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Abstract— For many practical applications, it is a fundamental
problem to estimate the flow cardinalities over big network
data consisting of numerous flows (especially a large quantity of
mouse flows mixed with a small number of elephant flows, whose
cardinalities follow a power-law distribution). Traditionally the
research on this problem focused on using a small amount
of memory to estimate each flow’s cardinality from a large
range (up to 10°). However, although the memory needed for each
individual flow has been greatly compressed, when there is an
extremely large number of flows, the overall memory demand can
still be very high, exceeding the availability under some important
scenarios, such as implementing online measurement modules in
network processors using only on-chip cache memory. In this
paper, instead of allocating a separated data structure (called
estimator) for each flow, we take a different path by viewing
all the flows together as a whole: Each flow is allocated with a
virtual estimator, and these virtual estimators share a common
memory space. We discover that sharing at the multi-bit register
level is superior than sharing at the bit level. We propose a
unified framework of virtual estimators that allows us to apply
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the idea of sharing to an array of cardinality estimation solutions,
e.g., HyperLogl.og and PCSA, achieving far better memory
efficiency than the best existing work. Our experiment shows
that the new solution can work in a tight memory space of less
than 1 bit per flow or even one tenth of a bit per flow — a quest
that has never been realized before.

Index Terms—Big network data, flow monitoring, elephant
flow, flow cardinality estimation.

I. INTRODUCTION

ARDINALITY estimation is one of the fundamen-

tal problems in the area of network traffic measure-
ment [1]-[6]. In a general definition, it is to estimate the
number of distinct elements in each flow during a measure-
ment period. The flows under measurement may be per-source
flows, per-destination flows, per-source/destination flows, TCP
flows, WWW flows, P2P flows, or abstract flows, such as
client IPs accessing each URL object on a web server or client
IPs querying each keyword. The elements may be destination
addresses, source addresses, ports, values in other header
fields, or even keywords that appear in the payload of packets
in the flow.

Practical Importance: The cardinality problem has many
practical applications. For example, if we treat all packets sent
from the same source address as a flow (per-source flow),
we may use a cardinality estimation module at a gateway
or firewall to detect scanners by measuring the number of
distinct destination addresses in each flow. In this case,
packets belonging to a flow are identified by their common
source address (also called flow label). The elements under
measurement are the destination addresses in the headers of
the packets. In the opposite example, we may treat all packets
to a common destination as a flow and count the number of
distinct source addresses in each flow. When we observe the
cardinality of a certain flow suddenly surges, it may signal a
DDoS attack against the destination address of the flow. For
other applications, a large server farm may learn the popularity
of its content by tracking the number of distinct users that
access each file, where all accesses to a file form an (abstract)
flow; an institutional gateway may determine the popularity
of external web content for caching priority by tracking the
number of outbound web requests for each web content, where
all requests from different users to the same URL form a flow.
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In another example, if Google treats all client IPs that query
a keyword as a flow, the cardinality of the flow suggests
the popularity of the keyword being searched. In this case,
the flow label is the keyword under query. The estimator
that works on per-keyword flows may be implemented as a
function module at the web server. By a recent paper [6],
many data analysis systems at Google, such as Sawzall,
Dremel and PowerDrill, estimate the cardinalities of very large
data sets on a daily basis. As pointed out in [6], cardinality
estimation over large data sets presents a challenge in terms
of computational resources, and memory in particular; for
the PowerDrill system, a non-negligible fraction of queries
historically could not be computed because they exceeded the
available memory.

State of the Art: To deal with big data consisting of a very
large number of flows, we must conserve memory space when
designing a cardinality estimation module. For this purpose,
a series of solutions were developed, including PCSA [7],
MultiResBitmap [4] (a generalization of LinearCounting [8]),
MinCount [9], LogLog [10], and HyperLogLog [11]. They
all allocate a separate data structure, called estimator, for
each individual flow. Every estimator contains a certain num-
ber of registers, bitmaps or other elementary structures. The
most compact estimator in [11] requires hundreds of bytes
to ensure a large estimation range and a good estimation
accuracy.

