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Abstract—Social network data are complex and dependent
data. At the macro-level, social networks often exhibit cluster-
ing in the sense that social networks consist of communities;
and at the micro-level, social networks often exhibit complex
network features such as transitivity within communities.
Modeling real-world social networks requires modeling both
the macro- and micro-level, but many existing models focus
on one of them while neglecting the other. In recent work,
[28] introduced a class of Exponential Random Graph Models
(ERGMs) capturing community structure as well as micro-
level features within communities. While attractive, existing
approaches to estimating ERGMs with community structure
are not scalable. We propose here a scalable two-stage strategy
to estimate an important class of ERGMs with community
structure, which induces transitivity within communities. At
the first stage, we use an approximate model, called working
model, to estimate the community structure. At the second
stage, we use ERGMs with geometrically weighted dyadwise
and edgewise shared partner terms to capture refined forms of
transitivity within communities. We use simulations to demon-
strate the performance of the two-stage strategy in terms of the
estimated community structure. In addition, we show that the
estimated ERGMs with geometrically weighted dyadwise and
edgewise shared partner terms within communities outperform
the working model in terms of goodness-of-fit. Last, but not
least, we present an application to high-resolution human
contact network data.

Index Terms—Social Networks, Hierarchical Exponential
Random Graph Models, Latent Space Cluster Models, Multi-
phase Inference

I. Introduction
Social network data, which are data that can be repre-

sented by a graph consisting of edges between nodes, are
popular in network science, engineering, computer science,
statistics, and related fields [17]. The nodes may represent
individuals or organizations, and each edge is a measure

of the relation between a pair of nodes. For example,
in the collaboration network of statisticians studied by
[16], Yi,j = 1 indicates that individual i collaborated with
individual j and Yi,j = 0 otherwise. The statistical analysis
of social network data is concerned with the processes
driving edge formation, and the dependencies among the
edge formation processes.

Large social networks often exhibit both macro- and
micro-level structure [32]: at the macro-level, nodes are
often partitioned into communities; and at the micro-level,
social networks often exhibit complex network features
such as transitivity within communities (“a friend of a
friend is my friend”).

To capture macro-level features of social networks such
as community structure, Stochastic Block Models (SBMs)
are popular [1, 21]. However, SBMs assume that all edges
within communities are independent, which means that
SBMs are incapable of capturing dependencies among
edges. An example of a dependence among edges is
transitivity (“a friend of a friend is my friend”), which
implies that triples of edges are dependent, and therefore
cannot be captured by SBMs.

To model micro-level features of social networks such
as transitivity, Exponential Random Graph Models
(ERGMs) are widely used [8, 19, 35]. The development
of well-behaved ERGMs with geometrically weighted
edgewise shared partner terms for capturing transitivity
[33] along with advances in Markov Chain Monte Carlo
(MCMC) methods [11, 14, 31] have led to widespread use
of ERGMs [8, 19].

In recent work, [28] combined SBMs and ERGMs to
capture both macro- and micro-level features of social
networks. Called Hierarchical ERGMs (HERGMs), those
models assume that the set of nodes is partitioned intoIEEE/ACM ASONAM 2018, August 28-31, 2018, Barcelona, Spain
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communities, and that the micro-level features of com-
munities are captured by community-specific ERGMs.
However, the Bayesian approach to estimating HERGMs
proposed by [28] is time-consuming and infeasible for social
networks with more than 100 nodes [29], for at least two
reasons. First, there are exp(K log n) possible partitions
of the set of nodes. Second, for each possible partition
of the set of nodes, there are exp(

(
nk

2

)
log 2) possible

subgraphs within community k, where nk is the number
of nodes in community k, k = 1, . . . ,K. Likelihood-based
inference is time-consuming, because maximum likelihood
and Bayesian approaches involve intractable sums over
exp(K log n) possible community structures and, for each
possible community structure with K communities, there
are exp(

(
nk

2

)
log 2) (k = 1, . . . ,K) subgraphs within K

communities.

