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Abstract—Modern mobile apps use cloud-hosted HTTP-based
API services and heavily rely on the Internet infrastructure
for data communication and storage. To improve performance
and leverage the power of the mobile device, input validation
and other business logic required for interfacing with web
API services are typically implemented on the mobile client.
However, when a web service implementation fails to thoroughly
replicate input validation, it gives rise to inconsistencies that could
lead to attacks that can compromise user security and privacy.
Developing automatic methods of auditing web APIs for security
remains challenging.

In this paper, we present a novel approach for automatically
analyzing mobile app-to-web API communication to detect in-
consistencies in input validation logic between apps and their
respective web API services. We present our system, WARDroid,
which implements a static analysis-based web API reconnaissance
approach to uncover inconsistencies on real world API services
that can lead to attacks with severe consequences for potentially
millions of users throughout the world. Our system utilizes
program analysis techniques to automatically extract HTTP
communication templates from Android apps that encode the
input validation constraints imposed by the apps on outgoing
web requests to web API services. WARDroid is also enhanced
with blackbox testing of server validation logic to identify
inconsistencies that can lead to attacks.

We evaluated our system on a set of 10,000 popular free apps
from the Google Play Store. We detected problematic logic in
APIs used in over 4,000 apps, including 1,743 apps that use
unencrypted HTTP communication. We further tested 1,000 apps
to validate web API hijacking vulnerabilities that can lead to
potential compromise of user privacy and security and found
that millions of users are potentially affected from our sample
set of tested apps.

I. INTRODUCTION

The proliferation of mobile devices has resulted in an
extensive array of mobile applications (apps) that serve diverse
needs of our connected society. Today’s modern lifestyle
increasingly depends on mobile apps that serve a wide spec-
trum of functionality including military applications, critical
business services, banking, entertainment, and other diverse
functionality. Mobile apps are often built as front-ends to ser-
vices hosted in the cloud infrastructure and accessible through
web API services. The web platform, through the use of HTTP
and HTTPS [1], serves as the main conduit for communication
between mobile applications and their respective web API
services. Previous research work in the mobile space has
mostly focused on security and privacy of the mobile device
and data stored locally on the device. However, remote HTTP-
based services form an integral part of the mobile application

ecosystem and deserve similar scrutiny with regard to security
and privacy concerns. This fact is evidenced by the placement
of Weak Server Controls as the top vulnerability in the OWASP
top 10 mobile vulnerabilities [2].

The ease at which mobile apps can be built using modern
tools means that even inexperienced developers can deploy
mobile applications that integrate with new or existing cloud
services. Additionally, a number of well established cloud
infrastructure service providers such as Amazon AWS and
Microsoft Azure provide pre-packaged mobile cloud solutions
that mobile application developers can integrate into their
apps with just a few lines of code. This approach promises
to abstract the backend logic and maintenance, freeing the
developers to focus on their mobile app functionality and user
experience. These services often include ready-made solutions
for common tasks such as data storage, user authentication,
e-commerce, social-media integration, and push notifications.
Cloud services are provided via specialized software devel-
opment kits (SDK) and application programming interfaces
(APIs) for easy integration. However, this fast paced devel-
opment is often done without full consideration of security
implications. Often, there is no robust security design or
guidance of the application integration with the pre-packaged
components, exposing many mobile applications to exploita-
tion. Similarly, homegrown (proprietary) web API services are
often deployed at a fast pace, without much consideration of
the security impact of the design decisions and how developers
will integrate the API service into their apps.

In every instance, the decoupled mobile web service API
architecture mandates that input validation logic is done
equally at both the client and server side. This creates a
heightened dependency on robust consistency between two
disparate platforms: web and mobile. In this work, we are
motivated by the insight that the logic implemented in the
mobile client can be used to inform audits of server-side APIs.
We observe that it is non-trivial to ensure full and robust
consistency between app-based and server-based validation
routines, resulting in inevitable mismatches between client and
server implementations of input validation logic. We introduce
the concept of Web API Hijacking to generalize these types of
threats, and develop an approach to uncover instances of Web
API Hijacking. Web API hijacking describes a class of server-
side attacks that seek to exploit logic inconsistencies and gain
unauthorized access to protected or private server capabili-
ties and resources where robust validation controls are not



consistently implemented. These attacks leverage parameter
tampering vulnerabilities on the web platform [3], discoverable
through careful analysis of mobile application code logic.

While there have been extensive works in the past to
address web server problems such as SQL injection, cross site
scripting, and other traditional web security problems [4], [5],
today’s mobile-first web services are often implemented with
scalability as a top priority [6]. As we show in this work,
mobile app architectures often defer validation and security
to the client-side. Weak server-side input validation is by
no means a new problem, but it has received little to no
attention, especially from the aspect of integration with mobile
applications.

Inspired by previous work in web parameter tampering
vulnerabilities [3], [7], and advances in mobile application pro-
gram analysis techniques, we devise a novel approach, called
WARDroid, to analyze mobile application web API interaction,
and uncover attack opportunities that can lead to compro-
mise of user security and privacy. WARDroid is a framework
that implements semi-automatic Web API Reconnaissance to
analyze validation routines that make up requests to web
API services from an app. WARDroid can then uncover in-
consistencies between app-based and server-based validation
logic that can lead to Web API Hijacking attacks. WARDroid
implements a network-aware static analysis framework that
systematically extracts the web API communication profile
and logic constraints for a given app. It then infers sample
input values that violate the implemented constraints found in
the app. WARDroid then analyzes app-violating request logic
on the server side via blackbox testing, and is able to uncover
instances where web API services do not properly implement
input validation. We highlight several interesting case studies
that show the potential real world impact of these weaknesses
on the mobile ecosystem, affecting even high profile mobile
apps used by millions of users.

We enable comprehensive analysis of each individual appli-
cation with regard to its app-to-web communication template
to uncover Web API Hijacking opportunities. Our system
primarily focuses on extracting the application layer con-
straints and interactions that occur over HTTP(S). Our System
advances state of the art research toward providing a compre-
hensive characterization of HTTP-based API communication,
especially including the constraints that relate to Ul-level
input fields that flow to remote web APIs. We formulate our
problem in terms of the logic constraints that are imposed by
application code, and use it as a model to characterize expected
server-side logic.

In short, the contributions of this paper are as follows:

o We develop the first systematic approach for detecting
mobile-to-web validation logic inconsistencies that can
lead to attacks. We call this class of attacks Web API
Hijacking.

o We provide a novel mobile application Web API com-
munication analysis framework, called WARDroid, that
can extract details of mobile application cloud service
interactions. Our approach implements a novel network-

aware app-to-web static analysis framework that can
assist in uncovering Web API Hijacking vulnerabilities.

+ We identify Web API misuse patterns and provide case
studies of analysis and discovered vulnerabilities in real
world applications. We show concrete exploit opportuni-
ties that are uncovered from real world apps that could
lead to severe consequences for app developers, users,
and app service providers.

II. PROBLEM STATEMENT

While mobile apps may have robust input validation and
access control logic implemented in their native code, those
are often not equally replicated on the server side for data
sent to a web APIL. As a result, an attacker can bypass client-
side controls and exploit a web API service to extricate data
or inject malicious data without proper authorization. This is
noted in the recent paper by Sudhodanan et. al. [8].

