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Amorphous topological insulators constructed

from random point sets
Noah P. Mitchell

The discovery that the band structure of electronic insula-
tors may be topologically non-trivial has revealed distinct
phases of electronic matter with novel properties'2. Recently,
mechanical lattices have been found to have similarly rich
structure in their phononic excitations®*, giving rise to pro-
tected unidirectional edge modes®”. In all of these cases,
however, as well as in other topological metamaterials®%, the
underlying structure was finely tuned, be it through period-
icity, quasi-periodicity or isostaticity. Here we show that
amorphous Chern insulators can be readily constructed from
arbitrary underlying structures, including hyperuniform,
jammed, quasi-crystalline and uniformly random point sets.
While our findings apply to mechanical and electronic sys-
tems alike, we focus on networks of interacting gyroscopes
as a model system. Local decorations control the topology of
the vibrational spectrum, endowing amorphous structures
with protected edge modes—with a chirality of choice. Using a
real-space generalization of the Chern number, we investigate
the topology of our structures numerically, analytically and
experimentally. The robustness of our approach enables the
topological design and self-assembly of non-crystalline topo-
logical metamaterials on the micro and macro scale.

Condensed-matter science has traditionally focused on systems
with underlying spatial order, as many natural systems spontane-
ously aggregate into crystals. The behaviour of amorphous materi-
als, such as glasses, has remained more challenging’. In particular,
our understanding of common concepts such as bandgaps and
topological behaviour in amorphous materials is still in its infancy
when compared with crystalline counterparts. This is not only a
fundamental problem; advances in modern engineering, both of
metamaterials and of quantum systems, have opened the door for
the creation of materials with arbitrary structure, including amor-
phous materials. This prompts a search for principles that can apply
to a wide range of amorphous systems, from interacting atoms to
mechanical metamaterials.

In the exploration of topological insulators, conceptual advances
have proven to carry across between disparate physical realizations,
from quantum systems', to photonic waveguides'!, to acoustical
resonators'>", to hinged or geared mechanical structures®. One
promising model system is a class of mechanical insulators consist-
ing of gyroscopes suspended from a plate. Appropriate crystalline
arrangements of such gyroscopes break time-reversal symmetry,
opening topological phononic bandgaps and supporting robust chi-
ral edge modes™©.

Unlike trivial insulators, whose electronic states can be thought
of as a sum of independent local insulating states, topological insu-
lators require the existence of delocalized states in each non-triv-
ial band and prevent a description in terms of a basis of localized
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Wannier states'>™”. It is natural, therefore, to assume that some
regularity over long distances may be key to topological behaviour,
even if topological properties are robust to the addition of disorder.
However, the extent to which spatial order needs to be built into the
structure that gives rise to topological modes is unclear. We report
a recipe for constructing amorphous arrangements of interacting
gyroscopes—structurally more akin to a liquid than a solid—that
naturally support topological phonon spectra. By simply changing
the local connectivity, we can tune the chirality of edge modes to be
either clockwise or counterclockwise, or even create both clockwise
and counterclockwise edge modes in a single material. This shows
that topology, a nonlocal property, can naturally arise in materials
for which the only design principle is the local connectivity. Such a
design principle lends itself to imperfect manufacturing and self-
assembly. Although our construction arises naturally in mechanical
metamaterials, we show that it extends to electronic systems in the
tight-binding limit.

The first local construction we consider is shown in Fig. la.
Starting from an arbitrary point set, a natural way to form a net-
work is to generate a Voronoi tessellation, either via the Wigner—
Seitz construction or by connecting centroids of a triangulation'®.
Treating the edges of the cells as bonds and placing gyroscopes at
the vertices leads to a network reminiscent of ‘topological disorder’
in electronic systems'. A range of frequencies arises in which all
modes are tightly localized, and this frequency region overlaps with
the corresponding bandgap of the honeycomb lattice. Crucially, we
find that gyroscope-and-spring networks constructed in this way
from arbitrary initial point sets invariably have such a mobility gap
in a frequency range determined by the strength of the gravitational
pinning and spring interactions.

Our networks are reminiscent of ‘topologically disordered’ elec-
tronic systems". In these systems, a central characteristic is that the
local density of states as a function of frequency is predictive of the
global density of states. Specifically, bandgaps or mobility gaps are
preserved'*-*. Interestingly, we find that, even in the presence of
band topology, averaging the local density of states over mesoscopic
patches (~10 gyroscopes) reproduces the essential features of the
global density of states as a function of frequency. Furthermore, we
find that inserting mesoscopic patches of our structures into a variety
of other dissimilar networks (see Supplementary Figs. 8-10) does not
significantly disrupt the averaged local density of states of the patch.

