
Mobile Application Web API Reconnaissance:

Web-to-Mobile Inconsistencies & Vulnerabilities

Abner Mendoza, Guofei Gu

Texas A&M University

abmendoza@tamu.edu, guofei@cse.tamu.edu

Abstract—Modern mobile apps use cloud-hosted HTTP-based
API services and heavily rely on the Internet infrastructure
for data communication and storage. To improve performance
and leverage the power of the mobile device, input validation
and other business logic required for interfacing with web
API services are typically implemented on the mobile client.
However, when a web service implementation fails to thoroughly
replicate input validation, it gives rise to inconsistencies that could
lead to attacks that can compromise user security and privacy.
Developing automatic methods of auditing web APIs for security
remains challenging.

In this paper, we present a novel approach for automatically
analyzing mobile app-to-web API communication to detect in-
consistencies in input validation logic between apps and their
respective web API services. We present our system, WARDroid,
which implements a static analysis-based web API reconnaissance
approach to uncover inconsistencies on real world API services
that can lead to attacks with severe consequences for potentially
millions of users throughout the world. Our system utilizes
program analysis techniques to automatically extract HTTP
communication templates from Android apps that encode the
input validation constraints imposed by the apps on outgoing
web requests to web API services. WARDroid is also enhanced
with blackbox testing of server validation logic to identify
inconsistencies that can lead to attacks.

We evaluated our system on a set of 10,000 popular free apps
from the Google Play Store. We detected problematic logic in
APIs used in over 4,000 apps, including 1,743 apps that use
unencrypted HTTP communication. We further tested 1,000 apps
to validate web API hijacking vulnerabilities that can lead to
potential compromise of user privacy and security and found
that millions of users are potentially affected from our sample
set of tested apps.

I. INTRODUCTION

The proliferation of mobile devices has resulted in an

extensive array of mobile applications (apps) that serve diverse

needs of our connected society. Today’s modern lifestyle

increasingly depends on mobile apps that serve a wide spec-

trum of functionality including military applications, critical

business services, banking, entertainment, and other diverse

functionality. Mobile apps are often built as front-ends to ser-

vices hosted in the cloud infrastructure and accessible through

web API services. The web platform, through the use of HTTP

and HTTPS [1], serves as the main conduit for communication

between mobile applications and their respective web API

services. Previous research work in the mobile space has

mostly focused on security and privacy of the mobile device

and data stored locally on the device. However, remote HTTP-

based services form an integral part of the mobile application

ecosystem and deserve similar scrutiny with regard to security

and privacy concerns. This fact is evidenced by the placement

of Weak Server Controls as the top vulnerability in the OWASP

top 10 mobile vulnerabilities [2].

The ease at which mobile apps can be built using modern

tools means that even inexperienced developers can deploy

mobile applications that integrate with new or existing cloud

services. Additionally, a number of well established cloud

infrastructure service providers such as Amazon AWS and

Microsoft Azure provide pre-packaged mobile cloud solutions

that mobile application developers can integrate into their

apps with just a few lines of code. This approach promises

to abstract the backend logic and maintenance, freeing the

developers to focus on their mobile app functionality and user

experience. These services often include ready-made solutions

for common tasks such as data storage, user authentication,

e-commerce, social-media integration, and push notifications.

Cloud services are provided via specialized software devel-

opment kits (SDK) and application programming interfaces

(APIs) for easy integration. However, this fast paced devel-

opment is often done without full consideration of security

implications. Often, there is no robust security design or

guidance of the application integration with the pre-packaged

components, exposing many mobile applications to exploita-

tion. Similarly, homegrown (proprietary) web API services are

often deployed at a fast pace, without much consideration of

the security impact of the design decisions and how developers

will integrate the API service into their apps.

In every instance, the decoupled mobile web service API

architecture mandates that input validation logic is done

equally at both the client and server side. This creates a

heightened dependency on robust consistency between two

disparate platforms: web and mobile. In this work, we are

motivated by the insight that the logic implemented in the

mobile client can be used to inform audits of server-side APIs.

We observe that it is non-trivial to ensure full and robust

consistency between app-based and server-based validation

routines, resulting in inevitable mismatches between client and

server implementations of input validation logic. We introduce

the concept of Web API Hijacking to generalize these types of

threats, and develop an approach to uncover instances of Web

API Hijacking. Web API hijacking describes a class of server-

side attacks that seek to exploit logic inconsistencies and gain

unauthorized access to protected or private server capabili-

ties and resources where robust validation controls are not

consistently implemented. These attacks leverage parameter

tampering vulnerabilities on the web platform [3], discoverable

through careful analysis of mobile application code logic.
While there have been extensive works in the past to

address web server problems such as SQL injection, cross site

scripting, and other traditional web security problems [4], [5],

today’s mobile-first web services are often implemented with

scalability as a top priority [6]. As we show in this work,

mobile app architectures often defer validation and security

to the client-side. Weak server-side input validation is by

no means a new problem, but it has received little to no

attention, especially from the aspect of integration with mobile

applications.
Inspired by previous work in web parameter tampering

vulnerabilities [3], [7], and advances in mobile application pro-

gram analysis techniques, we devise a novel approach, called

WARDroid, to analyze mobile application web API interaction,

and uncover attack opportunities that can lead to compro-

mise of user security and privacy. WARDroid is a framework

that implements semi-automatic Web API Reconnaissance to

analyze validation routines that make up requests to web

API services from an app. WARDroid can then uncover in-

consistencies between app-based and server-based validation

logic that can lead to Web API Hijacking attacks. WARDroid

implements a network-aware static analysis framework that

systematically extracts the web API communication profile

and logic constraints for a given app. It then infers sample

input values that violate the implemented constraints found in

the app. WARDroid then analyzes app-violating request logic

on the server side via blackbox testing, and is able to uncover

instances where web API services do not properly implement

input validation. We highlight several interesting case studies

that show the potential real world impact of these weaknesses

on the mobile ecosystem, affecting even high profile mobile

apps used by millions of users.
We enable comprehensive analysis of each individual appli-

cation with regard to its app-to-web communication template

to uncover Web API Hijacking opportunities. Our system

primarily focuses on extracting the application layer con-

straints and interactions that occur over HTTP(S). Our System

advances state of the art research toward providing a compre-

hensive characterization of HTTP-based API communication,

especially including the constraints that relate to UI-level

input fields that flow to remote web APIs. We formulate our

problem in terms of the logic constraints that are imposed by

application code, and use it as a model to characterize expected

server-side logic.
In short, the contributions of this paper are as follows:

• We develop the first systematic approach for detecting

mobile-to-web validation logic inconsistencies that can

lead to attacks. We call this class of attacks Web API

Hijacking.

• We provide a novel mobile application Web API com-

munication analysis framework, called WARDroid, that

can extract details of mobile application cloud service

interactions. Our approach implements a novel network-

aware app-to-web static analysis framework that can

assist in uncovering Web API Hijacking vulnerabilities.

• We identify Web API misuse patterns and provide case

studies of analysis and discovered vulnerabilities in real

world applications. We show concrete exploit opportuni-

ties that are uncovered from real world apps that could

lead to severe consequences for app developers, users,

and app service providers.

II. PROBLEM STATEMENT

While mobile apps may have robust input validation and

access control logic implemented in their native code, those

are often not equally replicated on the server side for data

sent to a web API. As a result, an attacker can bypass client-

side controls and exploit a web API service to extricate data

or inject malicious data without proper authorization. This is

noted in the recent paper by Sudhodanan et. al. [8].

In this paper we aim to systematically study and (semi-

)automatically detect the inconsistencies between data valida-

tion logic in a mobile app and data validation logic imple-

mented at a remote web API server. While this is inspired

by previous work on web parameter tampering [3], [7], we

address challenges in uncovering web API data validation

logic in mobile apps, where client-to-server communication

is not as inherent as on the web platform. We also highlight

the real world security impact of inconsistent app-to-web

validation on the mobile ecosystem caused by loose coupling

between mobile and web validation logic.