This paper. We develop a scalable approach to estimating
both the macro- and micro-level features of HERGMs.
The approach is based on decoupling the estimation of the
macro- and micro-level features of HERGMs, resulting in a
two-stage estimation strategy. We apply the two-stage es-
timation strategy to an important class of ERGMs, able to
induce transitivity within communities. At the first stage,
we use an approximate model, called working model, to
estimate the community structure. As a working model, we
use latent class models with community structure, which
capture community structure as well as transitivity within
communities. At the second stage, community-specific
ERGMs are estimated, using geometrically weighted dyad-
wise and edgewise shared partner terms to capture more
refined forms of transitivity within communities. We use
simulations to show the performance of the two-stage
strategy in terms of the estimated community structure.
In addition, we show that the estimated ERGMs with
geometrically weighted dyadwise and edgewise shared
partner terms within communities outperform the working
model used in the first step in terms of goodness-of-fit. We
demonstrate the usefulness of the two-stage estimation
strategy by applying it to high-resolution human contact
network data [23].

The rest of paper is organized as follows. In Sections
III and IV, we review ERGMs and ERGMs with local
dependence, respectively. In Section V, we propose a scal-
able two-stage estimation strategy for estimating ERGMs
with local dependence. In Section VI, we use simulations
to demonstrate the usefulness of the two-stage estimation
strategy. In Section VII, we apply it to high-resolution
human contact network data.

II. Notation

Throughout, we consider undirected graphs, but ex-
tensions to directed graphs and weighted graphs are
straightforward. An undirected graph G = (V,E) consists
a set of nodes V = {1, . . . , n} and a set of edges E ⊆ V ×V .

The edges of the undirected G can be represented by the
n× n adjacency matrix Y with elements

Yi,j =

{
1 if there is an edge between nodes i and j

0 otherwise.

By convention, self-loops are excluded, so Yi,i = 0,
i = 1, . . . , n. In addition, we assume that the set of
nodes is partitioned into K subsets of nodes, labeled
1, . . . ,K and called communities. The memberships of
nodes to communities are denoted by Z = {Zi}ni=1, where
Zi = k indicates that node i belongs to community
k ∈ {1, . . . ,K}.

III. ERGMs
Exponential-family random graph models (ERGMs) [4,

10, 35] are models of random graphs and can be considered
to be generalizations of the Bernoulli(π) random graphs of
Erdös and Rényi [3]. ERGMs assume that the probability
mass of graph Y has the exponential-family form

P(Y = y) = exp(⟨θ, s(y)⟩ − ψ(θ)), (1)

where ⟨θ, s(y)⟩ denotes the inner product of a vector of
network features s(y) and a vector of weights θ, and ψ(θ)
ensures that P(Y = y) sums to one. The special case of
Bernoulli(π) random graphs is obtained when s(y) is the
number of edges and θ = logit(π) is the log odds of the
probability of an edge.

In principle, network scientists are free to specify
network features s(y), which makes ERGMs appealing
to network scientists. However, while ERGMs represent a
rich modeling framework, ERGMs need to be applied with
care, for at least two reasons. First, it is known that some
specifications of ERGMs make more sense than others
[2, 5, 27]. For example, using the number of edges and
triangles as network features is problematic, because it
assumes that, for each pair of nodes, every additional tri-
angle has the same added value. Such model specifications
are associated with model near-degeneracy [2, 5, 27]. To
reduce model near-degeneracy, [33] proposed geometrically
weighted terms, such as Geometrically Weighted Edgewise
Shared Partner (GWESP) terms [12, 13]. ERGMs with
GWESP terms imply that the added value of additional
triangles decays at a geometric rate. Such models are
more appealing in practice and mitigate model near-
degeneracy [13, 27]. Second, when ERGMs are applied
to large networks, the underlying dependence assumptions
may be unwarranted: e.g., the classic ERGMs of [4] assume
that each edge can depend on 2 (n − 2) other edges. In
large social networks with millions or billions of nodes,
it is not plausible that an edge depends on millions or
billions of other edges.

