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Abstract—A new class of target link flooding attacks (LFA)
can cut off the Internet connections of a target area without
being detected because they employ legitimate flows to congest
selected links. Although new mechanisms for defending against
LFA have been proposed, the deployment issues limit their usage
since they require either additional modules to enhance routers
or using the software-defined network (SDN) to replace the
traditional routers. In this paper, we propose a novel framework
that employs both the end-to-end and the hop-by-hop network
measurement techniques to capture abnormal path performance
degradation for detecting LFA and then locate the target links or
areas whenever possible, and develop a prototype of the frame-
work named LinkScope. Although using network measurement
to capture network anomaly is not new, we tackle a number of
challenging issues, such as conducting large-scale Internet path
monitoring via non-cooperative measurement so that users do not
need to install LinkScope on every host, profiling the performance
of asymmetric Internet paths, and detecting LFA. The extensive
evaluation in a testbed and the Internet shows that with limited
bandwidth and computational overhead LinkScope can achieve
timely detection and diagnosis of LFA with high detection rate
and low false positive rate.

I. INTRODUCTION

DDoS attacks remain one of the major threats to the

Internet, and there is a significant increase in the number and

the size of DDoS attacks recently [1], [2], not to mention the

300 Gb/s direct flooding attacks on Spamhaus and the record-

breaking 400 Gb/s NTP reflection attack on CloudFlare. It is

not difficult to detect such traditional bandwidth DDoS attacks,

because the attack traffic usually reaches the victim and has

an obvious difference from legitimate traffic [3].

Recent research has discovered a new class of target link

flooding attacks (LFA) that can effectively cut off the Internet

connections of a target area (or network) without being de-

tected [4], [5]. For example, the LFA against NetEase in 2015

flooded the major links connected to NetEase’s game services

and made it unavailable for 9 hours [6]. Moreover, LFA has

been used by attackers to flood selected links of four major

Internet exchange points in Europe and Asia [7]. To launch

LFA, the attackers first select persistent links that connect the

target area to the Internet and have high flow density, and then

instruct bots to generate legitimate traffic between bots and

public servers to congest those links [5]. If the paths among

bots cover the target area, the attackers can also send traffic

among themselves to clog the network [4].
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Detecting LFA is difficult because 1) the target links are

selected by attackers. Since the target links may be located in

an AS different from that containing the target area and the

attack traffic will not reach the target area, the victim may

not even know he/she is under attack; 2) each bot sends low-

rate protocol-conforming traffic to public servers, rendering

signature-based detection useless; 3) bots can change traffic

patterns to evade abnormal traffic pattern-based detection.

Traditional anomaly detection [8] and traffic filtering sys-

tems (e.g., IDS, IPS) deployed at the network perimeter

cannot handle LFA by design. The reason is that, to degrade

the connectivity of the target network, LFA overwhelms the

selected upstream links of the target network, which are

beyond the monitoring scope of the traditional systems. Due

to the direct control over the traffic crossing critical links,

router-based approaches have been proposed to defend against

LFA and other smart DoS attacks [7], [9]–[16]. Despite their

effectiveness, their availability is limited in the foreseeable

future as a result of the constraints by practical factors, such

as deployment overhead [7], network externalities [17], and

ISP commercial adoption incentives [18] (see Section VII

for details). Similarly, although several promising SDN-based

defense mechanisms [19]–[22] have been proposed, they may

not be immediately deployed because they need to replace the

traditional routers with SDN devices. Therefore, it is urgent

to devise a framework for developing practical systems that

have visibility to LFA and are immediately deployable without

modifying/affecting existing Internet routing infrastructure.

Such systems can help victims detect LFA and locate the links

under attack whenever possible so that victims could ask for

help from the corresponding providers to mitigate such attacks.

We fill this gap by proposing a novel framework that

employs end-to-end and hop-by-hop non-cooperative mea-

surement techniques to achieve the goal mentioned above.

