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The discovery that the band structure of electronic insula-
tors may be topologically non-trivial has revealed distinct 
phases of electronic matter with novel properties1,2. Recently, 
mechanical lattices have been found to have similarly rich 
structure in their phononic excitations3,4, giving rise to pro-
tected unidirectional edge modes5–7. In all of these cases, 
however, as well as in other topological metamaterials3,8, the 
underlying structure was finely tuned, be it through period-
icity, quasi-periodicity or isostaticity. Here we show that 
amorphous Chern insulators can be readily constructed from 
arbitrary underlying structures, including hyperuniform, 
jammed, quasi-crystalline and uniformly random point sets. 
While our findings apply to mechanical and electronic sys-
tems alike, we focus on networks of interacting gyroscopes 
as a model system. Local decorations control the topology of 
the vibrational spectrum, endowing amorphous structures 
with protected edge modes—with a chirality of choice. Using a 
real-space generalization of the Chern number, we investigate 
the topology of our structures numerically, analytically and 
experimentally. The robustness of our approach enables the 
topological design and self-assembly of non-crystalline topo-
logical metamaterials on the micro and macro scale.

Condensed-matter science has traditionally focused on systems 
with underlying spatial order, as many natural systems spontane-
ously aggregate into crystals. The behaviour of amorphous materi-
als, such as glasses, has remained more challenging9. In particular, 
our understanding of common concepts such as bandgaps and 
topological behaviour in amorphous materials is still in its infancy 
when compared with crystalline counterparts. This is not only a 
fundamental problem; advances in modern engineering, both of 
metamaterials and of quantum systems, have opened the door for 
the creation of materials with arbitrary structure, including amor-
phous materials. This prompts a search for principles that can apply 
to a wide range of amorphous systems, from interacting atoms to 
mechanical metamaterials.

In the exploration of topological insulators, conceptual advances 
have proven to carry across between disparate physical realizations, 
from quantum systems10, to photonic waveguides11, to acoustical 
resonators12,13, to hinged or geared mechanical structures3,14. One 
promising model system is a class of mechanical insulators consist-
ing of gyroscopes suspended from a plate. Appropriate crystalline 
arrangements of such gyroscopes break time-reversal symmetry, 
opening topological phononic bandgaps and supporting robust chi-
ral edge modes5,6.

Unlike trivial insulators, whose electronic states can be thought 
of as a sum of independent local insulating states, topological insu-
lators require the existence of delocalized states in each non-triv-
ial band and prevent a description in terms of a basis of localized  

Wannier states15–17. It is natural, therefore, to assume that some 
regularity over long distances may be key to topological behaviour, 
even if topological properties are robust to the addition of disorder. 
However, the extent to which spatial order needs to be built into the 
structure that gives rise to topological modes is unclear. We report 
a recipe for constructing amorphous arrangements of interacting 
gyroscopes—structurally more akin to a liquid than a solid—that 
naturally support topological phonon spectra. By simply changing 
the local connectivity, we can tune the chirality of edge modes to be 
either clockwise or counterclockwise, or even create both clockwise 
and counterclockwise edge modes in a single material. This shows 
that topology, a nonlocal property, can naturally arise in materials 
for which the only design principle is the local connectivity. Such a 
design principle lends itself to imperfect manufacturing and self-
assembly. Although our construction arises naturally in mechanical 
metamaterials, we show that it extends to electronic systems in the 
tight-binding limit.

The first local construction we consider is shown in Fig.  1a. 
Starting from an arbitrary point set, a natural way to form a net-
work is to generate a Voronoi tessellation, either via the Wigner–
Seitz construction or by connecting centroids of a triangulation18. 
Treating the edges of the cells as bonds and placing gyroscopes at 
the vertices leads to a network reminiscent of ‘topological disorder’ 
in electronic systems19. A range of frequencies arises in which all 
modes are tightly localized, and this frequency region overlaps with 
the corresponding bandgap of the honeycomb lattice. Crucially, we 
find that gyroscope-and-spring networks constructed in this way 
from arbitrary initial point sets invariably have such a mobility gap 
in a frequency range determined by the strength of the gravitational 
pinning and spring interactions.