IV. HERGMs
To alleviate the shortcomings of SBMs (which capture

macro-, but not micro-level features) and ERGMs (which
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capture micro-, but not macro-level features), [28] intro-
duced HERGMs with local dependence. The notion of
local dependence was inspired by related notions of local
dependence in physics, spatial statistics, and time series
analysis, where the units of analysis interact with other
units, but the interactions are local in the sense that each
unit interacts with other units that are close to it in a
well-defined sense: e.g., in two-dimensional Ising models in
physics, particles are located on a two-dimensional lattice
and each particle interacts with its 4 nearest neighbors
on the lattice. In random graphs, it is likewise plausible
that each edge interacts with a small number of other
edges, rather than 2 (n − 2) other edges as the classic
ERGMs of [4] assume. There are many possible definitions
of the notion of local dependence. A simple definition was
introduced by [28].
Definition: local dependence [28]. The dependence in-
duced by a probability mass function P of Y is called
local if there exists a partition of the set of nodes A
into K ≥ 2 non-empty communities A1, . . . , AK , such that
probability mass function of the whole graph decomposes
into probability mass functions of within- and between-
community subgraphs Yk,l:

P(Y = y) =
K∏

k=1

P(Yk,k = yk,k)

×
k−1∏
l=1

P(Yk,l = yk,l, Yl,k = yl,k),

(2)

where within-community probability mass functions in-
duce dependence within subgraphs Yk,k, whereas between-
community probability mass functions induce indepen-
dence between subgraphs.

In other words, local dependence breaks down the
dependence of graph Y into within-community and
between-community subgraphs, but leaves researchers the
freedom to specify dependencies of interest within each
community. [28] and [30] show that HERGMs with local
dependence have desirable theoretical properties, such as
being weakly projective and consistent.

In practice, HERGMs with local dependence can be
specified by specifying conditional probability mass func-
tions of the graph Y given the community memberships
Z = z of the form

P(Y = y |Z = z) =
K∏

k=1

P(Yk,k = yk,k |Z = z)

×
k−1∏
l=1

P(Yk,l = yk,l |Z = z),

(3)

where the between-community probability mass functions
are of the form
P(Yk,l = yk,l |Z = z) =

∏
i∈Ak,j∈Al

P(Yi,j = yi,j |Z = z),

and the within-community probability mass functions are
of the form

P(Yk,k = yk,k |Z = z) = exp(⟨θk, sk(yk,k)⟩ − ψk(θk)),

where sk(yk,k) is a vector of network features for com-
munity k and θk is a vector of weights for community
k. The function ψk(θk) ensures that P(Yk,k = yk,k |Z =
z) sums to 1. To complete the model specification, a
marginal probability mass function for the community
memberships Z is required. In the simplest case, when
the number of communities K is known, the community
memberships of nodes can be assumed to be independent
Multinomial(π1, . . . , πK) random variables. The case of
unknown K is discussed in [28].

V. Two-stage estimation
While it is attractive that HERGMs capture both

macro- and micro-level features of social networks, a fully
Bayesian approach to estimating them is challenging, as
pointed out in Section I. Here, we propose a scalable two-
stage estimation strategy, tailored to HERGMs with tran-
sitivity within communities. We focus here on HERGMs
with transitivity within communities, because transitivity
is one of the most challenging, and important network
phenomena [34].

In the first step, it estimates the macro-level structure:
the community structure. In the second step, it estimates
the micro-level structure: the parameters of ERGMs gov-
erning refined forms of transitivity within communities.

In short, we propose the following two-stage estimation
strategy for estimating HERGMs with transitivity within
communities:

• Stage 1: Estimate the community structure.
• Stage 2: Conditional on the estimated community

structure, estimate community-specific ERGMs.
Note that success in Step 1 is critical to success in Step
2, because poor clustering results in poor community-
specific ERGM inference. Therefore, the estimation of the
communities needs to be based on a working model that is
a good approximation of the HERGM under consideration.
Since the HERGM captures both community structure
and transitivity within communities, so should the working
model.