Transactions between mobile apps and web API services

require careful coordination of data validation logic to ensure

that security controls are consistently implemented. For ex-

ample, if a mobile app restricts the data type of a user input

field, we expect that the server should also implement a similar

restriction to ensure consistency. Unfortunately, it is difficult

or impossible to ensure complete consistency between controls

built into the mobile app and controls actually enforced at the

server side. In many cases, the server should enforce more

constraints than the client (such as enforcing uniqueness of

usernames, for example). In this paper, we assume that the

server is at least as strict as the client. Remote web API service

implementations are often shared among different user agents

(mobile and browser), giving rise to further inconsistencies in

the implementations of the application logic between different

apps that use the same backend web API. For the sake of

scalability, web APIs may even skip input validation and defer

that job to the apps. It is also not always feasible for remote

web API services to authenticate all clients, giving rise to var-

ious replay attacks where attackers can impersonate legitimate

clients or access functionality intended for legitimate clients

without authentication or authorization [8].

The scalability requirements of remote web API services

often mandate that the implementations are generic so that

multiple client platforms can be supported. However, this

can lead to serious security threats when the web API is

security-critical, or privacy-sensitive, but defers validation to

the client side. We address this problem in the context of the

mobile ecosystem. While we use the Android framework for

our research evaluation and testing, it is important to note

that Web API Hijacking is not intrinsic to any flaw in the

Android framework itself. Rather, this problem applies to any

mobile app that follows the model of using web API server

endpoints, such as those that use the SaaS app model. This is a

vulnerability that exists primarily on the web platform through

parameter tampering, but has transitioned into the mobile

ecosystem, enabled by the subtle mismatch and inconsistency

of data validation logic between the native mobile platform

and the web platform.

A. Motivation

Why are we using the mobile platform to uncover potential

web server vulnerabilities? Mobile web API services are not

tightly coupled with the app front-end, but we posit that

mobile apps implement validation logic that serves as a model

of expected server-side validation logic implemented by the

web API. This is especially true for web API services that

are tailored for mobile app consumption and do not have an

accompanying traditional web application interface. However,

due to the reliance on HTTP(S), any client capable of HTTP(S)

communication can therefore communicate with the web API

service. If the web API service does not properly validate

request data, and instead defers the responsibility to the

mobile app, an attacker can hijack the API functionality meant

exclusively for the mobile app.

Apps with web API hijacking vulnerabilities are usually not

malicious and usually implement fairly robust data validation.

However, the inconsistency lies in how the web API server

replicates that validation. Attackers in our threat model do

not attack the apps themselves but can use the app to under-

stand the web API communication profile and leverage that

knowledge to coerce the server to conduct malicious activities,

expose sensitive user data, or gain unauthorized access to

privileged functionality.

To determine if a given web API endpoint is vulnerable,

our analysis finds feasible data flows in the app that generate

HTTP(S) requests to the web API server and process some

response from the server. By extracting the path constraints

on those data flows, we can infer the data validation model

of the app for a particular web API endpoint. By generating

similar requests outside the app that would violate the app

validation logic, we can uncover inconsistencies between the

app and server logic. These web API endpoints are referred

to as ‘hijack-enabled’. By exploiting the inconsistencies in

these hijack-enabled endpoints, an attacker can compromise

the security and privacy of user data or API functionality.

We consider that a mobile app’s input validation logic with

respect to its interaction with a web API primarily consists of

three steps:

1) Sanitize and Validate input, and generate HTTP(S)

Requests to the Web API Server.

2) Reject Invalid Input.

3) Process Web API Server Responses.

B. Formalization

More formally, a mobile app Ma generates a request Ra

using input strings S and sends it to the remote web API server

for processing. Before sending the request, the application

must enforce certain constraints Ca on the strings in S, and

abort the request if the constraints are not satisfied. Formally,

the constraint checking code can be expressed as a function

Ca(S) → {true|false}, where true means that the inputs

satisfy the constraints, and false means that the inputs do

not satisfy the constraints. We denote the constraint checking

function at client app as Ca, and the corresponding function

at the server as Cs. Therefore, we assert that if Cs(S) = true,

then Ca(S) = true. That is, if the server constraints on

an input evaluate to true, then the client constraints on the

preceding web request input should also evaluate to true.

We observe the following rules about constraint checking

between the app and the server:

• An input accepted at the server does not violate the

constraints at the client. Cs(S) = true⇒ Ca(S) = true

• An input that is rejected at the client, should be rejected

at the server. Ca(S) = false⇒ Cs(S) = false

These rules ensure consistency between validation at the

mobile app and at the web API server. We note that an

input that is valid in the app may be invalid at the web API

server because Cs may be more restrictive than Ca in certain

situations. For example, when registering a user account, the

server can additionally validate the username for uniqueness.

Also, if Cs(S) = false (the server rejects the input), then it

does not matter if the client accepts it or not. We are targeting

instances where Cs(S) = true AND Ca(S) = false.

A violation of these consistency rules could cause the API

to be hijack-enabled and exposed to the possibility of being

attacked. Specifically, a potential vulnerability exists if the web

API server accepts an input that would be rejected by the client

side constraints. Such problems can lead to compromise of

user data security and privacy, denial of service for all apps

that rely on the web API, and other serious consequences to

the mobile ecosystem that can lead to monetary losses.

Therefore, our problem is reduced to evaluating the con-

sistency of the constraint checking functions between the app

and the web API server. In this work, we treat the app as a

whitebox, and the web API server as a blackbox. Since Cs

is at least as restrictive as Ca, we can model Cs by precise

analysis of the app. Using a derived constraint formula, we can

uncover inconsistencies between both platforms by evaluating

the responses Rs generated from requests Ra sent to the

web API by our test framework. By identifying and further

evaluating web API endpoints that show inconsistencies, we

are able to uncover web API hijacking opportunities.

C. Threat model

We assume a network attacker as described in [9]. Our

attacker has access to the mobile application and can reverse

engineer the source code. Additionally, the attacker can ob-

serve and manipulate his own network traffic if necessary.

We assume the attacker has a means of sniffing data from

legitimate mobile user devices, but he also operates his own

mobile device and can observe, modify, and decrypt his

own HTTPS traffic. Our attacker is also a legitimate mobile

application user. This attacker has full access to the Android

client layer through which he can interact with the remote web

API server as a legitimate user would.

Attacker Capabilities: An attacker seeks to gain unautho-

rized access to sensitive resources by leveraging one of the

following methods on publicly exposed web API endpoint

functionality:

1) GET sensitive data using an API endpoint.

2) POST1 to data stores using the API endpoint.

Web API hijacking gives the attackers unauthorized access

to perform privileged actions on the API server side, and the

ability to influence reflected data to various apps and other

clients that may access the web API. This is a highly attractive

target for an attacker because it is a single point of attack that

can affect multiple users. For example, an attacker can leverage

capability 2 to write data to a data store that in subsequently

read by a website that may display the data to users. If the

attacker is able to embed malicious code into the data store,

that code would be reflected to the user if the consuming

website does not properly sanitize the data.

III. BACKGROUND

Android apps are packaged as APK files, which contain

all the resources necessary to execute the application on

the Android Framework. WARDroid starts by extracting the

resources from a given APK file and preprocessing those

resources for further analysis. The DEX class files are further

converted to an intermediate representation called Jimple [10]

that lends itself to static analysis using Soot [11]. Additionally,

WARDroid inspects the XML resource files that represent the

user interface and user input elements for different Activities

of the app. In Android, Activities represent the user interface

components of an app.