In this paper we aim to systematically study and (semi-
)automatically detect the inconsistencies between data valida-
tion logic in a mobile app and data validation logic imple-
mented at a remote web API server. While this is inspired
by previous work on web parameter tampering [3], [7], we
address challenges in uncovering web API data validation
logic in mobile apps, where client-to-server communication
is not as inherent as on the web platform. We also highlight
the real world security impact of inconsistent app-to-web
validation on the mobile ecosystem caused by loose coupling
between mobile and web validation logic.

Transactions between mobile apps and web API services
require careful coordination of data validation logic to ensure
that security controls are consistently implemented. For ex-
ample, if a mobile app restricts the data type of a user input
field, we expect that the server should also implement a similar
restriction to ensure consistency. Unfortunately, it is difficult
or impossible to ensure complete consistency between controls
built into the mobile app and controls actually enforced at the
server side. In many cases, the server should enforce more
constraints than the client (such as enforcing uniqueness of
usernames, for example). In this paper, we assume that the
server is at least as strict as the client. Remote web API service
implementations are often shared among different user agents
(mobile and browser), giving rise to further inconsistencies in
the implementations of the application logic between different
apps that use the same backend web API. For the sake of
scalability, web APIs may even skip input validation and defer
that job to the apps. It is also not always feasible for remote
web API services to authenticate all clients, giving rise to var-
ious replay attacks where attackers can impersonate legitimate
clients or access functionality intended for legitimate clients
without authentication or authorization [8].

The scalability requirements of remote web API services
often mandate that the implementations are generic so that
multiple client platforms can be supported. However, this
can lead to serious security threats when the web API is
security-critical, or privacy-sensitive, but defers validation to
the client side. We address this problem in the context of the



mobile ecosystem. While we use the Android framework for
our research evaluation and testing, it is important to note
that Web API Hijacking is not intrinsic to any flaw in the
Android framework itself. Rather, this problem applies to any
mobile app that follows the model of using web API server
endpoints, such as those that use the SaaS app model. This is a
vulnerability that exists primarily on the web platform through
parameter tampering, but has transitioned into the mobile
ecosystem, enabled by the subtle mismatch and inconsistency
of data validation logic between the native mobile platform
and the web platform.

A. Motivation

Why are we using the mobile platform to uncover potential
web server vulnerabilities? Mobile web API services are not
tightly coupled with the app front-end, but we posit that
mobile apps implement validation logic that serves as a model
of expected server-side validation logic implemented by the
web APIL. This is especially true for web API services that
are tailored for mobile app consumption and do not have an
accompanying traditional web application interface. However,
due to the reliance on HTTP(S), any client capable of HTTP(S)
communication can therefore communicate with the web API
service. If the web API service does not properly validate
request data, and instead defers the responsibility to the
mobile app, an attacker can hijack the API functionality meant
exclusively for the mobile app.

Apps with web API hijacking vulnerabilities are usually not
malicious and usually implement fairly robust data validation.
However, the inconsistency lies in how the web API server
replicates that validation. Attackers in our threat model do
not attack the apps themselves but can use the app to under-
stand the web API communication profile and leverage that
knowledge to coerce the server to conduct malicious activities,
expose sensitive user data, or gain unauthorized access to
privileged functionality.

To determine if a given web API endpoint is vulnerable,
our analysis finds feasible data flows in the app that generate
HTTP(S) requests to the web API server and process some
response from the server. By extracting the path constraints
on those data flows, we can infer the data validation model
of the app for a particular web API endpoint. By generating
similar requests outside the app that would violate the app
validation logic, we can uncover inconsistencies between the
app and server logic. These web API endpoints are referred
to as ‘hijack-enabled’. By exploiting the inconsistencies in
these hijack-enabled endpoints, an attacker can compromise
the security and privacy of user data or API functionality.

We consider that a mobile app’s input validation logic with
respect to its interaction with a web API primarily consists of
three steps:

1) Sanitize and Validate input, and generate HTTP(S)
Requests to the Web API Server.

2) Reject Invalid Input.

3) Process Web API Server Responses.

B. Formalization

More formally, a mobile app M, generates a request R,
using input strings S and sends it to the remote web API server
for processing. Before sending the request, the application
must enforce certain constraints C, on the strings in S, and
abort the request if the constraints are not satisfied. Formally,
the constraint checking code can be expressed as a function
Co(S) — {true|false}, where true means that the inputs
satisfy the constraints, and false means that the inputs do
not satisfy the constraints. We denote the constraint checking
function at client app as C,, and the corresponding function
at the server as C. Therefore, we assert that if C(S) = true,
then C,(S) = true. That is, if the server constraints on
an input evaluate to true, then the client constraints on the
preceding web request input should also evaluate to true.

We observe the following rules about constraint checking
between the app and the server:

e An input accepted at the server does not violate the
constraints at the client. Cs(S) = true = Cy(S) = true

« An input that is rejected at the client, should be rejected
at the server. Cy(S) = false = Cs(S) = false

These rules ensure consistency between validation at the
mobile app and at the web API server. We note that an
input that is valid in the app may be invalid at the web API
server because Cs may be more restrictive than C, in certain
situations. For example, when registering a user account, the
server can additionally validate the username for uniqueness.
Also, if C4(S) = false (the server rejects the input), then it
does not matter if the client accepts it or not. We are targeting
instances where C(S) = true AND C,(S) = false.

A violation of these consistency rules could cause the API
to be hijack-enabled and exposed to the possibility of being
attacked. Specifically, a potential vulnerability exists if the web
API server accepts an input that would be rejected by the client
side constraints. Such problems can lead to compromise of
user data security and privacy, denial of service for all apps
that rely on the web API, and other serious consequences to
the mobile ecosystem that can lead to monetary losses.

Therefore, our problem is reduced to evaluating the con-
sistency of the constraint checking functions between the app
and the web API server. In this work, we treat the app as a
whitebox, and the web API server as a blackbox. Since C,
is at least as restrictive as C,, we can model C by precise
analysis of the app. Using a derived constraint formula, we can
uncover inconsistencies between both platforms by evaluating
the responses R generated from requests R, sent to the
web API by our test framework. By identifying and further
evaluating web API endpoints that show inconsistencies, we
are able to uncover web API hijacking opportunities.

C. Threat model

We assume a network attacker as described in [9]. Our
attacker has access to the mobile application and can reverse
engineer the source code. Additionally, the attacker can ob-
serve and manipulate his own network traffic if necessary.



We assume the attacker has a means of sniffing data from
legitimate mobile user devices, but he also operates his own
mobile device and can observe, modify, and decrypt his
own HTTPS traffic. Our attacker is also a legitimate mobile
application user. This attacker has full access to the Android
client layer through which he can interact with the remote web
API server as a legitimate user would.

Attacker Capabilities: An attacker seeks to gain unautho-
rized access to sensitive resources by leveraging one of the
following methods on publicly exposed web API endpoint
functionality:

1) GET sensitive data using an API endpoint.
2) POST! to data stores using the API endpoint.

Web API hijacking gives the attackers unauthorized access
to perform privileged actions on the API server side, and the
ability to influence reflected data to various apps and other
clients that may access the web APL This is a highly attractive
target for an attacker because it is a single point of attack that
can affect multiple users. For example, an attacker can leverage
capability 2 to write data to a data store that in subsequently
read by a website that may display the data to users. If the
attacker is able to embed malicious code into the data store,
that code would be reflected to the user if the consuming
website does not properly sanitize the data.