There are at least two possible classes of working mod-
els: SBMs [1, 21] and latent space models with community
structure [6]. SBMs capture community structure, but fail
to capture transitivity within communities, as pointed
out in Section I. In contrast, latent space models with
community structure capture both community structure
and transitivity within communities, and hence constitutes
a useful class of working models. We therefore propose
to use latent space models with community structure as
working models.

In the following two subsections, we first describe latent
space models with community structure for estimating
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communities in Step 1, and then discuss methods for
estimating community-specific ERGMs in Step 2.

A. Step 1: estimating communities
To estimate communities in Step 2, we use an extension

of latent space models with community structure [7, 9]. A
comprehensive review of latent space models can be found
in [26].

[9] proposed latent space models based on the assump-
tion that each node i has a position Zi in a latent d-
dimensional Euclidean space, which may be interpreted as
an unobserved social space. Conditional on the positions
Zi and Zj of nodes i and j, edges Yi,j are independent. If
there are no covariates, the conditional probability of an
edge between nodes i and j takes the form

logit{P(Yi,j = 1 |Zi, Zj)} = α− ∥Zi − Zj∥2, (4)

where α can be interpreted as the baseline propensity
to form edges and ∥Zi − Zj∥2 denotes the Euclidean
distance between the positions Zi and Zj of nodes i and
j. Covariates can be incorporated [9].

[7] extended the latent space models of [9] by assuming
that the set of nodes is partitioned into K communities,
and that the position of each node is generated by a
community-specific multivariate Gaussian. In other words,
[7] assumed that the positions Zi of nodes i are generated
by a finite mixture of d-variate Gaussians:

Zi
iid∼

K∑
k=1

λk MVNd(µk, σ
2
k Id), (5)

where λk > 0 denotes the probability that a node
belongs to the k-th community, and the probabilities λk
satisfy

∑K
k=1 λk = 1. Here, µk are community-specific

mean vectors, σ2
k are community-specific variances, and

Id denotes the identity matrix of order d.
Two important properties of so-called Latent Space

Cluster Models (LSCMs) are that LSCMs can be used to
assess who belongs to which community and that LSCMs
induce a stochastic tendency toward transitivity. By the
triangle inequality, if two nodes i and j are close to a
third node k, then i and j are close to each other as well.
Since the conditional probability of an edge between two
nodes increases as the distance between the two nodes
decreases, the existence of two edges between nodes i and
k and nodes j and k implies that the edge between i and
k exists with high probability as well. As a result, LSCMs
induce a stochastic tendency toward transitivity.

Note that LSCMs do not model transitivity directly
but induce transitivity indirectly by assuming that nodes
are embedded in a latent d-dimensional Euclidean space.
LSCMs are therefore not as rich models of transitivity as
ERGMs, which allow to directly specify many models for
many forms of transitivity, using geometrically weighted
model terms and other sensible model terms. Nonetheless,
LSCMs are useful approximations of HERGMs with tran-
sitivity within communities, because they capture both

community structure and some form of transitivity within
communities. As important, while estimating LSCMs is
not trivial, there exist scalable estimation procedures for
LSCMs. Two examples are the scalable methods of [22]
and [25], which are both based on approximations of the
likelihood function. We use here the Bayesian variational
approach of [25] implemented in R package VBLPCM [24].

B. Step 2: estimating ERGMs
To estimate community-specific ERGMs in Step 2,

we use the Monte Carlo maximum likelihood estimates
proposed by [14], which are approximations of maximum
likelihood estimates. For each community, the community-
specific ERGM parameters are estimated by Monte Carlo
maximum likelihood estimates. We use here the Monte
Carlo maximum likelihood approach of [14] implemented
in R packages ergm [15] and hergm [29]. A detailed descrip-
tion of the Monte Carlo maximum likelihood procedure
can be found in [14], and some recent advances have been
made by [11] and [18].

VI. Experiments
We use simulation results to demonstrate the proposed

two-stage estimation strategy, with a focus on the fol-
lowing two performance aspects: first, perfect recovery of
community structure, with a well-chosen working model
and a moderate network size; and, second, a substantial
improvement in goodness-of-fit of the estimated HERGM
over the working model.

