestion at port pj
in round i, or 0 otherwise

D[][] a matrix of the duration of link congestion, with each
element D[j][i] being the time duration of congestion
at port pj in round i

T [][] a matrix of beginning time of congestion, with each ele-
ment T [j][i] being the first time point when congestion
starts at port pj in round i

S[] an array with each element S[j] being the suspicious-
ness level of flow fj

t[] an array with each element t[j] being the score of flow
fj

of ACK packets generated by the same set of hosts, and UDP

amplification attacks can be detected by analyzing the statistics

of UDP request and response packets.We can build different

algorithms with respect to the attacks in the RADAR detector

to achieve the goal. The details of detecting the traditional

DDoS attacks will be described in Section V.

It is non-trivial to implement such an architecture. Col-

lecting suspicious traffic from a large traffic pool, identifying

sophisticated attacks, and accurately locating the attack traffic

in realtime, are all of high difficulty. In what follows, we will

describe how we realize the key techniques in our design.

IV. DESIGN

In this section, we present the detailed design of the three

components in RADAR. The notation used in the algorithms

are summarized in Table II.

A. RADAR Collector

RADAR collector receives static and dynamic rules to

adaptively retrieve statistics of suspicious flows and maintains

them in the controller, such that (1) RADAR detector can

identify whether an attack exists, and (2) RADAR locator can

identify which flows are the attack traffic. It first passively

monitors network flows according to the static rules in a

coarse-grained manner3, and then actively pulls flow statistics

if flows are detected as suspicious. Meanwhile, it adaptively

issues dynamic flow rules to enforce fine-grained data collec-

tion of suspicious flows (see Section IV-B). Here, a flow is

defined as a set of data packets forwarded by the same flow

entry on OpenFlow switches. It is treated as suspicious if the

traffic anomaly appears in the flow. For example, a significant

increase in the number of SYN packets indicates possible

existence of SYN flooding attacks; a significant increase in the

number of UDP request packets indicates possible existence

of UDP-based amplification attacks (in this paper, we use

DNS amplification attacks as the representative of this type

of attacks); while a significant increase of aggregated flows

indicates possible existence of flooding attacks (either normal

flooding or sophisticated Crossfire attacks). These anomalies

can be captured by leveraging OpenFlow group tables [9],

which will be detailed later.

Note that, although flows from any individual client in

the Crossfire attack are very small, the aggregated traffic

from groups of clients at the targeted links are not (by the

definition of link flooding, this is the attack goal). Thus,

this traffic anomaly composed of aggregated flows can be

suspicious. Since the above traffic anomalies can also be

triggered by normal flows, we cannot simply treat suspicious

flows at this stage as the detection results. Instead, we need

to feed them into the actual detector as detailed in the next

section. Therefore, RADAR collector can efficiently narrow

down and collect suspicious flows by adaptive interactions,

and effectively avoid flow rule table overflow incurred by data

collection.

Mechanism. In Figure 4, we show that RADAR collector first

creates flow rules in SDN switches, which can be generated

according to addresses, ports, or any other fields supported

by the OpenFlow specification [9]. It utilizes dedicated flow

rules to trigger statistics collection. To achieve this in SDN,

it leverages OpenFlow group tables attached to the dedicated

flow rules with the group type SELECT [9] such that packets

can be operated by actions defined in different buckets. Each

bucket in a SELECT group table has an assigned weight,

and each packet is sent to a single bucket. We use weighted

round robin to distribute packets to different buckets. As

shown in Figure 4, two buckets with different weights are

set up in a group table to implement two types actions. The

bucket assigned with a lower weight (e.g., the weight value

of 1% shown in Figure 4) is associated with the action of

packet reporting to the controller, while the bucket with a

higher weight is associated with the action of normal packet

3For example, RADAR uses one static flow rule to monitor all TCP SYN
packets, or uses per-port static flow rules to monitor flows received from each
port to capture suspicious Crossfire traffic.
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Fig. 4. The collector installs dedicated flow rules and OpenFlow group tables
in the switches so that the switches can capture the suspicious flow and report
them to the controller.

forwarding. If a flow has more packets counted by the group

table, the packets will be more likely captured by the bucket

with a lower weight that is associated with the action of

packet reporting than other flows. Here, the weight values

are set according to network configurations to ensure that

traffic increase close to victims will trigger reporting to the

controller [9]. Thereby, RADAR collector can capture and

understand the suspicious flows by analyzing packet-in packets

sent by switches.

After RADAR collector receives packet-in packets, it

records and updates the statistics of flows in Fs. Meanwhile, it

enables active statistics retrieval of such flows, and periodically

pulls the statistics of suspicious flows to update Fs and that

of the corresponding ports in Ps. Such active pull actions are

triggered by sending request messages on flow statistics [9]

to switches. The statistics retrieval intervals τ are set by

corresponding attack detection modules according to the types

of suspicious flows. The detection modules will verify if

attacks exist by evaluating the data retrieved from the collector.

If suspicious flows are not regarded as attack traffic, then

the statistic retrieval will be deactivated by the collector.

The collector notifies the corresponding RADAR modules

according to the types of static collection rules. The details

of the algorithm can be found in [11]. Note that, we cannot

apply sFlow [13] to collect flows since it is unable to monitor

particular types of traffic (e.g., TCP packets with specific

flags). Since packets generated by sophisticated attacks (e.g.,

Crossfire attacks) are low-rate attack and concealed in benign

traffic, it is not easy for sFlow to capture such packets if it

simply samples traffic. However, if sFlow disables sampling,

it will incur significant communication overhead.

B. RADAR Detector

Triggered by RADAR collector, RADAR detector identifies

attacks by performing correlative analysis of the patterns of

suspicious flows collected from different switches, and notifies

RADAR locator to locate accurate attack traffic.

Mechanism. RADAR detector utilizes the statistics of suspi-

cious flows reported from switches and the flow forwarding

path information learned from the topology database, to detect

Crossfire attacks. The attack traffic always shifts among var-

ious victim links, bursting and descending alternately. Recall

Figure 2, a Crossfire attack can be captured if at least two

links in a path are periodically congested and there is at least

one link congested at any particular time. A Crossfire attack

is successful only when all paths connecting to the victims

are congested [18]. However, for efficient detection, RADAR

identifies the attacks after capturing one victim path.

