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Abstract—Scienti�c simulations generate large amounts of
�oating-point data, which are often not very compressible us-
ing the traditional reduction schemes, such as deduplication
or lossless compression. The emergence of lossy �oating-point
compression holds promise to satisfy the data reduction demand
from HPC applications; however, lossy compression has not been
widely adopted in science production. We believe a fundamental
reason is that there is a lack of understanding of the bene�ts,
pitfalls, and performance of lossy compression on scienti�c data.
In this paper, we conduct a comprehensive study on state-of-
the-art lossy compression, including ZFP, SZ, and ISABELA,
using real and representative HPC datasets. Our evaluation
reveals the complex interplay between compressor design, data
features and compression performance. The impact of reduced
accuracy on data analytics is also examined through a case
study of fusion blob detection, offering domain scientists with the
insights of what to expect from �delity loss. Furthermore, the trial
and error approach to understanding compression performance
involves substantial compute and storage overhead. To this end,
we propose a sampling based estimation method that extrapolates
the reduction ratio from data samples, to guide domain scientists
to make more informed data reduction decisions.

I. I NTRODUCTION

Cutting-edge computational research in various domains
relies on high-performance computing (HPC) systems to ac-
celerate the time to insights. Data generated during such
simulations enable domain scientists to validate theories and
investigate new microscopic phenomena in a scale that was
not possible in the past. Because of the �delity requirements
in both spatial and temporal dimensions, analysis output
produced by scienti�c simulations can easily reach terabytes or
even petabytes per run [1]–[3], capturing the time evolution of
physics phenomena in a �ne spatiotemporal scale. The volume
and velocity of data movement are imposing unprecedented
pressure on storage and interconnects [4], [5], for both writ-
ing data to persistent storage and retrieving them for post-
simulation analysis. As HPC storage infrastructure is being
pushed to the scalability limits in term of both throughput
and capacity [6], the communities are striving to �nd new
approaches to curbing the storage cost. Data reduction1, among
others, is deemed to be a promising candidate by reducing the
amount of data moved to storage systems.

1The term of data reduction and compression are used interchangeably
throughout this paper.

Data deduplication and lossless compression have been
widely used in general-purpose systems to reduce redundancy
in data. In particular, deduplication [7] eliminates redundant
data at the �le or chunk level, which can result in a high reduc-
tion ratio if there are a large number of identical chunks at the
granularity of tens of kilobytes. For scienti�c data, this rarely
occurs. It was reported that deduplication typically reduces
dataset size by only 20% to 30% [8], which is far from being
useful in production. On the other hand, lossless compression
in HPC was designed to reduce the storage footprint of appli-
cations, primarily for checkpoint/restart. Shannon entropy [9]
provides a theoretical upper limit on the data compressibility;
simulation data often exhibit high entropy, and as a result,
lossless compression usually achieves a modest reduction ratio
of less than two [10]. With the growing disparity between
compute and I/O, more aggressive data reduction schemes are
needed to further reduce data by an order of magnitude or
more [11], and very recently the focus has shifted towards
lossy compression.

Lossy compression, such as JPEG [12], has long been used
in computer graphics and digital images, leveraging the fact
that the visual resolution by human eyes is well below machine
precision. However, its application in the scienti�c domain
is less well established. Since scienti�c data are primarily
composed of high-dimensional �oating-point values, lossy
�oating-point data compressors have begun to emerge, includ-
ing ISABELA [13], ZFP [14], and SZ [15]. Although lossy
reduction offers the most potential to mitigate the growing
storage and I/O cost, there is a lack of understanding of how
to effectively use lossy compression from a user perspective,
e.g., which compressor should be used for a particular dataset,
and what level of reduction ratio should be expected. To
this end, the paper aims to perform extensive evaluations of
state-of-the-art lossy �oating-point compressors, using real and
representative HPC datasets across various scienti�c domains.
We focus on addressing the following broad questions:

� Q1: What data features are indicative of compressibility?
(Section III-A)