Our networks are reminiscent of ‘topologically disordered’ elec-
tronic systems19. In these systems, a central characteristic is that the 
local density of states as a function of frequency is predictive of the 
global density of states. Specifically, bandgaps or mobility gaps are 
preserved19–21. Interestingly, we find that, even in the presence of 
band topology, averaging the local density of states over mesoscopic 
patches (~10 gyroscopes) reproduces the essential features of the 
global density of states as a function of frequency. Furthermore, we 
find that inserting mesoscopic patches of our structures into a variety 
of other dissimilar networks (see Supplementary Figs. 8–10) does not 
significantly disrupt the averaged local density of states of the patch.

Crucially, we find that our structures show hallmarks of non-
trivial topology. When the system is cut to a finite size, modes 
confined to the edge populate the mobility gap, mixed in with 
localized states. As shown in the direct simulations of Fig. 1b and 
Supplementary Videos 1 and 2, shaking a gyroscope on the bound-
ary results in chiral waves that bear all the hallmarks of protected 
edge states (robustness to disorder and absence of back-scattering).
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An experimental realization can be readily constructed from 
gyroscopes interacting magnetically, as seen from below in Fig. 1c. 
As in ref. 5, these gyroscopes consist of three-dimensional-printed 
units encasing d.c. motors that interact via magnetic repulsion. 
Probing the edge of this system immediately generates a chiral 
wavepacket localized to the boundary, confirming that this class of 
topological material is physically realizable and robust (Fig. 1c and 
Supplementary Videos 3 and 4).

This behaviour begs for a topological characterization, even 
though it might be surprising that topology can emerge from such a 
local construction. The existence of chiral edge states in an energy gap 
is guaranteed if an invariant known as the Chern number is non-zero, 
and the direction of the chiral waves is given by its sign. Although the 
Chern number was originally defined in momentum space, several 
generalizations have been constructed in coordinate space in order 
to accommodate disorder in crystalline electronic materials22–24. In 
these methods, information about the system’s vibrations above a 
cutoff frequency, ωc, is carried by the projection operator, P. Each ele-
ment Pij measures the response of gyroscope j to excitations of gyro-
scope i within a prescribed range (band) of frequencies.

According to one such method, proposed in ref. 22, a subset of the 
system is divided into three parts and labelled in a counterclock-
wise fashion (red, green and blue regions in Fig. 2). These regions 
are then used to index components of an antisymmetric product of 
projection operators:

∑∑∑ν = π −
∈ ∈ ∈

( )P i P P P P P P( ) 12 (1)
j A k B l C

jk kl lj jl lk kj

The sum of such elements converges to the Chern number of the 
band above a chosen cutoff frequency, ωc, when the summation 
region has enclosed many gyroscopes (see Supplementary Videos 5 
and 6 and Supplementary Information).

Equation (1) can be understood as a form of charge polarization 
in the response of an electronic material to a locally applied mag-
netic field. Applying a magnetic field to a small region of a material 
induces an electromotive force winding around the site of appli-
cation. If the material is a trivial insulator, any changes in charge 
density there arise from local charge rearrangements, which result 
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Fig. 1 | Local structure gives rise to chiral edge modes. a, Voronoization of an amorphous structure, constructed by connecting adjacent centroids of a 
triangulation, preserves isotropy and lack of long-range order, here with a hyperuniform point set. Two-point correlation functions g(x) (below) reveal 
isotropic spatial structue for a system of N ≈​ 3,000 particles. Spatial coordinates x and y are measured in units of the median bond length. b, Simulations 
reveal chiral edge modes in topological gyroscopic networks. The localization of modes is probed by participation ratio, ψ ψ= ∑ ∕ ∑
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density of states is plotted as a function of normal mode oscillation frequency, in units of the gravitational precession frequency, Ω ω= ℓ ∕mg Ig . The 
blue curve overlaying the density of states denotes the frequency of the driving excitation in the simulation. Here, the characteristic spring frequency, 
Ω ω= ℓ ∕k Ik