We focus on the Android platform due to its open source

nature, and we restrict our analysis to apps that use the

HTTP protocol for communication with a web API server.

One of the main functions of WARDroid is therefore to

model the HTTP(S) communication of the app with respect

to different web API services that may be used by the app.

An HTTP transaction consists of a Request and a Response

pair. A Request is modeled in the output templates as a tu-

ple containing <Method, Scheme, Domain, Path, Parameters,

Headers, Body>. Similarly, we model a Response as <Status,

Headers, Body>. Apps may directly open an HTTP stream

through the APIs provided by the framework, or they may

use an intermediate SDK which abstracts the framework API

utilization.

1We consider other less common HTTP verbs such as UPDATE and PUT
as having similar core functionality

Listing 1. Basic HTTP Request Generation Code

1 p r o t e c t e d S t r i n g doInBackground (s t r i n g s) {
2 URL u r l ;
3 HttpURLConnect ion u r l C o n n e c t i o n = n u l l ;
4 / / c r e a t e r e q u e s t
5 u r l = new URL(s t r i n g s [0]) ;
6 u r l C o n n e c t i o n =

(HttpURLConnect ion)
u r l . openConnec t ion () ;

7 i n t r e sponseCode =
u r l C o n n e c t i o n . ge tResponseCode () ;

8 i f (r e sponseCode ==
HttpURLConnect ion . HTTP OK) {

9 / / r e s p o n s e h a n d l i n g code
10 }
11 r e t u r n n u l l ;
12 }

The code listing shows a typical HTTP request method

in Android apps. This is encapsulated within a class that

may extend AsyncTask and is called using syntax such as

‘new GetMethodDemo().execute(serviceURL);’.

WARDroid identifies the HTTP interface at line 6 as a

point of interest (POI) and proceeds with backward program

slicing to identify all parameters and UI elements to which

the connection has a dependency. Intuitively, this exercise

encapsulates the full dependency graph that makes up the

web request. The observation is that forward taint propagation

from line 6 tracks objects that originate from a web API in

a response and backward tainting tracks objects that are used

to generate a request to a web API. We refer to such HTTP

access functions as Points of Interest because they separate

the forward and backward program slices. Forward taint

propagation reveals the data dependency for objects related to

response message processing, and backward tainting identifies

objects that make up the URI, request method, and body of a

web API request. As a result, the problem is now reduced to

searching and identifying POIs from Android and Java APIs,

which is much more feasible than performing a full analysis

of the entire app call graph and tracking all network-related

objects.

Thereafter, the path constraints within the slices are an-

alyzed to extract the web API request templates for which

test HTTP requests can be generated and further evaluated. In

particular, WARDroid identifies the constraints associated with

the web API request path Parameters, Headers, and Body, and

can generate test inputs for both valid and invalid API requests.

IV. APPROACH AND CHALLENGES

First, we extract the web API communication templates

from mobile apps that encode the input constraints enforced

by the app for web API communication. We implemented

a network-aware taint analysis approach to extract program

slices that represent the web API request generation func-

tionality of the app. We employed existing program analysis

tools and techniques to fit our problem and address known

inherent challenges. Second, using the extracted constraint

templates, we implement a blackbox testing component that

web-related code paths and constraints in apps that lead to

network APIs that generate HTTP(S) messages. We therefore

model the web API’s server-side validation logic using the

mobile application validation logic. We can then detect in-

consistencies by deriving invalid API requests that fail in our

mobile application model but does not fail when testing on

the actual server. We characterize the application validation

logic as a symbolic path constraint on a static abstraction

of the web request functionality which is a subset of the

program dependence graph (PDG) of the app. We represent

the constraints in the format of Z3 [13] and utilize the Z3-Str

library [17] to generate both valid and invalid concrete API

requests for testing through message replay.

WARDroid takes the application APK package as input and

produces possible web API hijacking opportunities as output.

First, we model the mobile app’s web API communication

into HTTP message templates. To accomplish this, we utilize

program analysis techniques that analyze the app to extract

the program slices that generate HTTP requests from each

POI. The main task is to track all dependencies that eventually

flow to network buffers through particular Android framework

APIs. This allows us to extract the relevant path constraints

and reason about the web API requests generated by the app.

To this end, our system extracts and analyzes the program

slices that generate and process HTTP messages using data

dependency analysis. We augment the resulting program de-

pendence graph slices with information from the user interface

(UI) resources in the app that define additional constraints

imposed by UI elements on user input data that eventually

make up part of the web API request.

Interesting code paths are those that include a conditional

flow that determines the final API request endpoint. These

conditions encode constraints that are our main targets for

evaluation of inconsistencies. We theorize that this constraint

logic is representative of the web API logic intended on

the server, but not always implemented with due diligence.

First we must understand the normal intended flow, and the

semantics of the checks that control the flow to different

web API end points. Armed with this information, we can

then reason about request messages that would violate the

extracted constraints and test if they are accepted by the

server. In some cases when the server is not available for

testing, or would cause harm, we can still infer success by

evaluating the response processing constraint logic of the app

that corresponds to the code path under consideration. This

correlates to the constraints extracted from the forward static

analysis starting at each POI.

A. Static Analysis

WARDroid implements program slicing to reduce the search

scope and focus on web API related code paths. The first step

is to extract a program slice using backward slicing starting

at the web API call points, which are our POIs (Points of

Interest). The key idea is to generate a concise representation

of the subset of the program that communicates over the

network. The slice is an approximation of the code necessary

to enable the app-to-web API communication.

1) Program Slicing: Extracting program slices of inter-

est requires identification and tracking of dependencies to

network-bound APIs [18]. We focus on two sets of net-

work message sending APIs as our starting points of inter-

est (POIs). First, we identify the Android framework APIs

provided for HTTP communication (e.g., HttpClient.execute).

We utilize the semantic models of these APIs devised

from [18]. We currently support java.net.HttpURLConnection,

org.apache.http, android.net.http, android.volley, javax.net.ssl,

and java.net.URL. Second, we also identify low level Socket

APIs. When these APIs get called, they will directly perform

connections to remote servers, which will then generate the

response from the servers. With these method invocations as

target points of interest, we can use taint analysis to identify

the dependencies and call paths that invokes them.

For tracking web API-related data flows, we modify Flow-

Droid [15], which is a system built on Soot [11] and pro-

vides flow-sensitive, context-sensitive, and inter-procedural

data flow analysis for Android apps. We also utilize the

output from SuSi [14], which provides a comprehensive list

of categorized sensitive APIs. We use the NETWORK and

BROWSERONFORMATION entries as the input to Flow-

Droid. This allows us to identify all the API calls that

can communicate using the network sensor or the browser.

However, different from the traditional use of Flowdroid to

track source to sink tainted paths, we utilize its taint analysis

functionality to track taints in reverse from the sinks (POIs)

until they converge to a UI element, an event handler, or

initial definition. This gives us the ability to extract a web

API-related program slice that represents the app’s web API

communication functionality.

Modifying tainting rules. For high accuracy and coverage,

the program slices must contain all operations related to the

web API communication from the POI. WARDroid utilizes

an open-ended taint propagation approach for this purpose.

Flowdroid’s default tainting rules implicitly handle forward

taint propagation. However, for backward taint propagation

we reverse the edge direction rules of the control flow graph

to propagate the dependencies in reverse order starting from

the point of interest. This is motivated by the approach taken

by Extractocol [18], which applies inverted taint propagation

rules in Flowdroid to swap the premise and conclusion of the

rules. Our previous work in [19] similarly use inverted tainting

rules for backward taint propagation.

More specifically, for assignment statements a tainted left-

hand side taints the right-hand side, and for function calls the

taint information of a callee’s arguments is propagated to the

caller’s arguments. We track the tainted objects until there are

no more objects to propagate, either at the object’s definition

or destruction.