Challenges: However, as the Internet moves into the era of
big network data, hundreds of bytes per flow can be too much
in some important scenarios — Modern high-speed routers
forward packets at the speed of hundreds of Gigabits or even
hundreds of Terabits per second [12]. The number of data
flows that traverse a core router can be in tens of millions.
Simultaneous tracking of such a large number of flows (each
of which needs hundreds of bytes memory) brings a great chal-
lenge. The reason is that, in order to sustain high throughput,
routers forward packets from incoming ports to outgoing ports
via switching fabric, bypassing main memory and CPU. If one
wants to apply cardinality estimation as an online module to
process packets in real time, one way is to implement it on
network processors at the incoming/outgoing ports and use on-
chip cache memory. However, the commonly-used cache on
processor chips is SRAM, typically a few megabytes, which
may have to be shared among multiple functions for routing,
performance, measurement, and/or security purposes. In such
a context, the memory that can be allocated for the function
of cardinality estimation may be even less than 1 bit per flow.

In another scenario, suppose a web search company wants
to know how many different users have searched the same
phrase (question or sentence) each day, which provides infor-
mation on phrase popularity, useful in optimizing search per-
formance or studying social trends on the Internet [13]. This
is a cardinality estimation problem, where all search records
for a given phrase form a flow. The number of flows (phrases,
questions, sentences) can be in billions. Of course, we can
resort to a data center for such big data, but it will be
welcome if one can find a novel solution that deals with an
extremely large number of flows in the memory of a cheap
commodity computer.
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Our Contribution: After decades of development
[4], [7]-[11], it appears very difficult to further compress
the size of an individual estimator much below hundreds
of bits, without sacrificing estimation range or accuracy.
Recently, an interesting idea was proposed to let different
estimators (each for one flow) share bits [3], [5], [14], so that
bits unused by one can be picked up by another. Along this
line, we make three new contributions: First, we discover
that sharing bits is actually inefficient because of too much
noise introduced between estimators. Sharing space is good,
but it should be done differently at the register level, not at
the bit level, where a register is a multi-bit data structure
that will be introduced later. Second, sharing has only been
applied to bitmap and PCSA [7], an early work dated back
to 1985. We develop a framework of virtual estimators
which enables memory sharing for the recent cardinality
estimation solutions, including PCSA [7], LogLog [10] and
HyperLogLog [11], with the last one being the best existing
work. Third, we fully develop the virtual HyperLoglLog
solution and the virtual PCSA solution, with a new procedure
for recording per-flow information in the shared space, a set
of formulas for estimating per-flow cardinality with noise
removal, and the analytical results for estimation error under
register sharing. We show that the new solutions can work in
a tight memory space of less than 1 bit per flow or even one
tenth of a bit per flow — a quest that has never been realized
before.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III introduces our new
design of register sharing. Section IV proposes a unified
framework for constructing virtual estimators based on register
sharing. Section V presents the detailed design of a memory-
efficient cardinality estimation solution called virtual Hyper-
Loglog under the framework. Section VI presents another
memory-efficient solution named virtual PCSA under the
same framework to demonstrate the framework’s generalized
applicability. For the two new solutions, Section VII ana-
lyzes their mean and variance. Section VIII evaluates the
performance of the proposed estimation solutions through
experiments based on real network traffic traces. Section IX
draws the conclusion.

II. RELATED WORK

Cardinality estimation is different from the related prob-
lem of flow-size estimation [15], which counts the number
of elements (e.g., packets or bytes) in each flow through
CountMin sketches (a generic tool for estimating the fre-
quency of each element in a multiset) [16], CountSketch [17],
Counter Braids [18], Lossy Counting [19] or Randomized
Counter Sharing [15], with the goal of learning flow dis-
tribution or identifying heavy hitters. Consider all packets
from a source address as a flow. Suppose the source sends
10,000 packets to a single destination address. The flow size
is 10,000 when we measure the number of packets, but the
flow cardinality is just one if we measure the distinct number
of destination addresses in this flow. In short, cardinality
estimation needs to remove duplicates, which makes it a more
difficult problem since it has to somehow “remember” the
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Measurement results of PCSA or FM sketch named after Flajolet and Martin. (a) 1280 bits per flow, 40 registers of 32 bits each, 13% error.