� Q2: How does the error bound in�uence the compression
ratio? Which compressor (or technique) can bene�t the most
from loosening error bound? (Section III-B)



� Q3: How does the design of compression in�uence compres-
sion throughput? What is the relationship between compres-
sion ratio and throughput? (Section III-C)

� Q4: What is the impact of lossy compression on data �delity
and complex scienti�c data analytics? (Section III-D)

� Q5: How to extract data features and accurately predict the
compression ratios of various compressors? (Section IV)

Through answering these questions, we aim at helping HPC
end users understand what to expect from lossy compressors.
As a completely unbiased third-party evaluation without ad-
hoc performance tunings, we hope to shed light on the limita-
tions of existing compressors, and point out some of the new
R&D opportunities for compressor developers and the commu-
nities to make further optimizations, thus ensuring the broad
adoption of reduction in science production. Our experiments
for evaluating �oating-point data compressors, including sci-
enti�c datasets and scripts we used for evaluation, are publicly
available athttps://github.com/taovcu/LossyCompressStudy.

II. BACKGROUND

Data deduplication and lossless compression fully maintain
data �delity and reduce data by identifying duplicate contents
through the hash signature and eliminating redundant data.
We utilize two lossless schemes throughout this work, GZIP
[16] and FPC [17], for performance comparisons with lossy
compression. Thede�ate algorithm implemented in GZIP
is based on LZ77 [18], [19]. The core of the algorithm is
comparing the symbols in the look-ahead buffer with symbols
in the search buffer to determine a match. FPC employsfcm
[20] and dfcm [21] to predict the double-precision values.
An XOR operation is conducted between the original value
and the prediction. With a high prediction accuracy, the XOR
result is expected to contain many leading zero bits, which
can be easily compressed. Ultimately, the effectiveness of
these methods depends on the repetition of symbols in data.
However, for even slightly variant �oating-point values, the
binary representations contain few identical symbols. Hence,
scienti�c simulations use lossless compression only if neces-
sary, e.g., for checkpoint/restart [22].

The general acceptance of precision loss provides an op-
portunity to drastically improve the data compression ratio -
if two symbols are within the error tolerance, they can be
represented using the same code. This paper includes studies
using three lossy compressors: ISABELA, SZ, and ZFP, which
were shown to be superior in prior work [15]. Each compressor
is brie�y described as follows.

Motivated by �xed-rate encoding and random access, ZFP
[23] follows the classic texture compression for image data.
Working in 4d (whered is the number of dimensions) sized
blocks, ZFP �rst aligns the �oating-point data points within
a block to a common exponent, which is determined by the
largest absolute value. The original data in the block is then
converted to mantissas along with the common exponent.
Second, the exponent is encoded and stored. The mantissas
are then converted to �xed-point signed integers. Third, a
reversible orthogonal block transform (e.g., discrete cosine

transform) is applied to the signed integers. This transform is
carefully designed to mitigate the spatial correlation between
data points, with the intent of generating near-zero coef�cients
that can be compressed ef�ciently. Finally, embedded coding
[24] is used to encode the coef�cients, producing a stream
of bits that is roughly ordered by their impact signi�cance
on error, and the stream can be truncated to satisfy any user-
speci�ed error bound.

Motivated by the reduction potential of spline functions
[25], [26], ISABELA [13] uses B-spline based curve-�tting
to compress the traditionally incompressible scienti�c data.
Intuitively �tting a monotonic curve can provide a model that
is more accurate than �tting random data. Based on this,
ISABELA �rst sorts data to convert highly irregular data
to a monotonic curve. Similarly, SZ [15] employs multiple
curve-�tting models to encode data streams, with the goal of
accurately approximating the original data. SZ compression
involves three main steps: array linearization, adaptive curve-
�tting, and compressing the unpredictable data. To reduce
memory overhead, it uses the intrinsic memory sequence of
the original data to linearize a multi-dimensional array to a
one-dimensional sequence. The best-�t routine employs three
prediction models, based on the adjacent data values in the
sequence: constant, linear, and quadratic, which require one,
two, and three precursor data points, respectively. And the
model that yields the closest approximation is adopted. If
none satis�es the pre-de�ned error bound, SZ marks the data
point as unpredictable, which is then encoded by binary-
representation analysis. The curve-�tting step transforms the
�tted data into integer quantization factors, which are further
encoded using Huffman tree. Unlike ISABELA [13], SZ does
not sort the original data to avoid the indexing overhead. The
encoded data are further compressed using GZIP.

