IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 1

LinkScope: Towards Detecting Target
Link Flooding Attacks

Lei Xue, Xiaobo Ma, Xiapu Luo, Edmond W.W. Chan, Tony T.N. Miu, Guofei Gu

Abstract—A new class of target link flooding attacks (LFA)
can cut off the Internet connections of a target area without
being detected because they employ legitimate flows to congest
selected links. Although new mechanisms for defending against
LFA have been proposed, the deployment issues limit their usage
since they require either additional modules to enhance routers
or using the software-defined network (SDN) to replace the
traditional routers. In this paper, we propose a novel framework
that employs both the end-to-end and the hop-by-hop network
measurement techniques to capture abnormal path performance
degradation for detecting LFA and then locate the target links or
areas whenever possible, and develop a prototype of the frame-
work named LinkScope. Although using network measurement
to capture network anomaly is not new, we tackle a number of
challenging issues, such as conducting large-scale Internet path
monitoring via non-cooperative measurement so that users do not
need to install LinkScope on every host, profiling the performance
of asymmetric Internet paths, and detecting LFA. The extensive
evaluation in a testbed and the Internet shows that with limited
bandwidth and computational overhead LinkScope can achieve
timely detection and diagnosis of LFA with high detection rate
and low false positive rate.

I. INTRODUCTION

DDoS attacks remain one of the major threats to the
Internet, and there is a significant increase in the number and
the size of DDoS attacks recently [1], [2], not to mention the
300 Gb/s direct flooding attacks on Spamhaus and the record-
breaking 400 Gb/s NTP reflection attack on CloudFlare. It is
not difficult to detect such traditional bandwidth DDoS attacks,
because the attack traffic usually reaches the victim and has
an obvious difference from legitimate traffic [3].

Recent research has discovered a new class of target link
flooding attacks (LFA) that can effectively cut off the Internet
connections of a target area (or network) without being de-
tected [4], [S]. For example, the LFA against NetEase in 2015
flooded the major links connected to NetEase’s game services
and made it unavailable for 9 hours [6]. Moreover, LFA has
been used by attackers to flood selected links of four major
Internet exchange points in Europe and Asia [7]. To launch
LFA, the attackers first select persistent links that connect the
target area to the Internet and have high flow density, and then
instruct bots to generate legitimate traffic between bots and
public servers to congest those links [5]. If the paths among
bots cover the target area, the attackers can also send traffic
among themselves to clog the network [4].

Lei Xue, Xiaobo Ma, and Xiapu Luo are with the Department of Computing
at the Hong Kong Polytechnic University; Xiaobo Ma is also with the MOE
KLINNS Lab at Xi’an Jiaotong University. Edmond W.W. Chan is with
Akamai Technologies; Tony T.N. Miu is in Nexusguard Limited; Guofei Gu
is with the Department of Computer Science and Engineering at Texas A&M
University. (Corresponding author: Xiapu Luo)

Detecting LFA is difficult because 1) the target links are
selected by attackers. Since the target links may be located in
an AS different from that containing the target area and the
attack traffic will not reach the target area, the victim may
not even know he/she is under attack; 2) each bot sends low-
rate protocol-conforming traffic to public servers, rendering
signature-based detection useless; 3) bots can change traffic
patterns to evade abnormal traffic pattern-based detection.

Traditional anomaly detection [8] and traffic filtering sys-
tems (e.g., IDS, IPS) deployed at the network perimeter
cannot handle LFA by design. The reason is that, to degrade
the connectivity of the target network, LFA overwhelms the
selected upstream links of the target network, which are
beyond the monitoring scope of the traditional systems. Due
to the direct control over the traffic crossing critical links,
router-based approaches have been proposed to defend against
LFA and other smart DoS attacks [7], [9]-[16]. Despite their
effectiveness, their availability is limited in the foreseeable
future as a result of the constraints by practical factors, such
as deployment overhead [7], network externalities [17], and
ISP commercial adoption incentives [18] (see Section VII
for details). Similarly, although several promising SDN-based
defense mechanisms [19]-[22] have been proposed, they may
not be immediately deployed because they need to replace the
traditional routers with SDN devices. Therefore, it is urgent
to devise a framework for developing practical systems that
have visibility to LFA and are immediately deployable without
modifying/affecting existing Internet routing infrastructure.
Such systems can help victims detect LFA and locate the links
under attack whenever possible so that victims could ask for
help from the corresponding providers to mitigate such attacks.

We fill this gap by proposing a novel framework that
employs end-to-end and hop-by-hop non-cooperative mea-
surement techniques to achieve the goal mentioned above.
Our framework exploits the nature of LFA [5], including
1) LFA causes severe congestion on persistent links because
light congestion cannot disconnect the target area from the
Internet; 2) to evade detection and avoid route changes [5],
the period of congestion caused by LFA is much shorter than
that caused by traditional bandwidth DDoS. Meanwhile, the
congestion period caused by LFA is long enough to cause
damages to victims; 3) to cut off the Internet connections
of a target area, LFA keeps attacking important links. These
observations motivate the design of four major modules in
our framework, including (1) topology collection and analysis
module, (2) non-cooperative path measurement module, (3)
attack detection module, and (4) target link localization mod-
ule. Their functionalities will be detailed in Section II. Basi-

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 2

cally, by actively collecting samples of network path perfor-
mance (through non-cooperative path measurement module),
our framework employs abnormal performance degradation to
detect LFA (by attack detection module), and leverages the
information collected through various measurement (through
topology collection and analysis module and non-cooperative
path measurement module) to locate the links under attack
whenever possible (by target link localization module).

Our major contributions lie in proposing a novel framework
for defending against LFA and developing a practical LFA
detection system (dubbed LinkScope) based on this framework
after tackling several challenging technical issues, including:

e Since the target links are selected by attackers, victims have to
monitor as many paths as possible. However, the majority of
existing network measurement systems have limited scalability
because they require installing measurement tools on both ends
of each path [23]-[25]. We solve this issue from two aspects.
First, we design new non-cooperative measurement approaches
that only need the installation on one end of a path, and the other
end could be any TCP-based server. Therefore, it can cover many
more paths than the existing systems. Second, we strategically
select target links for probing [26].

e To handle the prevalence of asymmetric routes [27], our new
non-cooperative measurement approaches can differentiate the
performance metrics on the forward path and the reverse path,
and thus allow users to infer which path(s) is under attack.

e By conducting hop-by-hop measurement, our framework attempts
to locate the target link or the target area on the forward path
whenever possible. Although our framework may not locate the
target link on the reverse path in the absence of reverse traceroute
data, we will explore possible solutions, such as reverse traceroute,
looking glass [28]-[34], in future work. To our best knowledge,
LinkScope is the first system that can conduct both end-to-end and
hop-by-hop non-cooperative measurement to detect LFA.

e We develop LinkScope, a new and practical LFA detection system
based on our framework, after addressing a number of challenging
issues, and conduct extensive experiment to evaluate it. The
results in a testbed and the Internet show that introducing limited
bandwidth and computational overhead LinkScope can achieve
timely detection and diagnosis of LFA with high detection rate
and low false positive rate.

Roadmap. We give an overview of the new framework in
Section II, and detail the design and the implementation of
LinkScope in Section III and Section IV, respectively. Section
V and Section VI present the evaluation results of LinkScope
obtained in a testbed and the Internet, individually. We review
the related work in Section VII and discuss the limitations in
Section VIII. Finally, we conclude the work in Section IX.

II. FRAMEWORK OVERVIEW

Our framework consists of four major modules. First, the
topology collection and analysis module identifies potential
target links, because LFA aims at important persistent links to
cut off the Internet connections of the target area. Moreover,
it will enumerate a set of end-to-end paths that cover these
links, which will be used by the other modules for detecting
LFA and localizing the links under attack. Depending on the
criteria of important links, this module may list different links
and paths. LinkScope adopts the topology analysis mechanism
in [26], which is described in Section III-A.

Second, the non-cooperative path measurement module per-
forms scheduled end-to-end and hop-by-hop measurements on

the paths identified by the first module. We design new non-
cooperative measurement methods (Section III-B), because
existing measurement approaches do not fulfill the require-
ments. More precisely, the majority of network performance
measurement approaches (e.g., iperf [23]) require installing
measurement tools on both ends of each path, thus limiting
their scalability [25], [35], [36]. Although some tools (e.g.,
Ping, Pathneck [37]) support non-cooperative performance
measurement by sending ICMP/UDP packets, their results
may be biased because firewall/IDS/IPS is likely to drop
such packets [38]. For example, when we run both LinkScope
and Pathneck [37] to conduct hop-by-hop measurements from
the campus network to randomly selected web servers, the
load packets of Pathneck are dropped by the firewall whereas
LinkScope can still obtain the right results because LinkScope
conducts the measurements in an established TCP connection.
We extend existing non-cooperative measurement patterns
to create new measurement methods suitable for capturing
the performance anomalies caused by LFA in practice, and
combine them together for better performance. Moreover, we
propose a new algorithm for scheduling the non-cooperative
measurement. It is worth noting that existing scheduling
algorithms are designed for cooperative measurement [39]-
[42], and they cannot be directly used to schedule the non-
cooperative measurement because the remote servers are not
under our control. Our schedule algorithm aims to achieve
two goals: each target link is probed “often enough” and the
probing traffic is “low enough”, as suggested in [39].

Third, the attack detection module first turns the raw mea-
surement results into feature vectors, and then uses anomaly
detection algorithms to capture the abnormal performance
degradation caused by LFA (Section III-C). Since there are
lots of anomaly detection methods, we compare six popu-
lar ones (i.e., Holter-Winter [43], Euclidean Distance [44],
Mahalanobis Distance [45], Heterogeneous Distance [46],
Polynomial Regression [47] and One-Class SVM [48]), and
select Holter-winter for our detection algorithm because it has
the best performance. It is worth noting that the detection
algorithm could be replaced by others whenever necessary.

Fourth, the target link localization module conducts further
active measurement to locate the links under attack (Sec-
tion III-D). The majority of existing algorithms for locating
link failures or infrastructure outages cannot infer the links
under LFA attack because they rely on BGP update informa-
tion [49] whereas LFA avoids triggering route changes.
Procedure Fig. 1 shows the major steps in the procedure of
our framework. The first step uses the topology collection
and analysis module to identify potential target links and a
set of end-to-end paths covering those target links. Second,
depending on the available resources, the non-cooperative path
measurement module conducts measurements on the selected
paths according to the schedule derived from the historic
measurement results. In the third and the fourth steps, the
attack detection module constructs feature vectors from the
raw measurement results and leverages the anomaly detection
algorithm to determine the existence of LFA. If an attack is
detected, the target link localization module will be activated
to infer the links under attack by further measuring a set of

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 3

Measurement Schedule——————

D

Topology | Selected | Non-cooperative Path Collected E‘,IFeatur.e Detection
7] Analysis Paths "|3] Measurement Results Extraction Vectors 32 Algorithm

Bl

Measurement Schedule

Attocy
et]

Selected Paths:

Fig. 1. The procedure of our framework.

(a) Self-initiated deployment

Fig. 2. The deployment strategies of our framework.

selected paths crossing the abnormal path and synthesizing the
measurement results.

Deployment Our framework has two deployment strategies.
Fig. 2(a) shows the first one, named self-initiated deployment,
where the probers are deployed on hosts within the target
network. By selecting web servers in different autonomous
systems (AS), a prober can measure many diverse Internet
paths for covering all possible target links. The second sce-
nario, as illustrated in Fig. 2(b), is the cloud-based deployment,
where probers are deployed on a group of hosts (e.g., virtual
machines (VMs) in different data centers) outside the target
network and measure the paths between themselves and hosts
close to the target network.