III. BACKGROUND

Android apps are packaged as APK files, which contain
all the resources necessary to execute the application on
the Android Framework. WARDroid starts by extracting the
resources from a given APK file and preprocessing those
resources for further analysis. The DEX class files are further
converted to an intermediate representation called Jimple [10]
that lends itself to static analysis using Soot [11]. Additionally,
WARDroid inspects the XML resource files that represent the
user interface and user input elements for different Activities
of the app. In Android, Activities represent the user interface
components of an app.

We focus on the Android platform due to its open source
nature, and we restrict our analysis to apps that use the
HTTP protocol for communication with a web API server.
One of the main functions of WARDroid is therefore to
model the HTTP(S) communication of the app with respect
to different web API services that may be used by the app.
An HTTP transaction consists of a Request and a Response
pair. A Request is modeled in the output templates as a tu-
ple containing <Method, Scheme, Domain, Path, Parameters,
Headers, Body>. Similarly, we model a Response as <Status,
Headers, Body>. Apps may directly open an HTTP stream
through the APIs provided by the framework, or they may
use an intermediate SDK which abstracts the framework API
utilization.

'We consider other less common HTTP verbs such as UPDATE and PUT
as having similar core functionality

Listing 1. Basic HTTP Request Generation Code

1 protected String doInBackground(strings) {
2 URL url;
3 HttpURLConnection urlConnection = null;
4 // create request
5 url = new URL(strings[0]);
6 urlConnection =
(HttpURLConnection)
url .openConnection () ;
7 int responseCode =
urlConnection . getResponseCode () ;
8 if (responseCode ==
HttpURLConnection .HTTP_OK) {
9 //response handling code
10 }
11 return null;
12}

The code listing shows a typical HTTP request method
in Android apps. This is encapsulated within a class that
may extend AsyncTask and is called using syntax such as
‘new GetMethodDemo () .execute (serviceURL) ;' .
WARDroid identifies the HTTP interface at line 6 as a
point of interest (POI) and proceeds with backward program
slicing to identify all parameters and UI elements to which
the connection has a dependency. Intuitively, this exercise
encapsulates the full dependency graph that makes up the
web request. The observation is that forward taint propagation
from line 6 tracks objects that originate from a web API in
a response and backward tainting tracks objects that are used
to generate a request to a web API. We refer to such HTTP
access functions as Points of Interest because they separate
the forward and backward program slices. Forward taint
propagation reveals the data dependency for objects related to
response message processing, and backward tainting identifies
objects that make up the URI, request method, and body of a
web API request. As a result, the problem is now reduced to
searching and identifying POIs from Android and Java APIs,
which is much more feasible than performing a full analysis
of the entire app call graph and tracking all network-related
objects.

Thereafter, the path constraints within the slices are an-
alyzed to extract the web API request templates for which
test HTTP requests can be generated and further evaluated. In
particular, WARDroid identifies the constraints associated with
the web API request path Parameters, Headers, and Body, and
can generate test inputs for both valid and invalid API requests.

IV. APPROACH AND CHALLENGES

First, we extract the web API communication templates
from mobile apps that encode the input constraints enforced
by the app for web API communication. We implemented
a network-aware taint analysis approach to extract program
slices that represent the web API request generation func-
tionality of the app. We employed existing program analysis
tools and techniques to fit our problem and address known
inherent challenges. Second, using the extracted constraint
templates, we implement a blackbox testing component that
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Fig. 1. Overview Architecture of the WARDroid Framework

assesses the consistency between the app validation logic and
the web API server validation logic. Using the constraint
relationship rules between the app and the web API server,
we can generate requests that we expect to be rejected by the
server. The intuition is that the app validation logic should
be consistent with the web API server validation logic. Any
inconsistencies uncovered are opportunities that attackers may
be able exploit and can lead to a violation of the application
security properties. WARDroid generates both valid an invalid
requests that can be replayed to the server to evaluate our
hypothesis using a simple cross-validation approach to reduce
false positives.

A. General Challenges

The challenges of the whitebox analysis approach lie in the
non-trivial nature of static analysis and its inherent limitations.
Fortunately, these have been solved by existing work [12],
[10], [13], [14], [15]. We utilize these existing work in
WARDroid. Still, we address additional challenges in analyzing
app-to-web communication.

Modeling Server Logic. Without access to the back-end
server code, we must devise a methodology that effectively
utilizes the mobile application and the observed HTTP com-
munication logic to the backend API service to model the
expected server logic and constraints. This is exactly what
an adversary would also have access to, which lends some
practicality and feasibility to our analysis approach.

Incomplete Access. While the mobile application binaries
are readily available through the open marketplace model
of Android, we do not have access to the server side API
implementation for a precise comparison. Therefore, we must
rely solely on the mobile app and formulate an estimated
model of the server logic. Our system must therefore ensure
high code coverage and accurately infer the web API request
message constraint formula. To overcome this challenge, we
employ robust static analysis tools that ensure high coverage
and accuracy.

Low Coverage. To increase accuracy and coverage, and
further optimize our analysis, we implement symbolic ex-
ecution to model the input validation logic through path
constraints [16]. This allows us to efficiently reason about the
constraints of web API requests.

Symbolic execution utilizes the control flow graph, storing
an accumulating path condition as the data dependence moves
along the execution path. The path condition at the point
of interest represents the constraint formula that we later
utilize to reason about valid and invalid inputs to compare
validation consistency. For our purposes, the point of interests
are the HTTP(s) buffers in the mobile application used to
communicate with remote web APIs.

However, symbolic execution can be slow, and analyzing an
entire app can lead to unnecessary code paths being explored.
Since not all the app execution paths are related to web API
requests, we must filter only the paths that are of interest to
reduce the analysis space, while still maintaining precision and
accuracy.

Search Space. To reduce the search space and optimize the
analysis, we filter the paths to analyze only those that utilize
an HTTP library or system API. We focus on identified points
of interest (POIls) that generate or process web API HTTP(S)
messages. Fortunately, there is a small set of HTTP(S) libraries
and HTTP network buffer APIs that we can use as our starting
point for extracting HTTP communication templates.

Validating Inconsistencies. An important goal of
WARDroid is to validate inconsistencies in a semi-automated
fashion. This requires generation and replay of web API
requests and analysis of the corresponding responses. Some
human intervention is necessary in formulating proper
requests. It is also non-trivial to analyze server responses
based on simple heuristics to make a determination of success
or failure of the request. A simple approach could be to
evaluate HTTP status codes, but that would lead to many
false negatives. WARDroid overcomes this challenge by
implementing a response analysis approach that compares
several response traces of known valid requests with suspected
invalid requests. This approach is inspired by a similar method
used in [3].

V. SYSTEM ARCHITECTURE

The general system architecture is depicted in Figure 1. The
primary goal of WARDroid is a novel application of static taint
analysis and symbolic execution to uncover web API input
validation constraints and reason about web API hijacking
opportunities by evaluating inconsistencies. To achieve this
goal, we extend Flowdroid [15] to comprehensively analyze



web-related code paths and constraints in apps that lead to
network APIs that generate HTTP(S) messages. We therefore
model the web API’s server-side validation logic using the
mobile application validation logic. We can then detect in-
consistencies by deriving invalid API requests that fail in our
mobile application model but does not fail when testing on
the actual server. We characterize the application validation
logic as a symbolic path constraint on a static abstraction
of the web request functionality which is a subset of the
program dependence graph (PDG) of the app. We represent
the constraints in the format of Z3 [13] and utilize the Z3-Str
library [17] to generate both valid and invalid concrete API
requests for testing through message replay.

