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Abstract—Scientific simulations generate large amounts of
floating-point data, which are often not very compressible us-
ing the traditional reduction schemes, such as deduplication
or lossless compression. The emergence of lossy floating-point
compression holds promise to satisfy the data reduction demand
from HPC applications; however, lossy compression has not been
widely adopted in science production. We believe a fundamental
reason is that there is a lack of understanding of the benefits,
pitfalls, and performance of lossy compression on scientific data.
In this paper, we conduct a comprehensive study on state-of-
the-art lossy compression, including ZFP, SZ, and ISABELA,
using real and representative HPC datasets. Our evaluation
reveals the complex interplay between compressor design, data
features and compression performance. The impact of reduced
accuracy on data analytics is also examined through a case
study of fusion blob detection, offering domain scientists with the
insights of what to expect from fidelity loss. Furthermore, the trial
and error approach to understanding compression performance
involves substantial compute and storage overhead. To this end,
we propose a sampling based estimation method that extrapolates
the reduction ratio from data samples, to guide domain scientists
to make more informed data reduction decisions.

I. INTRODUCTION

Cutting-edge computational research in various domains

relies on high-performance computing (HPC) systems to ac-

celerate the time to insights. Data generated during such

simulations enable domain scientists to validate theories and

investigate new microscopic phenomena in a scale that was

not possible in the past. Because of the fidelity requirements

in both spatial and temporal dimensions, analysis output

produced by scientific simulations can easily reach terabytes or

even petabytes per run [1]–[3], capturing the time evolution of

physics phenomena in a fine spatiotemporal scale. The volume

and velocity of data movement are imposing unprecedented

pressure on storage and interconnects [4], [5], for both writ-

ing data to persistent storage and retrieving them for post-

simulation analysis. As HPC storage infrastructure is being

pushed to the scalability limits in term of both throughput

and capacity [6], the communities are striving to find new

approaches to curbing the storage cost. Data reduction1, among

others, is deemed to be a promising candidate by reducing the

amount of data moved to storage systems.

1The term of data reduction and compression are used interchangeably
throughout this paper.

Data deduplication and lossless compression have been

widely used in general-purpose systems to reduce redundancy

in data. In particular, deduplication [7] eliminates redundant

data at the file or chunk level, which can result in a high reduc-

tion ratio if there are a large number of identical chunks at the

granularity of tens of kilobytes. For scientific data, this rarely

occurs. It was reported that deduplication typically reduces

dataset size by only 20% to 30% [8], which is far from being

useful in production. On the other hand, lossless compression

in HPC was designed to reduce the storage footprint of appli-

cations, primarily for checkpoint/restart. Shannon entropy [9]

provides a theoretical upper limit on the data compressibility;

simulation data often exhibit high entropy, and as a result,

lossless compression usually achieves a modest reduction ratio

of less than two [10]. With the growing disparity between

compute and I/O, more aggressive data reduction schemes are

needed to further reduce data by an order of magnitude or

more [11], and very recently the focus has shifted towards

lossy compression.

Lossy compression, such as JPEG [12], has long been used

in computer graphics and digital images, leveraging the fact

that the visual resolution by human eyes is well below machine

precision. However, its application in the scientific domain

is less well established. Since scientific data are primarily

composed of high-dimensional floating-point values, lossy

floating-point data compressors have begun to emerge, includ-

ing ISABELA [13], ZFP [14], and SZ [15]. Although lossy

reduction offers the most potential to mitigate the growing

storage and I/O cost, there is a lack of understanding of how

to effectively use lossy compression from a user perspective,

e.g., which compressor should be used for a particular dataset,

and what level of reduction ratio should be expected. To

this end, the paper aims to perform extensive evaluations of

state-of-the-art lossy floating-point compressors, using real and

representative HPC datasets across various scientific domains.

We focus on addressing the following broad questions:

• Q1: What data features are indicative of compressibility?