(b) 96 bits per flow, 3 registers of 32 bits each. (c) 32 bits per flow, 1 register of 32 bits. (d) less than 1 bit per flow.

observed elements for duplicate removal, while measuring a
flow size only needs a counter.

Hash Table and Bitmap: It is too costly to design an esti-
mator based on a hash table that stores all elements to remove
duplicates. Instead, we may use a bitmap [8]: Initially all bits
are zeros. Each arrival element is hashed to a bit which is
then set to one. Duplicates are automatically filtered out since
they are mapped to the same bit. At the end of a measurement
period, the cardinality estimation is 7 = —bInV [8], where
b is the number of bits used, V is the fraction of bits whose
values remain zeros, and 7 is the estimated flow cardinality.

The problem of bitmap is that the estimation range is
bounded by b1n b. Hence, the bitmap has to be huge to handle
a very large flow. Fig. 1 shows the simulation results, where
the bitmap size is 1280 bits per flow in the leftmost plot,
96 bits per flow in the second plot, and 32 bits per flow in the
third, respectively. Each flow is represented by a point, whose
z-coordinate is the actual cardinality and y-coordinate is the
estimated cardinality. The equality line is also shown. The
closer a point is to the line, the more accurate the estimation
is. The leftmost plot clearly shows a limited estimation
range. As the bitmap size shrinks, the range shrinks quickly,
as shown by plots (b)-(d). Note that “less than 1 bit” per
flow will not work for the bitmap approach. Variants of the
bitmap approach also own the problem of limited estimation
range [2], [20], [21].

MultiResBitmap and PCSA: Sampling is one of the main
methods in the literature for dealing with the estimation range
problem. MultiResBitmap [4] is essentially the concatenation
of multiple bitmaps, which have exponentially decreasing
samphng probabilities. If we let the sampling probabilities

be 2, 212 sy 2% and set each bitmap to its minimum size

(a single bit), then we have the smallest MultiResBitmap,
equivalent to an FM sketch of the earlier PCSA [7]. An FM
sketch, also referred to as a register in the literature, can give
an estimation up to 2, where w is the number of bits in the
register. For example, w = 32 for an estimation range of 232,
To ease understanding, we illustrate one such PCSA register
in Fig. 5. The register has an array of bits, and the probabilities
for these bits to receive stream elements decreases exponen-
tially by the series %, 2%, 2%, .... As the input stream elements
flow into a register, they will be pseudo-randomly mapped to
the bit array. If a bit has received any elements, the bit will be
set to one; Otherwise, the bit will remain zero. Note that the
x mark in Fig. 5 represents that a bit is either zero or one.
By maintaining the state of this bit array upon the arrivals of
stream elements, PCSA algorithm always knows the position
of leftmost zero bit, which is denoted by symbol M’ in Fig. 5.
Such a bit array is called a PCSA register, which can give an
independent estimation of the stream cardinality as 2 "
However, the estimation result from a single register is very
inaccurate. To improve accuracy, FM uses multiple registers
and returns the average of their estimations. Fig. 2 presents
the simulation results of FM. It clearly has a larger estimation
range, but its estimation accuracy is low even when there are
40 registers in the first plot. The estimation results are discrete
when there are just a few registers in the second and third plots.
LogLog and HyperLogLog: The memory efficiency of
PCSA still leaves much space for improvement: Its register
size must be 1ogy Nmax + O(1) bits, where nmax is the
upper bound of measured cardinality, e.g., Nmax = 2°°.
In contrast, follow-up algorithms named LogLog [10] and
HyperLogLog [11] can reduce the memory cost per register to
only log, logy nmax+O(1) bits [10]. Such significant memory
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Fig. 5. A register used by PCSA vs. a register of LogLog and HyperLogLog.

compression is because, instead of maintaining the state of an
entire bit array as in Fig. 5, LogLog and HyperLogLog' use a
multi-bit register to record only the position of rightmost one
bit, which is called “LoglLog register”. We denote it by the
symbol M in Fig. 5, which can give 2™ as an independent
estimation of the stream cardinality.