To detect Crossfire attacks, RADAR needs to analyze the

rate of link utilization changes and the correlation between

links and the paths composed of these links. Specially, a

Crossfire attack will be identified if (i) the total number of

link utilization changes reaches or exceeds a threshold β; (ii)

the number of links have been congested in each congested

path (according to the forwarding paths) reaches or exceeds a

threshold α; and (iii) the congestion duration of a path equals

the total congestion duration of links composing this path.

Note that, since Crossfire attacks can only be constructed by

periodically flooding at least two victim links in a path, we set

α to be 2. Also, the traffic shifting frequency cannot be low.

Otherwise, the Crossfire will fail [18]. In order to trade off

between detection efficiency and accuracy, we set β to be 3.

In Section VI, we will show that the impact of β on detection

accuracy.

Algorithm. Algorithm 1 shows the pseudo-code of detecting

Crossfire attacks. It compares the rate of flow statistic changes

on all ports (lines 1-11). If a congestion indicator of a port is

changed from 0 to 1, indicating that a round of traffic shifting

is detected, then the algorithm computes the link associated

with the port according to the topology database (line 3).

Then, the algorithm counts the total number of times that

traffic shifting happens in this link (or the change frequency

of this link, line 4). If this value is larger than β, link l will

be included in the set of suspicious links Ld (steps 5-7).

The algorithm computes the congestion duration of all paths

constructed by the links in Ld and check if the accumulated

duration of congestion caused by such links is equal to the

congestion duration of the path (lines 12-34). If it is true, then

a Crossfire attack is detected. In details, in order to compute

the congestion duration of a path, the algorithm first computes

a set P of all suspicious paths. This is done by investigating

all paths constructed by any possible link in the set of all

suspicious links, according to flow tables maintained by the

controllers (line 13). It then computes the congestion duration

of each path if the number of suspicious links in the path is

larger than α (line 15). Here, since the congestion duration of

links in a path overlaps with each other, to accurately compute

the accumulated duration of the links, it sorts the congestion

time and eliminates all overlapped period during congestion

duration computation (lines 15-25). In an ideal case, if the

accumulated link congestion duration D′[0] computed from

all link congestion duration is equal to the path congestion

duration T ′[sizeof(T ′)− 1] - T ′[0], it indicates a victim path

is identified (lines 26-33) and then the algorithm returns true.

The detector will stop detecting the attack if one victim path

is captured. Note that, since flow statistics stored in RADAR

collector may not be perfectly accurate, in practice, an attack

will be regarded as identified if the difference of duration of

accumulated link congestion and that of path congestion is

bounded by ǫ, i.e., D′[0] ≥ (1−ǫ)(T ′[sizeof(T ′)−1]−T ′[0]).
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Algorithm 1 Crossfire Attack Detection

Input: i; Ps = {〈pj , cpj 〉, ∀j}; ℵ[][]; D[][]; T [][];
Output: true: attack detected, false: otherwise;

1: for ∀{〈pj , cpj 〉} ∈ Ps do

2: if (ℵ[pj ][i] == 1) && (ℵ[pj ][i− 1] == 0) then
3: l← get mapping(pj);
4: Fq[l] ++;
5: if (changeFreq[l] ≥ β) then
6: Ld ← Ld ∪ l;
7: end if
8: else
9: continue;

10: end if
11: end for
12: D′ ← ∅; T ′ ← ∅;
13: Pd ← compute paths(Ld);
14: while (path ∈ Pd) do
15: if (|path| ≥ α) then
16: for (l′ ∈ path) do
17: p← get mapping(l′);
18: for (j = 0; j++; j < i) do
19: if (ℵ[p][i] = 1) then
20: k ← mergesort(T ′, T [p][j]);
21: D′[k]← D[p][j];
22: end if
23: end for
24: end for
25: end if
26: for (j = 0; j++; j < sizeof(T ′)) do
27: if ((T ′[j + 1] +D′[j + 1]) > (T ′[0] +D′[0])) then
28: D′[0]← T ′[j + 1] +D′[j + 1]− T ′[0];
29: end if
30: end for
31: if D′[0] ==(T ′[sizeof(T ′)− 1] - T ′[0]) then
32: return true;
33: end if
34: end while
35: return false;

C. RADAR Locator

We have stated that RADAR detector can detect victim

links and paths, but it is still unable to identify which traffic

over such links/paths is really attack traffic. RADAR locator

is responsible to identify such attack traffic. This is achieved

by leveraging adaptive correlation analysis of the rates of flow

statistic changes on each link and victims that are detected by

RADAR detector. RADAR locator identifies flows as attack

traffic if their rates of statistic changes correspond to those of

aggregated flows delivered on victim links. Then, it captures

the attack traffic associated with the detected attacks and

identifies the exact prefixes generating or receiving the traffic.

Note that currently RADAR design identifies and tracks flows

by using source or destination addresses, since in existing

DDoS attacks, either source or destination addresses used in

attack traffic are real. In this paper, we use the source address

field to illustrate how RADAR locates Crossfire attack traffic,

or attackers (/bots). This can be easily extended to any packet

fields enabled by OpenFlow specification [9].

Mechanism. Upon receiving an alarm from the detector,

RADAR locator is triggered to locate attack traffic according

to the attack type identified. Initially, the locator does not have

any sense of what are the attack flows. Therefore, it regards all

addresses as suspicious source addresses of attack flows (i.e.,

all flows are suspicious). Such addresses can be categorized

according to their prefixes4. Then we use correlation analysis

to determine which prefix(es) are possible to generate the

4In our algorithm, we use a general form of prefix where its length can be
any integer between 0 and 32.

attack traffic, so we can shrink the size of the set of suspicious

flows. By multiple rounds of analysis, we will obtain fine-

grained visibility on the flows and finally identify all source

addresses of attack traffic.