A typical app also contains functionality that generates web

requests to entities other than a web API endpoints of interest.

For example, most ad libraries or analytics libraries have func-

tionality to communicate with backend servers, often through a

web API. These are outside the scope of our investigation, and

we therefore exclude popular ad and analytics libraries such as

Google AdMob. The goal of the program slicing module is to

generate program slices that directly relate to HTTP requests

and response processing.

We use static taint analysis to track information flow to

web API endpoints. However, unlike traditional static taint

analysis whose primary goal is to determine the existence of

data flow from taint sources to sinks, in this case we utilize it to

track flows through network-bound objects for reconstructing

web API message templates. Missing a single statement that

has a relationship with the web API message would result in

false negatives. Therefore, it is critical that we capture a robust

representation of the dependencies that lead to the point of

interest invocations. To this end, Flowdroid fits well into our

approach since it effectively solves many of the shortcomings

of static analysis.

Having extracted the network-aware program slices, we

can build the program dependence graph and add additional

augmentation, including constraints from UI elements.

2) Path Constraints: The constraint extraction module

takes the filtered program slices as input. We leverage many

of the existing functionality of Flowdroid, including call-

graph construction, points-to analysis, def-use chains, and

taint analysis. The goal of the path constraints module is

to reconstruct the app’s program dependence graph. Since

the dependence graph constructed directly from Flowdroid

cannot identify the edges that implicitly call the Android

framework APIs, or does not consider UI elements, we must

make additional augmentations to generate a complete set of

path constraints for any given POI. We augment the built-in

PDG output with additional information from the UI as well as

implicit call information added by the Edgeminer results [20].

We refer to this as an Augmented Program Dependence Graph

(APDG). Our approach ensures that both implicit and explicit

call edges are added to our APDG, improving our accuracy

and reducing false negatives.

To build the APDG, we analyze the Jimple IR slices from

the Program Slicing module and start from each event handler

(onCreate, onClick, onTextChanged, etc.), recursively adding

the callee edges, including the implicit edges known from

EdgeMiner. The results is a set of APDG’s, each starting from

the event handler functions. Furthermore, we analyze the UI

resource files to identify the Activities and UI elements and

connect them to their respective handlers. We augment our call

graph with UI information so that we can utilize and capture

constraints defined in the XML resource files, such as max

data input length or data types.

Asynchronous Events: Asynchronous event handling is very

common in Android programming. For example, an app may

construct a portion of the web API request query string into

an object and later, a click event would actually read the saved

object to generate the HTTP request. This is not easily handled

in static analysis, because the ordering of the events may be

lost. For example, FlowDroid assumes an arbitrary ordering of

these events, which can lead to a false negative or incomplete

results. It results in a failure to identify the full dependen-

cies across all events, resulting in an incomplete dependency

graph. Our backward analysis approach in WARDroid naturally

solves this problem because it sequentially backtracks from

the network API point of interest and naturally reconstructs

the order of events as it moves backwards. It also captures

implicit events with minimal effort. Dynamic analysis could

not solve this problem because it lacks sufficient code coverage

capabilities and would result in higher false negative rates.

To further reduce false negatives, we also utilize the re-

sults from Edgeminer [20] which previously solved the issue

of asynchronous and implicit events and identified 19,647

additional callbacks, as opposed to only 181 identified by

Flowdroid. Therefore, to enhance the coverage of WARDroid,

we directly use EdgeMiner’s results and added the list to

Flowdroid’s configuration files. This adds support for many

popular implicit callbacks commonly observed in web request

calls and HTTP libraries, such as AsyncTask and others.

The resulting constraints are expressed in the format of

Z3 [13], and we can then use the string solver (Z3-str [17])

to solve the constraints, or negation of the path constraint

expressions.

3) UI Analysis: We also augment the program dependence

graph using information extracted from the app’s resource files

that define the activity layouts. First, we must identify and

correlate a given input element from the XML to the event

listener in the program slice. We identify and tag the ID from

the activity XML files, resource files, and the manifest file.

Event handlers can be directly referenced in the XML, or the

listeners contain a single callback that the framework uses

to initiate the corresponding event handler. We extract the

constraints imposed by UI elements, and tag the corresponding

event handler node in the program dependence graph.

The UI elements impose additional constraints that may be

defined in either of the resource XML files that configure the

UI elements. WARDroid handles constraints as defined in Table

I.

TABLE I
SAMPLE UI CONSTRAINTS

Control Constraint

Spinner x ∈ {spinnerOptions()}
Checkbox x = {true|false}
RadioGroup x ∈ {radioOptions()}
TimePicker isV alidT ime(x)
DatePicker isV alidDate(x)
android:maxLength len(x) < n

android:numeric x ∈ [0− 9]

4) Constants: Constants are defined as static strings used

in the application code which represent authentication tokens

that are required for each request to the web API. For example,

apps that use the Amazon AWS sdk typically send the API

authentication key with each request. This key is usually hard-

coded in the source code. First, we use simple string searching

heuristics to look for strings that resemble 64-bit encoded hash

keys. However, the keys are not always retrievable through

such simple heuristics. To efficiently identify the constants,

we leverage functionality built into Flowdroid inspired by

[21]. Specifically, we use the inter-procedural constant-value

propagator, which looks for static strings in static initializers

or assignments. A value is considered static if the respective

field or local variable is always assigned the same constant

value. This fits exactly our use case. We tag these as required

fields in the web request templates and augment the constraint

formula to include these values.

Other Required Values. Most validation logic includes

simple checks for required fields. This is the most simple

form of input validation. WARDroid must account for these

instances. To address this challenge, we identify required

parameters and their types using a simple set of heuristics. For

example, when the constraint checks for a non-empty value,

we tag the corresponding parameter as required. Another

instance is where drop-down UI elements are used.

B. HTTP Templates

WARDroid’s program slicing approach effectively identifies

the request/response slices in Jimple. The resulting slices only

contain a small portion of all the app code, making the static

analysis process very efficient. Using our extracted constraints

along with additional augmentation information, we can build

our HTTP templates for each web API endpoint. Algorithm 1

outlines the basic steps that we use to process a static analysis

module output to generate our HTTP web API templates. The

input consists of statements from a program slice S, with entry

point e, and template T. The output of the algorithm is a set

of constraint formulas, C, which concisely represent the web

API templates.

Algorithm 1 Extracting Templates

1: procedure TEMPLATE(e,S,T):

2: begin

3: Start at entry point e

4: Get list of statements (stmt) from program slice S

5: foreach stmt ∈ S do

6: if stmt = branch then

7: Get constraints C from predecessors of stmt

8: merge all constraints C to T

9: elseif stmt = function call

10: sb← get subSlice(stmt)
11: p← get entryPoint(sb)
12: C ← Template(p, sb, T)

13: return C.

Our flow-sensitive constraint building process outputs a Z3-

compliant formula as well as a regular expression that repre-

sents the request template that can be replayed by replacing

concrete values for regular expression values that is readable

by a human analyst for manual replay as well as automated

replay.

WARDroid converts the constraints for URI, request tem-

plate, and response objects into regular expressions form for

offline analysis. Variable types are inferred using analysis and

heuristics similar to [19]. The regular expression format of a

variable object is then derived using its type (e.g., [0-9]+ for

integers). We additionally use heuristics from [18] to convert

instances of repetitions and disjunctions into the Kleene star

(*) and logical OR, respectively.

TABLE II
EXAMPLE HTTP TEMPLATE FORMAT

Method GET | POST | UPDATE | PUT | DELETE
Scheme HTTP | HTTPS
Domain example.com
Path /api/endpoint
Parameters ?id=x<,parameters>
Header {HTTP Header}
Body {content}

We model the HTTP request templates using the HTTP pro-

tocol fields that define the Method, Scheme, URI, Body, and

Content parameters. Table II illustrates an example template.