Therefore, both LogLog [10] and HyperLogLog [11] can
compress the size of each register from 32 bits to only 5 bits
for the same estimation range of 232. Their performance is
presented in Figures 3 and 4. The estimation accuracy of
Loglog and HyperLogLog (HLL) is much better than PCSA,
because smaller registers mean more of them can be allocated
from the same memory budget, which drives the estimation
variance down. However, they still do not work well for 80 bits
in the second plot of Fig. 3 and Fig. 4 (with the relative
standard error being 33% for Loglog and 26% for HLL),

'HyperLogLog [11] is a variant of LogLog [10] to further improve accuracy.
Although they both use the observation of position M shown in Fig. 5, they
adopt different methods to aggregate the estimation results of a set of registers.
LogLog uses geometric averaging, while HyperLogLog uses harmonic mean,
in order to mitigate the impact of outlier registers with abnormally large
estimations, thereby appreciably increasing the quality of estimations.

TABLE 1
COMPARISON OF THE PRIOR ART
Solution Std. Err. (o) Mem Units Mem (c=5%)
MinCount 1.00/v/m <32 bits 1600 bytes T
MultiResBitmap ~4.4//m 1 bit 968 bytes
PCSA 0.78/+/m | 32-bit registers 974 bytes
LogLog 1.30/+/m | 5-bit registers 423 bytes
HyperLogLog 1.04//m | 5-bit registers 271 bytes

t For MinCount, we assume the size of its memory units is 32 bits,
and each unit stores the 32-bit hash value of a stream element.

let alone less than one bit per flow. A work that analyzes
the theoretical bound of the memory efficiency of cardinality
estimation problem can be found in [22].

Performance Summary: The performance of the tradi-
tional cardinality estimators is summarized in Table I, where
MinCount [9], [23] takes a different approach by hashing
each arrival element and keeping a number of smallest hash
values, from which the estimation is made (using the range
of the smallest hash values). In the second column, m is
the number of smallest hash values kept by MinCount, the
number of bits used by MultiResBitmap, or the number of
registers used by other approaches. The total memory cost is
m multiplied by the size of each memory unit (hash value, bit
or register).

For a single flow, the memory needed to control the standard
error within 5% of the actual cardinality is given in the last col-
umn, which shows the progress in memory saving over the past
decades: If we use PCSA as the initial benchmark, the seminal
work of Loglog cuts the memory requirement by more than
half. The followup HyperLogLog cuts the memory further by
more than 30%. HyperLoglog has made great impact on IT
industry and was adopted by Google [6], PostgreSQL, P2P
systems [24], and DDoS attack detection systems [11].



3742

+

0 e
0o 1 10 10® 10° 10* 10
Flow Cardinality

8

Fig. 6. Flow distribution: each point shows the number (y-coordinate) of
flows having a certain cardinality (x-coordinate).

III. OUR NEW APPROACH OF REGISTER SHARING
AND VIRTUAL ESTIMATORS

A. Motivation: Waste of Space

The traditional solutions allocate one estimator for each
flow, which however causes a serious waste of space.
As an example, we download network traffic traces from
CAIDA [25]. Consider per-source flows. The cardinality of
each flow is the number of distinct destination IP addresses
contacted by a source. We illustrate the distribution of the
flow cardinalities in Fig. 6, where the measurement period is
10 minutes and each point shows the number (y-coordinate) of
flows that have a certain cardinality (z-coordinate). A roughly
straight line on a log-log plot is often considered as the sig-
nature of a power law distribution (rougly y = 3-10%-2=17).
This log-scale figure shows that the vast majority of flows
have small cardinalities, while a small number of flows have
large cardinalities.