Crucially, we find that our structures show hallmarks of non-
trivial topology. When the system is cut to a finite size, modes
confined to the edge populate the mobility gap, mixed in with
localized states. As shown in the direct simulations of Fig. 1b and
Supplementary Videos 1 and 2, shaking a gyroscope on the bound-
ary results in chiral waves that bear all the hallmarks of protected
edge states (robustness to disorder and absence of back-scattering).
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Fig. 1| Local structure gives rise to chiral edge modes. a, Voronoization of an amorphous structure, constructed by connecting adjacent centroids of a
triangulation, preserves isotropy and lack of long-range order, here with a hyperuniform point set. Two-point correlation functions g(x) (below) reveal
isotropic spatial structue for a system of N~ 3,000 particles. Spatial coordinates x and y are measured in units of the median bond length. b, Simulations

reveal chiral edge modes in topological gyroscopic networks. The localization of modes is probed by participation ratio, p = [zf

', and the

2
v }/Nifw,

density of states is plotted as a function of normal mode oscillation frequency, in units of the gravitational precession frequency, Q,=tmg/lw. The

blue curve overlaying the density of states denotes the frequency of the driving excitation in the simulation. Here, the characteristic spring frequency,

O = k€?/lw is chosen such that 0,=0,. The inset on the right shows the amplitude, | §y |, of the displacement for the single gyroscope that is shaken at a
constant frequency. €, An edge mode propagates clockwise in an amorphous experimental gyroscopic network. The motor-driven gyroscopes couple via a
magnetic dipole-dipole interaction. Despite the nonlinear interaction and spinning speed disorder (~10%), the edge mode appears, no matter where on the

boundary the excitation is initialized.

An experimental realization can be readily constructed from
gyroscopes interacting magnetically, as seen from below in Fig. 1c.
As in ref. °, these gyroscopes consist of three-dimensional-printed
units encasing d.c. motors that interact via magnetic repulsion.
Probing the edge of this system immediately generates a chiral
wavepacket localized to the boundary, confirming that this class of
topological material is physically realizable and robust (Fig. 1c and
Supplementary Videos 3 and 4).

This behaviour begs for a topological characterization, even
though it might be surprising that topology can emerge from such a
local construction. The existence of chiral edge states in an energy gap
is guaranteed if an invariant known as the Chern number is non-zero,
and the direction of the chiral waves is given by its sign. Although the
Chern number was originally defined in momentum space, several
generalizations have been constructed in coordinate space in order
to accommodate disorder in crystalline electronic materials*~**. In
these methods, information about the system’s vibrations above a
cutoff frequency, w,, is carried by the projection operator, P. Each ele-
ment P; measures the response of gyroscope j to excitations of gyro-
scope i within a prescribed range (band) of frequencies.

According to one such method, proposed in ref.?, a subset of the
system is divided into three parts and labelled in a counterclock-
wise fashion (red, green and blue regions in Fig. 2). These regions
are then used to index components of an antisymmetric product of
projection operators:

v(P) = 12mi Z Z Z (P,-kszsz—szszP kj) (1)

jEA keB leC

The sum of such elements converges to the Chern number of the
band above a chosen cutoff frequency, @, when the summation
region has enclosed many gyroscopes (see Supplementary Videos 5
and 6 and Supplementary Information).

Equation (1) can be understood as a form of charge polarization
in the response of an electronic material to a locally applied mag-
netic field. Applying a magnetic field to a small region of a material
induces an electromotive force winding around the site of appli-
cation. If the material is a trivial insulator, any changes in charge
density there arise from local charge rearrangements, which result
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Fig. 2 | Chern number calculations confirm topological mobility gaps. a,
The Chern number is computed for the band of frequencies above a cutoff
frequency, w,, using a real-space method. Once all modes in a band that
carry Hall conductance are included, the Chern number converges to an
integer value. On the left is an overlaid density of states D(w) histogram for
ten realizations of Voronoized hyperuniform point sets (2,000 particles),
with each mode coloured by its inverse localization length, A™. The
topological mobility gaps remain in place and populated by highly localized
states for all realizations. b,c, The computed Chern number converges once
~20-40 gyroscopes are included in the summation region (red, green, blue
regions in b) and remains at an integer value until the summation region
begins to enclose the sample boundary. All networks have their precession
and spring frequencies set to be equal (2,=Q,).
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in no accumulation of charge. By contrast, a topological electronic
system has a Hall conductivity determined by the Chern number.
As a result, a net current will flow perpendicular to the electromo-
tive force, inducing a net-non-zero charge concentrated at the mag-
netic field site, compensated by charge on the boundary. As we show
in the Supplementary Information, the amount of local charging is
proportional to the applied field, and the proportionality constant is
the Chern number of equation (1).