WARDroid takes the application APK package as input and
produces possible web API hijacking opportunities as output.
First, we model the mobile app’s web API communication
into HTTP message templates. To accomplish this, we utilize
program analysis techniques that analyze the app to extract
the program slices that generate HTTP requests from each
POI. The main task is to track all dependencies that eventually
flow to network buffers through particular Android framework
APIs. This allows us to extract the relevant path constraints
and reason about the web API requests generated by the app.

To this end, our system extracts and analyzes the program
slices that generate and process HTTP messages using data
dependency analysis. We augment the resulting program de-
pendence graph slices with information from the user interface
(UI) resources in the app that define additional constraints
imposed by UI elements on user input data that eventually
make up part of the web API request.

Interesting code paths are those that include a conditional
flow that determines the final API request endpoint. These
conditions encode constraints that are our main targets for
evaluation of inconsistencies. We theorize that this constraint
logic is representative of the web API logic intended on
the server, but not always implemented with due diligence.
First we must understand the normal intended flow, and the
semantics of the checks that control the flow to different
web API end points. Armed with this information, we can
then reason about request messages that would violate the
extracted constraints and test if they are accepted by the
server. In some cases when the server is not available for
testing, or would cause harm, we can still infer success by
evaluating the response processing constraint logic of the app
that corresponds to the code path under consideration. This
correlates to the constraints extracted from the forward static
analysis starting at each POL.

A. Static Analysis

WARDroid implements program slicing to reduce the search
scope and focus on web API related code paths. The first step
is to extract a program slice using backward slicing starting
at the web API call points, which are our POIs (Points of
Interest). The key idea is to generate a concise representation
of the subset of the program that communicates over the

network. The slice is an approximation of the code necessary
to enable the app-to-web API communication.

1) Program Slicing: Extracting program slices of inter-
est requires identification and tracking of dependencies to
network-bound APIs [18]. We focus on two sets of net-
work message sending APIs as our starting points of inter-
est (POIs). First, we identify the Android framework APIs
provided for HTTP communication (e.g., HttpClient.execute).
We utilize the semantic models of these APIs devised
from [18]. We currently support java.net. HttpURLConnection,
org.apache.http, android.net.http, android.volley, javax.net.ssl,
and java.net.URL. Second, we also identify low level Socket
APIs. When these APIs get called, they will directly perform
connections to remote servers, which will then generate the
response from the servers. With these method invocations as
target points of interest, we can use taint analysis to identify
the dependencies and call paths that invokes them.

For tracking web API-related data flows, we modify Flow-
Droid [15], which is a system built on Soot [11] and pro-
vides flow-sensitive, context-sensitive, and inter-procedural
data flow analysis for Android apps. We also utilize the
output from SuSi [14], which provides a comprehensive list
of categorized sensitive APIs. We use the NETWORK and
BROWSERONFORMATION entries as the input to Flow-
Droid. This allows us to identify all the API calls that
can communicate using the network sensor or the browser.
However, different from the traditional use of Flowdroid to
track source to sink tainted paths, we utilize its taint analysis
functionality to track taints in reverse from the sinks (POIs)
until they converge to a UI element, an event handler, or
initial definition. This gives us the ability to extract a web
API-related program slice that represents the app’s web API
communication functionality.

Modifying tainting rules. For high accuracy and coverage,
the program slices must contain all operations related to the
web API communication from the POI. WARDroid utilizes
an open-ended taint propagation approach for this purpose.
Flowdroid’s default tainting rules implicitly handle forward
taint propagation. However, for backward taint propagation
we reverse the edge direction rules of the control flow graph
to propagate the dependencies in reverse order starting from
the point of interest. This is motivated by the approach taken
by Extractocol [18], which applies inverted taint propagation
rules in Flowdroid to swap the premise and conclusion of the
rules. Our previous work in [19] similarly use inverted tainting
rules for backward taint propagation.

More specifically, for assignment statements a tainted left-
hand side taints the right-hand side, and for function calls the
taint information of a callee’s arguments is propagated to the
caller’s arguments. We track the tainted objects until there are
no more objects to propagate, either at the object’s definition
or destruction.

A typical app also contains functionality that generates web
requests to entities other than a web API endpoints of interest.
For example, most ad libraries or analytics libraries have func-



tionality to communicate with backend servers, often through a
web API. These are outside the scope of our investigation, and
we therefore exclude popular ad and analytics libraries such as
Google AdMob. The goal of the program slicing module is to
generate program slices that directly relate to HTTP requests
and response processing.

We use static taint analysis to track information flow to
web API endpoints. However, unlike traditional static taint
analysis whose primary goal is to determine the existence of
data flow from taint sources to sinks, in this case we utilize it to
track flows through network-bound objects for reconstructing
web API message templates. Missing a single statement that
has a relationship with the web API message would result in
false negatives. Therefore, it is critical that we capture a robust
representation of the dependencies that lead to the point of
interest invocations. To this end, Flowdroid fits well into our
approach since it effectively solves many of the shortcomings
of static analysis.

Having extracted the network-aware program slices, we
can build the program dependence graph and add additional
augmentation, including constraints from UI elements.

2) Path Constraints: The constraint extraction module
takes the filtered program slices as input. We leverage many
of the existing functionality of Flowdroid, including call-
graph construction, points-to analysis, def-use chains, and
taint analysis. The goal of the path constraints module is
to reconstruct the app’s program dependence graph. Since
the dependence graph constructed directly from Flowdroid
cannot identify the edges that implicitly call the Android
framework APIs, or does not consider Ul elements, we must
make additional augmentations to generate a complete set of
path constraints for any given POI. We augment the built-in
PDG output with additional information from the UI as well as
implicit call information added by the Edgeminer results [20].
We refer to this as an Augmented Program Dependence Graph
(APDG). Our approach ensures that both implicit and explicit
call edges are added to our APDG, improving our accuracy
and reducing false negatives.

To build the APDG, we analyze the Jimple IR slices from
the Program Slicing module and start from each event handler
(onCreate, onClick, onTextChanged, etc.), recursively adding
the callee edges, including the implicit edges known from
EdgeMiner. The results is a set of APDG’s, each starting from
the event handler functions. Furthermore, we analyze the Ul
resource files to identify the Activities and UI elements and
connect them to their respective handlers. We augment our call
graph with UI information so that we can utilize and capture
constraints defined in the XML resource files, such as max
data input length or data types.

Asynchronous Events: Asynchronous event handling is very
common in Android programming. For example, an app may
construct a portion of the web API request query string into
an object and later, a click event would actually read the saved
object to generate the HTTP request. This is not easily handled
in static analysis, because the ordering of the events may be
lost. For example, FlowDroid assumes an arbitrary ordering of

these events, which can lead to a false negative or incomplete
results. It results in a failure to identify the full dependen-
cies across all events, resulting in an incomplete dependency
graph. Our backward analysis approach in WARDroid naturally
solves this problem because it sequentially backtracks from
the network API point of interest and naturally reconstructs
the order of events as it moves backwards. It also captures
implicit events with minimal effort. Dynamic analysis could
not solve this problem because it lacks sufficient code coverage
capabilities and would result in higher false negative rates.