(Section III-A)

• Q2: How does the error bound influence the compression

ratio? Which compressor (or technique) can benefit the most

from loosening error bound? (Section III-B)



• Q3: How does the design of compression influence compres-

sion throughput? What is the relationship between compres-

sion ratio and throughput? (Section III-C)

• Q4: What is the impact of lossy compression on data fidelity

and complex scientific data analytics? (Section III-D)

• Q5: How to extract data features and accurately predict the

compression ratios of various compressors? (Section IV)

Through answering these questions, we aim at helping HPC

end users understand what to expect from lossy compressors.

As a completely unbiased third-party evaluation without ad-

hoc performance tunings, we hope to shed light on the limita-

tions of existing compressors, and point out some of the new

R&D opportunities for compressor developers and the commu-

nities to make further optimizations, thus ensuring the broad

adoption of reduction in science production. Our experiments

for evaluating floating-point data compressors, including sci-

entific datasets and scripts we used for evaluation, are publicly

available at https://github.com/taovcu/LossyCompressStudy.

II. BACKGROUND

Data deduplication and lossless compression fully maintain

data fidelity and reduce data by identifying duplicate contents

through the hash signature and eliminating redundant data.

We utilize two lossless schemes throughout this work, GZIP

[16] and FPC [17], for performance comparisons with lossy

compression. The deflate algorithm implemented in GZIP

is based on LZ77 [18], [19]. The core of the algorithm is

comparing the symbols in the look-ahead buffer with symbols

in the search buffer to determine a match. FPC employs fcm

[20] and dfcm [21] to predict the double-precision values.

An XOR operation is conducted between the original value

and the prediction. With a high prediction accuracy, the XOR

result is expected to contain many leading zero bits, which

can be easily compressed. Ultimately, the effectiveness of

these methods depends on the repetition of symbols in data.

However, for even slightly variant floating-point values, the

binary representations contain few identical symbols. Hence,

scientific simulations use lossless compression only if neces-

sary, e.g., for checkpoint/restart [22].

The general acceptance of precision loss provides an op-

portunity to drastically improve the data compression ratio -

if two symbols are within the error tolerance, they can be

represented using the same code. This paper includes studies

using three lossy compressors: ISABELA, SZ, and ZFP, which

were shown to be superior in prior work [15]. Each compressor

is briefly described as follows.

Motivated by fixed-rate encoding and random access, ZFP

[23] follows the classic texture compression for image data.

Working in 4d (where d is the number of dimensions) sized

blocks, ZFP first aligns the floating-point data points within

a block to a common exponent, which is determined by the

largest absolute value. The original data in the block is then

converted to mantissas along with the common exponent.

Second, the exponent is encoded and stored. The mantissas

are then converted to fixed-point signed integers. Third, a

reversible orthogonal block transform (e.g., discrete cosine

transform) is applied to the signed integers. This transform is

carefully designed to mitigate the spatial correlation between

data points, with the intent of generating near-zero coefficients

that can be compressed efficiently. Finally, embedded coding

[24] is used to encode the coefficients, producing a stream

of bits that is roughly ordered by their impact significance

on error, and the stream can be truncated to satisfy any user-

specified error bound.

Motivated by the reduction potential of spline functions

[25], [26], ISABELA [13] uses B-spline based curve-fitting

to compress the traditionally incompressible scientific data.

Intuitively fitting a monotonic curve can provide a model that

is more accurate than fitting random data. Based on this,

ISABELA first sorts data to convert highly irregular data

to a monotonic curve. Similarly, SZ [15] employs multiple

curve-fitting models to encode data streams, with the goal of

accurately approximating the original data. SZ compression

involves three main steps: array linearization, adaptive curve-

fitting, and compressing the unpredictable data. To reduce

memory overhead, it uses the intrinsic memory sequence of

the original data to linearize a multi-dimensional array to a

one-dimensional sequence. The best-fit routine employs three

prediction models, based on the adjacent data values in the

sequence: constant, linear, and quadratic, which require one,

two, and three precursor data points, respectively. And the

model that yields the closest approximation is adopted. If

none satisfies the pre-defined error bound, SZ marks the data

point as unpredictable, which is then encoded by binary-

representation analysis. The curve-fitting step transforms the

fitted data into integer quantization factors, which are further

encoded using Huffman tree. Unlike ISABELA [13], SZ does

not sort the original data to avoid the indexing overhead. The

encoded data are further compressed using GZIP.