Our framework exploits the nature of LFA [5], including

1) LFA causes severe congestion on persistent links because

light congestion cannot disconnect the target area from the

Internet; 2) to evade detection and avoid route changes [5],

the period of congestion caused by LFA is much shorter than

that caused by traditional bandwidth DDoS. Meanwhile, the

congestion period caused by LFA is long enough to cause

damages to victims; 3) to cut off the Internet connections

of a target area, LFA keeps attacking important links. These

observations motivate the design of four major modules in

our framework, including (1) topology collection and analysis

module, (2) non-cooperative path measurement module, (3)

attack detection module, and (4) target link localization mod-

ule. Their functionalities will be detailed in Section II. Basi-
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cally, by actively collecting samples of network path perfor-

mance (through non-cooperative path measurement module),

our framework employs abnormal performance degradation to

detect LFA (by attack detection module), and leverages the

information collected through various measurement (through

topology collection and analysis module and non-cooperative

path measurement module) to locate the links under attack

whenever possible (by target link localization module).

Our major contributions lie in proposing a novel framework

for defending against LFA and developing a practical LFA

detection system (dubbed LinkScope) based on this framework

after tackling several challenging technical issues, including:

• Since the target links are selected by attackers, victims have to
monitor as many paths as possible. However, the majority of
existing network measurement systems have limited scalability
because they require installing measurement tools on both ends
of each path [23]–[25]. We solve this issue from two aspects.
First, we design new non-cooperative measurement approaches
that only need the installation on one end of a path, and the other
end could be any TCP-based server. Therefore, it can cover many
more paths than the existing systems. Second, we strategically
select target links for probing [26].

• To handle the prevalence of asymmetric routes [27], our new
non-cooperative measurement approaches can differentiate the
performance metrics on the forward path and the reverse path,
and thus allow users to infer which path(s) is under attack.

• By conducting hop-by-hop measurement, our framework attempts
to locate the target link or the target area on the forward path
whenever possible. Although our framework may not locate the
target link on the reverse path in the absence of reverse traceroute
data, we will explore possible solutions, such as reverse traceroute,
looking glass [28]–[34], in future work. To our best knowledge,
LinkScope is the first system that can conduct both end-to-end and
hop-by-hop non-cooperative measurement to detect LFA.

• We develop LinkScope, a new and practical LFA detection system
based on our framework, after addressing a number of challenging
issues, and conduct extensive experiment to evaluate it. The
results in a testbed and the Internet show that introducing limited
bandwidth and computational overhead LinkScope can achieve
timely detection and diagnosis of LFA with high detection rate
and low false positive rate.

Roadmap. We give an overview of the new framework in

Section II, and detail the design and the implementation of

LinkScope in Section III and Section IV, respectively. Section

V and Section VI present the evaluation results of LinkScope

obtained in a testbed and the Internet, individually. We review

the related work in Section VII and discuss the limitations in

Section VIII. Finally, we conclude the work in Section IX.

II. FRAMEWORK OVERVIEW

Our framework consists of four major modules. First, the

topology collection and analysis module identifies potential

target links, because LFA aims at important persistent links to

cut off the Internet connections of the target area. Moreover,

it will enumerate a set of end-to-end paths that cover these

links, which will be used by the other modules for detecting

LFA and localizing the links under attack. Depending on the

criteria of important links, this module may list different links

and paths. LinkScope adopts the topology analysis mechanism

in [26], which is described in Section III-A.

Second, the non-cooperative path measurement module per-

forms scheduled end-to-end and hop-by-hop measurements on

the paths identified by the first module. We design new non-

cooperative measurement methods (Section III-B), because

existing measurement approaches do not fulfill the require-

ments. More precisely, the majority of network performance

measurement approaches (e.g., iperf [23]) require installing

measurement tools on both ends of each path, thus limiting

their scalability [25], [35], [36]. Although some tools (e.g.,

Ping, Pathneck [37]) support non-cooperative performance

measurement by sending ICMP/UDP packets, their results

may be biased because firewall/IDS/IPS is likely to drop

such packets [38]. For example, when we run both LinkScope

and Pathneck [37] to conduct hop-by-hop measurements from

the campus network to randomly selected web servers, the

load packets of Pathneck are dropped by the firewall whereas

LinkScope can still obtain the right results because LinkScope

conducts the measurements in an established TCP connection.