The constraints are encoded in the parameters, header, and

body fields.

VI. WEB API HIJACKING OPPORTUNITIES

Uncovering Web API Hijacking opportunities is facilitated

by the output of WARDroid via the resulting HTTP templates.

Web API hijacking opportunities for specific API endpoints

are uncovered through evaluation of inconsistencies by gener-

ating requests from the request templates that violate one or

more constraints expressed in the template. Since these are not

confirmed attacks at this phase, we call them opportunities for

exploit similar to [3]. These would only fall into the realm of

actual exploitable vulnerabilities after they have been tested

or shown to lead to actual violation of the security of the

application or user data privacy.

To evaluate the inconsistencies, we employ a string match-

ing approach to automatically test sample requests to de-

termine inputs that could be successful. We further built

heuristics into the test module to identify the server technology

from the response headers. For example, some servers will

disclose the runtime framework, database, and other details

that can be used to fingerprint the server. In our prototype,

we use simple heuristics to identify the web server runtime

(PHP, asp.net, etc) and the backend server (MySQL, mssql).

These are used to suggest further inputs that utilize domain

knowledge, such as generating a simple SQL injection type

input value.

A. Ethical Approach

We were very careful in our analyses to ensure that we

would not cause any harm to the API servers or the mobile

apps. The scope of our work did not require an IRB from

our University, similar to related works such as [3], [22]. All

testing was done in a responsible manner to ensure we did not

cross any ethical boundary. We used test and demo accounts

where possible, and we ensured that no private data was ever

saved from any successful exploit. In one case study, we

worked with the app developer and obtained full permission

to test their API.

B. Server Testing

To validate web API hijacking opportunities, we need to

generate concrete values from the resulting HTTP templates

recovered from the apps. At this point, we do not need the

app or the Android framework as we can directly replay

these requests using an HTTP library. For this purpose, we

built a prototype python-based module. The request generation

module takes the constraints expressions from the HTTP

templates and utilizes the Z3-Str constraint solver to assist

in generating concrete values.

1) Generating Input: Using the extracted path constraints

encoded in the request templates, we identify possible invalid

input parameter values by solving constraint negations. To this

end, we use Z3-Str with the regular expression extension. We

additionally take the approach of NoTamper [3] to iteratively

solve the constraint disjuncts rather than solving a complete

negation of the entire constraint.

2) Generating Requests: The request generation module

involves two tasks: (1) constructing new logical constraint

formulas whose solutions correspond to potentially invalid

inputs and (2) solving those formulas to build requests from

templates with concrete values.

Each invalid request sample would ideally test for a unique

opportunity on the web server rather than repeating the same

effective probe. To avoid redundant invalid requests, we con-

vert the constraint formula to disjunctive normal form, and

then we construct an invalid input for each disjunct while

solving the rest of the formula to produce a valid input.

First, we generate concrete requests that satisfy the con-

straints. We generate two valid requests for each template and

then replay these valid requests to the server and save the

response data. Then, we compare both responses and remove

all differences. This effectively removes the noise, such as date

stamps, and useless server-generated values that may change

across responses. The result is two response data traces that

represents the similarity for responses to requests that are

accepted by the server. We manually validate these to check

that we are indeed comparing two responses to truly valid

requests to the API. This will essentially serve as our ground

truth to subsequently compare invalid requests.

3) Evaluating Responses: Lastly, we generate potentially

invalid requests and collect the response for each one. For

each response, we remove the elements that also occur in any

of the saved valid responses for that template (sanitization).

Then, we employ an edit distance algorithm to measure the

distance between the sanitized responses for the invalid input

and any of the responses from the valid input. Intuitively, if

the two responses are similar to each other, we can infer that

the invalid request was accepted by the server.

To determine if invalid inputs were accepted by the server,

our approach compares the sanitized server response against

a response that is known to have been generated by benign

(valid) inputs. Since the server’s responses are typically text-

based JSON or XML or HTML, we can employ string simi-

larity detection. In our case, since the responses are typically

produced by a single web server, it is likely that the responses

are similar, and therefore we implement a custom response

comparison strategy. We evaluate the edit distance between

the sanitized response (sanitized against a valid response) and

another known valid response in a simple cross-validation

approach. Our experiments and manual verification prove that

this approach achieves decent accuracy in classifying server

responses. We leave a more robust approach to future work.

VII. EVALUATION

We evaluated the efficacy of WARDroid on a set of 10,000

Android apps gathered from the Google Play store using the

AndroZoo app crawler [23]. We identify several thousand apps

that utilize web API functionality, many of which are flagged

as potentially vulnerable to web API hijacking. We provide

general details of specific case studies where WARDroid

identified and validated web API hijacking opportunities that

we further manually validated. We refrain from disclosing app

identities because some are either not fixed, in the process of

being fixed after our notification, or in one instance we were

asked not to make any public disclosure.

A. Test Apps

To test our framework, we evaluated a total of 10,000

apps chosen from the top 10 categories in the Google Play

market. In total, WARDroid took an average of 8 minutes

to analyze each app and generated a total of 16,451 invalid

requests samples for each template and twice the number of

valid requests for response testing. This resulted in 4,562 apps

flagged as having a potential Web API Hijacking vulnerability.

We tested and validated a smaller set of 1000 apps (using 1000

randomly chosen request samples from distinct apps across our

dataset). Of those, 884 invalid requests were accepted by the

API server, meaning that 884 of those flagged vulnerable apps

were vulnerable, representing about 88.4% of the total tested

invalid request templates in the sample set. Since we only

tested a single generated invalid request for each app, it does

not mean that the rest of the apps were not vulnerable. We

further tested the remaining 116 apps using additional request

samples and found that an additional 42 apps had an API that

accepted an invalid request. In total, we verified that 926/1000

apps had at least one instance where it used a vulnerable web

API.

Additionally, we found that 1,743 apps in our dataset

generated unencrypted web API communication. While these

do not strictly fall in line with our stated goal of uncovering

validation inconsistencies, they nevertheless exacerbate the

problem of vulnerable web API implementations. One app that

has both a validation inconsistency and used an unencrypted

channel is a gift card app that stores a monetary value that can

be used to purchase goods from different online and offline

stores. We worked with this particular developer to perform

additional tests with their permission. We provide details of

some of these case studies below, but cannot disclose the full

details for ethical reasons. Table III provides a summary of

the distribution of apps and web API hijacking opportunities

analyzed. Most vulnerable apps fall under the Tools category,

but this turns out to be just a broad characterization of apps

that perform diverse utilities. A flagged app is one for which

WARDroid detected a possible validation inconsistency. A ver-

ified app is one where we tested and verified the inconsistency

using a generated request template. In all cases, we performed

tedious inspection and ensured that no harm was done.

TABLE III
EVALUATION ON 10,000 APPS, AND TESTING ON 1,000 FLAGGED APPS.

Category Apps Flagged Tested Verified

Education 1000 201 46 42
Lifestyle 1000 398 15 12
Entertainment 1000 232 79 67
Business 1000 405 90 82
Personalization 1000 549 21 18
Tools 1000 734 303 291
Music 1000 434 22 17
Reference 1000 697 130 124
Travel 1000 224 86 85
Game 1000 688 208 188

False Positives: To further reduce false positives,

WARDroid applies some heuristics to remove responses

flagged as vulnerable. We use a set of negative keyword

instances such as ‘Error’ and ‘Unauthorized’ to filter responses

that otherwise were very similar to successful responses. We

also used a threshold response data size to filter responses

where the data was too minimal to evaluate a meaningful

edit distance. After applying these heuristics, we manually in-

spected random responses. There is an important distinction to

make between false positives in the overall app, and the server

validation routine. Here we are evaluating the false positives in

individual server validation based on single requests. Overall,

the app-level false positive is difficult to measure because even

if a tested server request turns out to be a false positive, it does

not guarantee that another server request for the same app will

not be a true positive. For this reason, we merely flag apps as

potentially vulnerable in the first instance.