While lossy compression has been identified as a means

to potentially reduce scientific data by more than 10x, deter-

mining the compressibility of data without compressing the

full data, and the impact of information loss on data analytics

have not been fully studied. Although trial and error can

certainly answer these questions, this incurs overhead in terms

of compute and storage, and should be avoided as much as

possible. Our proposed evaluation and modeling aim to fill

these gaps in data reduction, and allow users to understand

the outcome before they perform reduction.

III. EVALUATION

We evaluate the compression latency and compression ratio

of various compressors on a SUSE Linux Enterprise Server

11 (x86 64) with a 32-core AMD Opteron(tm) 6410 Proces-

sor and 256GB DRAM. Our measurements of compression

throughput do not include the time spent on disk I/O since

the goal is to evaluate the compression algorithms, instead of

system performance as a whole. Our evaluations focus on the

following metrics: (1) Error bound: It limits the accuracy loss

during compression. An error bound can be enforced as an

absolute or a relative value or both. Assuming the value of a

data point is denoted as V , a point-wise absolute error bound













TABLE II: A list of symbols for SZ compression

Symbols Description

PointCount Number of points in a dataset

QuantIntv Quantization interval

NodeCount Number of Huffman tree nodes

HitRatio Curve-fitting hit ratio

TreeSize Size of Huffman tree

EncodeSize Total size of Huffman coding

OutlierCount Number of curve-missed points

OutlierSize Total size of curve-missed points

TotalSize Size of compressed data

CR Compression ratio

sample data is an unbiased estimation of the compression ratio

of full data, using block based random sampling method.

Proof. The compression ratio of sample data is said to be an

unbiased estimation of the full dataset, when the compression

ratio of sample data is expected to equal that of the full dataset.

As mentioned, ZFP compresses floating-point data in blocks.

Assuming the full and sample dataset contain f and s blocks,

BlockSize is the original size of a block, and CRFull blocki

and CRSample blockj
indicate the compression ratio of the ith

and jth blocks in the full and sample datasets, respectively.

After reduction, the size of block i is RSFull blocki
. For the

full dataset, the reciprocal of compression ratio is:

1

CRFull
=

f∑

i=1

RSFull blocki

f∗BlockSize
= 1

f

f∑

i=1

1

CRFull blocki

Similarly, for the sample data,

1

CRSample
= 1

s

s∑

j=1

1

CRSample blockj

As a result of random sampling, for any blockj (1 ≤ j ≤ s)

in the sample, the probability that this block is blocki (1 ≤ i ≤

f ) in the full dataset is 1

f
. For any j (1 ≤ j ≤ s), the expected

reciprocal of compression ratio of blockj in the sample can

be calculated as:

E[ 1

CRSample blockj

] = E[ 1
f

f∑

i=1

1

CRFull blocki

]

The overall expected reciprocal of compression ratio of the

sample can be calculated as:

E[ 1

CRSample
] = 1

s
E[

s∑

j=1

1

CRSample blockj

]

= 1

s

s∑

j=1

E[ 1
f

f∑

i=1

1

CRFull blocki

]

= E[ 1
f

f∑

i=1

1

CRFull blocki

] = E[ 1

CRFull
]

Therefore, the expected value of CRSample equals that of

CRFull, and the compression ratio of the sample dataset, using

random block based sampling, provides an unbiased estimation

for the full dataset.

Statement 2: For SZ compression, no sampling method can

guarantee an unbiased estimation of the full dataset.

Proof. SZ adopts the Huffman tree to encode the quantization

factors of the curve-fitted points, with the goal of further re-

ducing the storage footprint. The compression ratio of sample

data point j (3 ≤ j ≤ s) is influenced by point j − 2 and

j − 1, and the associated Huffman tree constructed based on

the sample data. Similarly, the compression of full data point

i (3 ≤ i ≤ f ) is influenced by point i − 2 and i − 1, and

a different Huffman tree constructed based on the full data.