We extend existing non-cooperative measurement patterns

to create new measurement methods suitable for capturing

the performance anomalies caused by LFA in practice, and

combine them together for better performance. Moreover, we

propose a new algorithm for scheduling the non-cooperative

measurement. It is worth noting that existing scheduling

algorithms are designed for cooperative measurement [39]–

[42], and they cannot be directly used to schedule the non-

cooperative measurement because the remote servers are not

under our control. Our schedule algorithm aims to achieve

two goals: each target link is probed “often enough” and the

probing traffic is “low enough”, as suggested in [39].

Third, the attack detection module first turns the raw mea-

surement results into feature vectors, and then uses anomaly

detection algorithms to capture the abnormal performance

degradation caused by LFA (Section III-C). Since there are

lots of anomaly detection methods, we compare six popu-

lar ones (i.e., Holter-Winter [43], Euclidean Distance [44],

Mahalanobis Distance [45], Heterogeneous Distance [46],

Polynomial Regression [47] and One-Class SVM [48]), and

select Holter-winter for our detection algorithm because it has

the best performance. It is worth noting that the detection

algorithm could be replaced by others whenever necessary.

Fourth, the target link localization module conducts further

active measurement to locate the links under attack (Sec-

tion III-D). The majority of existing algorithms for locating

link failures or infrastructure outages cannot infer the links

under LFA attack because they rely on BGP update informa-

tion [49] whereas LFA avoids triggering route changes.

Procedure Fig. 1 shows the major steps in the procedure of

our framework. The first step uses the topology collection

and analysis module to identify potential target links and a

set of end-to-end paths covering those target links. Second,

depending on the available resources, the non-cooperative path

measurement module conducts measurements on the selected

paths according to the schedule derived from the historic

measurement results. In the third and the fourth steps, the

attack detection module constructs feature vectors from the

raw measurement results and leverages the anomaly detection

algorithm to determine the existence of LFA. If an attack is

detected, the target link localization module will be activated

to infer the links under attack by further measuring a set of
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Fig. 13. Metrics measured with self-initiated measurement (the emulated attack traffic increases from 0Mb/s at t = 600 and arrives at 10Mbs at t = 3000).
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Fig. 14. Metrics measured with Cloud-based measurement (the emulated attack traffic increases from 0Mb/s at t = 600 and arrives at 10Mbs at t = 3000).

is worth noting that LinkScope uses much less measurement

traffic than iperf does as shown in Fig. 12(b).

Summary: LinkScope can measure the performance of net-

work paths accurately and effectively.

C. RQ2: Evaluating The Attack Detection Module

We first evaluate the ability of LinkScope on attack detection

based on network performance changes. The experiment shows

the measured performance metrics under different deploy-

ment strategies, and the second experiment evaluates whether

LinkScope can identify different types of LFA attacks. Also,

we evaluate the detection rate of LinkScope.

Attack Detection For the self-initiated deployment, as shown

in Fig.13, before the volume of attack traffic reaches the

capacity of the target link on around t = 3000s, the RTT

is about 102ms and stable (Fig.13(c)) and θe decreases grad-

ually (Fig.13(a)), whereas the RTT jitter increases obviously

(Fig.13(c)). After the volume of attack traffic equals to and/or

exceeds the capacity of the target link, congestion happens on

the target link and the packets are queued so that the RTT

values increase to around 120ms and the RTT jitter become

more unstable as shown in Fig.13(c). Moreover, Fig.13(b)

shows that severe packet losses are observed on the forward

path. Consequently, since most packets in the mRPT packet

train are lost, θe cannot be measured after t = 3000s as shown

in Fig.13(a). Also, we can find the measurement results are

various with the changes of the attack traffic.

For the cloud-based deployment, as shown in Fig.14, after

the attack traffic is generated, θr becomes unstable (Fig.14(a))

and the RTT jitter increases obviously(Fig.14(c)). Similarly,

after the volume of attack traffic equals to and/or exceeds the

capacity of the target link, the RTT values increase to around

120ms and the RTT jitter become more unstable as shown in

Fig.14(c). Moreover, Fig.14(b) shows severe packet losses on

the reverse path.