Without knowing the flows’ cardinalities beforehand (which
are in fact what we want to figure out), the estimators of
all flows are set according to the maximum range of cardi-
nality, requiring hundreds of bits even for the best estimator.
However, if a flow turns out to be small, e.g., with a cardinality
of 1, most of the bits will be left unused and thus wasted.

B. Memory Sharing among Virtual Estimators

One way to exploit unused bits is to share bits among the
estimators. Two solutions were proposed for sharing among
bitmaps [3] and FM sketches [5]. In the compact spread
estimator (CSE) [3], a bitmap is allocated for each flow, but
all bitmaps share their bits from a common bit pool. However,
it is difficult to extend the estimation range of bitmaps without
incurring large overhead or causing estimation inaccuracy.

In the probabilistic multiplicity counting solu-
tion (PMC) [5], an estimator with multiple FM sketches is
allocated to each flow. In fact, PMC was originally designed
for estimating the flow size (i.e., the number of packets in each
flow), but it can be easily modified for estimating the flow
cardinality, which is not commonly true for other flow-size
estimators. As illustrated in Fig. 7, the FM sketches (called
registers) of all estimators share their bits from a common bit
pool uniformly at random, so that mostly unused higher-order
bits in the registers can be utilized.

Our idea is to propose yet another memory-sharing method,
i.e., share memory at the register level, as depicted in Fig. 8.
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Fig. 8. Register sharing, where the estimators share their registers from a
common register pool.

The estimators of different flows share their registers from a
common register array. Here, we define a register as a multi-
bit data structure, which could be either a PCSA register or a
HyperLogLog register as shown in Fig. 5. Unlike a single bit,
a register having multiple bits is able to give an independent
estimation about the cardinality of stream elements that are
mapped to this register. Given a fixed array of registers,
we dynamically create an estimator for a new flow by ran-
domly drawing a number of registers from the array. In a
sense, the array of registers are physical, but the estimators are
logical because they are created on the fly without additional
memory allocation. Hence, they are called virtual estimators.

Suppose a system allocates a certain amount of physical
memory to the function of cardinality estimation. The number
of bits available may be smaller than the number of flows.
If this is the case, the number of registers in M will certainly
be even smaller. Each register is thus shared by many virtual
estimators, ensuring that the register is fully utilized.

Consider the virtual estimator of an arbitrary flow. What
it estimates is actually the cardinality of the flow plus the
noise introduced by other flows that share its registers. Refer
to Figure 8 where estimator 1 and estimator 2 share a common
register. If the register records 5 elements from the flow of esti-
mator 1 and 6 elements from the flow of estimator 2, the final
result will be 11 elements recorded. From the viewpoint of
estimator 1, the register carries its flow’s information as well
as noise from other flows. The same is true from the viewpoint
of estimator 2.

Because the registers in all virtual estimators are randomly
picked, there is an equal opportunity for any two registers from
different estimators to be mapped to the same physical register
in M. Hence, as one virtual estimator records an element of its
flow into one of its registers, the probability for this operation
to cause noise to any other virtual estimator is the same. When
there are a large number of virtual estimators and each of them
randomly chooses a large number of registers, the noise that
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they cause to each other will be roughly uniform. Such uniform
noise can be measured and removed.

Of course, there may exist registers that are hit by the virtual
estimators of elephant flows. However, the number of large
elephant flows is often exponentially fewer than the number of
small flows; see Fig. 6 for example. That means the number of
registers that carry abnormally large noise account for a small
fraction of all registers in M. If the estimator of a small flow
contains one or a few registers of large noise, the technique of
harmonic averaging can be used to remove the effect of such
outliers (which is already done by [10], [11]).

IV. A FRAMEWORK FOR VIRTUAL-
ESTIMATOR SOLUTIONS

We propose a framework for developing virtual-estimator
solutions that enable register-level sharing for mainstream
sketches, e.g., PCSA [7], Loglog [10], and HLL [11]. The
next section will show as an example how to apply the
framework to HLL for a virtual-estimator solution named
VHLL. The next next section will show another example of
applying the framework to PCSA for a second solution named
vPCSA.