In order to achieve this, we utilize multibit tries [21]5,

each trie representing a particular type of attack. Let us

focus on a particular trie for Crossfire. Each node in this trie

corresponds to a prefix, recording statistics of flows, whose

source addresses match the prefix, and statistics of the ports

delivering these flows. To locate Crossfire attack flows, when

an attack is identified, RADAR locator first constructs a trie

with only the root node corresponds to the default address

000/0, and generates a flow rule where the source address

field is set to be the prefix represented by the root node 000/0

to tracks all flows in the network6. Note that, 000/0 indicates

an address space covering all IP addresses and it can be split

into different lengths of address blocks according to a splitting

rate. For instance, an address space 000/0 can be split into four

blocks with a splitting rate 2, and then four address blocks with

prefix length 2 are generated, i.e., 000/2, 064/2, 128/2, and

192/2. Later, we will expand the trie, i.e., 000/0 will be split

and children nodes will be created as leaf nodes to attach to

the root node (see Figure 5(a)).

RADAR locator will send dynamic flow rules to the collec-

tor so that the statistics can be received from the collector and

updated periodically. Correspondingly, the statistics associated

with nodes in the trie will also be updated. Meanwhile,

RADAR locator analyzes the updated statistics associated with

each leaf node. If a prefix associated with a leaf node generates

flows exhibiting the flow pattern of Crossfire attack, i.e., flows

generated by the prefix change proportionally with respect

to that on the victims, the prefix associated with the node

will further be split to longer prefixes. Each newly generated

prefix will be associated with a new child node attached to

the original node. Meanwhile, a new flow rule associated

with each new prefix is issued to the collector to monitor

the corresponding traffic. The splitting procedure repeats until

the maximum splitting limit is reached. The round of prefix

splitting (or trie expansion) is controlled by the prefix splitting

rate. Thereby, by periodically expanding the trie and splitting

the prefixes associated with the existing nodes into longer

prefixes, RADAR locator captures the attack traffic associated

with longer prefix lengths.

Flows whose statistics exhibit the attack pattern associated

with leaf nodes will be regarded as attack traffic. The attack

traffic will be blocked by issuing OpenFlow meter table

rules [9] attached to the locating rules that are matched by the

traffic. Ideally, RADAR can locate a host with the prefix with

length 32, i.e., an IP address. However, in practice, we observe

that the probability that benign traffic matches the locating

rules with various specified fields is low as long as the prefix

specified in the rules is long enough (e.g., 24). Therefore, we

set the maximum prefix length to be 24 in order to achieve a

good tradeoff between detection accuracy and detection delay.

5Multibit tries are similar to traditional tries, but they allow nodes to have
different numbers of children (see Figure 5).

6In the rest of this section, flow rules refer to dynamic rules to locate attack
flows.
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Note that, detected prefixes may still generate benign traffic

whose packet fields by chance match the meter table rules

even if the prefix length limit is 32. To mitigate the impact on

benign traffic, RADAR locator only sets limits for each flow

in meter tables instead of directly dropping flows such that it

allows bots to generate a very limited number of packets. In

Section V, we will discuss a fine-grained approach to throttling

attack flows.

Algorithm. Algorithm 2 shows the pseudo-code of locating

attack traffic. It first updates the trie with new received

statistics (line 1). For each flow, it searches the port that

delivers the flow (line 3). If the rate of the change of the current

link is higher (or lower) than that in the last statistics retrieval,

the suspiciousness of the corresponding prefix S[fj ] increases

(or reduces) by the rate of the change (lines 4-7). It computes

the depth d of the trie (lines 10) and performs a breadth

first search on all nodes in the trie, recording the statistics

of prefixes in set Flist (line 12). The locator deactivates the

nodes where the flow statistic does not change proportionally

with the link statistics and removes them from the set FList,

so their offspring nodes will not be visited either. Note that

such nodes and their offsprings will be activated and visited

during later rounds of tree search.

For nodes in FList, the algorithm computes the values of

ζ-th percentile among flow statistics of nodes in the same

level of the trie, i.e., Count. Here, ζ-th percentile ensures that

flows accidentally matching locating rules will be excluded

from further analysis. In our experiments, we observe that

the impact of ζ on the locating performance does not vary

significantly if ζ ∈ [0.01, 0.1]. For simplicity, we set ζ to

0.1. Then the algorithm examines the flows associated with

each node of that level, If S[fj ] is larger than Count, i.e.,

the flow correlates with the aggregated traffic, the score of

flow fj increases by 1 (line 22). Here, a score of a flow

indicates the suspiciousness of the flow. If the score is larger

than β, then the flow associated with the prefix will be blocked

by issuing a filter rule with the prefix in OpenFlow meter

tables [9] (line 24). If the score is less than β and the length

of the prefix associated with the flow is shorter than the

maximum splitting length, then the prefix will be split again.

Meanwhile, a set of new nodes will be created and updated in

the trie, and the corresponding locating rules are generated to

replace the rules associated with flow fj (lines 26-27). Note

that, scores measure the times of the flow shifting, while the

suspiciousness is the total amount of changes in statistics.

D. Illustration

Let us recall the example in Figure 2, and use it to illustrate

how RADAR detects and locates a Crossfire attack. Assume

a static flow rule and a group table are installed in the switch

between A and B, where the source address field is set as

0.0.0.0/0 to count all forwarded packets. At a particular time,

the hosts with source addresses 32.0.0.1/24 and 240.0.0.1/24

generate traffic to the decoy servers and congest A and B,

respectively. The group table receives the statistics for flow

rules, and will capture the flows and notify the controller

by generating packet-in packets. Thereby, RADAR collector

understands that these flows are suspicious. It will periodically

Algorithm 2 Locate Attackers

Input: root; Fs = {〈fj , cfj 〉, ∀j}; Ps = {〈pj , cpj 〉, ∀j}; R1s[][]; R2s[][];
S[]; t[];

Output: S[];
1: update trie(root, Fs, Ps, R1s, R2s);
2: for ∀{〈fj , cfj 〉} ∈ Fs do

3: p← locate port(fj);
4: if (R2s[p][i] > R2s[p][i− 1]) then
5: S[fj ]← S[fj ] +R1s[fj ][i];
6: else
7: S[fj ]← S[fj ]−R1s[fj ][i];
8: end if
9: end for

10: d← compute depth(root);
11: for (k = 0; k ≤ d− 1; k ++) do
12: F list← BFS(root, k);
13: for (∀nd ∈ F list) do
14: if (!flow port correlate(nd)) then
15: deactivate descendants(nd);
16: remove(nd, F list);
17: end if
18: end for
19: Count← calculate percentile(F list, ζ);
20: for (∀nd ∈ F list && fj associated with nd) do
21: if (S[fj ] ≥ Count) then
22: t[fj ]++;
23: if (t[fj ] == β) && (get prefix len(fj ) > Γmax) then
24: block(fj );
25: else if (get prefix len(fj ) < Γmax) then
26: split(get prefix(fj ));
27: create children(nd);
28: end if
29: end if
30: end for
31: end for
32: return S;

pull the statistics of the flows and that of the ports of switches

forwarding these flows, and feed the data to RADAR detector.