In both strategies, the coordinator schedules the measure-
ments on multiple paths and collects all the results, because
the detection is based on the performance of all paths being
measured. By running probers in diverse networks and/or
selecting web servers in various ASes/areas, the paths being
measured may cover all possible target links.

III. DESIGN OF LinkScope

To demonstrate the feasibility of the new framework, we
design and develop LinkScope, a new and practical LFA
detection system, and describe its major modules as follows.

A. Topology Collection and Analysis Module

LinkScope first selects paths to be monitored by following
LFA’s strategy, because lots of links can be flooded by LFA
and the selected paths should cover the target links. In fact,
LFA usually chooses the bottleneck links [5], [50] as the target
links in order to maximize the damages to the target area [26].

We conduct network topology collection to get the routes
of the target area, and then analyze the collected topology
to identify the target links. More precisely, given a target
network, we first analyze the network topology between it
and its upstream ASes by performing paris-traceroute [51]
from a group of hosts (e.g., VMs in clouds or looking glasses
[52]) to web servers close to or within the target network, or
using systems like Rocketfuel [53] and topological data from
CAIDA [54]. From the topology, we can identify target links
following LFA’s strategy that selects persistent links with high
link occurrence [26]. The link occurrence of a link is defined
as the number of Internet paths crossing that link between
hosts and public servers in the target network.

Detection Engine]
% piod=ion User
> Localization frgor™

O Target network (area)

= Target path/link for monitoring
---------- Crossing end-to-end path for the target link L
B Common host
® Public web server
A Prober of LinkScope
A

Coordinator of LinkScope

(b) Cloud-based deployment

Given a set of potential target links denoted as
L =/{ly,ls,....,Ipr}, we select a set of paths for measurement,
which is indicated by P = {p1,p2, ..., pn }. Since there may
be more than one path traversing certain target links, we define
three rules to guide the path selection:
e For the ease of locating target links, paths that contain one target
link will be selected.

e The number of paths sharing the same remote host should
be minimized to avoid potential mutual interference [55]. It is
desirable that each path has a different remote host.

e The number of paths initialized by one prober should be mini-
mized to avoid self-induced congestion.
During LFA detection, we monitor the target links through
running LinkScope on the sources of these paths to probe the
destinations of these paths.

B. Non-cooperative Path Measurement Module

LinkScope detects LFA by conducting non-cooperation path
measurement. Since LFA congests the target links, it leads to
anomalies in path performance metrics, including:

e Packet loss rate, which increases when the link is clogged;
e Round-trip time (RTT), which increases because of the full queue
in routers under attack;

e Jitter, which may have significant variations when bots send
intermittent bursts of packets to congest the link [56], thus leading
to variations in the queue length;

e Number of loss pairs [57], which may increase as a pair of probing
packets may often see full queues due to LFA;

e Available bandwidth, which decreases because the target link is
congested;

o Packet reordering, which may increase if the router under attack
transmits packets through different routes;

e Connection failure rate, which increases if the target area has been
isolated from the Internet due to severe LFA.

Besides measuring the above metrics, LinkScope should also
support the following features:

o Conduct the measurements within an established TCP connection
to avoid the biases or noises due to the network equipment that
processes TCP/UDP packets in a different manner and/or discards
all but TCP packets belonging to the established TCP connections.

e Perform both end-to-end and hop-by-hop measurements, for
quickly detecting the anomalies caused by LFA and localizing
the target links/areas, respectively.

e Measure one-way path metrics because of the prevalence of
asymmetric routing.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 4

Ra1)st2)/ Ragz)st2)/ Ragsysiz)

Measurement Packets

Server

Ra1)s1) Ragz)si2) Server = Ifl | oo | h | | 1 | e | N | I h I “ee I 1 |

~ - _ - \\ \\ ~ TTL Load packets
- ~ - NN ~ st hth hth st
7 ~ g 3 N\ ~ o hop| *** | hop hop| ** * | hop

'S

Client

Ps0)a10) / Psts)arz)
Pe(o)a10) / Ps(1).atz) e s e

Fig. 3. Round trip probing (RTP) pattern. pattern with w — 3.

To fulfill these requirements, LinkScope contains the fol-
lowing three probing patterns:

1) Round Trip Probing (RTP): We proposed the Round
Trip Probing (RTP) pattern to measure RTT, one-way packet
loss, and one-way packet reordering in [35]. As shown in
Fig. 3, each RTP measurement involves sending two back-
to-back probing packets (i.e., Ps(0),qa(0) and Ps(1),q(1)) With
customized TCP sequence number (i.e., s(0) and s(1)) and
acknowledgement number (i.e., a(0) and a(1)) to the remote
host. The advertising window of each probing packet is set
to 2 maximum segment size (MSS), allowing the server to
return two response packets (i.e., Ry(1),s1) and Ry (2).5(2))
immediately upon receiving each probing packet. By analyzing
the seq numbers and the ack numbers in the response packets,
we can decide whether there is packet loss/packet reordering
occurred on the forward path or the reverse path. Servers
that support TCP options like timestamp or SACK (Selective
Acknowledgement) can ease the detection of packet loss on the
forward path [35]. Also, RTT can be measured as the duration
from sending Pksg),q(0) to receiving Rg(1),s(1)-

2) Extended Two Way Probing (eTWP): We proposed the
original Two Way Probing (TWP) pattern for measuring one-
way capacity in [58]. The extended Two Way Probing (eTWP)
pattern has similar probing packets as that of TWP. The differ-
ence is that eTWP will induce more response packets from the
remote host than TWP does. For example, the two response
packets triggered by TWP can reflect four packet loss patterns,
whereas, if eTWP triggers three response packets, eight packet
loss patterns could be profiled. In addition, TWP just measures
reverse capacity with the packet pair from server, and eTWP
can measure the available bandwidth through triggering a
packet train from the server. Hence, LinkScope can profile
more loss patterns and characterize the changes of available
bandwidth. As shown in Fig. 4, TWP (or eTWP) involves
sending two back-to-back probing packets (i.e., Ps(0),q(0) and
Py(1),a¢1))- The first probing packet uses zero advertising
window to prevent the server from sending back responses
on the arrival of Psg) 4(0)- In TWP, the advertising window in
Py(1),a(1) is equal to 2xMSS so that it will trigger two packets
from the server [58]. Since a packet train can characterize more
loss patterns than a packet pair [59], we enlarge the advertising
window in Pg(1) (1) from 2 to w (w > 2) in eTWP. Note that
increasing w requires LinkScope to handle more patterns of
response packets.

Since the server will dispatch w packets back-to-back if its
congestion window allows, we calculate the time gap between
the first and the w-th packet, denoted as G,., and define 6,. to
characterize the available bandwidth on the reverse path.
_ MSS x (w—1)

0, = a. @)

Note that 6, may not be equal to the real available bandwidth

TCP data
packet 2

Time exceeded
ICMP packets

Time exceeded

N TCP ACK TCP ACK [TCP data
Client ICMP packets / / /

packet 1 packet 2/ packet 1

Fig. 4. Extended two way probing (€TWP) Fig. 5. Modified recursive packet train (RPT) pattern.

[60] but its reduction could indicate congestion [37].

3) Modified Recursive Packet Train (mRPT): Hu et al.
proposed the original recursive packet train (RPT), which was
employed in Pathneck for detecting the location of a network
path’s bottleneck [37]. The original RPT consists of a group of
load packets, and a set of TTL-limited measurement packets
and Pathneck uses UDP packets to construct RPT. We modify
RPT to support end-to-end and hop-by-hop measurements in
a TCP connection and remove redundant packets because net-
work elements may handle UDP and TCP packets differently
and the TCP packets that do not belong to a TCP connection
may be dropped by firewall.

Fig. 5 illustrates the modified RPT, denoted as mRPT, where
each rectangle is a probing packet, and each parallelogram
indicates a response packet triggered by a probing packet.
mRPT has h pairs of measurement packets, whose TTL values
are equal to the number in those rectangles. Since a router
will send back a time exceeded ICMP packet when a packet’s
TTL becomes zero, a pair of ICMP packets will be sent back
after mRPT passes through a router. We use Gy(;) to denote
the time gap between the two ICMP packets from the i-th
hop. LinkScope does not use a fixed number of measurement
packets because we do not want them to reach the server and
LFA usually targets on links outside the victim’s network.
Instead, LinkScope first determines h by doing a traceroute.
If there are H hops form the probing client to the target
server, we specify h < H. Thus, even the pair of measurement
packets that have the maximum TTLs (i.e., k) will be dropped
by the h-th hop before reaching the target server.

The load packets are customized TCP packets that belong to
an established TCP connection and carry an invalid checksum
value or a TCP sequence number so that they will be discarded
by the server. Besides, we can let the load packets be dropped
at specific hops by configuring the TTL values of the load
packets. There are two special packets (i.e., R1 and R2, which
are in the original RPT) between the load packets and the
measurement packets. They have the same size as the load
packets and work together to accomplish two tasks: (1) each
packet triggers the server to send back a TCP ACK packet so
that the prober can use the time gap between these two ACK
packets, denoted as G 4, to estimate the interval between the
head and tail load packets; (2) induce two TCP data packets
from the server to start the measurement through RTP [35]. To
achieve these goals, LinkScope prepares a long HTTP request
whose length is equal to two load packets and puts half of
it to R1 and the remaining part to R2. To force the server to
immediately send back an ACK packet on the arrival of R1
and R2, we first send R2 and then R1, because a TCP server
will send back an ACK packet immediately when it receives
an out-of-order TCP segment or a segment that fills a gap in
the sequence space [61].

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 5

150

100
=

S |leesF s ?0%,-}-:}'%%%%'%%%% é"}'

5
i 2 3 4 5 6 7 8 123456 7 8 910111213 14
Hops

(a) Path from Korea to Hong Kong (b) Path from Taiwan to Hong Kong
Fig. 6. 6; measured on two paths to Hong Kong.

1——A season cirdle——]

u|;‘k/The sliding window
i ...A!A A...A! !A L.l

Path 2 AdAd.. L AAA . AlAAL. . DAAL
Path 1 |interval 1linterval 2l | Interval p |

Lhealid ..

Path n

Time
Fig. 7. The measurement schedule.

To characterize the per-hop and the end-to-end available
bandwidth, we define 6; (: = 1,...,h) and 6, as shown in
Equation 2 and 3 respectively.

:SL><(N+2)+SM><((h,—z')><2+1)

0;
Gre)

)

7SL><(N+1)

[
¢ Ga

3)

S and Sy are the sizes of load packets and measurement
packets respectively, and N is the number of load packets.

Note that since the packet train cannot be controlled after
each hop, 6; (or 6.) may not be a precise estimate of per-
hop available bandwidth (or end-to-end available bandwidth),
but their large decrement indicates serious congestion [37]. As
LFA leads to severe congestion on target links, 6; of the target
link and 6. of the path covering the target link will decrease.

Fig. 6 shows 6; on two paths to a web server in our campus,
whose last four hops are located in the campus network. Since
the last but two hops do not send back ICMP packets, there is
no 6; on that hop. On the path from Korea to Hong Kong, 6;
drops from around 80 M/s to around 9 Mb/s on the 7th hop,
because the bandwidth of each host in the campus network is
limited to 10 M/ps. On the path from Taiwan to Hong Kong,
0; is always around 9 Mb/s. It may be due to the fact that the
first hop’s available bandwidth is around 9 Mb/s.