Figure 2a shows the results of equation (1) computed for the
Voronoized networks. As the cutoff frequency for the projector is
varied (here it is lowered from 4£,), the computed Chern num-
ber converges to v=—1 when all extended states in the top band
lie above the cutoff frequency, confirming that the modes observed
in Fig. 1b,c are topological in origin and predicting their direction.
The Chern number remains at its value of v=—1 for a broad range
of frequencies in which any existing states are localized, and thus do
not contribute to the Chern number. The Chern number returns to
zero once more conductance-carrying extended states are included
in the calculation.

Having established this connection, we now discuss how the
Chern number can be controlled. In particular, we show that by
considering alternative decorations of the same initial point set, it is
possible to flip the chirality of the edge modes or even provide mul-
tiple gaps with differing chirality. One possible construction arises
naturally from joining neighbouring points in the original point set,
leading to a Delaunay triangulation. As shown in Supplementary
Video 7, such networks show no gaps and no topology, suggesting
that the local geometry dictated by Voronoization is responsible

C
0 0.4 A y
n P ° 4/L B ° !
0 I| l' || 0.0
1 2 3 4

Oscillation frequency, w/Qy

o
5(;/307 ‘Aousnbauy jjoIn)

1.
240 000 0.2 04 06 0.8 1.0
D(w) Fraction of system
in sum (~8°/L%)

5 04
0 0.0

123456738

Oscillation frequency, w/ 0,

), 3
Excite here

Fig. 3 | Alternative local decorations allow control of the edge mode chirality. a-c, Kagomization of an arbitrary point set yields edge modes in gyroscopic
networks with the opposite chirality to those in Voronoized networks. d,e, Another local decoration of the initial point set allows for multiple gaps with
either chirality. The amorphous ‘spindle’ network has two gaps with chiral edge modes: blue and red curves overlaying the density of states, D(w), mark
the excitation amplitude as a function of frequency for the two cases. In b,c, the spring frequency Q, = ke2/lw is set equal to the gravitational precession
frequency, £,, while in e, we chose 2, =74, to broaden the lower (clockwise) mobility gap.
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Fig. 4 | Transition of a topological amorphous network to the trivial phase, and binary mixtures of Voronoized and kagomized networks. a, Locally
breaking inversion symmetry by increasing and decreasing the precession frequencies of alternating gyroscopes competes with broken time-reversal
symmetry, triggering a transition to the trivial phase with no edge modes. The precession frequency splitting, A, is tuned so that Q; =0,0+A)

and QgB =0, (1-A). b, Edge modes are localized at the interfaces between kagomized and Voronoized networks, permitting sinuous channels for the
propagation of unidirectional phonons. ¢, Excitations of a Voronoized region nested inside a kagomized network remain confined when the excitation
frequency is in a mobility gap unique to the kagomized network. d, When kagomized elements are randomly mixed into a Voronoized network, the

sign of the local, spatially resolved Chern calculation is determined by the local geometry, with excitations in a mobility gap biased toward the interface

of the two clusters.

for its emergent topology. A clue can be found by noting that the
Voronoized networks are locally akin to a honeycomb lattice. The
honeycomb is the simplest lattice with more than one site per unit
cell, a necessary condition for supporting a bandgap in a lattice.
Moreover, this lattice was previously found to be topological with
the same Chern number®.

Building on this insight, we introduce a second decoration,
which we dub ‘kagomization, shown in Fig. 3a. If applied to a tri-
angular point set, Voronoization produces a honeycomb lattice and
kagomization produces a kagome lattice, the simplest lattice with
three sites per unit cell, which we have found to produce v=+1
gyroscopic metamaterials. Proceeding as with the Voronoized net-
work case (Fig. 3b,c), we find the presence of topologically protected
modes with opposite direction and the corresponding oppo-
site Chern number in the the band structure (see Supplementary
Video 8). Other local constructions, such as the ‘spindle’ networks
in Fig. 3d,e provide multiple mobility gaps, each with a different
edge mode chirality, offering a transmission direction tuned by fre-
quency (see Supplementary Video 9).