A. Simulation design
We consider HERGMs with conditional probability

mass function

P(Y = y |Z = z) =

(
nB
yB

)
pyB (1− p)nB−yB

K∏
k=1

exp
(
θk,1 Edges(yk,k) + θk,2 GWDSP(yk,k)

+ θk,3 GWESP(yk,k)− ψ(θk)
)
,

where yB is the number of between-community edges
and nB is the number of possible between-community
edges. Each community-specific ERGM has three terms,
an edge term to capture the basic propensity to form
edges within communities and a Geometrically Weighted
Edgewise Shared Partner (GWESP) and a Geometrically
Weighted Dyadwise Shared Partner (GWDSP) term to
capture refined forms of closure within communities.
The GWESP and GWDSP terms are weighted sums of
the number of pairs of nodes with i shared partners
(called dyadwise shared partners, DSP) and the number
of connected pairs of nodes with i shared partners (called
edgewise shared partners, ESP), respectively. The weights
decay at a geometric rate, which implies that the added
value of additional shared partners decays at a geometric
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Fig. 1: The proportion of misclassified nodes decreases as the community sizes increase. From left to right, each column
represents the strength of transitivity, ranging from weak (0.1), moderate (0.2), to strong (0.3). On the horizontal
axis is community size (size of cluster), which is the same for all communities. On the vertical axis is the proportion
of misclassified nodes (mis-clustered rate).

rate. A careful discussion of GWESP and GWDSP terms
can be found in [12] and [13].

Networks with 3 communities of equal size are simu-
lated from the HERGM specified in Equation (6), with
between-community link probability p = 0.05 and within-
community base density parameter θk,1 = logit(0.05),
k = 1, . . . , 6. To assess the impact of community sizes
and the strength of transitivity, we consider community
sizes 10, 20, 40, and 80 and consider as strength of
transitivity θk,2 / θk,3, ranging from weak (0.1), moderate
(0.2), to strong (0.3). For each of the 3 × 4 = 12
settings, we simulated 100 networks and applied the two-
stage estimation strategy to each of them. We assess
the performance of the two-stage estimation procedure
in Steps 1 and 2 below.

B. Stage 1 performance
To evaluate the performance of the two-stage estimation

strategy in Step 1, we use the proportion of misclassified
nodes to assess how well the community structure is
estimated.

Figure 1 shows the proportion of misclassified nodes
along with the community size and the strength of
transitivity. Three observations are worth noting. First,
the proportion of misclassified nodes decreases as the com-
munity sizes increase, regardless of the strength of tran-
sivitity. Second, almost-perfect recovery of the community
structure is possible when the sizes of the communities is
large (80), regardless of the strength of transitivity, or
when the sizes of the communities is moderate (40) and
the strength of transitivity is moderate (0.2) or large (0.3).

Last, but not least, the proportion of misclassified nodes
decreases faster when the transitivity is stronger.

C. Stage 2 performance
To evaluate the performance of the two-stage estimation

strategy in terms of goodness-of-fit and show that the
HERGM estimated in Step 2 over the working model
estimated in Step 1, we chose one simulated network at
random from the subset of simulated networks for which
the working model achieved perfect clustering. We then
simulated two sets of networks, one from the working
model estimated in Step 1 and one from the HERGM
estimated in Step 2. We then assessed the goodness-of-
fit in terms of common network features [13]: degrees,
geodesic distances [20], and the numbers of edgewise
shared partners (ESP) and dyadwise shared partners
(DSP).

Figure 2 suggests that the working model fails to
capture ESP and DSP, along with degrees. In contrast, the
estimated HERGM captures all of those network features
much better than the working model.