In the framework, we use a single array M of m registers
to store the cardinality information of all flows. The ith
register in the array is denoted by MT[i], 0<i <m. The
size of the registers is set based on the type of estimators
used [7], [10], [11] and the maximum range of cardinality
to be estimated. For example, in the VHLL solution, the size
of registers is five bits, in order to measure big cardinalities
up to 22° ~ 4 x 10°. Each flow has s virtual registers that
are randomly selected from M through hash functions. These
registers logically form a virtual estimator, denoted as My,
where f is the label of the flow. The ith register of the virtual
estimator, denoted as M¢[i], 0 < i < s, is selected from M
as follows:

Myli} = M[H(f)], ()

where H;(...) is a hash function which is in the range [0, m).
We want to stress that My is not a separate data structure.
It is merely a logical construction based on registers selected
from M, and it is not explicitly constructed during online oper-
ation. In all our later formulas, one should treat the notation
Mli] simply as M[H;(f)], referring to a register in M.

The hash function H;, 0 <i < s, can be implemented from
a master function H(...):

Hi(f) = H(f | i) or Hi(f)=H(feRl]), (2

where ‘|’ is the concatenation operator, ‘@’ is the XOR
operator, and R[i] is a constant whose bits differ randomly
for different indexes ¢. The master hash function H we have
adopted in experiments is METRO hash or MURMURS3 hash.

At the beginning of each measurement period, all registers
are reset to zeros. The arrival stream of elements is abstracted
as a sequence of (f, e) pairs, where f is a flow label and e is
an element of the flow. For example, if a router measures
per-source flows for their numbers of distinct destination
addresses, it extracts from each arrival packet the source
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address as the flow label and the destination address in the
IP header as the element to be recorded. For each pair (f,e),
we record e in one of the registers of My based on the
cardinality estimation methods in [7], [10], or [11], depending
on which one is used.

At the end of a measurement period, the register array M is
offloaded to a server for long-term storage. Given a flow label
f in offline query, we reconstruct its virtual estimator M by
copying s registers from M at indices H;(f), 0<i <s. Let
n, be the number of distinct elements recorded by M, which
is the flow’s cardinality plus the noise introduced by other
flows due to register sharing. Let ny be the actual cardinality
of flow f. The noise term is n, — ny. We use the estimation
formula from [7], [10], or [11] (depending on which one is
used) to give an estimation 775 of ns. Below we focus on noise
estimation.

Let n be the sum of all flows’ cardinalities. From the flow
f’s point of view, the elements of all other flows, n — ny of
them, are noise. Let Y be a random variable for the number of
noise elements recorded by an arbitrary register in /. When
the number of flows and the number of registers per estimator
are both sufficiently large and the cardinality of any flow is
negligibly small when comparing with n, Y approximately
follows the binomial distribution Bino(n — ny, #), because
each noise element has approximately an equal chance to
be recorded by any register due to the random selection
of registers by virtual estimators. Such an approximation
is supported by Fig. 9 about the distribution results from
the experiments in Section VIII. The figure shows that the
experimental distribution approximately follows the computed
binomial curve. They do not match exactly, but the approx-
imation is good enough to provide accuracy in cardinality
estimation. In particular, the mean value (used in the estimator)
of the experimental distribution aligns very well with that of
the binomial distribution.

Hence, we have

n—ng
EY)= —
The total noise, ns —ny, is the sum of individual noises in the
s registers of M. Hence, ny — ny can be considered as the
sum of s independent random variables of Bino(n —ny, ).
Ens—ny)=sE(Y)=s Ll 3)
m
By the law of large numbers in the probability theory, the rel-

. . Ng—n .
ative variance Var(E(r':iwff)) approaches to zero when s is
s
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large. In this case, E(ns — ny) can be approximated by an
instance value, ny — ny. We have

“)