Note that we do not evaluate false negatives because we

do not guarantee complete code coverage, especially since we

utilize program slices to reduce the search space and improve

the usability of our tool. However, WARDroid also generates

reports for apps that include template definitions that can be

further utilized by a human analyst to further test web API

implementation through a manual process, especially where

user authentication is required. This is noted in our limitations

section. We argue, however, that our approach provides a

lower bound on the total true positive web API hijacking

opportunities that could be present for any given app/server

combination.

Efficacy. We also evaluated WARDroid against a manually

generated list of web requests from an app. To accomplish

this we chose a random app to test manually. We ran the app

through WARDroid and found that it generated a total of 8

web request templates. We then manually ran the app through

a MITM proxy and captured the web request traces while a

user performed typical app tasks for 2 minutes. We counted

the total number of manual templates as the unique URI/path

combinations from the request trace. We found only 6 such

unique pairs, confirming that our analysis can perform better

than manual testing. We leave a more extensive evaluation of

the efficacy in this regard to future work. Our goal was to

ensure that our prototype implementation had decent efficacy

to gather reliable results.

B. Victim Population

To estimate the potential victim population of vulnerable

applications, we checked the download statistics of each app

flagged with a web API hijacking opportunity. Using the app

package id’s we checked the estimated download numbers for

the application using a third-party service, AppBrain [24].

Using this information, we are able to get insights into the

estimated potential victim population if web API hijacking

opportunities can lead to actual exploits.

Fig. 2. Victim population distribution among verified apps with web API
hijacking problems.

Figure 2 shows the download number distribution with most

vulnerable applications having a user population between 100

to 1,000. Note this number is merely the lower bound of the

real victim population, especially since these statistics do not

consider other third-party marketplaces. This also suggests that

the problem may be more prominent with less popular apps,

which is an intuitive observation, although it also shows that

popular apps are not excluded from this problem.

This represents a total estimated victim population of over

6.47 million users from only 926 apps that displayed web

API hijacking opportunities. If we consider this to be a

representative sample of the total number of apps, we can

assert that the potential impact is widespread, reaching many

millions of users throughout the world.

C. Impact Analysis

In this work, we focus on validation inconsistencies that

enable a number of attacks to the mobile app server back-

end. Below are some of the specific attack case studies we

uncovered on apps that we tested. These are merely sample

attacks of a wider array of possible attacks that are possible

due to validation inconsistencies. We note that we also found

apps that communicated over an unencrypted channel, which

makes it easy for attackers to capture the required field values

for a request template and replay the requests by leveraging

validation inconsistencies as a means to an end. We refrain

from identifying the apps and SDKs involved because some

of these issues are still not fixed and we are in the process

of properly notifying the app developers. The variation and

potential severity and reach of these attacks illustrate the

importance of this problem. We stress here that we were

careful in evaluating these case studies in a safe manner

without causing harm. In most cases, we used our own dummy

accounts.

Unauthorized data access. Many apps we analyzed in-

cluded basic to non-existent authentication and authorization

mechanisms to control access to their backend services. Most

apps include an authentication token (key) with each request

that identifies the app to the backend and authorizes access

to data and services on the backend. While backend services

may provide additional layers of security, we found that many

apps choose to bypass these additional authentication steps.

As an example of unauthorized access, we discovered an

app that simply sent the user’s email address as an authen-

tication and authorization token. This app had over 5,000

downloads at the time of our testing. We setup test accounts

with the app owner permission and discovered that the server

did not perform any authorization checks. WARDroid identified

the email address parameter constraints as imposed by the

app and suggested an invalid email parameter as a test case.

After coordination with the app developer team, we were

given permission to test a non-production web API server that

was an exact copy of their production server, but with fake

test data. It turns out that the app team consisted of a small

number of inexperienced developers, which is not uncommon

in the mobile space. Informed by the web request template

constraints, we were able to launch a SQL injection attack on

the test server and retrieved a full list of all test app user data.

This would allow us to access any user account on the app

The root cause of this was the inconsistent validation of the

email string format at the server side. Since this was a virtual

money transfer app used in actual online and offline stores, our

discovery had serious potential consequences. Upon further

testing, we verified that the web API allowed us to freely

transfer funds between two user accounts. Since working with

this app team, they have fixed the validation inconsistency

issue, but they asked us to remain anonymous for fear of bad

publicity. This is an extreme case, but we think it is indicative

of many apps on the market, especially those deployed by less

experienced team.

JSON-based SQL Injection. On yet another app, we

uncovered a different SQL-injection vulnerability facilitated

by inconsistent data validation in a login form that allows

us to login as any user to an app. This is a less popular

app that had only over 1 thousand downloads at the time

of testing. This app sends the username and password as a

JSON array data type in the form {username: $usr, password:

$pwd}. WARDroid further reports that the password field is

constrained by the app to only use alphanumeric values. While

WARDroid does not suggest a proper invalid input, we utilize

domain knowledge to test this potential inconsistency. We

found that the server does not implement a similar constraint

on the password and happily accepts any input as long as the

JSON data is properly formatted. Subsequently, we are able to

login by replacing the password parameter with the following

value: ”,”$or:[{},{’1’:’1’}]. We note here that we used our

own sample dummy accounts and notified the app developers

of the potential problems, which has since been fixed.

Shopping for Free. We discovered a problem with a popu-

lar ecommerce SDK utilized by thousands of apps and online

stores across the world, with millions of users. WARDroid

reported a template where the constraint on the quantity

field for shopping cart items disallows numbers less than 1.

Naturally, a quantity zero would have no effect, but WARDroid

also suggested a violating input as a negative quantity. This

is disallowed by the sdk’s constraints in the app, but we

discovered that it was allowed by the server because the

same functionality is used to process returns and refunds,

where a negative quantity is indeed valid. However, since

this inconsistency exists, we can bypass the app and replay

a checkout action using a negative quantity on a line item

that can be manipulated to cause the checkout total to be zero

dollars. We tested this on a demo store account that we created

and confirmed the problem with the app developer. We note

that this problem has been fixed in a new release of their SDK,

although the old version still exists in production apps.

Cross Platform Content Injection. On a news app with

over 500,000 downloads, we discovered a problem where

the mobile app allows a user to enter comments on a news

article that is not properly sanitized at the server for proper

formatting. We discovered that the accompanying website for

the news station also displays comments entered on the mobile

app, and the mobile app disallows HTML characters in the

comments. WARDroid suggested that HTML characters could

be accepted by the server, which would be inconsistent with

the app constraints. Indeed, we were able to replay a comment

posting request with HTML characters, and the server stored

the values as is. This is not a problem when displaying the

comment on the mobile app, as it does not render HTML.

However, since the company’s website uses the same data

store, and the API design requires only client apps to validate

content, then the website renders the incoming comments as

HTML. This is a serious problem that could cause all kinds

of havoc on the website, including cross-site scripting attacks.

Account DoS. On a particular health app used by millions

of users around the world, WARDroid reported a constraint

on the password change request that restricted the password

length to 10 characters in addition to typical password con-

straints. This is a popular fitness app that had over 10 million

downloads at the time of testing. The server did not apply the

same validation as the app and allowed us to update a password

to a longer string. This caused the account to get locked out

of the app. While this attack may have no effect and may not

be useful, since an attacker wouldn’t find much use in locking

himself out of his own account, it does illustrate the pervasive

nature of the types of simple inconsistencies between app input

validation logic and server API validation logic.