Attack Type Identification We emulate four types of LFA in

the testbed and use the abnormal changes in θe to illustrate the

effects due to different attacks. In this experiment, the target

link’s bandwidth is set to 100 Mb/s. Fig. 15(a) shows θe under

pulsing LFA where the attacker transmits high-volume bursts

of traffic to congest the bottleneck [56]. Without attack, θe
is close to the available bandwidth. Under the attack, since

the bottleneck is severely congested and all connections are

broken, θe becomes zero.

Fig. 15(b) illustrates θe under LFA with two attack traffic

rates: 80Mb/s and 40Mb/s. An attacker may change the attack

traffic rate for evasion. We can see that when the attack rate

decreases (or increases), θe increases (or decreases), meaning

that LinkScope can capture the changes in available bandwidth.

Fig. 15(c) represents θe under gradual LFA where the attack

traffic rate increases from zero to a value equal to the capacity

of the bottleneck. It emulates the attack scenario in the Internet

where the traffic sent from different bots may not reach the

bottleneck simultaneously, thus showing the gradual increase

in the attack traffic rate. Although the TCP connection for

measurement is broken when the attack traffic rate almost

reached its maximal value, the decreasing trend of available

bandwidth can be employed to raise an early alarm.

Since LFA will cause severe intermittent congestion on

target links, we can use different patterns in performance

metrics to distinguish it from other scenarios, such as long-

term flooding and cable cut that will disable the Internet

connection for a long period.

Detection Rate Evaluation To evaluate LinkScope’s detection

rate, we follow the above setting to launch three types of

attacks (i.e., Pulsing LFA, Variational LFA and Gradual LFA)

on the bottleneck link because attacking a real Internet path

would lead to ethical issues. In this experiment, to emulate the

cloud-based measurement, we deploy LinkScope on Google

VMs (i.e., prober1)and takes web server2 as the destination in

Fig. 11. Besides, to emulate the self-initiated measurement,

we run LinkScope in probe2 and specify web server2 as

the destination. Note that both the link between prober1 and

web server2 and the link between prober2 and web server

2 are probed through the Internet. In addition, to simulate

the chaotic cross traffic in the testbed, we also generate TCP

traffic between web server 2 and host5 with D-ITG. Precisely,

to generate these traffic, we implement a python script that
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Fig. 19. Performance metrics measured on the path from Amsterdam to Hong Kong for two days.
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Fig. 20. Performance metrics measured on the path from Santa Barbara to Taipei for seven days.

TABLE V
FALSE POSITIVE RATE ON A SIGNAL PATH WITH DIFFERENT µ AND ν .

Destination
Information

Client Location
µ = 1 µ = 2 µ = 3

ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

University site
in US

US-east 4.3% 2.1% 1.1% 0.7% 0.2% 0.1% 0.0% 0.0% 0.0%
Asia-east 12.1% 5.8% 3.1% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0%

US-centeal 6.2% 2.4% 1.1% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%
Eur-west 7.9% 2.9% 1.2% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0%

University site 1
in Hong Kong

US-east 10.1% 6.0% 3.9% 1.5% 0.5% 0.2% 0.0% 0.0% 0.0%
Asia-east 1.5% 0.2% 0.1% 0.4% 0.5% 0.0% 0.0% 0.0% 0.0%

US-centeal 5.2% 1.9% 0.8% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0%
Eur-west 6.8% 2.9% 1.3% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%

University site 2
in Hong Kong

US-east 41.0% 31.1% 25.3% 4.9% 1.4% 0.4% 0.4% 0.0% 0.0%
Asia-east 9.2% 3.1% 1.1% 2.8% 0.5% 0.1% 0.0% 0.0% 0.0%

US-centeal 40.4% 27.1% 18.7% 7.5% 2.2% 0.6% 0.3% 0.1% 0.0%
Eur-west 16.2% 8.4% 5.1% 1.7% 0.3% 0.0% 0.1% 0.0% 0.0%

Game site
in Hong Kong

US-east 25.1% 24.5% 24.2% 2.2% 0.9% 0.4% 0.0% 0.0% 0.0%
Asia-east 5.5% 5.3% 5.3% 1.1% 0.2% 0.0% 0.0% 0.0% 0.0%