VII. Application to high-resolution human contact
network data

We demonstrate the two-stage estimation strategy for
HERGMs by using high-resolution human contact net-
work data collected in a U.S. highschool [23], which can
be downloaded from http://sing.stanford.edu/flu. Many
infectious diseases, including Seasonal Influenza (flu), are
transmitted via droplets during close proximity inter-
actions (CPIs). Although it has long been known that
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(a) Goodness-of-fit of the working model estimated in Step
1. (b) Goodness-of-fit of the HERGM estimated in Step 2.

Fig. 2: Goodness-of-fit of the working model estimated in Step 1 (a) and the HERGM estimated in Step 2 (b) in
terms of degrees, geodesic distances, ESP, and DSP.

Community k Size of community k Number of edges θ̂k,1 (Edges) θ̂k,2 (GWESP) θ̂k,3 (GWDSP)
1 191 1843 -4.01 (-5.38,-3.16) 1.38 (1.2,1.61) -0.12 (-0.16,-0.07)
2 88 622 -2.8 (-3.65,-2.2) 0.94 (0.78,1.1) -0.14 (-0.17,-0.11)
3 76 375 -3.43 (-4.12,-2.65) 1.01 (0.87,1.15) -0.11 (-0.16,-0.05)
4 163 859 -4.18 (-4.65,-3.67) 1.06 (0.96,1.18) -0.06 (-0.09,-0.03)
5 91 340 -3.37 (-3.88,-2.9) 0.86 (0.76,0.97) -0.08 (-0.12,-0.03)
6 106 510 -3.39 (-4.01,-2.78) 0.98 (0.85,1.1) -0.1 (-0.14,-0.05)

TABLE I: Monte Carlo maximum likelihood estimates θ̂k,1, θ̂k,2, and θ̂k,3 of the parameters θk,1, θk,2, and θk,3 of the
community-specific ERGMs for communities k = 1, . . . , 6, conditional on the estimated community structure with 6
communities.

understanding how people interact is critical to containing
the spread of infectious diseases, previous studies have
been limited by the data collection design. Most of them
have relied on surveys, which are prone to measurement
errors. The advantage of [23]’s study is that CPIs were
collected by wireless sensors, which are less prone to
measurement errors. In particular, in [23]’s study students
carried beacons, and whenever two students were suffi-
ciently close to each other, the beacons of the students
emitted signals. To construct an undirected graph, we
ignore the directions of the signals and define Yi,j = 1
if two students i and j were sufficiently close to each
other for more than 10 minutes and Yi,j = 0 otherwise.
We take the largest component of the resulting network,
containing 715 nodes and 7,005 edges. We are interested
in HERGMs with transitivity within communities induced
by GWESP and GWDSP terms, as specified in Equation
(6). As a working model, we use two-dimensional LSCMs,

as described in Section V-A.
The working model was estimated by the varia-

tional Bayes methods of [25] implemented in R package
VBLPCM [24]. To select the number of communities,
we used the Bayesian Information Criterion (BIC), as
suggested by [7].

The BIC of models with 1, . . . , 7 communities is shown
in Figure 3(a) and suggests that 6 communities is a
reasonable choice. All of the following results are based
on 6 communities.

Figure 3(b) shows the estimated positions of nodes in
two-dimensional Euclidean space along with the estimated
community structure with 6 communities. It can be seen
that there are 6 distinct communities, as suggested by the
BIC. In addition, the uncertainty about the community
memberships of most nodes is low, as the pie plots are
dominated by a single color.

Given the estimated community structure, we esti-
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(a) BIC of models with 1, . . . , 7 communities.
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(b) Estimated community structure with 6 communities.

Fig. 3: Figure (a) shows that the BIC is lowest when the number of communities is 6, suggesting that 6 communities
is a reasonable choice. Figure (b) shows estimates of the positions of nodes in two-dimensional Euclidean space along
with the 6 estimated communities.

mated the community-specific ERGMs. The Monte Carlo
maximum likelihood estimates θ̂k,1, θ̂k,2, and θ̂k,3 of the
parameters θk,1, θk,2, and θk,3 of the community-specific
ERGMs for communities k = 1, . . . , 6 are shown in Table
I. The estimates of the parameters θk,2 of the GWESP
terms are all large and positive, whereas the estimates of
the parameters θk,3 of the GWDSP terms are all small
and negative. Taken together, these results suggest that,
for each pair of students, dyadwise shared partners are
discouraged, unless the two students are connected by
an edge. If the two students are connected by an edge,
additional shared partners have an added value, although
the added value decays at a geometric rate. The inferred
transitivity in the human contact network has implications
in terms of epidemics, suggesting that infectious diseases
can spread easily within the estimated communities.