We define a grand flow as the combination of all flows. With
a few hundreds of extra bytes and applying the HyperLoglog,
we can obtain an accurate estimation n for n (see Table I),
while the additional memory overhead is negligible when
comparing with the memory space M. Alternatively, since the
elements of the grand flow distribute approximately in uniform
over M, we can use the entire register array M as an estimator
to give an estimation for n (using HyperLogLog, for example).
Let 7y be our estimation of ny. We have the following

estimation formula from (4).
nAf: ms (E_E) 3)

m—S S m

In the virtual estimator of flow f, we regard the stream
elements belonging to flow f as signals, and regard the
elements from other flows (that are by chance mapped to
flow fs registers) as noises. Then, the above equation removes
the noise by subtracting the expected value of the cardinality
of noises (i.e., %ﬁ). We can only remove the noise mean
but cannot completely remove the variance in noise, which
is higher when the noise level is higher. Thus, the larger the
signal-to-noise ratio is, the better accuracy we will have for
the noise removal operation. Elephant flows with large signal-
to-noise ratio can remove noises with not much accuracy
loss. But mouse flows with very small signal-to-noise ratio
will inevitably suffer from low estimation accuracy. In the
next section, we will select vHLL, i.e., virtual HyperLogLog,
to discuss its operations and performance in details.

Also note that our virtual estimator for per-flow cardinality
estimation can be easily extended to solving the problem of
identifying top-k largest flows. Suppose the line card of a high-
speed router maintains two data structures simultaneously: a
vHLL sketch as described above, and a min-heap structure to
record the IDs of top-k flows. When a new packet arrives at
the line card, its packet processing module will read the vHLL
sketch and check whether the flow of the incoming packet has
its estimated cardinality larger than the flow at the tree root of
min-heap. If it is true, then this new flow will be inserted into
the heap structure as a new member of top-k flows, and the
flows that are no longer qualified to be top-%k will be removed.

V. VIRTUAL HYPERLOGLOG ESTIMATOR

In this section, as an example, we apply the framework of
virtual estimators on HyperLogLog for a new solution, vHLL,
based on register-level sharing. This solution consists of two
components: one for recording the stream of packets in the
virtual HyperLoglLog estimators, and the other for estimating
the cardinality of an arbitrary flow f.

A. Record Flow Elements in Virtual Estimator

Consider a flow f. When a measurement period begins, all
registers in its virtual estimator My are reset to zeros. For each
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arrival element e of flow f, we perform the hashing below:

H(@) = <$1J)2 .. >
p = (T122...Tp)
q = <$b+1$b+2, .- '>a (6)

where (r1 x2...) is binary format of the hash output H(e),
p denotes the leading b bits with b equal to log, s, and
q represents the remaining bits. Using the value of p, we can
map e pseudo-randomly to a register M ¢[p mod s]. For clarity,
we will breviate M [p mod s] simply as M[p] afterwards.

The operation of recording e is simple: Let p(q) be the
number of leading zeros in ¢ plus one; for example, if ¢ =
001..., then p(¢g) = 3. Clearly, the probability of p(q) = i
is ()%, for Vi > 0. We update M [p] if its current value is
smaller than p(q). Namely,

My[p] := max (M¢[p, p(q)), (7

where := is assignment operator. Hence, My[p] has
recorded (one plus) the longest run of leading zeros from any
element mapped to the register. Suppose My[p] = M[H,(f)]
asin (1), and H,(f) = H(f | p) as in (2). Combining (7), (1)
and (2),

MIH(f | p)] == max (M[H(f | p)]. p(q)). ®)

Eq. (8) shows that the operations are actually performed on
the physical register array M, and the virtual estimator is just
logical in the online recording phase.

Per-Packet Processing Cost: Whenever a packet e arrives,
our VHLL algorithm needs to use equation (8) to update a
particular register. In order to locate the register, it requires two
hash operations: H(f|p), and H (e) for getting p and ¢ values
in (6). After locating the register M [H (f|p)], it also requires at
most two memory accesses for updating its value, i.e., reading
MI[H(f | p)] and writing M[H(f | p)] back if its value
changes. Note that the writing operation happens rarely since
the likelihood for p(q) > M[H(f|p)] to happen will decrease
exponentially as the register’s value increases. Consider an
arbitrary register of value v at the end of a measurement
period. There are at most v writes to this register. Each distinct
element recorded by the register has a probability of (1/2)"
to set its value to v. Hence, the expected number of distinct
elements recorded by the register is about 2. Hence, the
write/read ratio is v/2V. As an example, the average register
value in our experiments (Section VIII) is about 7, which
corresponds to a write/read ratio of 7/27 ~ 5.5%, suggesting
infrequent write operations. Nonetheless, in a pipelined design,
as most packets only require read and some packets require
an additional write, the pipeline will be stalled (for the time
of one memory access) each time write occurs.