4) Measurement Schedule: Fig. 7 illustrates how LinkScope
schedules the measurement. One probe consists of conducting
mRPT measurement once and performing RTP and eTWP
measurements m. In Fig. 7, we use the black triangle to
represent one probe, and employ the black square, red cycle
and blue rectangle (of the ellipse sub-figure) to denote a mRPT,
RTP and eTWP measurement, respectively. The probing rate
on the path ¢ means the number of probes conducted per
second on that path, which is represented by f;.

Since the measurements introduce additional network traffic
(evaluated in Section V-D), we propose an adaptive prob-
ing schedule to dynamically adjust the probing rate and
the number of RTP/eTWP measurements in one probe ac-
cording to the network performance variation for reducing
the volume of measurement traffic. Let fasae/frrin/four
denote the maximum/minimum/current probing rate and
MM ax!MArin/ Moy Tepresent the maximum/minimum/current
number of RTP/eTWP measurements in one probe.

In the initial period, the probing is conducted with fasq.

TABLE I
DETECTION METRICS AND THEIR DEFINITIONS.

Direction Metric Meaning of the metric
0 Characterizing available bandwidth through mRPT.
Ly Packet loss rate from RTP.
F Ly, Packet loss rate from eTWP.
orward Loss pair rate from RTP.
th e 0ss pair rate from .
pa Py, Loss pair rate from eTWP.
Ry Packet reordering rate from RTP.
Ry, Packet reordering rate from eTWP.
0, Characterizing available bandwidth through eTWP.
Ly Packet loss rate from RTP.
Reverse Ly, Packet lpss rate from eTWP.
th FPrr Loss pair rate from RTP.
pa Py Loss pair rate from eTWP.
Ry Packet reordering rate from RTP.
Ry Packet reordering rate from eTWP.
RTT Round-trip time.
Round-trip Jp Round-trip time variation (jitter).
path Frp Connection failure rate in RTP.
Fip Connection failure rate in eTWP.

and mpsqz. If the network performance measured for one day
with foy,- and mey,,- is stable, we adjust the probing schedule
for the next day according to (4) and (5).

four X

Iner = { four

MNzt = {

Here, « is less than 1 (0.75 by default).

If abnormal network performance is observed when
four < farar and mey,r < mpgq, and the response pack-
ets can still be received, LinkScope restores to the initial
configuration (i.e., four = famraz and meyr = Mprqe) for
measuring the target paths. If severe congestion happens on
the paths and LinkScope cannot connect to the server, the RTP
and eTWP measurement cannot get any results, because no
response packets will be received. In this case, since the mRPT
measurement can still receive the ICMP packets from the hops
before the congested links, LinkScope will only conduct the
mRPT measurement on the congested paths with fasq:.

four X &> farin @)
four X @ < frrin

MCur X &
Mcur

MCur X & > MMin
Mcur X & < MMin

)

C. Attack Detection Module

1) Feature Extraction: We define three metric vectors for
storing the measurement results of three types of metrics, as
listed in Table I, including the selected performance metrics
of the forward path, the reverse path and round-trip path,
respectively. As a result, LinkScope can detect anomalies on
different paths and locate the direction of the anomalies, thus
easing the localization of the target link/area.

2) Detection Algorithm: Since the attack on a target link
may result in the anomaly of multiple paths sharing the
attacked link, LinkScope firstly identifies the performance
anomalies on the individual path using the Holt-Winters fore-
casting algorithm [43], and then makes the detection decision
by taking into account the anomalies of multiple paths.
Anomaly Detection on One Path. Since the network perfor-
mance usually follows the diurnal pattern, LinkScope uses the
Holt-Winters [43] forecasting algorithm to identify abnormal
path performance by comparing the measurement results with
the predicted values. This algorithm is practical for a reliable
and robust forecast regarding trend and seasonal variations.

The detection algorithm has the following major steps.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 6

Step 1: Forecast. The measurement results of each metric
are organized as a time series, denoted as { X7, Xo,..., X;}.
We aim at predicting X, at time ¢ for k steps ahead, and
denote the predicted value as X, (k). Let a, 8, v indicate the
smoothing parameters.

When a new observation X; is available at time ¢, the Holt-
winters algorithm updates local mean level L, local trend T}
and local seasonal index I; as follows:

Li=a(Xe —It—p) + (1 — a)(Lt—1 + Tt 1) (6)
Ty = B(Ls — Le—1) + (1 = B)Te—1 (@)
L =y(Xe = L) + (L =N l—p ®
Then, the predicted value X, (h) is:
Xi(h) = Lt + ATe + L pits(h—1) mod p ©)
for h = 1,2,..., k. The initialization values of level, trend and

seasonal index are set to the average value in the first period
(i.e., Lo = Xo, To = X1 — X and Iy = 0). The smoothing
parameters «, 3, v are estimated iteratively by minimizing the
squared errors of expired estimations.

We define two periods for the detection, namely interval and
seasonal circle, as shown in Fig. 7. Let p denotes the number
of intervals within one seasonal circle. Since the measurement
results usually have diurnal patterns (e.g., Fig. 19(c) and
Fig. 20(c)), we set a seasonal circle as 1 day (i.e., 24 hours)
and a time interval as 1 hour (i.e., p = 24) by default.

To identify performance anomalies, for each time interval
in the seasonal cycle, we calculate the predicted confidence
intervals as the deviation range of the predicted value, which
are updated through exponential smoothing:

et =Xt — Xe| + (1 — Y)er—p, (10)

where e, is the predicted deviation of time interval ¢, and the
confidence interval of X, is (X, —d_ xe;_p, Xy + 04 % ep_p).
d_ and &, are the two scaling factors to control the width of
confidence intervals.

Step 2: Detection. After each probing, LinkScope compares
the measured value of each metric with the corresponding
forecasting confidence interval. The measured value is abnor-
mal if it falls outside its corresponding confidence interval.
Moreover, if more than p metrics have abnormal values, the
probing result is regarded as an anomaly. Eventually, if more
than v continuous probing results are abnormal, the path is
detected as being attacked.

Attack Detected Based on Multiple Paths. Since LFA
congests selected target links [26], end-to-end paths containing
these links will have performance anomalies. LinkScope raises
an alert if the number of abnormal paths containing the same
target links at time ¢, which is denoted as Pa(t), reaches the
threshold v,. Since the probing frequency may not be the
same for all paths, we define a sliding window (as shown in
Fig. 7) with the length w = max{1/f1,1/ fo,..., 1/ fn}, where
n is the number of paths under monitoring, and then count the
number of the abnormal paths within each sliding window to
detect LFA.

D. Target Link Localization Module

When LFA is detected on the forward path, LinkScope tries
to locate the target link in two steps. First, we eliminate the

Bot Bot

Prober Web server

Server selected by bots

Fig. 8. Locating a target link.

links before the target link, and then we eliminate the links
behind the target link. We use an example in Fig. 8 to illustrate
the steps, where bots send traffic to the server to congest the
link between H; and H,;;. First, based on the hop-by-hop
measurement results from mRPT, LinkScope infers that the
path from H; to H;_; is not under attack. Second, according
to the topology analysis, LinkScope will perform measurement
on other paths that cover the hops after H;, such as P; going
through H;; and Py_; covering H, . If a new path (e.g., the
one covering H; ;) does not have poor performance like the
original path, the target link is in the area from H; to H;4;_;.
The rationality behind this approach comes from the nature
of LFA that congests a target link so that all paths crossing
that link will suffer from similar performance degradation. In
contrast, other paths will not have such patterns.

Since the paths identified in Section III-A may not cover
all hops on the original path, we propose the following steps
to look for new paths.

1) For a hop Hj, we utilize high-speed scanning tools such as
Zmap [62] to look for web servers in the same subnet as Hy,
which can be determined through systems like traceNET [63].
If a web server is found, LinkScope performs traceroute to this
web server and checks whether the path goes through Hj.

2) We look for web servers located in the same AS as Hj and
check whether the paths to those web servers go through Hy.

3) We look for web servers located in the buddy prefix [64] as
Hj; and then check whether the paths to those web servers go
through Hj.

4) If no such path can be found, we check the next hop.

Note that the paths and routes selection is a continuous
task instead of being taken only during the probing phase,
and the system maintains a data set containing all information
about the collected paths and routes of the target network. We
acknowledge that this method may not be applied to reverse
paths because it is difficult to get the traceroute on the reverse
path (i.e., from the remote host to the prober). In future work,
we will explore two possible approaches to tackle this issue.
First, the victim may combine both self-initiated measurement
and cloud-based measurement after anomalies are detected.
Second, We will use reverse traceroute [65] or looking glass
[66] to obtain the traceroute on the reverse path.

IV. IMPLEMENTATION OF LinkScope

We next present the crucial technical issues in implementing
LinkScope which is comprised by four modules and the
architecture is shown in Fig. 9.

A. Control Module

The control module has two major components, namely, the
topology analysis component for selecting paths to be moni-
tored for a target region and the attack detection component

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 7

Control Module

[Topology analysis] [

Configuration:

Probing packet size, Response packet size, Max TTL (i.e., h) for RPT,
Number of load packets (i.e., N,), Size of load packet(i.e., S,), Size of
measurement packet(i.e., Sy), Number of RTP probes(i.e., Ngrp), Number
of TWP probes (i.e., Nrwp), Target URLs, ...

Attack detection]

Measurement Manager

[Mesurement scheduler J[

v L

Measurement Module
[Probe scheduler]

Result collection J

[tTR Module] [mRPT Modulej[RTP Module) [eTWP Module]

[TCP connection manager]

RST packet A
y filter

) . NIC
Fig. 9. The architecture of LinkScope.

for revealing the attacks. Note that only the coordinator has
the control module.

The topology analysis component employs the strategy
described in Section III-A to choose the paths to be measured,
and the attack detection component decides whether an attack
happens based on the algorithm introduced in Section III-C.
Before probing, the control module first selects the paths
to be monitored, then schedules the corresponding probers
(including itself) to conduct the measurement with specified
target servers on these paths. During probing, it collects all the
measurement results and decides whether attack alarm should
be raised. Once an attack is detected, the control module tries
to locate the links under attacks following the localization
mechanism mentioned in Section III-D.

B. Measurement Manager

The measurement manager is implemented to schedule the
measurements including RTP, eTWP, and mRPT, and collect
the measurement results. The designs of the measurements
are not limited to specific application layer protocol. We use
HTTP as the driving protocol because a tremendous number
of web servers are publicly available for the measurement. In
future work, we will explore other protocols.

We develop a tool named WebChecker to collect the infor-
mation about paths and remote servers. It conducts traceroute
to determine the number of hops between a prober and the
server for setting h so that the measurement packets in mRPT
can reach the network perimeter of the server. WebChecker
also enumerates suitable web objects (i.e., size > 10K bytes)
in a web server to facilitate the measurement and outputs a
set of URLs. It prefers static web objects (e.g., figure, pdf,
etc.) starting from the front page of a website. Moreover,
WebChecker checks whether the web server supports TCP op-
tions, including Timestamp, SACK, and HTTP header options
such as Range* [67]. These options could simplify the process
of LinkScope and enhance its capability. For example, if the

server supports MSS option, LinkScope can control the size of
response packets. Supporting Timestamp and SACK can ease
the detection of forward path packet loss [35].

The measurement scheduler manages a set of probing
processes, each of which conducts the measurement on a path.
To avoid self-induced congestion, the measurement scheduler
will determine when the measurement for a certain path will
be launched and how long a path will be measured. By
default, the probing packet size, the response packet size,
and the load packet size are set to 1500 bytes. For mRPT,
the number of load packets is set to 20 and the size of
measurement packet is 60 bytes. All these parameters are
configurable. The collected measurement results will be sent
to the attack detection component. Moreover, the measurement
manager will dynamically adjust the probing schedule using
the algorithm described in Section III-B4.