VIII. Discussion

We introduced a scalable two-stage estimation strategy
for estimating both the macro- and micro-level structure
of social networks based on HERGMs and assessed its
performance on simulated and real-world networks.

One limitation of the two-stage estimation strategy
is that no universal working model exists. A working
model has to be chosen on a case-by-case basis, and some
working models may outperform others. For HERGMs
with transitivity within communities, LSCMs are natural
working models, but when HERGMs model other forms

of local structure, other working models may be more
appropriate.

Last, but not least, extensions to other forms of
networks, including time-dependent networks as well as
multilevel and multiplex networks, would be interesting.
The basic ideas discussed here can be extended to such
networks, although the practical implementation is non-
trivial.

Acknowledgements
Ming Cao was supported by the UTHealth Innovation

for Cancer Prevention Research Training Program Pre-
doctoral Fellowship (Cancer Prevention and Research
Institute of Texas award RP160015). The content is solely
the responsibility of the authors and does not necessarily
represent the official views of the Cancer Prevention and
Research Institute of Texas. Michael Schweinberger was
partially supported by the National Science Foundation
(NSF award DMS-1513644). The authors are grateful to
Jonathan Stewart for helpful comments and suggestions.

References
[1] P. J. Bickel and A. Chen. A nonparametric view of

network models and Newman-Girvan and other mod-
ularities. In Proceedings of the National Academy of
Sciences, volume 106, pages 21068–21073, 2009.

[2] S. Chatterjee and P. Diaconis. Estimating and
understanding exponential random graph models.
The Annals of Statistics, 41:2428–2461, 2013.

296



[3] P. Erdős and A. Rényi. On the evolution of random
graphs. Publications of the Mathematical Institute of
the Hungarian Academy of Sciences, 5:17–61, 1960.

[4] O. Frank and D. Strauss. Markov graphs. Journal
of the American Statistical Association, 81:832–842,
1986.

[5] M. S. Handcock. Statistical models for social net-
works: Inference and degeneracy. In R. Breiger,
K. Carley, and P. Pattison, editors, Dynamic Social
Network Modeling and Analysis: Workshop Summary
and Papers, pages 1–12. National Academies Press,
Washington, D.C., 2003.

[6] M. S. Handcock, A. E. Raftery, and J. M. Tantrum.
Model-based clustering for social networks. Journal
of the Royal Statistical Society, Series A (with dis-
cussion), 170:301–354, 2007.

[7] M. S. Handcock, A. E. Raftery, and J. M. Tantrum.
Model-based clustering for social networks. Journal
of the Royal Statistical Society: Series A (Statistics
in Society), 170(2):301–354, 2007.

[8] J. K. Harris. An Introduction to Exponential Random
Graph Modeling. Sage, Thousand Oaks, California,
2013.

[9] P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent
space approaches to social network analysis. Journal
of the American Statistical Association, 97:1090–
1098, 2002.

[10] P. W. Holland and S. Leinhardt. An exponential
family of probability distributions for directed graphs.
Journal of the American Statistical Association,
76:33–65, 1981.

[11] R. M. Hummel, D. R. Hunter, and M. S. Handcock.
Improving simulation-based algorithms for fitting
ERGMs. Journal of Computational and Graphical
Statistics, 21:920–939, 2012.

[12] D. R. Hunter. Curved exponential family models for
social networks. Social Networks, 29:216–230, 2007.

[13] D. R. Hunter, S. M. Goodreau, and M. S. Handcock.
Goodness of fit of social network models. Journal
of the American Statistical Association, 103:248–258,
2008.