2  is chosen such that Ωg =​ Ωk. The inset on the right shows the amplitude, δψ , of the displacement for the single gyroscope that is shaken at a 
constant frequency. c, An edge mode propagates clockwise in an amorphous experimental gyroscopic network. The motor-driven gyroscopes couple via a 
magnetic dipole–dipole interaction. Despite the nonlinear interaction and spinning speed disorder (~10%), the edge mode appears, no matter where on the 
boundary the excitation is initialized.
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in no accumulation of charge. By contrast, a topological electronic 
system has a Hall conductivity determined by the Chern number. 
As a result, a net current will flow perpendicular to the electromo-
tive force, inducing a net-non-zero charge concentrated at the mag-
netic field site, compensated by charge on the boundary. As we show 
in the Supplementary Information, the amount of local charging is 
proportional to the applied field, and the proportionality constant is 
the Chern number of equation (1).

Figure  2a shows the results of equation (1) computed for the 
Voronoized networks. As the cutoff frequency for the projector is 
varied (here it is lowered from 4Ωg), the computed Chern num-
ber converges to ν =​ −​1 when all extended states in the top band 
lie above the cutoff frequency, confirming that the modes observed 
in Fig. 1b,c are topological in origin and predicting their direction. 
The Chern number remains at its value of ν =​ −​1 for a broad range 
of frequencies in which any existing states are localized, and thus do 
not contribute to the Chern number. The Chern number returns to 
zero once more conductance-carrying extended states are included 
in the calculation.

Having established this connection, we now discuss how the 
Chern number can be controlled. In particular, we show that by 
considering alternative decorations of the same initial point set, it is 
possible to flip the chirality of the edge modes or even provide mul-
tiple gaps with differing chirality. One possible construction arises 
naturally from joining neighbouring points in the original point set, 
leading to a Delaunay triangulation. As shown in Supplementary 
Video 7, such networks show no gaps and no topology, suggesting 
that the local geometry dictated by Voronoization is responsible 
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Fig. 3 | Alternative local decorations allow control of the edge mode chirality. a–c, Kagomization of an arbitrary point set yields edge modes in gyroscopic 
networks with the opposite chirality to those in Voronoized networks. d,e, Another local decoration of the initial point set allows for multiple gaps with 
either chirality. The amorphous ‘spindle’ network has two gaps with chiral edge modes: blue and red curves overlaying the density of states, D(ω), mark 
the excitation amplitude as a function of frequency for the two cases. In b,c, the spring frequency Ω ω= ℓ ∕k Ik
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frequency, Ωg, while in e, we chose Ωk =​ 7Ωg to broaden the lower (clockwise) mobility gap.
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for its emergent topology. A clue can be found by noting that the 
Voronoized networks are locally akin to a honeycomb lattice. The 
honeycomb is the simplest lattice with more than one site per unit 
cell, a necessary condition for supporting a bandgap in a lattice. 
Moreover, this lattice was previously found to be topological with 
the same Chern number5.

Building on this insight, we introduce a second decoration, 
which we dub ‘kagomization,’ shown in Fig. 3a. If applied to a tri-
angular point set, Voronoization produces a honeycomb lattice and 
kagomization produces a kagome lattice, the simplest lattice with 
three sites per unit cell, which we have found to produce ν =​ +​1  
gyroscopic metamaterials. Proceeding as with the Voronoized net-
work case (Fig. 3b,c), we find the presence of topologically protected 
modes with opposite direction and the corresponding oppo-
site Chern number in the the band structure (see  Supplementary 
Video 8). Other local constructions, such as the ‘spindle’ networks 
in Fig.  3d,e provide multiple mobility gaps, each with a different 
edge mode chirality, offering a transmission direction tuned by fre-
quency (see Supplementary Video 9).

One might think there could be a mapping from the geometry 
of each vertex to the chirality of the edge modes. However, taken 
together, our Voronoized, kagomized and spindle networks dem-
onstrate that simply counting nearest neighbours is not sufficient 