C. Measurement Module

In the measurement module, the probe scheduler manages
the measurements on a path. After finishing one probe that
consists of a mRPT measurement and m RTP and eTWP
measurements (i.e., sending the probing packets and process-
ing the response packets), the probe scheduler will deliver the
parsed measurement results to the measurement manager and
schedule a new probe.

The mRPT, RTP, and eTWP modules are in charge of
preparing the probing packets and handling the response
packets according to the corresponding patterns. Before con-
ducting the measurement based on mRPT, LinkScope sets
each measurement packet’s IPID to its TTL. Since each
pair of measurement packets will trigger two ICMP packets,
LinkScope inspects the ICMP packet’s payload, which contains
the IP header and the first 8 bytes of the original packet’s data,
for matching it to the measurement packet.

It is worth noting that all the measurements in one probe
are performed within one TCP connection. Such approach can
mitigate the negative effect due to firewall and unstable routes,
because stateful firewall will drop packets that do not belong to
any established TCP connection and load balancer may employ
the five-tuple of <src IP, src Port, dst IP, dst Port, Protocol>
to select routes. The TCP connection manager will establish
and maintain TCP connections. If the server supports TCP
options like MSS, Timestamp, and SACK, the TCP connection
manager will use MSS option to control the size of response
packet (i.e., the server will use the minimal value between its
MSS and the MSS announced by LinkScope). It will also put
the SACK-permitted option and TCP timestamp option into
the TCP SYN packet sent from LinkScope to the server.

Since LinkScope needs to control the establishment of TCP
connections and customize probing packets (e.g., sequence
number, acknowledgement number and advertising window),
all packets are sent through the raw socket. Also, LinkScope
uses the libpcap [68] to capture all response packets and then
parses them for computing performance metrics.

As the number of hops between a prober and the server may
change over time, we develop a module named tTR to perform
TCP traceroute regularly to monitor the routing changes for
assuring that the measurement packets in mRPT can just reach

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 8

LinkScope

LinkScope

(a) Use netfilter/iptables. (b) Modify TTL

Fig. 10. RST packet filter.

the network perimeter of the server. Moreover, when the hops
of a path change, tTR sends this event to the coordinator for
re-scheduling the probing task if necessary.

D. RST Packet Filter

Since LinkScope constructs all packets by itself and sends
them out through raw socket, OS does not know how to handle
the response packets, thus it will send back an RST packet
to the server to close the TCP connection. We propose two
approaches to filter out RST packets generated by OS.

As shown in Fig. 10(a), if the system supports netfil-
ter/iptables [69], we use it to drop all RST packets except those
generated by LinkScope. We differentiate the RST packets
from OS and that from LinkScope through the identification
field of the IP header because LinkScope assigns a unique
value to this field of its RST packets.

Since some hosts do not support netfilter/iptables, such
as the Planetlab nodes [70], we propose a new method to
tackle this issue as shown in Fig. 10(b). LinkScope first estab-
lishes a TCP connection with the remote server using stream
socket (i.e., SOCK_STREAM), and then uses the function
setsockopt to set the TTL value in each packet generated by
OS to a small value so that it will not reach the web server.
Moreover, LinkScope utilizes the libpcap library to capture
the TCP three-way handshaking packets generated by OS to
record the initial sequence numbers selected by the local host
and the web server along with other information related to the
TCP connection, such as source port and TCP options. After
that, LinkScope will create and send probing packets through
raw socket with the help of such information.

V. EVALUATION IN THE TESTBED

We carry out extensive experiments in a controlled testbed to
evaluate LinkScope’s functionality and overhead for answering
the following questions.

RQI: Can LinkScope effectively measure the performance of
network paths?

RQ2: Can LinkScope accurately capture the changes in per-
formance metrics due to various LFA attacks?

RQ3: How much measurement traffic is introduced by
LinkScope?

RQ4: What is the additional overhead brought to the prober
and server by LinkScope?

A. Testbed

Fig. 11 shows the topology of our testbed that connects
to the Internet through the campus network. All hosts run
Ubuntu 12.04. The attack traffic is generated by D-ITG [71]
and transmitted from Host 2 and Host 6 to Host 1 and Host 5,
respectively, to congest the router in red circle. The attacking
packet sizes are uniformly distributed between 600 and 1400
bytes. Host 3 is a bridge for emulating packet loss and packet

D-ITG (Host 1)

S Target
S netwgork
Rrober2

D-ITG (Host 5) D-ITG (Host 2)

Fig. 11. The topology of the testbed.

"] LinkScope-30Pkt
[] LinkScope-50Pkt
1000 |[Z27] LinkScope-100Pkt
E= Iperf

708.14
704.69

88.26
91.41
96.54

90.08

100

110.92

Meausrement results (Mb/s)
10.31
9.91
9.86

10 Mb/s

100 Mb/s
Bandwith of network path

1000 Mb/s

(a) Measurement results

1000

[] LinkScope-30Pkt
[] LinkScope-50Pkt
100 ¥ P77 LinkScope-100Pkt

0.1 f

Generated traffic (MBytes)

0.01

10 Mb/s 100 Mb/s

Bandwidth of network path

(b) Generated traffic
Fig. 12. Comparison of different measurement configuration.

1000 Mb/s

reordering, and Host 4 is an NAT-enabled router providing
port forwarding to connect the web server and the LAN to the
Internet. In our experiment, LAN is the target network, and
LinkScope is deployed on Proberl and Prober2 following the
cloud-based and the self-initiated deployment, respectively.

B. RQI: Evaluating The Path Measurement Module

We first compare the measurement results of packet losses
and packet reordering on both forward and reverse paths with
the ground truth. More precisely, we capture and compare
the packets at both probers and web server side to obtain
the ground truth of packet loss and packet reordering. The
results show that LinkScope can successfully recognize all
packet losses and packet reordering cases.

Then, we compare the measured 6, and 6, with the results
from iperf under three bandwidths (i.e., 10Mb/s, 100Mb/s, and
1000Mb/s), which we configured by the Router in Fig. 11.
LinkScope uses 30, 50 and 100 payload packets of 1500 bytes,
respectively, and iperf is scheduled to do measurement using
TCP packets with interval of 1 second. We repeat each test 30
times. The measurement results with error bars are shown in
Fig. 12(a), and the volume of measurement traffic is shown in
Fig. 12(b). Fig. 12(a) illustrates that compared with the real
available bandwidth, although LinkScope may underestimate
it, its measurement result is close to that from iperf, and the
result from LinkScope is more stable than that from iperf. It

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 9

100 40%

o

1

_ R % 30% * Forward path packet loss rate | 400 + RTT) g
@ @ + Reverse path packet loss rate G * RTT jitter|17 5
el . + 173 * £ 300 16 =
2 50 S 20% L i 15=
5 + 3 i % E 200 ¥ i
= e S 10% s D B i st aaRy A

‘o
¥ T & {;H B wx x 1007 %&%ﬁg&ﬁi** i*%
0 Gl A 0% 0 . e w0
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Measurement timestamp (s) Measurement timestamp (s) Measurement timestamp (s)
(a) 6, /r (b) Packet loss. (c) RTT and RTT jitter.
Fig. 13. Metrics measured with self-initiated measurement (the emulated attack traffic increases from OMb/s at ¢ = 600 and arrives at 10Mbs at ¢ = 3000).
100 - - - - 40% 500 10

e * Forward path packet loss rate 400 + RTT g
- o 30% + Reverse path packet loss rate 1 = * _ RTTjitter|{7 8
e * 8 E 300 162
= 50 * 2 20% + 4 = 19 &=
5 . T +H O HE k200 g &

@ * * g 10% ot R 100 15

. W o M HHHHHHE T 19

0 i A P 0 . . N P

0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Measurement timestamp (s) Measurement timestamp (s) Measurement timestamp (s)
(@) Oc/r (b) Packet loss. (c) RTT and RTT jitter.

Fig. 14. Metrics measured with Cloud-based measurement (the emulated attack traffic increases from OMb/s at ¢ = 600 and arrives at 10Mbs at ¢ = 3000).

is worth noting that LinkScope uses much less measurement
traffic than iperf does as shown in Fig. 12(b).

Summary: LinkScope can measure the performance of net-
work paths accurately and effectively.

C. RQ2: Evaluating The Attack Detection Module

We first evaluate the ability of LinkScope on attack detection

based on network performance changes. The experiment shows
the measured performance metrics under different deploy-
ment strategies, and the second experiment evaluates whether
LinkScope can identify different types of LFA attacks. Also,
we evaluate the detection rate of LinkScope.
Attack Detection For the self-initiated deployment, as shown
in Fig.13, before the volume of attack traffic reaches the
capacity of the target link on around ¢ = 3000s, the RTT
is about 102ms and stable (Fig.13(c)) and 6. decreases grad-
ually (Fig.13(a)), whereas the RTT jitter increases obviously
(Fig.13(c)). After the volume of attack traffic equals to and/or
exceeds the capacity of the target link, congestion happens on
the target link and the packets are queued so that the RTT
values increase to around 120ms and the RTT jitter become
more unstable as shown in Fig.13(c). Moreover, Fig.13(b)
shows that severe packet losses are observed on the forward
path. Consequently, since most packets in the mRPT packet
train are lost, 6, cannot be measured after ¢t = 3000s as shown
in Fig.13(a). Also, we can find the measurement results are
various with the changes of the attack traffic.

For the cloud-based deployment, as shown in Fig.14, after
the attack traffic is generated, 6,- becomes unstable (Fig.14(a))
and the RTT jitter increases obviously(Fig.14(c)). Similarly,
after the volume of attack traffic equals to and/or exceeds the
capacity of the target link, the RTT values increase to around
120ms and the RTT jitter become more unstable as shown in
Fig.14(c). Moreover, Fig.14(b) shows severe packet losses on
the reverse path.

Attack Type Identification We emulate four types of LFA in
the testbed and use the abnormal changes in 6, to illustrate the
effects due to different attacks. In this experiment, the target
link’s bandwidth is set to 100 Mb/s. Fig. 15(a) shows 6. under

pulsing LFA where the attacker transmits high-volume bursts
of traffic to congest the bottleneck [56]. Without attack, 6.
is close to the available bandwidth. Under the attack, since
the bottleneck is severely congested and all connections are
broken, 6, becomes zero.

Fig. 15(b) illustrates 6. under LFA with two attack traffic
rates: 80Mb/s and 40Mb/s. An attacker may change the attack
traffic rate for evasion. We can see that when the attack rate
decreases (or increases), 6. increases (or decreases), meaning
that LinkScope can capture the changes in available bandwidth.
Fig. 15(c) represents 6, under gradual LFA where the attack
traffic rate increases from zero to a value equal to the capacity
of the bottleneck. It emulates the attack scenario in the Internet
where the traffic sent from different bots may not reach the
bottleneck simultaneously, thus showing the gradual increase
in the attack traffic rate. Although the TCP connection for
measurement is broken when the attack traffic rate almost
reached its maximal value, the decreasing trend of available
bandwidth can be employed to raise an early alarm.

Since LFA will cause severe intermittent congestion on
target links, we can use different patterns in performance
metrics to distinguish it from other scenarios, such as long-
term flooding and cable cut that will disable the Internet
connection for a long period.