While lossy compression has been identi�ed as a means
to potentially reduce scienti�c data by more than 10x, deter-
mining the compressibility of data without compressing the
full data, and the impact of information loss on data analytics
have not been fully studied. Although trial and error can
certainly answer these questions, this incurs overhead in terms
of compute and storage, and should be avoided as much as
possible. Our proposed evaluation and modeling aim to �ll
these gaps in data reduction, and allow users to understand
the outcome before they perform reduction.

III. E VALUATION

We evaluate the compression latency and compression ratio
of various compressors on a SUSE Linux Enterprise Server
11 (x86 64) with a 32-core AMD Opteron(tm) 6410 Proces-
sor and 256GB DRAM. Our measurements of compression
throughput do not include the time spent on disk I/O since
the goal is to evaluate the compression algorithms, instead of
system performance as a whole. Our evaluations focus on the
following metrics: (1)Error bound: It limits the accuracy loss
during compression. An error bound can be enforced as an
absolute or a relative value or both. Assuming the value of a
data point is denoted asV , a point-wise absolute error bound













TABLE II: A list of symbols for SZ compression
Symbols Description

P ointCount Number of points in a dataset
QuantIntv Quantization interval
NodeCount Number of Huffman tree nodes

HitRatio Curve-�tting hit ratio
T reeSize Size of Huffman tree

EncodeSize Total size of Huffman coding
OutlierCount Number of curve-missed points
OutlierSize Total size of curve-missed points
T otalSize Size of compressed data

CR Compression ratio

sample data is an unbiased estimation of the compression ratio
of full data, using block based random sampling method.

Proof. The compression ratio of sample data is said to be an
unbiased estimation of the full dataset, when the compression
ratio of sample data is expected to equal that of the full dataset.
As mentioned, ZFP compresses �oating-point data in blocks.
Assuming the full and sample dataset containf ands blocks,
BlockSize is the original size of a block, andCRF ull block i

andCRSample block j indicate the compression ratio of thei th

and j th blocks in the full and sample datasets, respectively.
After reduction, the size of blocki is RSF ull block i . For the
full dataset, the reciprocal of compression ratio is:

1
CR F ull

=
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f
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1
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Similarly, for the sample data,
1
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= 1
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As a result of random sampling, for anyblockj (1 � j � s)
in the sample, the probability that this block isblocki (1 � i �
f ) in the full dataset is1

f . For anyj (1 � j � s), the expected
reciprocal of compression ratio ofblockj in the sample can
be calculated as:
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f
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]

The overall expected reciprocal of compression ratio of the
sample can be calculated as:
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Therefore, the expected value ofCRSample equals that of
CRF ull , and the compression ratio of the sample dataset, using
random block based sampling, provides an unbiased estimation
for the full dataset.

Statement 2: For SZ compression, no sampling method can
guarantee an unbiased estimation of the full dataset.

Proof. SZ adopts the Huffman tree to encode the quantization
factors of the curve-�tted points, with the goal of further re-
ducing the storage footprint. The compression ratio of sample
data pointj (3 � j � s) is in�uenced by pointj � 2 and
j � 1, and the associated Huffman tree constructed based on

the sample data. Similarly, the compression of full data point
i (3 � i � f ) is in�uenced by pointi � 2 and i � 1, and
a different Huffman tree constructed based on the full data.
For any given pointj in the sample, even if the neighboring
points are accordingly sampled to maintain the bounded lo-
cality, the two Huffman trees are likely different. Therefore,
there does not exist a one-to-one or linear relation between
CRSample point j and CRF ull . By Jensen's inequality [30],
for a non-linear functionf and a mean-unbiased estimatorU
of a parameterp, the composite estimatorf (U) is not a mean-
unbiased estimator off (p). That is, mean-unbiasedness is not
preserved under non-linear transformations.