To further reduce false negatives, we also utilize the re-
sults from Edgeminer [20] which previously solved the issue
of asynchronous and implicit events and identified 19,647
additional callbacks, as opposed to only 181 identified by
Flowdroid. Therefore, to enhance the coverage of WARDroid,
we directly use EdgeMiner’s results and added the list to
Flowdroid’s configuration files. This adds support for many
popular implicit callbacks commonly observed in web request
calls and HTTP libraries, such as AsyncTask and others.

The resulting constraints are expressed in the format of
Z3 [13], and we can then use the string solver (Z3-str [17])
to solve the constraints, or negation of the path constraint
expressions.

3) UI Analysis: We also augment the program dependence
graph using information extracted from the app’s resource files
that define the activity layouts. First, we must identify and
correlate a given input element from the XML to the event
listener in the program slice. We identify and tag the ID from
the activity XML files, resource files, and the manifest file.
Event handlers can be directly referenced in the XML, or the
listeners contain a single callback that the framework uses
to initiate the corresponding event handler. We extract the
constraints imposed by Ul elements, and tag the corresponding
event handler node in the program dependence graph.

The UI elements impose additional constraints that may be
defined in either of the resource XML files that configure the
UI elements. WARDroid handles constraints as defined in Table
L.

TABLE I

SAMPLE UI CONSTRAINTS
Control Constraint
Spinner z € {spinnerOptions()}
Checkbox z = {true|false}
RadioGroup z € {radioOptions()}
TimePicker isValidTime(x)
DatePicker isValidDate(x)
android:maxLength | len(z) < n
android:numeric z €[0—9]

4) Constants: Constants are defined as static strings used
in the application code which represent authentication tokens
that are required for each request to the web API. For example,
apps that use the Amazon AWS sdk typically send the API
authentication key with each request. This key is usually hard-
coded in the source code. First, we use simple string searching
heuristics to look for strings that resemble 64-bit encoded hash



keys. However, the keys are not always retrievable through
such simple heuristics. To efficiently identify the constants,
we leverage functionality built into Flowdroid inspired by
[21]. Specifically, we use the inter-procedural constant-value
propagator, which looks for static strings in static initializers
or assignments. A value is considered static if the respective
field or local variable is always assigned the same constant
value. This fits exactly our use case. We tag these as required
fields in the web request templates and augment the constraint
formula to include these values.

Other Required Values. Most validation logic includes
simple checks for required fields. This is the most simple
form of input validation. WARDroid must account for these
instances. To address this challenge, we identify required
parameters and their types using a simple set of heuristics. For
example, when the constraint checks for a non-empty value,
we tag the corresponding parameter as required. Another
instance is where drop-down UI elements are used.

B. HTTP Templates

WARDroid’s program slicing approach effectively identifies
the request/response slices in Jimple. The resulting slices only
contain a small portion of all the app code, making the static
analysis process very efficient. Using our extracted constraints
along with additional augmentation information, we can build
our HTTP templates for each web API endpoint. Algorithm 1
outlines the basic steps that we use to process a static analysis
module output to generate our HTTP web API templates. The
input consists of statements from a program slice S, with entry
point e, and template T. The output of the algorithm is a set
of constraint formulas, C, which concisely represent the web
API templates.

Algorithm 1 Extracting Templates

1: procedure TEMPLATE(e,S,T):

2: begin

3: Start at entry point e

4 Get list of statements (stmt) from program slice S

5: foreach stmt € S do
6: if stmt = branch then
7
8
9

Get constraints C from predecessors of stmt
merge all constraints C to T
elseif stmt = function call

10: sb « get_subSlice(stmt)
11: p + get_entryPoint(sb)
12: C «+ Template(p, sb,T)

13: return C.

Our flow-sensitive constraint building process outputs a Z3-
compliant formula as well as a regular expression that repre-
sents the request template that can be replayed by replacing
concrete values for regular expression values that is readable
by a human analyst for manual replay as well as automated
replay.

WARDroid converts the constraints for URI, request tem-
plate, and response objects into regular expressions form for

offline analysis. Variable types are inferred using analysis and
heuristics similar to [19]. The regular expression format of a
variable object is then derived using its type (e.g., [0-9]+ for
integers). We additionally use heuristics from [18] to convert
instances of repetitions and disjunctions into the Kleene star
(*) and logical OR, respectively.

TABLE I
EXAMPLE HTTP TEMPLATE FORMAT

Method GET | POST | UPDATE | PUT | DELETE
Scheme HTTP | HTTPS

Domain example.com

Path /api/endpoint

Parameters | ?id=x<,parameters>

Header {HTTP Header}

Body {content}

We model the HTTP request templates using the HTTP pro-
tocol fields that define the Method, Scheme, URI, Body, and
Content parameters. Table II illustrates an example template.
The constraints are encoded in the parameters, header, and
body fields.

VI. WEB API HIJACKING OPPORTUNITIES

Uncovering Web API Hijacking opportunities is facilitated
by the output of WARDroid via the resulting HTTP templates.
Web API hijacking opportunities for specific API endpoints
are uncovered through evaluation of inconsistencies by gener-
ating requests from the request templates that violate one or
more constraints expressed in the template. Since these are not
confirmed attacks at this phase, we call them opportunities for
exploit similar to [3]. These would only fall into the realm of
actual exploitable vulnerabilities after they have been tested
or shown to lead to actual violation of the security of the
application or user data privacy.

To evaluate the inconsistencies, we employ a string match-
ing approach to automatically test sample requests to de-
termine inputs that could be successful. We further built
heuristics into the test module to identify the server technology
from the response headers. For example, some servers will
disclose the runtime framework, database, and other details
that can be used to fingerprint the server. In our prototype,
we use simple heuristics to identify the web server runtime
(PHP, asp.net, etc) and the backend server (MySQL, mssql).
These are used to suggest further inputs that utilize domain
knowledge, such as generating a simple SQL injection type
input value.

A. Ethical Approach

We were very careful in our analyses to ensure that we
would not cause any harm to the API servers or the mobile
apps. The scope of our work did not require an IRB from
our University, similar to related works such as [3], [22]. All
testing was done in a responsible manner to ensure we did not
cross any ethical boundary. We used test and demo accounts
where possible, and we ensured that no private data was ever
saved from any successful exploit. In one case study, we



worked with the app developer and obtained full permission
to test their APL

B. Server Testing

To validate web API hijacking opportunities, we need to
generate concrete values from the resulting HTTP templates
recovered from the apps. At this point, we do not need the
app or the Android framework as we can directly replay
these requests using an HTTP library. For this purpose, we
built a prototype python-based module. The request generation
module takes the constraints expressions from the HTTP
templates and utilizes the Z3-Str constraint solver to assist
in generating concrete values.

1) Generating Input: Using the extracted path constraints
encoded in the request templates, we identify possible invalid
input parameter values by solving constraint negations. To this
end, we use Z3-Str with the regular expression extension. We
additionally take the approach of NoTamper [3] to iteratively
solve the constraint disjuncts rather than solving a complete
negation of the entire constraint.

2) Generating Requests: The request generation module
involves two tasks: (1) constructing new logical constraint
formulas whose solutions correspond to potentially invalid
inputs and (2) solving those formulas to build requests from
templates with concrete values.