Detection Rate Evaluation To evaluate LinkScope’s detection
rate, we follow the above setting to launch three types of
attacks (i.e., Pulsing LFA, Variational LFA and Gradual LFA)
on the bottleneck link because attacking a real Internet path
would lead to ethical issues. In this experiment, to emulate the
cloud-based measurement, we deploy LinkScope on Google
VMs (i.e., proberl)and takes web server2 as the destination in
Fig. 11. Besides, to emulate the self-initiated measurement,
we run LinkScope in probe2 and specify web server2 as
the destination. Note that both the link between proberl and
web server2 and the link between prober2 and web server
2 are probed through the Internet. In addition, to simulate
the chaotic cross traffic in the testbed, we also generate TCP
traffic between web server 2 and host5 with D-ITG. Precisely,
to generate these traffic, we implement a python script that

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 10

200 T T T T T T
—%— Measurement results O X~ Measurement results 401 —%— Measurement results
@ Attack traffic rate 120 H @ Attack traffic rate 120} @ Attack traffic rate
W aEs aED aED a» e 100 1
@ @ @
£ 10 S oD @ e e am NN S
=2 2 Ll | 1 2
@ ®“’ ‘ G)m
50 40
20r Al ¢ \
22:50:53 22:53:46 22:56:38 22:59:31 23:02:24 13:40:38 13:43:08 13:45:39 13:4‘5:09 13:5‘0:39 13:5‘3:10 13:55:40 0 16:13:26 |6:1I5:19 16:1‘9:12 |5:2I2:05 16:2‘4:58 16:27:50 16:30:43
Timestamps Timestamps Timestamps
(a) Pulsing LFA. (b) Variational LFA. (c) Gradual LFA.
Fig. 15.

100%

(1.0, 95%)

2 servers
‘‘‘‘‘ 4 servers
—6 servers
—8 servers
—10 servers

-=-2servers
-=4 servers
—6 servers
—8 servers
—10 servers

25 3 0 25

0.5 1 15 2 0.5 1 15 2
Measurement traffic (Mb/s) Measruement traffic (Mb/s)

(a) Tx traffic. (b) Rx traffic.
Fig. 16. The CDF of the volume of measurement traffic with different number
of destinations.
TABLE I
THE CPU UTILIZATIONS AND AVERAGE LOAD OF THE PROBER AND
THE WEB SERVER DURING MEASUREMENT.

No. of Probing | Probing Prober ‘Web sever

Processes rate (Hz) | Load | CPU | Load | CPU

0 0 0.01 | 0.3% | 0.00 | 0.5%

1 2 0.06 | 0.3% | 0.00 | 0.5%

1 10 0.10 | 0.3% | 0.01 | 0.6%

2 10 0.10 | 04% | 0.01 | 0.6%

10 10 0.11 | 1.7% | 0.02 | 0.7%

50 10 023 | 24% | 0.08 | 0.8%

100 10 047 | 27% | 0.09 | 0.8%

TABLE 1II

THE PERCENTAGE OF LOCALIZATION LINKS THAT CAN BE
COVERED BY PROBING PATHS.

Target 1 2 3 4 All
Switzerland | 92% | 94% | 89% | 95% | 97%
Hong Kong | 89% | 93% | 86% | 93% | 91%

Japan 86% | 93% | 86% | 92% | 89%
Singapore | 83% | 92% | 87% | 92% | 89%
Taiwan 84% | 84% | 86% | 92% | 86%

can generate five TCP flows at the same time. Each flow lasts
for 3 seconds, and this script interactively generates flows with
random mean packet size s between 500 bytes and 1500 bytes.
In the same flow, the packet sizes follow normal distribution
with mean size s and stand deviation 500 (i.e., “-n s 50”). Also,
the flows have burst inter-departure time between packets,
and the ON and OFF period durations are random variables,
which we specify with parameters “-B N p 100 W 1000 1007,
namely, the former is a normal distribution with average p and
stand deviation 100, whereas the latter is a Weibull distribution
with shape 1000 and scale 1000. In this experiment, we also
change the bandwidth of the bottleneck link to simulate the
network with different bandwidth (i.e., 10Mb/s, 100Mb/s and
1000Mb/s), and p is 100, 1000 and 10000 for these bandwidths
respectively. Then, we observe that the detection rates are
always 100%. The false positive detection rate is evaluated
on the Internet in Section VI-C.

Summary: LinkScope can accurately capture the performance
anomalies due to various LFA attacks, and LinkScope can
effectively and timely detect LFA attacks.

D. RQ3: Quantifying The Network Overhead

To quantify the network overhead introduced by LinkScope,
we run multiple LinkScope on a prober for measuring the

Available bandwidth measured with different attacks with 100Mbit/s configuration.

paths to D (D = {2,4,6,8,10}) destinations simultaneously.
We obtain the Tx (Transmit) and Rx (Receive) bytes from
/proc/net/dev once per second for computing the volume of
Tx/Rx traffic. Each experiment lasts for 2400 seconds. Fig. 16
depicts the cumulative distribution of the Tx/Rx measurement
traffic. We can see that for 95% time both Tx and Rx
measurement traffic are less than 1Mb/s even when 10 paths
are probed at the same time.

Summary: LinkScope generates only a small amount of
measurement traffic and provides configurable settings.

E. RQ4: Quantifying The System Overhead

To evaluate the system overhead introduced by LinkScope,
we use htop [72] to measure the client’s and web server’s
average load and CPU utilization when LinkScope runs with
different configurations. The client is equipped with Intel 3.4
GHz i7-4770 CPU, 16G memory, and 1 Gb/s NIC, and the
web server is equipped with Intel 2.83 GHz Core(TM)2 Quad
CPU and runs Apache2. Table II lists the results for both
the client and the server. The first line represents the load
and CPU utilization without LinkScope, and we ensure that
no other routine processes are executed on both machines
during the measurement. We can see that even when there are
100 probing processes with 10Hz probing rates, the average
loads and average CPU utilizations are still very low on both
machines, especially for the web server.

Summary: LinkScope brings negligible overhead to both the
probers and target web servers.

VI. EVALUATION ON THE INTERNET

To gain insight into the real-world performance, we also
conduct extensive experiments to evaluate LinkScope on the
Internet by answering the following questions.

RQI: Can LinkScope effectively identify the target links and
monitor them?
RQ2: Can LinkScope effectively measure the performance of
network paths?
RQ3: Can LinkScope accurately detect LFA attacks?
A. RQI: Network Topology Analysis
Target Link Identification We select the networks in Switzer-
land, Hong Kong, Japan, Singapore and Taiwan as the target
networks for protection. We employ 6 Google VMs locating in
different regions, 107 PlanetLab [70] nodes and 480 looking
class routers, distributed in 267 cities of 33 countries, as
probers, and randomly select around 1000 web servers in
each target network as the remote hosts. Then we conduct
traceroute on the probers to collect the routing information
from the probers to the remote hosts. Eventually, we collect
the routing information that includes 875861 paths and 56039

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX

Y
o _®

107

[y
<
[

107

=™ Q

Switzerland Hong Kong

o
®

a=1.
10
3

g, B .
Sivm
o

44
59

107

ceccccs
Measured link occurence

. Normalized
link occurrence

B 106 10
10° 104 100 10*
Rank of link

1
1e*

104 Zipf-Mandelbrot

10
10*

5
10°

Fig. 17. Normalized link occurrence/rank in tracked routes to the target networks.

Percentage
of carried paths

32
o

I
I S}vitzerland
|

400 800 -] 800]

400

800 2] 800 [}

Number of probed links
Fig. 18. The cumulative distribution function (CDF) between the percentage of the carried paths and the probed links.

different links in total. Fig. 17 shows that the normalized
link occurrences [26] with ranks in the routes to these five
networks, and the results indicate that there are routing bot-
tlenecks existing in all these five networks. As a result, we
just need to probe the target links with high link occurrences
to monitor the performances of the target networks. We also
analyze the relationships between the probed links and the
paths that pass these links, and the results are shown in Fig. 18.
From the results, we can find the top 200 links carry around
80% paths and the top 400 links carry around 90% paths for
all these five networks.

Target Link Monitoring We evaluate whether LinkScope can
monitor the target links effectively in this experiment. We
choose the top 400 links as the target links when the links are
ranked by normalized link-occurrence. Since LinkScope cannot
run the looking glass servers, only the paths from Google VMs
or planetlab nodes can be measured, namely we can only
monitor the target links in the paths that can be measured.
In this experiment, we find 93.6%, 95.4%, 94.8%, 91.6% and
94.6% of the target links can be monitored, when Switzerland,
Hong Kong, Japan, Singapore and Taiwan are specified as the
target network respectively.

Target Link Localization To evaluate the effectiveness of
locating target link when LFA is launched, we select the top
30 links as the target links for each network. Since we locate
the flooded link through measuring the links behind the target
links, in this experiment, we respectively assume that the first
link, first two links, first three links, first four links and all
links behind the target link (i.e., localization links) are used
to locate the target link as introduced in Section III-D. To
locate the flooded target links, we need first find paths that
traverse the localization links and do not traverse the target
links. Also, since LinkScope cannot run on the looking glass
servers, these paths should be from PlanetLab nodes or Google
VMs to the web servers in the target network. Hence, in this
evaluation, we choose the Google VMs and PlanetLab nodes
as the clients, and the evaluation results are shown in Table III.
We can find that, for each configuration, there are more than
80% localization links that can be probed. It means that, if we
just use the randomly selected 1000 web servers in each target
network as destinations, we can effectively choose more than
80% of the localization links to locate the target links when
LFA is detected.

Summary: LinkScope can efficiently identify the target links
for measurement, and the target link localization module can
effectively locate the flooded links when attacks are detected.

TABLE IV
FALSE POSITIVE RATES WITH DIFFERENT Pa FOR THE
CLOUD-BASED DEPLOYMENT SCENARIO.

Destination Information Pa>1|Pa>2| Pa>3 | Pa>4
University site in US 0.34% 0.00% 0.00% 0.00%
University site I in Hong Kong 0.65% 0.00% 0.00% 0.00%
University site 2 in Hong Kong 4.43% 0.09% 0.00% 0.00%
Game site in Hong Kong 1.20% 0.03% 0.00% 0.00%
Government site in Hong Kong 3.84% 0.03% 0.00% 0.00%
Game site in Taiwan 0.71% 0.06% 0.03% 0.00%

B. RQ2: Evaluating The Path Measurement Module

We run LinkScope on PlanetLab nodes in this experiment.
Fig. 19 shows the performance metrics measured on the
path from a prober in Amsterdam to a web server in Hong
Kong for two days. It demonstrates the diurnal patterns in
forward/reverse path packet loss, RTT, and jitter. The path
performance is better and more stable in the period from 00:00
to 12:00 than that during the period from 12:00 to 24:00. The
increased loss rate may affect the measurement of 6, as some
measurement results deviate during the period from 12:00 to
24:00 as shown in Fig. 19(c).

Fig. 20 demonstrates the performance metrics measured on
the path from a prober in Santa Barbara (US) to a web server
in Taipei for seven days. This path has stable performance.
For example, RTT is around 150ms and the jitter is less than
10 as shown in Fig. 20(a). Moreover, the jitter is less during
the period from 1:00 to 9:00 than the other time of each
day. The loss rate is less than 2% and there is no packet
reordering. The estimated 6. is around 75 Mb/s as illustrated
in Fig. 20(c). Since LFA will cause severe congestion during
a short duration, it will result in obvious abrupt changes in the
performance metrics and get caught by LinkScope.
Summary: LinkScope can measure the performance of real
Internet paths effectively.