One might think there could be a mapping from the geometry
of each vertex to the chirality of the edge modes. However, taken
together, our Voronoized, kagomized and spindle networks dem-
onstrate that simply counting nearest neighbours is not sufficient

to determine the topology: a description beyond nearest neigh-
bours is required (see also Supplementary Fig. 29). On the other
hand, we are able to change the Chern number of a structure via
local decorations. To uncover the extent to which a network’s
topology is stored locally, consider the projection operator, P.
The projector value P; measures the vibrational correlation
between gyroscope j and gyroscope i when considering all modes
above a cutoff frequency. By explicitly computing its magnitude
in our networks, we find that the magnitude of P, falls off expo-
nentially with distance (Supplementary Fig. 11). Remarkably,
explicitly cutting out a section of the network and embedding
it in a network with a different spectrum results in only a slight
change to the local projector values (<2%) (see Supplementary
Fig. 12). Since the Chern number is built from these projector
elements, it then follows that the local structure of the gyroscope
network, combined with some homogeneity of this local struc-
ture across the lattice, is all that is needed to determine the Chern
number (see Supplementary Video 10 and the Supplementary
Information section entitled ‘Sign of Chern number from net-
work geometry’).

This situation is reminiscent of electronic glasses, in which
the local binding structure gives rise to a local ‘gap’ Under weak
assumptions of homogeneity, this gap can be shown to extend to
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the whole system'*?’. The case with topology is similar: the next-
nearest-neighbour angles in a network’s cell open a local ‘gap’ by
breaking time-reversal symmetry.

For amorphous networks, we make the correspondence
between the bulk topological invariant and the edge states on
the boundaries by considering a gyroscopic sample shaped into
an annulus (see refs*?). Adiabatically tuning the interactions
between pairs of gyroscopes along a radial cut (by adding a fix-
ture to one gyroscope from each pair) pumps each edge mode
into a neighbouring mode, as shown in Supplementary Video 11
and in the Supplementary Information section ‘Spectral flow
through adiabatic pumping’. If we consider all states below a gap
cutoff frequency, the process—which mimics the effect of thread-
ing a magnetic field through the centre of an annulus in an elec-
tronic system—trades one state localized on the outer boundary
for an extra state on the inner boundary of the annulus, which
we connect to the real-space Chern number (equation (1)) in
the Supplementary Information.

As in the lattice case, a mobility gap becomes topological due
to time-reversal symmetry breaking: bond angles in these networks
are not multiples of 7/2 (ref.”). We can probe this mechanism by
eliminating a gap’s topology. Alternating the gravitational preces-
sion frequency, £,, of neighbouring gyroscopes in a network mim-
ics the breaking of inversion symmetry on a local scale, an effect
that competes against the time-reversal gap opening mechanism.
When the precession frequency difference between sites is large
enough, this competing mechanism eliminates edge modes, trig-
gering a transition to a ¥=0 mobility gap, shown in Fig. 4a and
Supplementary Videos 12 and 13.

Equipped with these insights, we can easily engineer networks
that are heterogeneous mixtures of multiple local configurations.
Figure 4b-d highlight some results of combining Voronoized
and kagomized networks or encapsulating one within another.
As the Voronoized and kagomized networks share a mobility
gap, excitations are localized to their interface, offering a method
of creating robust unidirectional waveguides, such as the sinu-
ous waveguide shown in Fig. 4b and Supplementary Video 14.
Figure 4c demonstrates that additional topological mobility gaps
at higher frequency in the kagomized network allow bulk excita-
tions to be confined to an encapsulated Voronoized region (see
also Supplementary Video 15). Random mixtures of the two
decorations, shown in Fig. 4d, demonstrate heterogeneous local
Chern number measurements (red for v=+1 and blue for v=-1),
with mobility-gap excitations biased toward the interfaces between
red and blue regions (see Supplementary Information and
Supplementary Video 16).

As our networks are structurally akin to liquids, they support
topological modes in the absence of long-range spatial order. The
details of the underlying point set are not essential, and neither
are the details of the local Voronoization or kagomization proce-
dures. We verified this by replacing the centroidal construction'®
with a Wigner-Seitz construction (see Supplementary Information
Figs. 24-26 for a comparison). Beyond mechanical materi-
als, we find similar results in electronic tight-binding models of
amorphous networks, underscoring the generality of the finding
(Supplementary Fig. 32).