As con�rmed in Figure 8(b), using the compression ratio
of samples to estimate that of the full dataset is inaccurate for
SZ. The average estimation error is at least 42%. Therefore,
more advanced models are needed to accurately estimate the
SZ compression ratio.

Finding 7: For compression schemes which have bounded
locality, sampling based approach can provide an unbi-
ased estimation of the full data performance. Without
bounded locality, the compression ratio of sample data
may deviate signi�cantly from that of the full data.

C. Advanced Models for Estimating SZ Compression Ratio

In SZ compression, a curve-�tted data point is mapped to a
quantization factor, observing a pre-de�ned error bound, and
a curve-missed point will be encoded by binary-representation
analysis. Quantization factors may occur with different prob-
abilities, thus, can be encoded using the Huffman tree for
storage ef�ciency. Therefore, the compressed data of SZ
consists of three parts: the Huffman tree, the encoding of
curve-�tted points, and the encoding of curve-missed points.
The binary-representation analysis based encoding for curve-
missed points is fairly straightforward to estimate, since our
tests show the encoding has approximately resulted in equal
size for sample and full data (Figure 9(a)), our model assumes
the encoding size is proportional to the number of data points.
However, as Figure 9 shows, the storage cost per Huffman tree
node, and the code length per curve-�tted data point varies
considerably in the sample and full data. Moreover, we notice
that the majority of datasets result in a high curve-�tting ratio
(Figure 4), and in this case Huffman tree and the encoding
will account for most of space after compression.

To predict the storage cost of the Huffman tree and the
corresponding Huffman coding, the key is to accurately esti-
mate the number of tree nodes, which determines the tree size
and height, which directly impact the average code length.
We identify the opportunity to predict the node count of
Huffman tree through observing the distribution of quan-
tization factors. Figure 10 demonstrates the distribution in
compressing the sample and full data, respectively. It is evident
that the distribution of sample and full data are highly similar,
both approximately following Gaussian distribution. Given
this important observation, this paper employs the Gaussian





estimation error of GaussModel is much lower than the
naive sampling based approach. Speci�cally, GaussModel
has an average estimation error of 29%, while the naive
sample based estimation has an average error of 73%. We
comment that using samples to extrapolate performance
inevitably introduces errors, due to the huge information loss
in sampling. However, the results show our model combining
with sampling can dramatically reduce the estimation error.

V. CONCLUSION AND FUTURE WORK

In this paper, we conduct comprehensive evaluations of
lossy compression schemes on HPC scienti�c datasets. We
expose how lossy compression schemes work, what data
features are indicators of compressibility, the relationship
between the compression ratio and the error bound, how
the compressibility in�uences the compression throughput, as
well as the impact of lossy compression on data �delity. We
also present how to properly sample datasets for the purpose
of making data compression ratio estimation. We prove that
random block-based sampling ensures an unbiased compres-
sion ratio estimation for ZFP, and the estimation accuracy
can be up to 99%. The proposedGaussModeldramatically
increases the SZ estimation accuracy. This work can help HPC
users understand the outcome of lossy compression, which
is crucial for the broad adoption of lossy compression to
HPC production environments. The new understanding of the
relationship between data features and compressibility, as well
as accurate compression ratio estimation models are essential
to enable the online “to compress or not” decision and the
compressor selection. We plan to implement and integrate a
decision algorithm into ADIOS (Adaptable IO system) [31],
so that scientists can simply describe their requirements and
transparently use thebestcompression scheme.
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