[14] D. R. Hunter and M. S. Handcock. Inference in curved
exponential family models for networks. Journal of
Computational and Graphical Statistics, 15:565–583,
2006.

[15] D. R. Hunter, M. S. Handcock, C. T. Butts, S. M.
Goodreau, and M. Morris. ergm: A package to fit,
simulate and diagnose exponential-family models for
networks. Journal of Statistical Software, 24:1–29,
2008.

[16] P. Ji and J. Jin. Coauthorship and citation networks
for statisticians. The Annals of Applied Statistics,
10:1779–1812, 2016.

[17] E. D. Kolaczyk. Statistical Analysis of Network Data:
Methods and Models. Springer-Verlag, New York,
2009.

[18] P. N. Krivitsky. Using contrastive divergence to seed
Monte Carlo MLE for exponential-family random
graph models. Computational Statistics and Data
Analysis, 107:149–161, 2017.

[19] D. Lusher, J. Koskinen, and G. Robins. Exponential
Random Graph Models for Social Networks. Cam-
bridge University Press, Cambridge, UK, 2013.

[20] M. Newman, A.-L. Barabasi, and D. J. Watts. The
structure and dynamics of networks. Princeton
University Press, 2011.

[21] K. Nowicki and T. A. B. Snijders. Estimation and
prediction for stochastic blockstructures. Journal of
the American Statistical Association, 96:1077–1087,
2001.

[22] A. E. Raftery, X. Niu, P. D. Hoff, and K. Y. Yeung.
Fast inference for the latent space network model
using a case-control approximate likelihood. Journal
of Computational and Graphical Statistics, 21:901–
919, 2012.

[23] M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis,
M. W. Feldman, and J. H. Jones. A high-resolution
human contact network for infectious disease trans-
mission. Proceedings of the National Academy of
Sciences, 107(51):22020–22025, 2010.

[24] M. Salter-Townshend. VBLPCM: Variational Bayes
Latent Position Cluster Model for networks, 2012. R
package version 2.2.

[25] M. Salter-Townshend and T. B. Murphy. Variational
Bayesian inference for the latent position cluster
model for network data. Computational Statistics
and Data Analysis, 57:661–671, 2013.

[26] M. Salter-Townshend, A. White, I. Gollini, and T. B.
Murphy. Review of statistical network analysis:
models, algorithms, and software. Statistical Analysis
and Data Mining, 5:243–264, 2012.

[27] M. Schweinberger. Instability, sensitivity, and de-
generacy of discrete exponential families. Journal of
the American Statistical Association, 106(496):1361–
1370, 2011.

[28] M. Schweinberger and M. S. Handcock. Local de-
pendence in random graph models: characterization,
properties and statistical inference. Journal of the
Royal Statistical Society, Series B, 77:647–676, 2015.

[29] M. Schweinberger and P. Luna. HERGM: Hierarchi-
cal exponential-family random graph models. Journal
of Statistical Software, 85:1–39, 2018.

[30] M. Schweinberger and J. Stewart. Finite-graph con-
centration and consistency results for random graphs
with complex topological structures. 2017. Available
at https://arxiv.org/abs/1702.01812.

[31] T. A. B. Snijders. Markov chain monte carlo estima-
tion of exponential random graph models. Journal of
Social Structure, 3(2):1–40, 2002.

[32] T. A. B. Snijders. Contribution to the discussion of
Handcock, M.S., Raftery, A.E., and J.M. Tantrum,
Model-based clustering for social networks. Journal

297



of the Royal Statistical Society, Series A, 170:322–
324, 2007.

[33] T. A. B. Snijders, P. E. Pattison, G. L. Robins, and
M. S. Handcock. New specifications for exponential
random graph models. Sociological Methodology,
36:99–153, 2006.

[34] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambridge University
Press, Cambridge, 1994.

[35] S. Wasserman and P. Pattison. Logit models and
logistic regression for social networks: I. An intro-
duction to Markov graphs and p∗. Psychometrika,
61:401–425, 1996.

298