After receiving the statistics, the RADAR detector starts

analyzing the data. As shown in the right part of Figure 2,

flows generated by hosts 32.0.0.1/24 and 240.0.0.1/24 match

the patterns: (1) the total number of changes on link utilization

on A and B exceeds 3; (2) the number of links in the path is 2;

and (3) the congestion duration of the path is equal to the total

congestion duration of A and B. Thus, the detector sends an

alarm to RADAR locator, i.e., a Crossfire attack is detected.

RADAR locator starts locating attack traffic by creating

a trie set a root node 000/0 and issuing a flow rule as-

sociated the node to the switches that have detected con-

gestion. It will detect that the statistics associated with the

trie node exhibit attack pattern. Thereby, prefix 000/0 will

split into 2i blocks where the splitting rate i is set as 2

(see Figure 5(a)). Meanwhile, RADAR locator issues new

locating flow rules corresponding to the new prefixes to track

the corresponding flows. Hence, flows generated by hosts

32.0.0.1/24 and 240.0.0.1/24 will be monitored by the flow

rules with source prefixes 000/2 and 192/2, respectively.

After receiving updated statistics, assume the flow generated

by host 240.0.0.1/24 first exposes the attack pattern, then

the trie will be expanded by splitting prefix 192/2 with

the same splitting rate into four prefixes (see Figure 5(b)),

and the new rules are issued via RADAR collector to count

the corresponding flows. Similarly, if a flow exhibits attack

pattern, the trie will be further expanded (see Figure 5(d)).

For ease of presentation, we assume that the limit of prefix

splitting is 4. In reality, RADAR will eventually determine the

prefixes with the maximum length permitted that generate such

7



Fig. 5. RADAR locator gradually splits prefixes associated with the nodes in the trie such that it can effectively locate nodes associated with the prefixes that
generate the attack traffic: (a) a trie with four split prefixes; (b) node of 192/2 is split into four child nodes since the traffic generated by the prefix exhibits
the attack pattern; (c) the new generated child nodes will be inactive if their traffic does not exhibit the attack pattern; (d) node of 000/2 is further split since
the traffic associated with the prefix match the attack pattern. It can be applied to track prefixes associated with the victims receiving attack traffic.

attack traffic. RADAR locator issues a meter table RATE:5 and

attaches it to the locating rule, which allows flows matching

the locating rule to pass five packets per second. Up till now,

the attack traffic is identified, located, and throttled.

V. OPTIMIZATION

In this section, we present some optimizations that we have

implemented.

Scalability. One major possible concern of RADAR design

is its scalability, i.e., whether it can work in large scale

detection. Similar to BROCADE DDoS defense products [12],

[26] and existing SDN-based measurement approaches [23],

[34], RADAR requires dedicated flow rules to monitor flows.

It consumes a small number of flow rules for SYN flooding

and DNS amplification detection (see Section VI), and thus

the scalability is not a big concern. The main challenge is in

sophisticated attacks that may require a large amount of flow

rules. In order to prevent rule explosion, we set limits on the

number of flow rules (which we refer to as the maximum

number of flow rules) that can be used to locate attacks.

Upon reaching the limit, we merge nodes in the trie, so that

the corresponding flow rules will be removed and spaces are

made up for further new splitting. The nodes to be merged

are those whose children nodes all have low suspiciousness.

The merge mechanism is similar to that in [41]. Note that,

intuitively, if we have a reasonably large space for flow rules,

then merge will only happen when all children nodes are really

safe to remove. Our experiments also validate that such merge

mechanism works pretty well in practice. We would point out

that it is very difficult to have an accurate theoretic analysis

on the tradeoff between rule space and rule deletion safety,

and we will leave it in our future work.

We have to emphasize that not all flow rules can be merged,

otherwise it will incur high false positive. Another important

optimization we have implemented in RADAR is a distributed

flow rule placement strategy, i.e., for each flow rule of a

monitored flow, we implement it in only one particular switch

in the packet forwarding path, rather than installing it in

all switches along the path. This mechanism enables that

various flow rules spread in different switches in the path

are non-overlapping and the number of required dedicated

flow rules in each switch is significantly reduced. Similar

strategies for packet filter placement are deployed on the

current Internet [29], which are demonstrated to be effective.

In the experiment section, we will verify its effectiveness.

Note that, although RADAR requires extra TCAM con-

sumption, in most cases, RADAR requires a relatively small

number of TCAM entries compared to the number of TACM

capacities according to our experiment results, in particular

under TCP SYN flooding and UDP amplification attacks (see

SectionVI). The improvements above can effectively reduce

the TCAM consumption incurred by RADAR. Actually, our

experimental results show that RADAR can still effectively

detect attacks if even the number of assigned flow entries for

detection is less than that required for detection. Also, since

RADAR requires each switch to report suspicious flows to

the controllers, the number of flows captured by each switch

is limited, which is demonstrated by our experimental results

(see Section VI.)

Specialization for Traditional DDoS Detection. In order

to detect traditional DDoS attacks, e.g., SYN flooding and

DNS amplification attacks, we can leverage a similar corre-

lation analysis technique discussed in Section IV-B. Different

from Crossfire detection, SYN flooding can be detected by

computing the ratio of the number of ACK packets to SYN

packets during a detection interval. If the number is close

to 1, SYN flooding attacks are detected. Also, if the ratio

of the average sizes of DNS response packets to that of

DNS request packets significantly deviates from a threshold,

DNS amplification attacks are detected. Note that, according

to OpenFlow specification [9], OpenFlow switches can count

the number of their interested packets (e.g., the number of

TCP SYN/ACK packets and the number of DNS request

packets) and the total sizes of different types of these packets.