C. RQ3: Evaluating The Attack Detection Module

We first evaluate whether LinkScope can efficiently probe
the web servers protected by the firewalls and IDSs. In this ex-
periment, we run LinkScope to probe nine web sites protected
by Radware (four sites), CloudFare (one site), DOSarrest (two
sites) and Neustar (two sites), for one day, and we get stable
and valid measurement results for all these 9 sites.

We evaluate LinkScope’s false positive rate using Internet
measurement results on different paths, and then assess its
detection rate. Since Google provides VMs in four different
areas(i.e., US-east, US-central, Asia-east and Eur-west), we
run LinkScope in Google VMs located in these four areas to
probe six public web servers, which fall into three categories
(university site, government site and game site) and are in three

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX

200 50 25% .. B
+ RTT o + Forward path packet loss rate 20 .f *
" 40 +—= 20%
150 * RTT jitter . © + Reverse path packet loss rate . I
2 * 302 B 15% 2 45 R
100 - = . o oA
= 20— B 10% = et -
0:50 C 5 10k i DAY R
10 & 5% """‘& R @" ‘-.u,gi;“q “ ﬁ e
0 " Rl i | o T . ol T e
00:00:00 12:00:00 00:00:00 12:00:00 00:00: o%;f)o;oo 12:00:00 00:00:00 12:00:00 00:00:00 00:%0:00 12:00:00 00:00:00 12:00:00 00:00:00

Measurement timestamp

(©) Oe.

Measurehént timestamp

(a) RTT and RTT jitter.

Measurement timestamp

(b) Packet loss rate.

Fig. 19. Performance metrics measured on the path from Amsterdam to Hong Kong for two days.
200 o
150 PR ok *? % ¢ Forward path packet loss rate
Tg P * :Z g é + Reverse path packet loss rate
\— 100 * RTT jitter 5;— =
e e 2
o lqx S
50 i &
; 1
3103 01/04 02/04 03/04 04/04 05/04 06/04 0794 34/03 01/04 02/04 03/04 04/04 05/04 06/04 07/04
Measurement timestamp Measurement timestamp Measurement timestamp
(a) RTT and RTT jitter. (b) Packet loss rate. (c) B¢
Fig. 20. Performance metrics measured on the path from Santa Barbara to Taipei for seven days.
TABLE V
FALSE POSITIVE RATE ON A SIGNAL PATH WITH DIFFERENT f AND v.
Destination . . =1 =2 =3
Information | Client Location | — = o o S s o =T T2 [=3
US-east 4.3% 2.1% 1.1% 0.7% 0.2% 0.1% 0.0% 0.0% 0.0%
University site Asia-east 121% | 58% 3.1% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0%
in US US-centeal 6.2% 2.4% 1.1% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%
Eur-west 7.9% 2.9% 1.2% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0%
US-east 10.1% 6.0% 3.9% 1.5% 0.5% 0.2% 0.0% 0.0% 0.0%
University site 1 Asia-east 1.5% 0.2% 0.1% 0.4% 0.5% 0.0% 0.0% 0.0% 0.0%
in Hong Kong US-centeal 5.2% 1.9% 0.8% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0%
Eur-west 6.8% 2.9% 1.3% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%
US-east 41.0% | 31.1% | 253% 4.9% 1.4% 0.4% 0.4% 0.0% 0.0%
University site 2 Asia-east 9.2% 3.1% 1.1% 2.8% 0.5% 0.1% 0.0% 0.0% 0.0%
in Hong Kong US-centeal 404% | 27.1% | 18.7% 7.5% 2.2% 0.6% 0.3% 0.1% 0.0%
Eur-west 16.2% 8.4% 5.1% 1.7% 0.3% 0.0% 0.1% 0.0% 0.0%
US-east 25.1% | 24.5% | 24.2% 2.2% 0.9% 0.4% 0.0% 0.0% 0.0%
Game site Asia-east 5.5% 5.3% 5.3% 1.1% 0.2% 0.0% 0.0% 0.0% 0.0%
in Hong Kong US-centeal 2.7% 2.0% 1.6% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%
Eur-west 15.7% 15.5% 15.4% 0.4% 0.3% 0.2% 0.0% 0.0% 0.0%
US-east 158% | 10.6% 7.7% 3.8% 1.7% 0.8% 0.1% 0.0% 0.0%
Government site Asia-east 18.2% 9.2% 53% 4.6% 1.2% 0.3% 0.4% 0.1% 0.0%
in Hong Kong US-centeal 18.0% 12.8% 9.8% 2.0% 1.0% 0.5% 0.0% 0.0% 0.0%
Eur-west 6.8% 2.1% 0.6% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%
US-east 222% | 11.9% 7.1% 1.3% 0.4% 0.1% 0.1% 0.0% 0.0%
Game site Asia-east 13.8% 6.5% 3.4% 0.9% 0.2% 0.1% 0.0% 0.0% 0.0%
in Taiwan US-centeal 16.4% 7.9% 3.7% 0.9% 0.1% 0.1% 0.1% 0.0% 0.0%
Eur-west 11.9% 4.8% 2.2% 0.8% 0.2% 0.1% 0.0% 0.0% 0.0%
TABLE VI

different areas (US, Taiwan and Hong Kong). Then, we collect
the probing results of the 24 paths (4 Probers x 6 Servers) to
evaluate LinkScope’s false positive rate. Here, we assume that
there is no attack launched on these paths during the probing.
We schedule the four probers to perform measurement on
each path once per 180s for 10 days. The measurement results
of the first three days are used to forecast the confidence
intervals and the results from 4th to 10th day are employed to
compute the false positive rate. Table V lists the results with
different i and v. Note that 4 decides whether a probing result
is abnormal according to the number of abnormal metrics,
and v decides if an attack is launched based on the number of
consecutive abnormal probing results. As a result, LinkScope’s
false positive rate decreases with the increment of p and v. By
default, © = 2 and v = 2. Table V shows that all false positive
rates are lower than 2.5% with the default configuration.
Since LinkScope detects LFA attacks based on the perfor-
mances of multiple paths, we evaluate its false positive rates
when more than one path share target links. We first evaluate

FALSE POSITIVE RATES WITH DIFFERENT Pa FOR THE SELF-INITIATED
DEPLOYMENT SCENARIO.

Client Location Pa>1|Pa>2|Pa>3| Pa>4| Pa>5| Pa>6
VM in US-east 4.36% 0.29% 0.03% 0.00% 0.00% 0.00%
VM in Asia-east 2.09% 0.00% 0.00% 0.00% 0.00% 0.00%
VM in US-centeal | 3.39% 0.03% 0.00% 0.00% 0.00% 0.00%
VM in Eur-east 0.08% 0.00% 0.00% 0.00% 0.00% 0.00%

the false positive rate for the cloud-based deployment scenario.
In this case, there are 6 target areas, each of which is covered
by four monitored paths from Google VMs. Table IV shows
the false positive rates. When Pa 2 (i.e., not less than
2 paths having abnormal performance at the same time), the
false positive rates are less than 0.1% for all paths.

Then, we let the four networks containing Google VMs be
the target areas, and evaluate the false positive rates for the
self-initiated deployment scenario. In this case, each VM in
the target area monitors 6 paths (i.e., from the VM to the 6
public web servers). Table VI shows the false positive rates.
When Pa is 2, all false positive rates are less than 0.3%.
Comparison with Other Detection Algorithms In order to

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 13

% 100. 000 ¢
% 10. 000
% 1. 000

% 0. 100

False positive rate

%0.010

% 0. 001

cope 2o \a“° 2 Disanc ° oS (ess\° sV
o \N\n\e\' (8 Euc\\dz\ ‘na\a“ob\ ge“eo\l s m\a \:\eg -0\
ve

Hote etef09%" poly

(a) False positive rete of self-initiated deployment.

18.63%

&
R

&
5o

15.9%

% 100. 000 |

L 81%

N
N

—_

O

% 10. 000 ¢

S
N\

NN\
—_—

ZZAMMMMMMMMMDIDODODGDG]]0

N

3002222222222

% 1. 000

%0.100 7~

M

%0.010

False positive rate

% 0. 001

7S 7 AN 7\
'\s\agge\)\s‘o e D\‘S\"’“&e ess G\ass SUM

o \et\N‘“‘eY kE\‘c\\\\j\aha\a {ex032 S oyro o

(b) False positive rete of cloud-based deployment.

Fig. 21. False positive detection rate.

compare our detection approach with other popular detection
systems and evaluate the effectiveness of the multiple-based
detection module, we first compare the false positive detec-
tion rates of the detection modules implemented based on
various detection algorithms. Since these detection systems
are designed for different features and evaluated on various
data sets, we implement our detection module based on five
algorithms (i.e., Euclidean Distance [44], [73], Mahalanobis
Distance [45], [74], Heterogeneous Distance [46], [75], [76],
Polynomial Regression [47], [77] and One-Class SVM [48],
[78]) adopted by other detection systems for comparison, and
the comparison results are shown in Fig. 21. From the results,
we can the false positive detection rates of the detection
module based on other algorithms are all higher than the
false positive detection rate of LinkScope’s detection module.
Besides, we can also find the multiple-path based detection
module can effectively reduce the false positive detection
rate with both self-initiated (i.e., Fig. 21(a)) and cloud-based
(i.e., Fig. 21(b)) deployments, For example, when attacks are
detected based on the measurement results that there are more
than three paths with abnormal performance (i.e., Pa > 3),
the mean false positive detection rates are less than 2% for all
detection algorithms.

Summary: LinkScope can effectively detect LFA, and the
multiple-path based detection approach obviously reduces the
false positive detection rate.

VII. RELATED WORK

LFA detection is essentially an anomaly detection problem
[79], whose objective is to find abnormal performance degra-
dation resulting from attacks [80]-[83] against critical links.

Traditional anomaly detection systems deployed at the net-
work perimeter [8], although important security strategies,
cannot handle LFA by design. The reason is that, to degrade

the connectivity of the target network, LFA selects to over-
whelm the upstream links of the target network, which are
invisible to the systems deployed downstream. Additionally,
an attacker can instruct bots to generate traffic flows, destined
for networks near the target network, to converge at the target
link and then congest it. In this way, these flows may never
reach the traditional systems. Even if some flows reach the
systems, the attacker could instruct bots to generate traffic
flows indistinguishable from legitimate ones [5].

To cope with LFA, moving the countermeasures upstream
then naturally arises. Specifically, due to the direct control
over the traffic crossing critical links, router-based approaches
have been proposed to defend against LFA and other smart
DoS attacks [7], [9]-[16]. Despite their experimental effec-
tiveness, their availability is limited in the foreseeable future
for three reasons. First, additional deployment overhead is
needed to activate router-based approaches. This is because
router-based approaches require control over EGP (External
Gateway Protocol, e.g., BGP)/IGP (Internal Gateway Protocol,
e.g., OSPF) routers in autonomous systems (ASs), leading to
the deployment of control servers in a number of ASs such as
in [7], or extensive customized configuration and adaptation
efforts for each router such as in [11] (e.g., configuring
parameters and thresholds) and [16] (e.g., modifying the router
to deceive the traceroute). Second, even if such overhead
is ignorable, some router-level operations, although designed
for security purposes, may incur unexpected risk (e.g., route
flapping) due to network externalities [17]. Therefore, one
needs to evaluate the effects of router configuration changes
before deploying them on a live network. Current router-
based approaches, however, have not considered this important
issue. Third, router-based approaches rely on the collaboration
between ASs to defend against LFA, whereas those (attack
source) ASs where the attack traffic originates lack incentives
to reroute the attack traffic to bypass the victim link (note
that, in BGP, it is the source AS that decides the AS path
towards a destination). This is because the collateral damage
to each (attack source) AS posed by the attack traffic is
negligible, while rerouting the attack traffic may break the
commercial agreement between ASs and induce economic
cost [18]. Although several promising SDN-based defense
mechanisms [19]-[22] have been proposed, they may not
be immediately deployed because they need to replace the
traditional routers with SDN devices.