Each invalid request sample would ideally test for a unique
opportunity on the web server rather than repeating the same
effective probe. To avoid redundant invalid requests, we con-
vert the constraint formula to disjunctive normal form, and
then we construct an invalid input for each disjunct while
solving the rest of the formula to produce a valid input.

First, we generate concrete requests that satisfy the con-
straints. We generate two valid requests for each template and
then replay these valid requests to the server and save the
response data. Then, we compare both responses and remove
all differences. This effectively removes the noise, such as date
stamps, and useless server-generated values that may change
across responses. The result is two response data traces that
represents the similarity for responses to requests that are
accepted by the server. We manually validate these to check
that we are indeed comparing two responses to truly valid
requests to the APIL. This will essentially serve as our ground
truth to subsequently compare invalid requests.

3) Evaluating Responses: Lastly, we generate potentially
invalid requests and collect the response for each one. For
each response, we remove the elements that also occur in any
of the saved valid responses for that template (sanitization).
Then, we employ an edit distance algorithm to measure the
distance between the sanitized responses for the invalid input
and any of the responses from the valid input. Intuitively, if
the two responses are similar to each other, we can infer that
the invalid request was accepted by the server.

To determine if invalid inputs were accepted by the server,
our approach compares the sanitized server response against
a response that is known to have been generated by benign

(valid) inputs. Since the server’s responses are typically text-
based JSON or XML or HTML, we can employ string simi-
larity detection. In our case, since the responses are typically
produced by a single web server, it is likely that the responses
are similar, and therefore we implement a custom response
comparison strategy. We evaluate the edit distance between
the sanitized response (sanitized against a valid response) and
another known valid response in a simple cross-validation
approach. Our experiments and manual verification prove that
this approach achieves decent accuracy in classifying server
responses. We leave a more robust approach to future work.

VII. EVALUATION

We evaluated the efficacy of WARDroid on a set of 10,000
Android apps gathered from the Google Play store using the
AndroZoo app crawler [23]. We identify several thousand apps
that utilize web API functionality, many of which are flagged
as potentially vulnerable to web API hijacking. We provide
general details of specific case studies where WARDroid
identified and validated web API hijacking opportunities that
we further manually validated. We refrain from disclosing app
identities because some are either not fixed, in the process of
being fixed after our notification, or in one instance we were
asked not to make any public disclosure.

A. Test Apps

To test our framework, we evaluated a total of 10,000
apps chosen from the top 10 categories in the Google Play
market. In total, WARDroid took an average of 8 minutes
to analyze each app and generated a total of 16,451 invalid
requests samples for each template and twice the number of
valid requests for response testing. This resulted in 4,562 apps
flagged as having a potential Web API Hijacking vulnerability.
We tested and validated a smaller set of 1000 apps (using 1000
randomly chosen request samples from distinct apps across our
dataset). Of those, 884 invalid requests were accepted by the
API server, meaning that 884 of those flagged vulnerable apps
were vulnerable, representing about 88.4% of the total tested
invalid request templates in the sample set. Since we only
tested a single generated invalid request for each app, it does
not mean that the rest of the apps were not vulnerable. We
further tested the remaining 116 apps using additional request
samples and found that an additional 42 apps had an API that
accepted an invalid request. In total, we verified that 926/1000
apps had at least one instance where it used a vulnerable web
APL

Additionally, we found that 1,743 apps in our dataset
generated unencrypted web API communication. While these
do not strictly fall in line with our stated goal of uncovering
validation inconsistencies, they nevertheless exacerbate the
problem of vulnerable web API implementations. One app that
has both a validation inconsistency and used an unencrypted
channel is a gift card app that stores a monetary value that can
be used to purchase goods from different online and offline
stores. We worked with this particular developer to perform
additional tests with their permission. We provide details of



some of these case studies below, but cannot disclose the full
details for ethical reasons. Table III provides a summary of
the distribution of apps and web API hijacking opportunities
analyzed. Most vulnerable apps fall under the Tools category,
but this turns out to be just a broad characterization of apps
that perform diverse utilities. A flagged app is one for which
WARDroid detected a possible validation inconsistency. A ver-
ified app is one where we tested and verified the inconsistency
using a generated request template. In all cases, we performed
tedious inspection and ensured that no harm was done.

TABLE III
EVALUATION ON 10,000 APPS, AND TESTING ON 1,000 FLAGGED APPS.

Category Apps | Flagged | Tested | Verified
Education 1000 201 46 42

Lifestyle 1000 | 398 15 12
Entertainment 1000 232 79 67

Business 1000 405 90 82
Personalization | 1000 549 21 18

Tools 1000 734 303 201

Music 1000 434 22 17

Reference 1000 697 130 124

Travel 1000 224 86 85

Game 1000 | 688 208 188

False Positives: To further reduce false positives,

WARDroid applies some heuristics to remove responses
flagged as vulnerable. We use a set of negative keyword
instances such as ‘Error’ and ‘Unauthorized’ to filter responses
that otherwise were very similar to successful responses. We
also used a threshold response data size to filter responses
where the data was too minimal to evaluate a meaningful
edit distance. After applying these heuristics, we manually in-
spected random responses. There is an important distinction to
make between false positives in the overall app, and the server
validation routine. Here we are evaluating the false positives in
individual server validation based on single requests. Overall,
the app-level false positive is difficult to measure because even
if a tested server request turns out to be a false positive, it does
not guarantee that another server request for the same app will
not be a true positive. For this reason, we merely flag apps as
potentially vulnerable in the first instance.

Note that we do not evaluate false negatives because we
do not guarantee complete code coverage, especially since we
utilize program slices to reduce the search space and improve
the usability of our tool. However, WARDroid also generates
reports for apps that include template definitions that can be
further utilized by a human analyst to further test web API
implementation through a manual process, especially where
user authentication is required. This is noted in our limitations
section. We argue, however, that our approach provides a
lower bound on the total true positive web API hijacking
opportunities that could be present for any given app/server
combination.

Efficacy. We also evaluated WARDroid against a manually
generated list of web requests from an app. To accomplish
this we chose a random app to test manually. We ran the app
through WARDroid and found that it generated a total of 8

web request templates. We then manually ran the app through
a MITM proxy and captured the web request traces while a
user performed typical app tasks for 2 minutes. We counted
the total number of manual templates as the unique URI/path
combinations from the request trace. We found only 6 such
unique pairs, confirming that our analysis can perform better
than manual testing. We leave a more extensive evaluation of
the efficacy in this regard to future work. Our goal was to
ensure that our prototype implementation had decent efficacy
to gather reliable results.

B. Victim Population

To estimate the potential victim population of vulnerable
applications, we checked the download statistics of each app
flagged with a web API hijacking opportunity. Using the app
package id’s we checked the estimated download numbers for
the application using a third-party service, AppBrain [24].
Using this information, we are able to get insights into the
estimated potential victim population if web API hijacking
opportunities can lead to actual exploits.

Count
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Fig. 2. Victim population distribution among verified apps with web API
hijacking problems.

Figure 2 shows the download number distribution with most
vulnerable applications having a user population between 100
to 1,000. Note this number is merely the lower bound of the
real victim population, especially since these statistics do not
consider other third-party marketplaces. This also suggests that
the problem may be more prominent with less popular apps,
which is an intuitive observation, although it also shows that
popular apps are not excluded from this problem.