Therefore, RADAR can directly retrieve the required numbers

from the corresponding switches. In order to detect TCP SYN

flooding and DNS amplification attacks, RADAR only requires

two dedicated flow rules to monitor each type of flows with the

particular port or flag information. For example, RADAR uses

two rules to monitor TCP packets with SYN and SYN/ACK

flags, respectively, and uses two rules to monitor DNS packets

with source port 53 and destination port 53, respectively.

Therefore, RADAR does not require more granular flow rules

in monitoring or blocking attack flows. Note that, attack

packets may be with fake source or destination addresses.

Thus, it is not possible to track the exact attack packets by
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using more granular flow rules. Instead, we use the max-min

fairness technique to achieve fine-grained packet dropping and

throttle attack packets.

Note that, as we have discussed before, RADAR locator is

designed to locate various types of attacks by issuing different

types of locating rules, e.g., locating rules specified with

DNS protocol number are used to detect DNS amplification

attacks. By specializing it to locate such SYN flooding and

DNS amplification attacks, RADAR is specialized to work for

traditional DDoS attacks. We will illustrate this functionality

in our experiments.

Parellalization of Detecting and Locating Attacks. In order

to reduce the delay of locating attackers, RADAR combines

phases 2 and 3, i.e., detecting attacks and locating attack

traffic, so as to locate different attackers or victims during

traffic correlation analysis. In other words, RADAR builds the

trie and splits nodes in advance, and periodically updates the

trie during detecting attacks.

Fine-Grained Packet Dropping. In the basic RADAR design,

we leverage OpenFlow meter tables to throttle attack traffic

according to its addresses. However, the meter tables may

falsely drop the benign traffic if such traffic matches the

features of attack traffic by accident. To address this issue,

RADAR locator is extended to incorporate a port-based max-

min fairness technique to drop the attack traffic. It is different

from the traditional max-min fairness technique. It enforces

packet throttling strategies according to all statistics aggre-

gated on ports. RADAR locator installs a traffic throttle by

enforcing a meter table at each OpenFlow port. For those

packets that match the features of the attack traffic, e.g., traffic

whose source and destination addresses match that of Crossfire

attack traffic, the throttle will limit the rate of such packets to

be forwarded by the port at switches. Traffic that exceeds the

rate limit will be dropped. The underlying rationale is that

most packets matching the features of the attack traffic are

malicious and they can be regarded as the attack traffic if

the number exceeds the throttle at each port. Thereby, port-

based max-min fairness significantly increases the accuracy of

dropping attack flows compared with the traditional max-min

fairness.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance and overhead

of RADAR with Mininet and hardware testbed experiments

with real CAIDA trace [2], and simulation-based experiments

with the real trace.

A. Prototype and Experiment Setup

We implement RADAR in an open source controller, Flood-

light [5]. Currently we provide detection modules for link

flooding (including Crossfire), SYN flooding, and DNS ampli-

fication attacks. In particular, we use a real CAIDA trace [2]

and replay it as background traffic. The traces were collected

on a backbone link of a Tier-1 ISP in Chicago on Febru-

ary 2015. We conduct microbenchmark and macrobenchmark

experiments to evaluate the performance of RADAR. The

microbenchmark experiments aim to study the effectiveness

and performance of RADAR with different parameters under

various attacks, while the macrobenchmark experiments aim to

demonstrate the feasibility of RADAR in hardware OpenFlow

switches and evaluate its performance in a large scale.

We measure the effectiveness of RADAR and its overhead

by constructing different DDoS attacks: (1) Crossfire attack

by allowing different bots to send stealthy and low rate attack

traffic according to the description of the attack [18]; (2) SYN

flooding attack by sending only SYN packets with spoofed

IP address; (3) DNS amplification attack by sending DNS

requests with fake source IP addresses.

Microbenchmark experiments: We use Mininet to perform

various experiments. In Mininet experiments, we construct

various attack traffic with the real Internet 2 topology [6] on

Ubuntu server 14.04 with an 8-core 2.8 GHZ Xeon CPU,

128GB RAM. We assign different numbers of bots to the

switches so as to generate different attack traffic. Due to

limitation of computation resources, we are unable to set up a

large number of bots. Here, we use two strategies to select bot

addresses and use these addresses to generate attack traffic: (1)

HN strategy: We randomly select addresses in different class

C prefixes as bots addresses and randomly choose different

numbers of bot nodes in the prefixes. The number of bot

nodes in a prefix varies between 0 and 254. According to

existing studies, real bot distributions exhibit a high degree

of clustering [18], so these addresses can be aggregated to a

small number of prefixes. (2) SA strategy: We randomly select

class C prefixes and select different numbers of addresses in

each class C prefix that are not aggregated at all. The reason

is that this strategy introduces the heaviest overhead. In both

strategies, the number of class C networks is set to be 10,

25, 50, 75, and 100, respectively. The total number of bots

varies between 1 and 19,125. For simplicity, in the following

experiments, we use bots to indicate a set of bots with the

same prefix.

Macrobenchmark experiments: We use real OpenFlow

testbed experiments with real traces and large scale trace-

based simulations to evaluate the performance. We replay

the CAIDA trace as background traffic and construct the

Crossfire attack traffic. In real testbed experiments, we use two

Pica8 P-3297 OpenFlow switches [10] to forward all traffic

including attack traffic and measure if RADAR with these

two switches can effectively capture and defend against the

attacks. For simplicity, we use HN strategies to select bot

addresses and use them to generate attack traffic. Since the

Pica8 P-3297 switches cannot support a large number of flow

rules, the number of class C prefixes is set to 50, 100, 500,

1000, and the number of class C prefixes in the large scale

simulations is set to be 1,000, 2,000, 5,000, 10,000, 50,000,

and 100,000, respectively. Moreover, note that the Ethernet

speed of hardware switches in our testbed experiments is

1 Gbps and the packet rate in the CAIDA trace is up to

10 Gbps. We cannot directly replay the trace, but replay

10% of the data per second by using TCPreplay. We directly

replay the trace in the simulation-based experiments. As we

observe, SYN flooding and DNS amplification attacks can

be accurately captured by RADAR. We do not present the

results in this paper due to page limit. Note that, according
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to our experimental results, the size of the networks does not

impact the detection delays of RADAR but the overhead of

RADAR. A small network topology incurs more overhead on

switches since they require more flow rules in each switch to

track attack flows. Fewer switches, more overhead on them.