Therefore, a new solution aware of LFA and meanwhile
immediately deployable without modifying/affecting existing
Internet routing infrastructure is desirable. LinkScope is such
a solution, constituting a practically feasible line of defense
against LFA on today’s Internet. It has two major features en-
suring the effectiveness. First, instead of passively inspecting
traffic for discovering anomalies, it conducts active measure-
ment to cover as many paths as possible. The measurement is
non-cooperative because the measurement agent is installed at
one end without the cooperation of the other end, maximizing
the network paths covered by each measurement agent and
hence rendering our system scalable and flexibly deployable.
Second, it provides a novel framework that captures the nega-
tive effect of LFA on a series of comprehensive performance

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 14

metrics. Their comprehensiveness and joint effect facilitate
accurate awareness of network path performance. Moreover,
combining multiple network path anomaly to detect LFA
empowers LinkScope to have rare false alarms.

Several widely deployed platforms on the Internet are also
devoted to active measurement, offering a paradigm to deploy
LinkScope. RIPE Atlas [84] measures Internet connectivity
and reachability (e.g., whether a system is accessible from
a different location and the corresponding RTT) using Ping,
Traceroute, etc. Its primary feature lies in a network of probes
with global coverage. Route Views [85] is a tool for obtaining
real-time global backbone routing information based on data
from BGP routers. Looking Glass [86] could achieve the same
purpose, but provide only a constrained view of the routing
system. Although these platforms are not dedicated to LFA
detection, in the extreme case wherein LFA disconnects the
target network, they can detect it due to the unreachability.
However, the attacker, for the long-term payoff, designs LFA
to be relatively stealthy, i.e., degrading (but never disconnect-
ing) the link performance at utmost while avoiding triggering
routing changes [5].

Our work differs from existing network tomography tech-
niques, which cannot be applied to locate the target link be-
cause of impractical assumptions (e.g., multicast [87], source
routing [88]). Binary tomography may be used for identifying
faulty network links [89], but it just provides coarse infor-
mation [90] and is not suitable for locating the link targeted
by LFA, because it adopts assumptions for network fault
(e.g., only one highly congested link in one path [91], faulty
links nearest to the source [92]). LFA can easily invalidate
them. Moreover, the probers in network tomography create
a fully meshed measurement network [93], [94] whereas in
our scenarios there is only one or a few probers that may not
communicate with each other.

Although LinkScope is a detection system that cannot
defend against LFA directly, it can help quickly identify the
specific link under attack. Then, the identified victim link can
be the input of traffic engineering methods such as proposed
in [95] and [96] to mitigate the effect of LFA, or even pinpoint
the bots behind the attack by performing in-depth analysis of
the traffic traversing the victim link [50].

VIII. DISCUSSION

Although we cannot launch LFA against real links in the
Internet due to ethical issues, our experiments on the testbed
show that LinkScope can detect LFA and locate the target links.

Since LinkScope leverages non-cooperative measurement
techniques, users only need to deploy it on the client side.
This type of measurement techniques, if inappropriately used,
may induce additional measurement traffic noise to the server
side (e.g., open web servers on the Internet). However, due
to the adjustable measurement rate, LinkScope can keep the
measurement rate to a minimum to avoid affecting the normal
operation of the servers. Moreover, it only introduces low
overhead to remote servers as shown in Section V-E, under
the premise of effective attack detection.

While different measurement approaches could be employed
in our framework, users may need to adjust the detection

methods, because not all measurement approaches support
all metrics listed in Table 1. For example, many approaches
only support one or a few metrics (e.g., POINTER for packet
reordering [97], Sting for packet loss [98], etc.). If several
metrics are needed, users have to run several tools, thus
wasting the bandwidth. Moreover, it would be good for
users to first examine the metrics measured by a selected
measurement approach and learn its pros and cons before
adoption. For instance, compared with the Round Trip Probing
(RTP) pattern, httping [99] is more susceptible to the load of
remote server as shown in [35]. We also found that the RTT
measurement of some HTTP-based tools largely deviates from
that suggested in RFC2681 [100]. As another example, pingb
cannot accurately measure asymmetric connections because it
cannot distinguish between the time dispersion on the forward
path and that on the reverse path [101]. We showed that the
Two Way Probing (TWP) pattern can address this issue [58].

The attacker may evade our detection by frequently at-
tacking the links with lower link occurrences. However, such
evasion policy can further degrade the attack effect on the
target area. To defend against such degraded attack, we can
add more resources and monitor more paths.

IX. CONCLUSION

In this paper, we propose a novel framework and develop
a new prototype of the framework, LinkScope, to detect a
new class of target link-flooding attacks (LFA) and attempt to
locate the target link or area whenever possible. By exploiting
the nature of LFA that causes severe temporal congestion on
links important to the target area, LinkScope employs both
the end-to-end and hop-by-hop non-cooperative measurement
techniques to capture the abnormal performance degradation
due to LFA. Moreover, it correlates the measurement data and
the traceroute data to infer the target links. After addressing a
number of challenging issues, we have developed a prototype
system based on the detection approach and conducted exten-
sive evaluations in a testbed and the Internet. The results show
that LinkScope can quickly detect LFA with high accuracy and
low false positive rate. In future work, we will conduct large-
scale and continuous measurements to evaluate LinkScope and
investigate the optimal deployment of LinkScope.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful
comments. This work is supported in part by the Hong
Kong ITF (No. UIM/285), Hong Kong GRF (No. PolyU
5389/13E, 152279/16E), Shenzhen City Science and Tech-
nology R&D Fund (No. JCYJ20150630115257892). Xiaobo
Ma is supported in part by National Natural Science Foun-
dation (61602371), Natural Science Basic Research Plan in
Shaanxi Province (2016JQ6034), Postdoctoral Science Foun-
dation (2015M582663), Shaanxi Postdoctoral Science Re-
search Project, Fundamental Research Funds for the Central
Universities, of China. Guofei Gu is supported in part by
the US National Science Foundation (NSF) under Grant no.
1642129 and 1740791. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of NSF.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX 15

(1]
[2]

[3]
[4]
[3]

(6]
(71

(8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]

[36]

[37]

REFERENCES

Incapsula, “2013-2014 DDoS threat landscape report,” 2014.
ARBOR, “DDoS and security
http://www.arbornetworks.com/asert/, 2014.

M. Geva, A. Herzberg, and Y. Gev, “Bandwidth distributed denial of
service: Attacks and defenses.” IEEE Security & Privacy, vol. 12, 2014.
A. Studer and A. Perrig, “The coremelt attack,” in Proc. ESORICS,
2009.

M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in
Proc. IEEE SP, 2013.
http://www.freebuf.com/articles/network/67107.html.

S. Lee, M. Kang, and V. Gligor, “Codef: collaborative defense against
large-scale link-flooding attacks,” in Proc. ACM CoNEXT, 2013.

M. Bhuyan, D. Bhattacharyya, and J. Kalita, “Network anomaly
detection: Methods, systems and tools,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 1, 2013.

S. Lee and V. Gligor, “Floc: Dependable link access for legitimate
traffic in flooding attacks,” in Proc. IEEE ICDCS, 2010.

A. Athreya, X. Wang, Y. Kim, Y. Tian, and P. Tague, “Resistance is
not futile: Detecting ddos attacks without packet inspection,” in Proc.
WISA, 2013.

A. Shevtekar and N. Ansari, “A router-based technique to mitigate
reduction of quality (roq) attacks,” Computer Networks, vol. 52, 2008.
C. Zhang, Z. Cai, W. Chen, X. Luo, and J. Yin, “Flow level detection
and filtering of low-rate DDoS,” Computer Networks, vol. 56, 2012.
C. Chang, S. Lee, B. Lin, and J. Wang, “The taming of the shrew:
mitigating low-rate tcp-targeted attack,” IEEE Trans. On Network
Service Management, Mar. 2010.

X. Luo and R. Chang, “Optimizing the pulsing denial-of-service
attacks,” in Proc. IEEE DSN, 2005.

T. Hirayama, K. Toyoda, and I. Sasase, “Fast target link flooding attack
detection scheme by analyzing traceroute packets flow,” in Proc. IEEE
WIFS, 2015.

Q. Wang, F. Xiao, M. Zhou, Z. Wang, and H. Ding, “Mitigating link-
flooding attacks with active link obfuscation,” Arxiv, 2017.

N. Feamster, J. Winick, and J. Rexford, “A model of bgp routing for
network engineering,” in Proc. ACM SIGMETRICS, 2004.

A. Lodhi, A. Dhamdhere, and C. Dovrolis, “Open peering by internet
transit providers: Peer preference or peer pressure?” in Proc. IEEE
INFOCOM, 2014.

P. Xiao, Z. Li, H. Qi, W. Qu, and H. Yu, “An efficient ddos detection
with bloom filter in sdn,” in Proc. Trustcom/BigDataSE/ISPA, 2016.
A. Aydeger, N. Saputro, K. Akkaya, and M. Rahman, “Mitigating
crossfire attacks using sdn-based moving target defense,” in Proc. IEEE
LCN, 2016.

L. Wang, Q. Li, Y. Jiang, and J. Wu, “Towards mitigating link flooding
attack via incremental sdn deployment,” in Proc. ISCC, 2016.

M. S. Kang, V. D. Gligor, and V. Sekar, “Defending against evolving
ddos attacks: A case study using link flooding incidents,” in Cambridge
International Workshop on Security Protocols, 2016.

A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs, “Iperf: The
tcp/udp bandwidth measurement tool,” http://dast.nlanr.net/Projects.
M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measure-
ment methodology, dynamics, and relation with tcp throughput,” ACM
CCR, vol. 32, no. 4, 2002.

M. Crovella and B. Krishnamurthy, Internet Measurement: Infrastruc-
ture, Traffic and Applications. Wiley, 2006.

M. S. Kang and V. D. Gligor, “Routing bottlenecks in the internet —
causes, exploits, and countermeasures,” in Proc. ACM CCS, 2014.

Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker, “On routing
asymmetry in the internet,” in Proc. IEEE GLOBECOM, 2005.
http://www.cogentco.com/lookingglass.php, 2017.
http://1g.eurorings.net/index.cgi, 2017.
http://1g.level3.net/traceroute/lg_tr_output.php, 2017.
http://1g.riss.ro/cgi-bin/lg.cgi, 2017.
http://stats.uninett.no/cgi-bin/lg.cgi, 2017.

http://1g.telia.net/, 2017.

https://ssp.pme.gin.ntt.net/lg/lg.cgi, 2017.

X. Luo, E. Chan, and R. Chang, “Design and implementation of TCP
data probes for reliable and metric-rich network path monitoring,” in
Proc. USENIX ATC, 2009.

X. Luo, L. Xue, C. Shi, Y. Shao, C. Qian, and E. Chan, “On measuring
one-way path metrics from a web server,” in Proc. IEEE ICNP, 2014.
N. Hu, L. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating internet
bottlenecks: Algorithms, measurements, and implications,” in Proc.
ACM SIGCOMM, 2004.

reports,”

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]
[67]
[68]

[69]
[70]

S. J. Templeton and K. E. Levitt, “Detecting spoofed packets,” in Proc.
DISCEX 111, 2003.

P. Barford, N. Duffield, A. Ron, and J. Sommers, ‘“Network perfor-
mance anomaly detection and localization,” in Proc. IEEE INFOCOM,
2009.