For any given point j in the sample, even if the neighboring

points are accordingly sampled to maintain the bounded lo-

cality, the two Huffman trees are likely different. Therefore,

there does not exist a one-to-one or linear relation between

CRSample pointj and CRFull. By Jensen’s inequality [30],

for a non-linear function f and a mean-unbiased estimator U

of a parameter p, the composite estimator f(U) is not a mean-

unbiased estimator of f(p). That is, mean-unbiasedness is not

preserved under non-linear transformations.

As confirmed in Figure 8(b), using the compression ratio

of samples to estimate that of the full dataset is inaccurate for

SZ. The average estimation error is at least 42%. Therefore,

more advanced models are needed to accurately estimate the

SZ compression ratio.

Finding 7: For compression schemes which have bounded

locality, sampling based approach can provide an unbi-

ased estimation of the full data performance. Without

bounded locality, the compression ratio of sample data

may deviate significantly from that of the full data.

C. Advanced Models for Estimating SZ Compression Ratio

In SZ compression, a curve-fitted data point is mapped to a

quantization factor, observing a pre-defined error bound, and

a curve-missed point will be encoded by binary-representation

analysis. Quantization factors may occur with different prob-

abilities, thus, can be encoded using the Huffman tree for

storage efficiency. Therefore, the compressed data of SZ

consists of three parts: the Huffman tree, the encoding of

curve-fitted points, and the encoding of curve-missed points.

The binary-representation analysis based encoding for curve-

missed points is fairly straightforward to estimate, since our

tests show the encoding has approximately resulted in equal

size for sample and full data (Figure 9(a)), our model assumes

the encoding size is proportional to the number of data points.

However, as Figure 9 shows, the storage cost per Huffman tree

node, and the code length per curve-fitted data point varies

considerably in the sample and full data. Moreover, we notice

that the majority of datasets result in a high curve-fitting ratio

(Figure 4), and in this case Huffman tree and the encoding

will account for most of space after compression.

To predict the storage cost of the Huffman tree and the

corresponding Huffman coding, the key is to accurately esti-

mate the number of tree nodes, which determines the tree size

and height, which directly impact the average code length.

We identify the opportunity to predict the node count of

Huffman tree through observing the distribution of quan-

tization factors. Figure 10 demonstrates the distribution in

compressing the sample and full data, respectively. It is evident

that the distribution of sample and full data are highly similar,

both approximately following Gaussian distribution. Given

this important observation, this paper employs the Gaussian





estimation error of GaussModel is much lower than the

naive sampling based approach. Specifically, GaussModel

has an average estimation error of 29%, while the naive

sample based estimation has an average error of 73%. We

comment that using samples to extrapolate performance

inevitably introduces errors, due to the huge information loss

in sampling. However, the results show our model combining

with sampling can dramatically reduce the estimation error.

V. CONCLUSION AND FUTURE WORK

In this paper, we conduct comprehensive evaluations of

lossy compression schemes on HPC scientific datasets. We

expose how lossy compression schemes work, what data

features are indicators of compressibility, the relationship

between the compression ratio and the error bound, how

the compressibility influences the compression throughput, as

well as the impact of lossy compression on data fidelity. We

also present how to properly sample datasets for the purpose

of making data compression ratio estimation. We prove that

random block-based sampling ensures an unbiased compres-

sion ratio estimation for ZFP, and the estimation accuracy

can be up to 99%. The proposed GaussModel dramatically

increases the SZ estimation accuracy. This work can help HPC

users understand the outcome of lossy compression, which

is crucial for the broad adoption of lossy compression to

HPC production environments. The new understanding of the

relationship between data features and compressibility, as well

as accurate compression ratio estimation models are essential

to enable the online “to compress or not” decision and the

compressor selection. We plan to implement and integrate a

decision algorithm into ADIOS (Adaptable IO system) [31],

so that scientists can simply describe their requirements and

transparently use the best compression scheme.
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