This study demonstrates that local interactions and local geo-
metric arrangements are sufficient to generate chiral edge modes,
promising new avenues for engineering topological mechanical
metamaterials generated via imperfect self-assembly processes.
Such self-assembled materials could be constructed, for instance,
with micrometre-scale spinning magnetic particles. Since our
methods bear substantial resemblance to tight-binding models, our
results also find direct application not only to electronic materials,
as we have demonstrated, but also to photonic topological insula-
tors'!, acoustic resonators'>"” and coupled circuits®.
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Note added in proof- After the submission of this work, we
became aware of a concurrent theoretical study of the existence
of amorphous electronic topological insulators in two and three
dimensions®.

Methods

Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
0rg/10.1038/s41567-017-0024-5.
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Methods

For small displacements (6X, §Y) of the pivot points from vertical

alignment with the centres of mass, the equation of motion for a gyroscope

takes the form

NN

~Fy
Eix

OX,-

Q
N7 ) R
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where Q, =k¢? /(Iw), and Q,=¢mg [(Iw), while k is the spring constant, £’ is the
length of the pendulum from the pivot to the centre of mass, I is the moment of
inertia along the spinning axis, @ is the angular spinning frequency, m is the mass
of the gyroscope and g is the gravitational acceleration. The simulations evolve
equation (2) using a Runge-Kutta fourth-order explicit method run on a graphics
processing unit using OpenCL.

To obtain spectra and normal modes, note that equation (2) defines the entries
for a system’s dynamical matrix, D, such that

y=Dy 3)

where the components of y contain information on the displacements of the
gyroscopes. To map to a tight-binding model, it is useful to write the displacement
of the ith gyroscope as y,=6X;+ i6Y; and note that the eigenvalue problem gives
pairs of eigenvalues +w, so that
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The experiment in Fig. 2c shows a chiral wavepacket localized to the boundary
in an experimental realization of 195 gyroscopes in a Voronoized network based
on a point set generated from a jammed packing. Each gyroscope consists of a
spinning motor (~150 Hz) housed in a three-dimensional-printed enclosure (as
in ref.”), and each gyroscope is suspended from an acrylic plate by a spring, an
attachment method that was found to reduce damping.
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To establish the equivalence of equation (1) and the response to a point-
like magnetic field, we study the effect of a perturbation on the projection
operator P;= Y cband ;(n(i);(n*(j), where y are the perturbed wavefunctions. In
the Supplementary Information, we link the change in the diagonal elements to the
charge accumulation near an applied magnetic field:

2

e
Ap=1v—B (6)
p=v B,

where Ap is the change in charge density where the magnetic field is applied, B, is
the magnetic field normal to the sample and v is the Chern number of the occupied
bands when the sample is periodic.

Having shown that the Chern sum (equation (1)) is equal to the charge
accumulated when a quantum of magnetic flux is inserted, we can establish a
correspondence between the bulk invariant and edge modes on the boundary by
introducing a hole at the site of insertion. The real-space Chern number is then
equal to the number of edge states that accumulate on the inner boundary as an
effective magnetic flux is introduced through the hole”~”". The effective magnetic
flux is manifest as a phase shift in the interactions for any loop of spring connections
that encloses the hole. We construct this phase shift by altering the subset of the
nearest-neighbour interactions that traverse a cut of the annulus, such that the force
of one gyroscope on its neighbour across the cut is altered by a rotation

F~ vy~ Wi_y/jeig‘wist ?)

In the Supplementary Information, we propose a concrete picture of how this could
be built in an experiment by attaching an extensible ring to a small number of
gyroscopes.

To see topological robustness in a simpler situation, we find similar behaviour
in an amorphous electronic tight-binding model using the model Hamiltonian

H=-t, Z clet, Z e ic]c, )
(i)

i)

where (ij) denotes nearest neighbours ij and (({ij)) denotes pairs of next-nearest
neighbours (NNN). The parameter ¢, tunes the strength of all NNN hoppings, and
¢; controls the degree to which the hopping i — j breaks time-reversal symmetry
(by tuning the imaginary term). As shown in the Supplementary Information,
topological edge modes arise in amorphous tight-binding lattices, whether the
NNN hopping is uniform or bond angle-dependent.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding authors upon request.
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