to determine the topology: a description beyond nearest neigh-
bours is required (see also Supplementary Fig. 29). On the other 
hand, we are able to change the Chern number of a structure via 
local decorations. To uncover the extent to which a network’s 
topology is stored locally, consider the projection operator, P. 
The projector value Pij measures the vibrational correlation 
between gyroscope j and gyroscope i when considering all modes 
above a cutoff frequency. By explicitly computing its magnitude 
in our networks, we find that the magnitude of Pij falls off expo-
nentially with distance (Supplementary Fig.  11). Remarkably, 
explicitly cutting out a section of the network and embedding 
it in a network with a different spectrum results in only a slight 
change to the local projector values (<​2%) (see Supplementary 
Fig.  12). Since the Chern number is built from these projector 
elements, it then follows that the local structure of the gyroscope 
network, combined with some homogeneity of this local struc-
ture across the lattice, is all that is needed to determine the Chern 
number (see Supplementary Video  10 and the  Supplementary 
Information section entitled ‘Sign of Chern number from net-
work geometry’).

This situation is reminiscent of electronic glasses, in which 
the local binding structure gives rise to a local ‘gap.’ Under weak 
assumptions of homogeneity, this gap can be shown to extend to 
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the whole system19,20. The case with topology is similar: the next-
nearest-neighbour angles in a network’s cell open a local ‘gap’ by 
breaking time-reversal symmetry.

For amorphous networks, we make the correspondence 
between the bulk topological invariant and the edge states on 
the boundaries by considering a gyroscopic sample shaped into 
an annulus (see refs 25–27). Adiabatically tuning the interactions 
between pairs of gyroscopes along a radial cut (by adding a fix-
ture to one gyroscope from each pair) pumps each edge mode 
into a neighbouring mode, as shown in Supplementary Video 11 
and in the  Supplementary Information section ‘Spectral flow 
through adiabatic pumping’. If we consider all states below a gap 
cutoff frequency, the process—which mimics the effect of thread-
ing a magnetic field through the centre of an annulus in an elec-
tronic system—trades one state localized on the outer boundary 
for an extra state on the inner boundary of the annulus, which 
we connect to the real-space Chern number (equation (1)) in 
the Supplementary Information.

As in the lattice case, a mobility gap becomes topological due 
to time-reversal symmetry breaking: bond angles in these networks 
are not multiples of π​/2 (ref. 5). We can probe this mechanism by 
eliminating a gap’s topology. Alternating the gravitational preces-
sion frequency, Ωg, of neighbouring gyroscopes in a network mim-
ics the breaking of inversion symmetry on a local scale, an effect 
that competes against the time-reversal gap opening mechanism. 
When the precession frequency difference between sites is large 
enough, this competing mechanism eliminates edge modes, trig-
gering a transition to a ν =​ 0 mobility gap, shown in Fig.  4a and 
Supplementary Videos 12 and 13.

Equipped with these insights, we can easily engineer networks 
that are heterogeneous mixtures of multiple local configurations. 
Figure  4b–d highlight some results of combining Voronoized 
and kagomized networks or encapsulating one within another. 
As the Voronoized and kagomized networks share a mobility 
gap, excitations are localized to their interface, offering a method 
of creating robust unidirectional waveguides, such as the sinu-
ous waveguide shown in Fig.  4b and Supplementary Video  14. 
Figure 4c demonstrates that additional topological mobility gaps 
at higher frequency in the kagomized network allow bulk excita-
tions to be confined to an encapsulated Voronoized region (see 
also Supplementary  Video  15). Random mixtures of the two 
decorations, shown in Fig.  4d, demonstrate heterogeneous local 
Chern number measurements (red for ν​=​+​1 and blue for ν​=​–1),  
with mobility-gap excitations biased toward the interfaces between 
red and blue regions (see  Supplementary Information and 
Supplementary Video 16).

As our networks are structurally akin to liquids, they support 
topological modes in the absence of long-range spatial order. The 
details of the underlying point set are not essential, and neither 
are the details of the local Voronoization or kagomization proce-
dures. We verified this by replacing the centroidal construction18 
with a Wigner–Seitz construction (see Supplementary Information 
Figs.  24–26 for a comparison). Beyond mechanical materi-
als, we find similar results in electronic tight-binding models of 
amorphous networks, underscoring the generality of the finding 
(Supplementary Fig. 32).