Therefore, in our experiments, we evaluate the performance of

RADAR in the extreme case, i.e., the network only includes

two switches.

We use the following metrics to measure the performance.
• Accuracy: We use the metrics of true positive rate (TPR),

false positive rate (FPR), and mitigation rate (MTR) to

measure the detection accuracy. In particular, we use

MTR to measure the percentage of blocked attack traffic

volume in all attack traffic flows.

• Delay: Delay refers to the time duration from the begin-

ning of the attack to the time point it is located.

• Overhead: We measure the number of extra flow tables

used to detect attacks under various attack scenarios with

and without flow rule limits. Since the number of static

rules is very small, we mainly evaluate the consumption

of dynamic rules.

B. Microbenchmark Experiments

We use Mininet experiments to conduct experiments with

a real network topology, i.e., the Internet 2 topology. Our

goal is to measure the impact of the number of bots and

different settings of RADAR on the accuracy and overhead

of the detection.

Experiment 1: Impact of ζ on accuracy. We evaluate

detection accuracy when ζ varies. Figure 6 and 7 show the

impact of ζ on TPR under HN and SA strategies, respectively.

We observe that, when ζ increases, TPR decreases under

various prefix splitting rates. In particular, under SA strategy,

when ζ is larger, the number of searched trie nodes reduces

and then scores of the nodes associated with attack flows are

much smaller than real scores. Therefore most of the attack

flows are falsely excluded during traffic locating. However,

RADAR achieves more than 95% TPR if ζ is set less than

0.01 under both strategies when the splitting rates are set to

be 1, 2, and 4. TPR with splitting rate 8 under SA strategies

is almost zero because RADAR does not have enough flow

rules to locate new captured suspicious flows.

We measure the impact of ζ on FPR. We observe that

FPR under the two strategies is rather low. Figure 8 shows

FPR under SA strategy. The worst FPR is around 5% when

ζ = 0 since benign traffic with traffic burst is counted by

mistake. Here, ζ can be any real number between 0 and

0.1. We do not observe FPR when ζ is set to other values

in this experiment. Moreover, we also measure MTR with

various ζ values (see Figures 9). The distributions of MTR

under various splitting rates is very similar to that of TPR

since RADAR can effectively drop detected attack flows. MTR

achieves more than 98% when ζ is less than 0.01. In the

following experiments, we set ζ to be 0.01.

Experiment 2: Impact of splitting rates on accuracy. We

measure the impact of splitting rates under two bot distribution

strategies. TPR under the two strategies is very similar (see

Figures 10 and 11). The only difference is that using SA

strategy, RADAR achieves much worst TPR when the splitting

rate is set as 8. The reason is similar to what we have stated

above. In the following experiments, we will not include

the experimental results with splitting rate being 8. FPR is

negligible, and MTR is similar to TPR. We do not repeat the

results here.

Experiment 3: Impact of splitting rates on overhead.

In this experiment, we evaluate the number of flow rules

consumed for locating bots. As shown in Figure 12, under

HN strategy, on average, RADAR consumes less than 1,000

flow rule entries under attacks from various numbers of bots.

However, RADAR consumes much more flow entries when

using SA strategy (see Figure 13). In particular, for attacks

with 100 prefixes, it consumes more than 5,000 flow entries.

The number can be constrained by setting a limit, while

not impacting the accuracy (see Experiment 7). Actually, the

number of flow rule entries in commodity OpenFlow switches

can be up to more than 160,000 [7]. Therefore, we believe

5,000 flow entries for Crossfire detection is acceptable. We

will evaluate the overhead with DDoS detection at a larger

scale in the macrobenchmark experiments.

We also evaluate the communication overhead of collecting

statistics. As shown in Figure 14, under Crossfire attacks,

initially the sizes of packets delivering the statistics increase

over time since RADAR gradually finds more and more

suspicious flows. At the 120th second, RADAR detects all

attack traffic. But it still enables active statistics retrieval to

ensure that no more bots can be detected. After the 200th

second, the number of packets starts decreasing. The most

incurred communication overhead is only 0.25 MB/s. In fact,

we observe RADAR incurs similar overhead under various at-

tack scenarios. Therefore, we can conclude the communication

overhead does not exacerbate network performance.

Experiment 4: Detection delay under attacks with different

settings. In this experiment, we evaluate the detection delay

when the splitting rate set to be 4 and the maximum number

of flow rules is set to be 5,000, where SA strategy is enforced.

As we observe in Figure 15, the detection delay is stable

when the numbers of bots vary. More than 90% attack traffic

is detected within 90 seconds no matter how many bots

participate in the attacks. Since most of the attack traffic can be

correctly damped by RADAR, RADAR can effectively throttle

the traffic within 90 seconds. Actually, as we observed in

Figure 15, RADAR detects more than 50% attack traffic within

60 seconds. Therefore, the impact of the attack is eliminated

or significantly mitigated within one minute.

Also, we measure detection delay where the maximum

number of flow rules is set to be a smaller value, i.e., 2,000.

We choose three duration of shifting the target links as 10,

20, and 30 seconds. We observe that if a small number of

bots participate in the attack with 10 seconds link shifting

duration, and RADAR detects most of the attack traffic within

100 seconds that is the product of the link shifting duration and

the shifting round (see Figure 16). The delays are reasonable

since it takes time for RADAR to split flow rules to spot

attack traffic and confirm the attacks by at least β rounds of

link shifting. However, when the number of bots reaches 100,
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Fig. 11. Experiment 2: Impact of
splitting rate using SA.

❛❜❝

❞❡❢❣

❤✐❥❦❧

♠♥ ♦♣ qr st ✉✈✇①
②
③
④
⑤
⑥
⑦
⑧
⑨
⑩
❶
❷❸
❹
❺

❻
❼
❽❾
❿➀
➁

➂➃➄ ➅➆➇➈➉➊ ➋➌ ➍➎➏➐

➑➒➓➔ →

➣↔↕➙ ➛

➜➝➞➟ ➠

Fig. 12. Experiment 3: Flow rule
consumption using HN.