This represents a total estimated victim population of over
6.47 million users from only 926 apps that displayed web
API hijacking opportunities. If we consider this to be a
representative sample of the total number of apps, we can
assert that the potential impact is widespread, reaching many
millions of users throughout the world.

C. Impact Analysis

In this work, we focus on validation inconsistencies that
enable a number of attacks to the mobile app server back-
end. Below are some of the specific attack case studies we



uncovered on apps that we tested. These are merely sample
attacks of a wider array of possible attacks that are possible
due to validation inconsistencies. We note that we also found
apps that communicated over an unencrypted channel, which
makes it easy for attackers to capture the required field values
for a request template and replay the requests by leveraging
validation inconsistencies as a means to an end. We refrain
from identifying the apps and SDKs involved because some
of these issues are still not fixed and we are in the process
of properly notifying the app developers. The variation and
potential severity and reach of these attacks illustrate the
importance of this problem. We stress here that we were
careful in evaluating these case studies in a safe manner
without causing harm. In most cases, we used our own dummy
accounts.

Unauthorized data access. Many apps we analyzed in-
cluded basic to non-existent authentication and authorization
mechanisms to control access to their backend services. Most
apps include an authentication token (key) with each request
that identifies the app to the backend and authorizes access
to data and services on the backend. While backend services
may provide additional layers of security, we found that many
apps choose to bypass these additional authentication steps.

As an example of unauthorized access, we discovered an
app that simply sent the user’s email address as an authen-
tication and authorization token. This app had over 5,000
downloads at the time of our testing. We setup test accounts
with the app owner permission and discovered that the server
did not perform any authorization checks. WARDroid identified
the email address parameter constraints as imposed by the
app and suggested an invalid email parameter as a test case.
After coordination with the app developer team, we were
given permission to test a non-production web API server that
was an exact copy of their production server, but with fake
test data. It turns out that the app team consisted of a small
number of inexperienced developers, which is not uncommon
in the mobile space. Informed by the web request template
constraints, we were able to launch a SQL injection attack on
the test server and retrieved a full list of all test app user data.
This would allow us to access any user account on the app

The root cause of this was the inconsistent validation of the
email string format at the server side. Since this was a virtual
money transfer app used in actual online and offline stores, our
discovery had serious potential consequences. Upon further
testing, we verified that the web API allowed us to freely
transfer funds between two user accounts. Since working with
this app team, they have fixed the validation inconsistency
issue, but they asked us to remain anonymous for fear of bad
publicity. This is an extreme case, but we think it is indicative
of many apps on the market, especially those deployed by less
experienced team.

JSON-based SQL Injection. On yet another app, we
uncovered a different SQL-injection vulnerability facilitated
by inconsistent data validation in a login form that allows
us to login as any user to an app. This is a less popular
app that had only over 1 thousand downloads at the time

of testing. This app sends the username and password as a
JSON array data type in the form {username: $usr, password:
$pwd}. WARDroid further reports that the password field is
constrained by the app to only use alphanumeric values. While
WARDroid does not suggest a proper invalid input, we utilize
domain knowledge to test this potential inconsistency. We
found that the server does not implement a similar constraint
on the password and happily accepts any input as long as the
JSON data is properly formatted. Subsequently, we are able to
login by replacing the password parameter with the following
value: ”"$or:[{},{"1’:’1’}]. We note here that we used our
own sample dummy accounts and notified the app developers
of the potential problems, which has since been fixed.
Shopping for Free. We discovered a problem with a popu-
lar ecommerce SDK utilized by thousands of apps and online
stores across the world, with millions of users. WARDroid
reported a template where the constraint on the quantity
field for shopping cart items disallows numbers less than 1.
Naturally, a quantity zero would have no effect, but WARDroid
also suggested a violating input as a negative quantity. This
is disallowed by the sdk’s constraints in the app, but we
discovered that it was allowed by the server because the
same functionality is used to process returns and refunds,
where a negative quantity is indeed valid. However, since
this inconsistency exists, we can bypass the app and replay
a checkout action using a negative quantity on a line item
that can be manipulated to cause the checkout total to be zero
dollars. We tested this on a demo store account that we created
and confirmed the problem with the app developer. We note
that this problem has been fixed in a new release of their SDK,
although the old version still exists in production apps.
Cross Platform Content Injection. On a news app with
over 500,000 downloads, we discovered a problem where
the mobile app allows a user to enter comments on a news
article that is not properly sanitized at the server for proper
formatting. We discovered that the accompanying website for
the news station also displays comments entered on the mobile
app, and the mobile app disallows HTML characters in the
comments. WARDroid suggested that HTML characters could
be accepted by the server, which would be inconsistent with
the app constraints. Indeed, we were able to replay a comment
posting request with HTML characters, and the server stored
the values as is. This is not a problem when displaying the
comment on the mobile app, as it does not render HTML.
However, since the company’s website uses the same data
store, and the API design requires only client apps to validate
content, then the website renders the incoming comments as
HTML. This is a serious problem that could cause all kinds
of havoc on the website, including cross-site scripting attacks.
Account DoS. On a particular health app used by millions
of users around the world, WARDroid reported a constraint
on the password change request that restricted the password
length to 10 characters in addition to typical password con-
straints. This is a popular fitness app that had over 10 million
downloads at the time of testing. The server did not apply the
same validation as the app and allowed us to update a password



to a longer string. This caused the account to get locked out
of the app. While this attack may have no effect and may not
be useful, since an attacker wouldn’t find much use in locking
himself out of his own account, it does illustrate the pervasive
nature of the types of simple inconsistencies between app input
validation logic and server API validation logic.

Transferring Money. WARDroid analyzed an app by a
major US bank and reported a potential inconsistency in the
money transfer functionality. The app restricts transfers only
to connected accounts displayed in a spinner Ul element. The
author used two of his own disconnected accounts to test this
inconsistency opportunity and was able to successfully transfer
funds between his two accounts although it was not possible
directly through the app or through the bank’s website. Again,
this may not be of particular interest to an attacker because
he may not want to transfer money out of his own account
to an unknown account. However, this also shows that the
inconsistency problem exists in some of the most important
and critical apps used in society. This bank app that had
over 10 million downloads at the time of testing. There may
be a wider array of inconsistencies that could potentially be
exploited, but due to ethical reasons, we are unable to test
or validate other potential inconsistencies except where we
can use our own account and not cause any harm. As of this
writing, this problem no longer exists in the updated bank
server’s APIL

VIII. DISCUSSION

Mobile applications are a necessity in many facets of
society these days. In addition to traditional service businesses
offering mobile applications, such as banks, and applications
already available on the web, the proliferation of Internet of
Things means that many more devices have Internet connec-
tivity and can be controlled from a mobile phone. Examples
are home and office security systems, cars, classroom audio
video equipment, home appliances (thermostats, refrigerators,
televisions). It becomes very critical that the Web API end-
points of these devices are properly secured from hijacking
vulnerabilities.

A. Defense Guidelines

We attribute some of the observed problems to the shifting
app architecture in the modern era where web APIs are generic
service that can scale to support multiple client platforms,
including web and mobile apps. Additionally, due to the
enhanced capabilities of mobile devices, web service providers
sometimes opt to defer validation logic to the clients, ignoring
or oblivious to the subtle inconsistencies and vulnerabilities
that may arise as a result. Following are some guidelines based
on our findings in this work.