US-centeal 2.7% 2.0% 1.6% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%
Eur-west 15.7% 15.5% 15.4% 0.4% 0.3% 0.2% 0.0% 0.0% 0.0%

Government site
in Hong Kong

US-east 15.8% 10.6% 7.7% 3.8% 1.7% 0.8% 0.1% 0.0% 0.0%
Asia-east 18.2% 9.2% 5.3% 4.6% 1.2% 0.3% 0.4% 0.1% 0.0%

US-centeal 18.0% 12.8% 9.8% 2.0% 1.0% 0.5% 0.0% 0.0% 0.0%
Eur-west 6.8% 2.1% 0.6% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

Game site
in Taiwan

US-east 22.2% 11.9% 7.1% 1.3% 0.4% 0.1% 0.1% 0.0% 0.0%
Asia-east 13.8% 6.5% 3.4% 0.9% 0.2% 0.1% 0.0% 0.0% 0.0%

US-centeal 16.4% 7.9% 3.7% 0.9% 0.1% 0.1% 0.1% 0.0% 0.0%
Eur-west 11.9% 4.8% 2.2% 0.8% 0.2% 0.1% 0.0% 0.0% 0.0%

different areas (US, Taiwan and Hong Kong). Then, we collect

the probing results of the 24 paths (4 Probers × 6 Servers) to

evaluate LinkScope’s false positive rate. Here, we assume that

there is no attack launched on these paths during the probing.

We schedule the four probers to perform measurement on

each path once per 180s for 10 days. The measurement results

of the first three days are used to forecast the confidence

intervals and the results from 4th to 10th day are employed to

compute the false positive rate. Table V lists the results with

different µ and ν. Note that µ decides whether a probing result

is abnormal according to the number of abnormal metrics,

and ν decides if an attack is launched based on the number of

consecutive abnormal probing results. As a result, LinkScope’s

false positive rate decreases with the increment of µ and ν. By

default, µ = 2 and ν = 2. Table V shows that all false positive

rates are lower than 2.5% with the default configuration.

Since LinkScope detects LFA attacks based on the perfor-

mances of multiple paths, we evaluate its false positive rates

when more than one path share target links. We first evaluate

TABLE VI
FALSE POSITIVE RATES WITH DIFFERENT Pa FOR THE SELF-INITIATED

DEPLOYMENT SCENARIO.

Client Location Pa ≥ 1 Pa ≥ 2 Pa ≥ 3 Pa ≥ 4 Pa ≥ 5 Pa ≥ 6

VM in US-east 4.36% 0.29% 0.03% 0.00% 0.00% 0.00%

VM in Asia-east 2.09% 0.00% 0.00% 0.00% 0.00% 0.00%

VM in US-centeal 3.39% 0.03% 0.00% 0.00% 0.00% 0.00%

VM in Eur-east 0.08% 0.00% 0.00% 0.00% 0.00% 0.00%

the false positive rate for the cloud-based deployment scenario.

In this case, there are 6 target areas, each of which is covered

by four monitored paths from Google VMs. Table IV shows

the false positive rates. When Pa = 2 (i.e., not less than

2 paths having abnormal performance at the same time), the

false positive rates are less than 0.1% for all paths.

Then, we let the four networks containing Google VMs be

the target areas, and evaluate the false positive rates for the

self-initiated deployment scenario. In this case, each VM in

the target area monitors 6 paths (i.e., from the VM to the 6

public web servers). Table VI shows the false positive rates.

When Pa is 2, all false positive rates are less than 0.3%.

Comparison with Other Detection Algorithms In order to
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metrics. Their comprehensiveness and joint effect facilitate

accurate awareness of network path performance. Moreover,

combining multiple network path anomaly to detect LFA

empowers LinkScope to have rare false alarms.