➡➢➤

➥➦➧➨

➩➫➭➯➲

➳➵ ➸➺ ➻➼ ➽➾ ➚➪➶➹
➘
➴
➷
➬
➮
➱
✃
❐
❒
❮
❰Ï
Ð
Ñ

Ò
Ó
ÔÕ
Ö×
Ø

ÙÚÛ ÜÝÞßàá âã äåæç

èéêë ì

íîïð ñ

òóôõ ö

Fig. 13. Experiment 3: Flow rule
consumption using SA.
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Fig. 14. Experiment 3: Communica-
tion overhead of statistics collection.
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Fig. 15. Experiment 4: CDF of detec-
tion delays with splitting rate being 4.
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Fig. 16. Experiment 4: CDF of de-
tection delays with 2000 flow rules.
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Fig. 17. Experiment 5: TPR under the
DNS amplification attacks.

it needs to take around 160 seconds to detect 90% of attack

traffic. The reason is obvious: more flow rules can monitor and

locate more attack flows. The detection delays increase with

respect to the link shifting duration that are controlled by the

attackers. However, the link shifting duration will not be very

long. Otherwise, the attacks will be captured and treated as

the traditional flooding attacks. RADAR can drop the detected

the attack traffic in realtime. Therefore, we can conclude that

RADAR can effectively defend against and throttle DDoS

attacks in realtime, in particular, Crossfire like sophisticated

DDoS attacks.

Experiment 5: Detection overhead and delay under tra-

ditional DDoS attacks. We measure the detection delay

under SYN flooding attacks and UDP-based amplification

attacks (with nine reflectors) with 100 bots. Here, we use

DNS amplification attacks as a representative of the UDP-

based amplification attacks. Figure 17 shows that RADAR

achieves 100% TPR with various splitting rates. In particular,

it only requires at most 50 flow rules to detect all attack

flow. We observe a similar result in SYN flooding detection.

Figure 18 and 19 illustrate the delays of SYN flooding and

DNS amplification detection, respectively. Since RADAR can

easily detect the attack traffic by correlation analysis, it is not

surprising that it only takes around 15 seconds to detect all

attack traffic, which is not impacted by the maximum number

of flow rules. Therefore, we can conclude that RADAR can

efficiently detect the traditional DDoS attacks above with a

very small overhead.
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Fig. 18. Experiment 5: Delays of
detecting SYN flooding attacks with
different rates.
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detecting amplification attacks with
different rates.

C. Macrobenchmark Experiments

Now we run real testbed experiments and real-trace based

simulations to conduct macrobenchmark experiments. Our

goal is to demonstrate the feasibility of RADAR with real

hardware OpenFlow switches and measure the impact of

different settings of RADAR on attack detection accuracy and

overhead at a large scale.

Experiment 6: Impact of the maximum number of flow

entries on accuracy on the testbed. In this experiment, we

evaluate the detection accuracy under attacks from different

numbers of bots. As shown in Figure 20, TPR is impacted

by the number of consumed flow rules. When the number of

flow rules reaches 2,000, RADAR achieves more than 85%

TPR. We do not observe any FPR no matter how many flow

rules are used to detect attacks (see Figure 21). Figure 22

shows the impact on MTR. After detecting bots, RADAR can

accurately capture the attack traffic from the bots. Since some

bots generate more attack traffic than other uncaptured bots,
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Fig. 20. Experiment 6: Impact of flow
rules on TPR on testbed.
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Fig. 21. Experiment 6: Impact of flow
rules on FPR on testbed.
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Fig. 22. Experiment 6: Impact of flow
rules on MTR on testbed.
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Fig. 23. Experiment 7: CDF of de-
tection delays on testbed.
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tection rate with 10 bots on testbed.
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Fig. 25. Experiment 7: CDF of de-
tection rate with 50 bots on testbed.
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Fig. 26. Experiment 7: CDF of de-
tection rate with 100 bots on testbed.
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Fig. 27. Experiment 7: CDF of de-
tection rate with 500 bots on testbed.
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Fig. 28. Experiment 8: CDF of de-
tection delays on testbed.
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Fig. 29. Experiment 9: The consumed
flow rules on testbed.
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Fig. 30. Experiment 10: Impact of
splitting rate in large scale detection.
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Fig. 31. Experiment 11: Flow rule
consumption in large scale detection.

MTR is higher than TPR. In particular, MTR almost reaches

100% even though around 10% bots are not captured.

Experiment 7: Detection delay under attacks with different

settings on the testbed. We measure the detection delays

under the attacks from different numbers of bots with different

flow rules. In this experiment, we set the link shifting duration

to be 20 seconds. The detection delays are impacted by the

duration of link shifting in the Crossfire attacks, and the de-

tection delays are proportional to the link shifting duration. In

other words, most of the bots are captured within around 200

seconds no matter how many bots are involved to construct the

attacks (see Figure 23). We also evaluate the detection delays

with different number of flow rules that are used to detect

attacks. As illustrated in Figure 24, 25, 26, and 27, under the

attacks from different numbers of bots, the number of flow

rules does not significantly impact the delay rates, though the

detection delays slightly vary. Moreover, the deviations among

different numbers of flow rules are not so large. Note that,

since under the attacks from 500 bots, as we discussed above,

the detection delays will be longer if the used flow rules are

less than 2000. RADAR cannot track attack traffic from 500

bots at the same time if it is only allowed to use 500 flow

rules.

Experiment 8: Detection delay with a different splitting

rate. In this experiment, we evaluate the detection delay with

respect to different splitting rates. RADAR captures more than

85% bots with different splitting rates. Figure 28 shows CDF

of detection delays under the attacks from 500 bots. Since it

takes more time to split flow rules and capture bots when the

splitting rate is set to 1 or 2, the detection delays with these

two splitting rates are slower than that when the splitting rate

is equal to 4. Therefore, in order to quickly capture bots and

throttle DDoS attacks, it would be better to reserve more flow

rule space for RADAR. However, as we discussed above, both

can still successfully capture most of the bots no matter which

splitting rates RADAR uses.

Experiment 9: Detection overhead on the testbed. Since we

observe that the communication overhead incurred by RADAR

in microbenmarck experiments is relatively stable and small

(see Section VI-B), in this experiment, we focus on evaluating

the overhead of flow rules. As illustrated in Figure 29, the

required flow rules for DDoS detection is not proportional to

the increase in the number of bots. The increase in the number

of the flow rules is slower than that of the number of bots. In

Experiment 6, we will evaluate the detection overhead under

large scale attacks.