Transferring Money. WARDroid analyzed an app by a

major US bank and reported a potential inconsistency in the

money transfer functionality. The app restricts transfers only

to connected accounts displayed in a spinner UI element. The

author used two of his own disconnected accounts to test this

inconsistency opportunity and was able to successfully transfer

funds between his two accounts although it was not possible

directly through the app or through the bank’s website. Again,

this may not be of particular interest to an attacker because

he may not want to transfer money out of his own account

to an unknown account. However, this also shows that the

inconsistency problem exists in some of the most important

and critical apps used in society. This bank app that had

over 10 million downloads at the time of testing. There may

be a wider array of inconsistencies that could potentially be

exploited, but due to ethical reasons, we are unable to test

or validate other potential inconsistencies except where we

can use our own account and not cause any harm. As of this

writing, this problem no longer exists in the updated bank

server’s API.

VIII. DISCUSSION

Mobile applications are a necessity in many facets of

society these days. In addition to traditional service businesses

offering mobile applications, such as banks, and applications

already available on the web, the proliferation of Internet of

Things means that many more devices have Internet connec-

tivity and can be controlled from a mobile phone. Examples

are home and office security systems, cars, classroom audio

video equipment, home appliances (thermostats, refrigerators,

televisions). It becomes very critical that the Web API end-

points of these devices are properly secured from hijacking

vulnerabilities.

A. Defense Guidelines

We attribute some of the observed problems to the shifting

app architecture in the modern era where web APIs are generic

service that can scale to support multiple client platforms,

including web and mobile apps. Additionally, due to the

enhanced capabilities of mobile devices, web service providers

sometimes opt to defer validation logic to the clients, ignoring

or oblivious to the subtle inconsistencies and vulnerabilities

that may arise as a result. Following are some guidelines based

on our findings in this work.

• Never trust the client. Do not defer validation to the client

side. The server must be at least as strict as the client for

input validation.

• The server must be prepared to handle and reject input

regardless of the client. No assumptions must be made

about the client.

• Authentication and Authorization logic must be carefully

implemented at the server side.

• Client-side validation must be thoroughly tested for con-

sistency with server-side validation logic. WARDroid can

help in identifying potential inconsistencies.

• Clients and Servers must sanitize inbound and outbound

data, especially where it can be used on either a mobile

or web client interchangeably.

While we have focused on the problems that can arise due to

inconsistent input validation logic, we believe that it will take

a concerted effort and paradigm shift to address mitigation of

this problem.

B. Limitations

Obfuscated code: Obfuscation is commonly observed in

popular real-world apps. A recent study has shown that 15%

of apps are obfuscated [25]. We find that many real-world

apps do not obfuscate their code. Many tools, including

Proguard [26], rename identifiers with semantically obscure

names to make reverse engineering more difficult. WARDroid

does not handle obfuscated application code, but it is included

in future work.

WARDroid also does not handle native code and JNI code.

We consider these to be out of our scope.

State Changes: Another limitation of WARDroid is that

it cannot reason about state changes and values that may

originate from a previous request to the API. For example,

the app may request a token value from a remote server that

could be included in a subsequent request. Previous works

such as [21], [18] propose methodologies that can accomplish

this task. WARDroid can be retrofitted with this feature to

improve its accuracy.

WebViews: WARDroid’s analysis is focused on native mo-

bile code, and does not consider web API accesses facilitated

through WebView-loaded JavaScript code in hybrid mobile

apps. We use a subset of the apps from our recent work which

identifies that over 90% of apps included at least one WebView

[19]. In that work, we provide an approach for uncovering

JavaScript Bridge functionality and semantics in hybrid mobile

apps.

Authentication: WARDroid also cannot evaluate requests

that require user authentication unless we hard-code test

credentials into the request template, such as a valid oAuth

tokens. An inherent challenge with most static analysis-based

systems, including WARDroid, is the inability to automatically

synthesize valid authentication sessions. Some level of human

intervention is necessary to overcome this limitation.

C. Convergence of Web and Mobile

In today’s Internet-connected mobile society, the web and

mobile platforms share some common ground in the effort to

provide security and privacy. Indeed, this work is inspired by

previous works on the web platform such as NoTamper [3] and

Waptec [7] that pursue similar goals in the context of browser-

based web applications. In this work, we directly tackle an

important issue that emerges from the amalgamation of the

web and mobile platforms.

The combination of mobile and web into new complex sys-

tems such as web service APIs, web-based operating system

environments, and hybrid applications presents a new frontier

in security and privacy research.

IX. RELATED WORK

We build on a number of previous works in the area of pro-

gram analysis on the Android framework. We especially make

use of Flowdroid [15] and Soot [11] program analysis tools.

Prior applications of these tools on Android include detection

of privacy leakage, malware detection, and other vulnerability

detection. In this work, we utilize program analysis techniques

to analyze a mobile application’s validation logic as a model

of it’s backend server validation logic.

Web Application Analysis. Our work is inspired by pre-

vious research into parameter tampering vulnerabilities on

web applications. Attacks that exploit these vulnerabilities

leverage the loose coupling of web services between the

client and server side. Waptec [7] and NoTamper [3] are

two prominent works that automatically identify parameter

tampering vulnerabilities in web applications and generate

exploits for those vulnerabilities. Similarly, WARDroid uses

concepts inspired by these works to analyze the inconsistencies

of the loose coupling between mobile apps and their backend

web API servers.

SIFON [27] analyzes web APIs to determine the extent

of oversharing of user information where the server sends

information to the app that is never used. Other related works

look at the issues that arise when webview components are

used to combine the web and mobile platforms into a seamless

experience. Luo et al. found several security issues that arose

due to this practice [28]. NoFrak [29] analyzed a similar issue

and proposed an approach to augment the security models to

allow finer grained access control between mobile and web

interaction.

Static Analysis. This work utilizes various static analysis

techniques and tools. Static analysis is often scalable since it

does not have to execute the app, and can achieve higher code

coverage than dynamic analysis. Previous works that use static

analysis commonly reconstruct the inter-procedural control

flow graph by modeling the Android app’s life-cycle. In this

work, we leverage FlowDroid [15] to similarly reconstruct and

extend the ICGF as an augmented program dependence graph,

but our goal is slightly different than detecting data flow from

source to sink. Other similar works such as Extractocol [18]

and Smartgen [30] follow a similar approach and utilize

Flowdroid as the basis for static analysis of apps to uncover

the behavior of communications with web servers. WARDroid

similarly analyzes the network behavior, but with a different

goal of analyzing the validation inconsistency with the server.

Protocol Reverse Engineering. Our work shares some

similarities and goals with protocol reverse engineering [31],

[32]. However, rather than exhaustive protocol reconstruction,

our goal is more aligned with [33] with a focus on uncovering

particular server-side vulnerabilities.
Input Generation. Several previous works implement input

data generation or fuzzing on Android applications. Intel-

lidroid [34] is a hybrid dynamic-static analysis framework that

analyzed event chains and can precisely identify the order or

inputs to trigger a specific code path. We used several concepts

from Intellidroid, especially as it relates to symbolic execution

and solving constraints using Z3 libraries. We opted not to

directly use Intellidroid in our approach because it is more

suited to malware detection and requires Android framework

instrumentation and execution in an emulator.
Symbolic Execution. Symbolic execution has been widely

used in many security applications on mobile applications.

TriggerScope [35] uses symbolic execution and other program

analysis techniques to precisely identify logic bomb triggers

in Android apps. IntelliDroid is similar to our work and

extracts path constraints that are used to generate app inputs

that can trigger specific execution paths. We leverage many

of their techniques and motivation in implementing symbolic

execution to extract path constraints.
App Network Traffic. Several previous works also analyze

app network traffic, but not necessarily through analysis of

the apps. Instead, this area of research primarily focuses on

the network layer to fingerprint apps through raw packet-level

network traffic inspection. FLOWR [36] tries to distinguish

mobile app traffic by extracting key-value pairs from HTTP

sessions at the network level. NetworkProfiler [37] uses UI-

based fuzzing on Android apps to build a comprehensive

network trace for a given app.