This study demonstrates that local interactions and local geo-
metric arrangements are sufficient to generate chiral edge modes, 
promising new avenues for engineering topological mechanical 
metamaterials generated via imperfect self-assembly processes. 
Such self-assembled materials could be constructed, for instance, 
with micrometre-scale spinning magnetic particles. Since our 
methods bear substantial resemblance to tight-binding models, our 
results also find direct application not only to electronic materials, 
as we have demonstrated, but also to photonic topological insula-
tors11, acoustic resonators12,13 and coupled circuits28.

Note added in proof: After the submission of this work, we 
became aware of a concurrent theoretical study of the existence 
of amorphous electronic topological insulators in two and three 
dimensions29.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-017-0024-5.
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Methods
For small displacements (δX, δY) of the pivot points from vertical  
alignment with the centres of mass, the equation of motion for a gyroscope 
takes the form
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where Ω ω= ℓ ∕k I( )k
2 , and Ω ω=ℓ ∕mg I( )g , while k is the spring constant, ℓ is the 

length of the pendulum from the pivot to the centre of mass, I is the moment of 
inertia along the spinning axis, ω is the angular spinning frequency, m is the mass 
of the gyroscope and g is the gravitational acceleration. The simulations evolve 
equation (2) using a Runge–Kutta fourth-order explicit method run on a graphics 
processing unit using OpenCL.

To obtain spectra and normal modes, note that equation (2) defines the entries 
for a system’s dynamical matrix, D, such that

ψ ψ=D (3)

where the components of ψ  contain information on the displacements of the 
gyroscopes. To map to a tight-binding model, it is useful to write the displacement 
of the ith gyroscope as ψi ≡​ δXi +​ iδYi and note that the eigenvalue problem gives 
pairs of eigenvalues ±​ω, so that
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The experiment in Fig. 2c shows a chiral wavepacket localized to the boundary 
in an experimental realization of 195 gyroscopes in a Voronoized network based 
on a point set generated from a jammed packing. Each gyroscope consists of a 
spinning motor (~150 Hz) housed in a three-dimensional-printed enclosure (as 
in ref. 5), and each gyroscope is suspended from an acrylic plate by a spring, an 
attachment method that was found to reduce damping.

To establish the equivalence of equation (1) and the response to a point-
like magnetic field, we study the effect of a perturbation on the projection 
operator χ χ≡∑ ∈P i j( ) *( ),ij n n nband  where χ are the perturbed wavefunctions. In 
the Supplementary Information, we link the change in the diagonal elements to the 
charge accumulation near an applied magnetic field:

ρ νΔ = e
h
B (6)z

2

where Δ​ρ is the change in charge density where the magnetic field is applied, Bz is 
the magnetic field normal to the sample and ν is the Chern number of the occupied 
bands when the sample is periodic.

Having shown that the Chern sum (equation (1)) is equal to the charge 
accumulated when a quantum of magnetic flux is inserted, we can establish a 
correspondence between the bulk invariant and edge modes on the boundary by 
introducing a hole at the site of insertion. The real-space Chern number is then 
equal to the number of edge states that accumulate on the inner boundary as an 
effective magnetic flux is introduced through the hole25–27. The effective magnetic 
flux is manifest as a phase shift in the interactions for any loop of spring connections 
that encloses the hole. We construct this phase shift by altering the subset of the 
nearest-neighbour interactions that traverse a cut of the annulus, such that the force 
of one gyroscope on its neighbour across the cut is altered by a rotation

ψ ψ ψ ψ~ − → − θF e (7)i j i j
i twist

In the Supplementary Information, we propose a concrete picture of how this could 
be built in an experiment by attaching an extensible ring to a small number of 
gyroscopes.

To see topological robustness in a simpler situation, we find similar behaviour 
in an amorphous electronic tight-binding model using the model Hamiltonian

∑ ∑=− − ϕ† − †H t c c t e c c (8)
ij

i j
ij

i
i j1 2 ij

where ij  denotes nearest neighbours ij and ij  denotes pairs of next-nearest 
neighbours (NNN). The parameter t2 tunes the strength of all NNN hoppings, and 
ϕij controls the degree to which the hopping i →​ j breaks time-reversal symmetry 
(by tuning the imaginary term). As shown in the Supplementary Information, 
topological edge modes arise in amorphous tight-binding lattices, whether the 
NNN hopping is uniform or bond angle-dependent.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding authors upon request.
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