A. D. Jaggard, S. Kopparty, V. Ramachandran, and R. N. Wright,
“The design space of probing algorithms for network-performance
measurement,” in Proc. ACM SIGMETRICS, 2013.

S. Gangam and S. Fahmy, “Mitigating interference in a network
measurement service,” in Proc. IEEE iWQoS, 2011.

M. Fraiwan and G. Manimaran, “Scheduling algorithms for conducting
conflict-free measurements in overlay networks,” Computer Networks,
vol. 52, no. 15, 2008.

C. Chatfield, “The holt-winters forecasting procedure,” Journal of the
Royal Statistical Society. Series C, vol. 27, no. 3, 1978.

A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic
feature distributions,” in ACM SIGCOMM CCR, 2005.

K. Rieck and P. Laskov, “Language models for detection of unknown
attacks in network traffic,” Journal in Computer Virology, 2007.

S. Teng, H. Du, W. Zhang, X. Fu, and X. Li, “A cooperative network
intrusion detection based on heterogeneous distance function cluster-
ing,” in Proc. IEEE CSCWD, 2010.

K. Futamura, A. Karasaridis, E. Noel, P. Reeser, A. Sridharan, C. John-
son, and P. Velardo, “vdns closed-loop control: A framework for an
elastic control plane service,” in Proc. IEEE NFV-SDN, 2015.

E. G. da Silva, A. S. da Silva, J. A. Wickboldt, P. Smith, L. Z. Granville,
and A. Schaeffer-Filho, “A one-class nids for sdn-based scada systems,”
in Proc. IEEE COMPSAC, 2016.

V. Giotsas, C. Dietzel, G. Smaragdakis, A. Feldmann, A. Berger, and
E. Aben, “Detecting peering infrastructure outages in the wild,” in Proc.
ACM SIGCOMM, 2017.

M. S. Kang, V. D. Gligor, and V. Sekar, “Spiffy: Inducing cost-
detectability tradeoffs for persistent link-flooding attacks,” in Proc.
NDSS, 2016.

B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Avoiding traceroute anomalies with
Paris traceroute,” in Proc. ACM IMC, 2006.

A. Khan, T. Kwon, H. Kim, and Y. Choi, “AS-level topology collection
through looking glass servers,” in Proc. ACM IMC, 2013.

N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in Proc. ACM SIGCOMM, 2002.
CAIDA, “Overview of datasets, monitors,
https://www.caida.org/data/overview/.

D. Croce, E. Leonardi, and M. Mellia, “Large-scale available band-
width measurements: Interference in current techniques,” IEEE Trans-
actions on Network and Service Management, vol. 8, no. 4, 2011.

X. Luo and R. Chang, “On a new class of pulsing Denial-of-Service
attacks and the defense,” in Proc. NDSS, 2005.

E. Chan, X. Luo, W. Li, W. Fok, and R. K. Chang, “Measurement of
loss pairs in network paths,” in Proc. ACM IMC, 2010.

E. Chan, A. Chen, X. Luo, R. Mok, W. Li, and R. Chang, “TRIO:
Measuring asymmetric capacity with three minimum round-trip times,”
in Proc. ACM CoNEXT, 2011.

R. Koodli and R. Ravikanth, “One-way loss pattern sample metrics,”
RFC 3357, Aug. 2002.

J. Sommers, P. Barford, and W. Willinger, “Laboratory-based calibra-
tion of available bandwidth estimation tools,” Microprocess. Microsyst.,
vol. 31, no. 4, 2007.

M. Allman, V. Paxson, and E. Blanton, “Rfc5681: Tcp congestion
control,” 2009.

Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-
wide scanning and its security applications,” in Proc. USENIX SEC,
2013.

M. Tozal and K. Sarac, “Tracenet: An internet topology data collector,”
in Proc. ACM IMC, 2010.

J. Li, T. Ehrenkranz, and P. Elliott, “Buddyguard: A buddy system for
fast and reliable detection of ip prefix anomalies,” in Proc. ICNP, 2012.
E. Katz-Bassett, H. Madhyastha, V. Adhikari, C. Scott, J. Sherry,
P. Wesep, A. Krishnamurthy, and T. Anderson, “Reverse traceroute,”
in Proc. USENIX NSDI, 2010.

A. Khan, T. Kwon, H. Kim, and Y. Choi, “As-level topology collection
through looking glass servers,” in Proc. ACM IMC, 2013.

Y. Lin, R. Hwang, and F. Baker, Computer Networks: An Open Source
Approach. McGraw-Hill, 2011.

“Libpcap: Packet capture library,” http://www.tcpdump.org.

Netfilter, http://www.netfilter.org.

“Planetlab,” https://www.planet-lab.org/, 2017.

and reports,”

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX

[71]

[72]
[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971
[98]
[99]
[100]

[101]

A. Dainotti, A. Botta, and A. Pescape, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, 2012.

htop, http://hisham.hm/htop/.

W. Bongiovanni, A. Guelfi, E. Pontes, A. Silva, F. Zhou, and S. Kofuji,
“Viterbi algorithm for detecting ddos attacks,” in Proc. IEEE LCN,
2015.

D. Bayarjargal and G. Cho, “Detecting an anomalous traffic attack area
based on entropy distribution and mahalanobis distance,” International
Journal of Security and Its Applications, 2014,

M. Dharmadhikari and V. Kolhe, “Anomaly extraction using association
rule with the heterogeneous detectors,” in Proc. IEEE ICICES, 2014.
I. Jingle and E. Rajsingh, “Colshield: an effective and collaborative
protection shield for the detection and prevention of collaborative
flooding of ddos attacks in wireless mesh networks,” Human-centric
Computing and Information Sciences, 2014.

B. Gupta, P. Agrawal, A. Mishra, and M. Pattanshetti, “On estimating
strength of a ddos attack using polynomial regression model,” in Proc.
ICACC, 2011.

L. Teng, S. Teng, F. Tang, H. Zhu, W. Zhang, D. Liu, and L. Liang,
“A collaborative and adaptive intrusion detection based on svms and
decision trees,” in Proc. IEEE ICDMW, 2014.

M. Thottan and C. Ji, “Anomaly detection in ip networks,” IEEE Trans.
on Signal Processing, vol. 51, no. 8, 2003.

T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based
defense mechanisms countering the dos and ddos problems,” ACM
Computing Surveys (CSUR), vol. 39, no. 1, 2007.

G. Loukas and G. Oke, “Protection against denial of service attacks: a
survey,” The Computer Journal, vol. 53, no. 7, 2010.

S. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms
against distributed denial of service (DDoS) flooding attacks,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 4, 2013.

M. Bhuyan, H. Kashyap, D. Bhattacharyya, and J. Kalita, “Detecting
distributed denial of service attacks: Methods, tools and future direc-
tions,” The Computer Journal, Mar. 2013.

“Ripe atlas,” https://atlas.ripe.net/, 2017.

“Route views,” http://www.routeviews.org/, 2017.

“Traceroute,” http://www.traceroute.org/, 2017.

R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network
tomography: recent developments,” Statistical Science, vol. 19, 2004.
L. Ma, T. He, K. Leung, A. Swami, and D. Towsley, “Identifiability of
link metrics based on end-to-end path measurements,” in Proc. ACM
IMC, 2013.

A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot, “NetDiagnoser:
troubleshooting network unreachabilities using end-to-end probes and
routing data,” in Proc. ACM CoNEXT, 2007.

S. Zarifzadeh, M. Gowdagere, and C. Dovrolis, “Range tomography:
combining the practicality of boolean tomography with the resolution
of analog tomography,” in Proc. ACM IMC, 2012.

H. Nguyen and P. Thiran, “The boolean solution to the congested ip
link location problem:theory and practice,” in Proc. IEEE INFOCOM,
2007.

N. Duffield, P. Avenue, and F. Park, “Network tomography of binary
network performance characteristics,” IEEE Trans. Information Theory,
vol. 52, no. 12, 2006.

Q. Zheng and G. Cao, “Minimizing probing cost and achieving
identifiability in probe based network link monitoring,” IEEE Trans.
Computers, vol. 62, no. 3, 2013.

Y. Zhao, Y. Chen, and D. Bindel, “Towards unbiased end-to-end
network diagnosis,” IEEE/ACM Trans. on Networking, vol. 17, no. 6,
2009.

C. Liaskos, V. Kotronis, and X. Dimitropoulos, “A novel framework
for modeling and mitigating distributed link flooding attacks,” in Proc.
IEEE INFOCOM, 2016.

D. Gkounis, V. Kotronis, C. Liaskos, and X. Dimitropoulos, “On the
interplay of link-flooding attacks and traffic engineering,” SIGCOMM
Comput. Commun. Rev., vol. 46, no. 2, 2016.

X. Luo and R. Chang, “Novel approaches to end-to-end packet reorder-
ing measurement,” in Proc. ACM IMC, 2005.

S. Savage, “Sting: A TCP-based network measurement tool,” in Proc.
USENIX USITS, 1999.

“httping,” https://www.vanheusden.com/httping, 2017.

L. Xue, X. Ma, X. Luo, L. Yu, S. Wang, and T. Chen, “Is what you
measure what you expect? factors affecting smartphone-based mobile
network measurement,” in Proc. IEEE INFOCOM, 2017.

“pingb: Bandwidth measuring ping,” http://www.florian.ca/pingb, 2017.

16

Lei Xue is a Post-Doctoral Research Fellow with the
Department of Computing, The Hong Kong Poly-
technic University. He received the Ph.D. degree in
Computer Science from The Hong Kong Polytechnic
University. His current research focuses on network
security, mobile security, and network measurement.

Xiaobo Ma is currently an assistant professor with
the Department of Computer Science and Technol-
ogy, Xi’an Jiaotong University. He received his Ph.
D. degree in Control Science and Engineering from
Xi’an Jiaotong University. He was a Post-Doctoral
Research Fellow with the Hong Kong Polytechnic
University. His current research interests include
network security and privacy.

Xiapu Luo is an Assistant Professor with the De-
partment of Computing and an Associate Researcher
with the Shenzhen Research Institute, The Hong
Kong Polytechnic University. He received the Ph.D.
degree in Computer Science from The Hong Kong
Polytechnic University, and was a Post-Doctoral
Research Fellow with the Georgia Institute of Tech-
nology. His current research focuses on smartphone
security and privacy, network security and privacy,
and Internet measurement.

Edmond W.W. Chan received the PhD degree in
computer science from the Department of Com-
puting, the Hong Kong Polytechnic University, in
2010. He was a researcher at the Huawei Noah’s
Ark Laboratory and worked on mobile network
performance and traffic analysis. He is currently a
senior solutions architect with Akamai Technologies,
Hong Kong, addressing performance and security
problems in web, media, DNS, and TCP for clients
in different verticals including finance, enterprise,
gaming, and mobile and consumer electronics.

Tony T. N. Miu is a Security Researcher with
Nexusguard Ltd. He received the B.S. degree in
computer science from The Hong Kong Polytechnic
University. His current research focuses on network
security, especially DDoS detection, and defense.

Guofei Gu is an associate professor in the De-
partment of Computer Science & Engineering at
Texas A&M University. Before joining Texas A&M,
he received his Ph.D. degree in Computer Science
from the College of Computing, Georgia Tech, in
2008. He is currently directing the SUCCESS (Se-
cure Communication and Computer Systems) Lab at
TAMU.