Several widely deployed platforms on the Internet are also

devoted to active measurement, offering a paradigm to deploy

LinkScope. RIPE Atlas [84] measures Internet connectivity

and reachability (e.g., whether a system is accessible from

a different location and the corresponding RTT) using Ping,

Traceroute, etc. Its primary feature lies in a network of probes

with global coverage. Route Views [85] is a tool for obtaining

real-time global backbone routing information based on data

from BGP routers. Looking Glass [86] could achieve the same

purpose, but provide only a constrained view of the routing

system. Although these platforms are not dedicated to LFA

detection, in the extreme case wherein LFA disconnects the

target network, they can detect it due to the unreachability.

However, the attacker, for the long-term payoff, designs LFA

to be relatively stealthy, i.e., degrading (but never disconnect-

ing) the link performance at utmost while avoiding triggering

routing changes [5].

Our work differs from existing network tomography tech-

niques, which cannot be applied to locate the target link be-

cause of impractical assumptions (e.g., multicast [87], source

routing [88]). Binary tomography may be used for identifying

faulty network links [89], but it just provides coarse infor-

mation [90] and is not suitable for locating the link targeted

by LFA, because it adopts assumptions for network fault

(e.g., only one highly congested link in one path [91], faulty

links nearest to the source [92]). LFA can easily invalidate

them. Moreover, the probers in network tomography create

a fully meshed measurement network [93], [94] whereas in

our scenarios there is only one or a few probers that may not

communicate with each other.

Although LinkScope is a detection system that cannot

defend against LFA directly, it can help quickly identify the

specific link under attack. Then, the identified victim link can

be the input of traffic engineering methods such as proposed

in [95] and [96] to mitigate the effect of LFA, or even pinpoint

the bots behind the attack by performing in-depth analysis of

the traffic traversing the victim link [50].

VIII. DISCUSSION

Although we cannot launch LFA against real links in the

Internet due to ethical issues, our experiments on the testbed

show that LinkScope can detect LFA and locate the target links.

Since LinkScope leverages non-cooperative measurement

techniques, users only need to deploy it on the client side.

This type of measurement techniques, if inappropriately used,

may induce additional measurement traffic noise to the server

side (e.g., open web servers on the Internet). However, due

to the adjustable measurement rate, LinkScope can keep the

measurement rate to a minimum to avoid affecting the normal

operation of the servers. Moreover, it only introduces low

overhead to remote servers as shown in Section V-E, under

the premise of effective attack detection.

While different measurement approaches could be employed

in our framework, users may need to adjust the detection

methods, because not all measurement approaches support

all metrics listed in Table I. For example, many approaches

only support one or a few metrics (e.g., POINTER for packet

reordering [97], Sting for packet loss [98], etc.). If several

metrics are needed, users have to run several tools, thus

wasting the bandwidth. Moreover, it would be good for

users to first examine the metrics measured by a selected

measurement approach and learn its pros and cons before

adoption. For instance, compared with the Round Trip Probing

(RTP) pattern, httping [99] is more susceptible to the load of

remote server as shown in [35]. We also found that the RTT

measurement of some HTTP-based tools largely deviates from

that suggested in RFC2681 [100]. As another example, pingb

cannot accurately measure asymmetric connections because it

cannot distinguish between the time dispersion on the forward

path and that on the reverse path [101]. We showed that the

Two Way Probing (TWP) pattern can address this issue [58].

The attacker may evade our detection by frequently at-

tacking the links with lower link occurrences. However, such

evasion policy can further degrade the attack effect on the

target area. To defend against such degraded attack, we can

add more resources and monitor more paths.

IX. CONCLUSION

In this paper, we propose a novel framework and develop

a new prototype of the framework, LinkScope, to detect a

new class of target link-flooding attacks (LFA) and attempt to

locate the target link or area whenever possible. By exploiting

the nature of LFA that causes severe temporal congestion on

links important to the target area, LinkScope employs both

the end-to-end and hop-by-hop non-cooperative measurement

techniques to capture the abnormal performance degradation

due to LFA. Moreover, it correlates the measurement data and

the traceroute data to infer the target links. After addressing a

number of challenging issues, we have developed a prototype

system based on the detection approach and conducted exten-

sive evaluations in a testbed and the Internet. The results show

that LinkScope can quickly detect LFA with high accuracy and

low false positive rate. In future work, we will conduct large-

scale and continuous measurements to evaluate LinkScope and

investigate the optimal deployment of LinkScope.
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