Experiment 10: Detection accuracy with various splitting

rates in large scale detection. In this experiment, we mea-

sure the detection accuracy when the number of bots varies.

Figure 30 shows that under various splitting rates, on average

RADAR achieves more than 80% bots. In particular, when the

splitting rate is 4, RADAR detects more than 90% bots. Note

that here each bot indicates a set of bots, where the number

of detected bots can reach 25 million. Therefore, RADAR is

still effective when Crossfire detection is on a large scale.

Experiment 11: Impact of splitting rate on overhead

in large scale detection. We observe when the number of

bots increases, the required flow rules increase as well (see
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Fig. 32. Experiment 12: Flow rule
consumption on testbed.
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Fig. 33. Experiment 12: Flow rule of
each switch in large scale networks.

Figure 31). When the number of bots reaches 10,000, the

number of rules is more than 10,000. It seems to be a large

value, but note that the increase in the number of consumed

flow rules is slower than that of the number of bots, so

our mechanism is scalable. In particular, Crossfire attacks are

mostly constructed in the Internet backbone [18] that appears

to be over-provisioned with high performance switches. The

switches should be able to absorb the increase of flow rules.

Moreover, Crossfire detection is the extreme case for DDoS

detection, and we considered an extreme case where there

are 10,000 bots, so the consumed flow rules should be much

more than normal cases. Overall, the cost of our mechanism

is reasonable. We will evaluate the overhead of each switch

with real topologies.

Experiment 12: RADAR Scalability. Finally, we evaluate the

scalability of RADAR in the experiments. Since we cannot

construct complete topologies of large-scale networks in our

experiments, we use measured average path lengths in different

ISP networks [25] to compute the consumed flow rules in each

switch. We compute average flow rule consumption in each

switch by dividing required flow rules among switches in the

path. Figure 32 illustrates the average number of flow rule in

each switch on our testbed. We observe that the number of

flow rules required in each switch is far below 1K. Moreover,

we use three typical ISP networks (i.e., Sprint, TeleDanmark,

and Level-3 networks) to validate scalability in large-scale

detection. The average path lengths of these networks are 12,

15, 25, respectively. As shown in Figure 33, on average, the

flow rules required in each switch in these networks are around

6.9K, 5.5K, and 3.3K, respectively, when the split rate is set

to be 4. The number of flow rules will be much smaller if

the split rate is less than 4. Therefore, the required number

of flow rules are significantly reduced when using distributed

flow rule installation, and such cost is affordable for real-world

commercial COTS switches (e.g., [7]). In particular, these flow

rules are still able to detect and throttle very large-scale DDoS

attacks by a botnet composed of more than 100K bots, e.g.,

the recent DDoS attacks on Dyn DNS services [4]. In future

work, we will investigate more optimal flow rule placement

such that the number of flow rules can be further reduced.

Remark: As shown in the experiment results above, RADAR

can effectively detect attacks by correlation analysis even if

each attack flow is very small. Specially, RADAR makes a

trade-off between detection delays and overhead.

VII. RELATED WORK

DDoS detection in IP networks has been extensively stud-

ied [1], [22] via various approaches, e.g., traceback, pushback,

puzzle actions, and profile-based defense. Such approaches

are not generally easy to be deployed because they need

complicated operations of the data plane and/or collaborations

of ISPs. Such approaches, though interesting to academia, are

often too complicated for the industry to apply. Instead, current

industrial solutions [3] usually rely on expensive hardware

appliances, increasing cost and packet forwarding delay. These

traditional approaches cannot effectively detect the current

sophisticated DDoS attacks that are launched with small and

short-lived attack traffic.

Recently, SDN opens new doors to defend against DDoS at-

tacks. A number of researchers have done pioneer and insight-

ful works based SDN or software-defined approaches [15],

[23], [32], [33]. In particular, Xu et al. [32] detect DDoS

attacks by traffic monitoring in SDN. Fayaz et al. [15] redirect

traffic to virtual machines in datacenters to detect DDoS at-

tacks. Yu et al. [33] developed a software-defined measurement

framework to implement efficient network measurement. Such

measurement frameworks aim to detect heavy hitters/changes

with iteratively refined traffic monitoring, and attempts show

great potential to better detect DDoS attacks via SDN, while

the limitation is that they are unable to capture flows collab-

orating to construct sophisticated ones like Crossfire.

Up till now, we find three pieces of most closely re-

lated work to ours, all using traffic engineering (TE) ap-

proaches [17], [19], [20] to detect DDoS attacks, (potentially)

including Crossfire attacks. Such pioneer works provide valu-

able insights and great potential on how to address Crossfire-

like attacks. In particular, Lee et al. [19] propose a cooperative

traffic engineering approach via an extra communication proto-

col to detect attack traffic. An obvious overhead is that it needs

adoption of self-defined protocols and cooperations of different

ISPs (and most likely, extra appliances as well). Christons

et al. [20] present an analytic model to capture Crossfire,

providing interesting insights on practical mechanisms design,

however, the paper itself is analytical based and still far away

from practical implementation. Kang et al. [17] leverage SDN

to implement efficient traffic engineering for link flooding de-

tection. One obvious cost is that it requires major modifications

in switches to implement sketch algorithms so as to capture

different flows, and it is unclear how it can be implemented

in today’s SDN switches; meanwhile, it is specifically for link

flooding based attacks, but does not apply for other types like

SYN flooding.

Several machine learning based approaches [24], [31] were

proposed to identify and throttle attacks in SDN. For instance,

Wang et al. [31] leveraged a graphical inference model to

detect attack flows. By leveraging SDN, these approaches can

effectively block identified attack flows in realtime. These

approaches are orthogonal to RADAR. The RADAR detector

can utilize these approaches to detect more attacks in SDN.

VIII. CONCLUSION

We propose RADAR, an architecture aiming to detect var-

ious DDoS attacks via adaptive correlation analysis on COTS

SDN switches. It does not require any modifications in SDN

protocols and switches, nor does it need any extra appliance

to detect attacks. RADAR is able to capture and throttle

13



sophisticated DDoS (e.g., Crossfire) attacks in realtime. We

evaluate the performance by experiments based on a real

testbed, and demonstrate that RADAR can effectively and

efficiently detect various attacks within short delays.
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