X. CONCLUSION

Modern mobile applications rely on web services to en-

able their functionality through HTTP-based communication.

Unfortunately, the disparate nature of the mobile and web

platforms causes input validation inconsistencies that can

lead to serious security issues. We presented WARDroid, a

framework that utilizes static program analysis and symbolic

execution to model input validation logic between mobile apps

and their remote web API servers. WARDroid extracts and

validates web API logic implementation in mobile apps and

uncovers inconsistencies between the app and server logic.
The uncovered inconsistencies are shown to expose serious

vulnerabilities in web API servers that affect a diverse set

of mobile apps. Our analysis of 10,000 apps uncovered a

significant portion of apps with web API hijacking opportuni-

ties that can violate user privacy and security for millions of

mobile app users. The inconsistency problem is not limited

to Android apps, but any client that utilizes the deployed

web API services, including iOS apps, Windows apps, and

web applications. This work sheds light on the existence and

pervasiveness of this important ongoing research problem, and

our hope is that it will motivate further research in this area.

ACKNOWLEDGMENT

This material is based upon work supported in part by the

National Science Foundation (NSF) under Grant no. 1314823

and 1700544. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of NSF.

REFERENCES

[1] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext transfer protocol–http/1.1,” Tech. Rep.,
1999.

[2] “OWASP Mobile Threats,” https://www.owasp.org/index.php/Projects/
OWASP Mobile Security Project - Top Ten Mobile Risks.

[3] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. Venkatakrish-
nan, “Notamper: automatic blackbox detection of parameter tampering
opportunities in web applications,” in Proceedings of the 17th ACM

conference on Computer and communications security. ACM, 2010,
pp. 607–618.

[4] S. Stamm, B. Sterne, and G. Markham, “Reining in the web with content
security policy,” in Proceedings of the 19th international conference on

World wide web. ACM, 2010, pp. 921–930.
[5] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee, “On the incoherencies

in web browser access control policies,” in 2010 IEEE Symposium on

Security and Privacy. IEEE, 2010, pp. 463–478.
[6] A. Mendoza, K. Singh, and G. Gu, “What is wrecking your data

plan? a measurement study of mobile web overhead,” in Computer

Communications (INFOCOM), 2015 IEEE Conference on. IEEE, 2015,
pp. 2740–2748.

[7] P. Bisht, T. Hinrichs, N. Skrupsky, and V. Venkatakrishnan, “Waptec:
whitebox analysis of web applications for parameter tampering exploit
construction,” in Proceedings of the 18th ACM conference on Computer

and communications security. ACM, 2011, pp. 575–586.
[8] A. Sudhodanan, A. Armando, R. Carbone, L. Compagna et al., “Attack

patterns for black-box security testing of multi-party web applications.”
in NDSS, 2016.

[9] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-
site request forgery,” in Proceedings of the 15th ACM conference on

Computer and communications security. ACM, 2008, pp. 75–88.
[10] R. Vallee-Rai and L. J. Hendren, “Jimple: Simplifying java bytecode for

analyses and transformations,” 1998.
[11] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,

“Soot-a java bytecode optimization framework,” in Proceedings of the

1999 conference of the Centre for Advanced Studies on Collaborative

research. IBM Press, 1999, p. 13.
[12] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,

J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5,
2014.

[13] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” Tools and

Algorithms for the Construction and Analysis of Systems, pp. 337–340,
2008.

[14] S. Arzt, S. Rasthofer, and E. Bodden, “Susi: A tool for the fully
automated classification and categorization of android sources and
sinks,” University of Darmstadt, Tech. Rep. TUDCS-2013-0114, 2013.

[15] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[16] J. C. King, “Symbolic execution and program testing,” Communications

of the ACM, vol. 19, no. 7, pp. 385–394, 1976.
[17] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A z3-based string solver for

web application analysis,” in Proceedings of the 2013 9th Joint Meeting

on Foundations of Software Engineering. ACM, 2013, pp. 114–124.

[18] H. Choi, J. Kim, H. Hong, Y. Kim, J. Lee, and D. Han, “Extractocol: Au-
toatic extraction of application-level protocol behaviors for android ap-
plications,” ACM SIGCOMM Computer Communication Review, vol. 45,
no. 4, pp. 593–594, 2015.

[19] G. Yang, A. Mendoza, J. Zhang, and G. Gu, “Precisely and scalably
vetting javascript bridge in android hybrid apps,” in Proceedings of The

20th International Symposium on Research on Attacks, Intrusions and

Defenses (RAID’17), September 2017.
[20] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,

and Y. Chen, “Edgeminer: Automatically detecting implicit control flow
transitions through the android framework.” in NDSS, 2015.

[21] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting run-
time values in android applications that feature anti-analysis techniques,”
2016.

[22] R. Wang, S. Chen, X. Wang, and S. Qadeer, “How to shop for free
online–security analysis of cashier-as-a-service based web stores,” in
Security and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011, pp.
465–480.

[23] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Mining Software Repositories (MSR), 2016 IEEE/ACM 13th Working

Conference on. IEEE, 2016, pp. 468–471.
[24] “Appbrain android statistics,” https://www.appbrain.com//.
[25] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google

play,” in ACM SIGMETRICS Performance Evaluation Review, vol. 42,
no. 1. ACM, 2014, pp. 221–233.

[26] E. Lafortune et al., “Proguard,” h ttp://proguard. sourceforge. net, 2004.
[27] W. Koch, A. Chaabane, M. Egele, W. Robertson, and E. Kirda, “Semi-

automated discovery of server-based information oversharing vulnerabil-
ities in android applications,” in Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis. ACM,
2017, pp. 147–157.

[28] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on webview
in the android system,” in Proceedings of the 27th Annual Computer

Security Applications Conference. ACM, 2011, pp. 343–352.
[29] S. Pooryousef and M. Amini, “Fine-grained access control for hybrid

mobile applications in android using restricted paths,” in Information

Security and Cryptology (ISCISC), 2016 13th International Iranian

Society of Cryptology Conference on. IEEE, 2016, pp. 85–90.
[30] C. Zuo and Z. Lin, “Smartgen: Exposing server urls of mobile apps with

selective symbolic execution,” in Proceedings of the 26th International

Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2017, pp. 867–876.

[31] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher:
Enabling active botnet infiltration using automatic protocol reverse-
engineering,” in Proceedings of the 16th ACM conference on Computer

and communications security. ACM, 2009, pp. 621–634.
[32] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:

Protocol specification extraction,” in Security and Privacy, 2009 30th

IEEE Symposium on. IEEE, 2009, pp. 110–125.
[33] G. Pellegrino and D. Balzarotti, “Toward black-box detection of logic

flaws in web applications.” in NDSS, 2014.
[34] M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator for the

dynamic analysis of android malware,” in Proceedings of the Annual

Symposium on Network and Distributed System Security (NDSS), 2016.
[35] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and

G. Vigna, “Triggerscope: Towards detecting logic bombs in android
applications,” in Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 2016, pp. 377–396.

[36] Q. Xu, T. Andrews, Y. Liao, S. Miskovic, Z. M. Mao, M. Baldi, and
A. Nucci, “Flowr: a self-learning system for classifying mobileappli-
cation traffic,” ACM SIGMETRICS Performance Evaluation Review,
vol. 42, no. 1, pp. 569–570, 2014.

[37] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, “Networkpro-
filer: Towards automatic fingerprinting of android apps,” in INFOCOM,

2013 Proceedings IEEE. IEEE, 2013, pp. 809–817.