« Never trust the client. Do not defer validation to the client
side. The server must be at least as strict as the client for
input validation.

o The server must be prepared to handle and reject input
regardless of the client. No assumptions must be made
about the client.

o Authentication and Authorization logic must be carefully
implemented at the server side.

« Client-side validation must be thoroughly tested for con-
sistency with server-side validation logic. WARDroid can
help in identifying potential inconsistencies.

 Clients and Servers must sanitize inbound and outbound
data, especially where it can be used on either a mobile
or web client interchangeably.

While we have focused on the problems that can arise due to
inconsistent input validation logic, we believe that it will take
a concerted effort and paradigm shift to address mitigation of
this problem.

B. Limitations

Obfuscated code: Obfuscation is commonly observed in
popular real-world apps. A recent study has shown that 15%
of apps are obfuscated [25]. We find that many real-world
apps do not obfuscate their code. Many tools, including
Proguard [26], rename identifiers with semantically obscure
names to make reverse engineering more difficult. WARDroid
does not handle obfuscated application code, but it is included
in future work.

WARDroid also does not handle native code and JNI code.
We consider these to be out of our scope.

State Changes: Another limitation of WARDroid is that
it cannot reason about state changes and values that may
originate from a previous request to the API. For example,
the app may request a token value from a remote server that
could be included in a subsequent request. Previous works
such as [21], [18] propose methodologies that can accomplish
this task. WARDroid can be retrofitted with this feature to
improve its accuracy.

WebViews: WARDroid’s analysis is focused on native mo-
bile code, and does not consider web API accesses facilitated
through WebView-loaded JavaScript code in hybrid mobile
apps. We use a subset of the apps from our recent work which
identifies that over 90% of apps included at least one WebView
[19]. In that work, we provide an approach for uncovering
JavaScript Bridge functionality and semantics in hybrid mobile
apps.

Authentication: WARDroid also cannot evaluate requests
that require user authentication unless we hard-code test
credentials into the request template, such as a valid oAuth
tokens. An inherent challenge with most static analysis-based
systems, including WARDroid, is the inability to automatically
synthesize valid authentication sessions. Some level of human
intervention is necessary to overcome this limitation.

C. Convergence of Web and Mobile

In today’s Internet-connected mobile society, the web and
mobile platforms share some common ground in the effort to
provide security and privacy. Indeed, this work is inspired by
previous works on the web platform such as NoTamper [3] and
Waptec [7] that pursue similar goals in the context of browser-
based web applications. In this work, we directly tackle an



important issue that emerges from the amalgamation of the
web and mobile platforms.

The combination of mobile and web into new complex sys-
tems such as web service APIs, web-based operating system
environments, and hybrid applications presents a new frontier
in security and privacy research.

IX. RELATED WORK

We build on a number of previous works in the area of pro-
gram analysis on the Android framework. We especially make
use of Flowdroid [15] and Soot [11] program analysis tools.
Prior applications of these tools on Android include detection
of privacy leakage, malware detection, and other vulnerability
detection. In this work, we utilize program analysis techniques
to analyze a mobile application’s validation logic as a model
of it’s backend server validation logic.

Web Application Analysis. Our work is inspired by pre-
vious research into parameter tampering vulnerabilities on
web applications. Attacks that exploit these vulnerabilities
leverage the loose coupling of web services between the
client and server side. Waptec [7] and NoTamper [3] are
two prominent works that automatically identify parameter
tampering vulnerabilities in web applications and generate
exploits for those vulnerabilities. Similarly, WARDroid uses
concepts inspired by these works to analyze the inconsistencies
of the loose coupling between mobile apps and their backend
web API servers.

SIFON [27] analyzes web APIs to determine the extent
of oversharing of user information where the server sends
information to the app that is never used. Other related works
look at the issues that arise when webview components are
used to combine the web and mobile platforms into a seamless
experience. Luo et al. found several security issues that arose
due to this practice [28]. NoFrak [29] analyzed a similar issue
and proposed an approach to augment the security models to
allow finer grained access control between mobile and web
interaction.

Static Analysis. This work utilizes various static analysis
techniques and tools. Static analysis is often scalable since it
does not have to execute the app, and can achieve higher code
coverage than dynamic analysis. Previous works that use static
analysis commonly reconstruct the inter-procedural control
flow graph by modeling the Android app’s life-cycle. In this
work, we leverage FlowDroid [15] to similarly reconstruct and
extend the ICGF as an augmented program dependence graph,
but our goal is slightly different than detecting data flow from
source to sink. Other similar works such as Extractocol [18]
and Smartgen [30] follow a similar approach and utilize
Flowdroid as the basis for static analysis of apps to uncover
the behavior of communications with web servers. WARDroid
similarly analyzes the network behavior, but with a different
goal of analyzing the validation inconsistency with the server.

Protocol Reverse Engineering. Our work shares some
similarities and goals with protocol reverse engineering [31],
[32]. However, rather than exhaustive protocol reconstruction,

our goal is more aligned with [33] with a focus on uncovering
particular server-side vulnerabilities.

Input Generation. Several previous works implement input
data generation or fuzzing on Android applications. Intel-
lidroid [34] is a hybrid dynamic-static analysis framework that
analyzed event chains and can precisely identify the order or
inputs to trigger a specific code path. We used several concepts
from Intellidroid, especially as it relates to symbolic execution
and solving constraints using Z3 libraries. We opted not to
directly use Intellidroid in our approach because it is more
suited to malware detection and requires Android framework
instrumentation and execution in an emulator.

Symbolic Execution. Symbolic execution has been widely
used in many security applications on mobile applications.
TriggerScope [35] uses symbolic execution and other program
analysis techniques to precisely identify logic bomb triggers
in Android apps. IntelliDroid is similar to our work and
extracts path constraints that are used to generate app inputs
that can trigger specific execution paths. We leverage many
of their techniques and motivation in implementing symbolic
execution to extract path constraints.

App Network Traffic. Several previous works also analyze
app network traffic, but not necessarily through analysis of
the apps. Instead, this area of research primarily focuses on
the network layer to fingerprint apps through raw packet-level
network traffic inspection. FLOWR [36] tries to distinguish
mobile app traffic by extracting key-value pairs from HTTP
sessions at the network level. NetworkProfiler [37] uses UI-
based fuzzing on Android apps to build a comprehensive
network trace for a given app.

X. CONCLUSION

Modern mobile applications rely on web services to en-
able their functionality through HTTP-based communication.
Unfortunately, the disparate nature of the mobile and web
platforms causes input validation inconsistencies that can
lead to serious security issues. We presented WARDroid, a
framework that utilizes static program analysis and symbolic
execution to model input validation logic between mobile apps
and their remote web API servers. WARDroid extracts and
validates web API logic implementation in mobile apps and
uncovers inconsistencies between the app and server logic.

The uncovered inconsistencies are shown to expose serious
vulnerabilities in web API servers that affect a diverse set
of mobile apps. Our analysis of 10,000 apps uncovered a
significant portion of apps with web API hijacking opportuni-
ties that can violate user privacy and security for millions of
mobile app users. The inconsistency problem is not limited
to Android apps, but any client that utilizes the deployed
web API services, including iOS apps, Windows apps, and
web applications. This work sheds light on the existence and
pervasiveness of this important ongoing research problem, and
our hope is that it will motivate further research in this area.
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