B. Flow Cardinality Estimation

Given a flow label f for offline query, we construct M ¢ from
the stored M. Consider an arbitrary register My[i], 0 <i <s.
Any element mapped to this register had a probability of QM—lf[]
to set the register to its current value. Hence, the estimation for
the number of elements mapped to this register is 2™ [11].
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Recall that ng is the total number of distinct elements
that have been recorded by the estimator My, including both
elements in flow f and those in other flows that share registers
in My. In order to estimate 7, the normalized harmonic mean
is applied to aggregate the estimations from all registers in M:

s—1

Te = vy - 82 - (ijo 2_J\4f[j])71, )

where «, is a bias correction constant. The mathematical
expression of « is quite complicated. So instead its numerical
values are often used in practice: a1 = 0.673, ags = 0.697,
ags = 0.709, and oy = 0.7213/(1 4 1.079/s) when s> 128.

The estimator in (9) is good for large cardinalities, but it
is severely biased when dealing with small cardinalities [11].
For a small cardinality, we treat My as a bitmap of s bits,
with each register M[i] converted to one bit, whose value is
1 when M/[i] >0 or zero otherwise. The estimation formula
is 11y = —slog V/, where V is the fraction of bits in the bitmap
that are zeros [8]. This formula is used when the cardinality
estimation by (9) is smaller than 2.5 s.

Recall that we can estimate the sum 7 of all flow cardinal-
ities based on a separate estimator or simply from the whole
array M using (9) where 71, is replaced with 7, s is replaced
with m, and My is replaced with M. After computing both 74
and 7, we use (5) to compute the estimated flow cardinality 1is.

VI. VIRTUAL PCSA ESTIMATOR

In this section, as another example, we apply the framework
of virtual estimators to PCSA [7] for another solution named
virtual PCSA (vPCSA). This solution consists of two compo-
nents: an online component for recording the stream of packets
into the virtual PCSA estimators, and the offline component
for estimating the cardinality of an arbitrary flow f.

A. Online Component for Recording Flow Elements

Consider a flow f. For each arrival element e of flow f,
we perform the same hash operation as in (6). Then, using
the value of p, we can map the element e to a register
My[p mod s], which is abbreviated as M ¢[p] for clarity. Using
the value of p(q), we can record the element e at an appropriate
bit of the register My[p], using the equation below:

Mylp] = My[p] v (1 < (p(q) — 1)),

where < is the bitwise left shift operator, and V is the bitwise
OR operator. So the above equation assigns the [p(g) — 1]th bit
of the register M [p] to one. Typically, when implementing the
PCSA algorithm, each register M [p] is given 32 bits memory.
The probabilities for these bits to be assigned to one reduces
exponentially as 271,272,273, ..., from low end to high end.

Suppose the pth register of virtual estimator M is mapped
to the H,(f)th register of physical estimator M, i.e., M¢[p] =
MIH,(f)] as in (1). Suppose the hash function H,, is imple-
mented by the concatenation operator |, which is H,(f) =
H(f | p) as in (2). By combining (10), (1) and (2), we have

MIH(f | p)] = MIH(f [ p)]V (1 < (p(q) = 1)). (D)

Per-Packet Processing Cost: When a packet e arrives, our
vPCSA algorithm will use equation (11) to update a particular

(10)
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register. In order to locate the register, it requires two hash
operations: H(f | p), and H(e) for getting p and ¢ values
in (6). After locating the register M[H(f | p)], it requires
only one memory access for updating its value, i.e., setting the
(p(g) — 1)th bit of register M[H(f|p)] to one. We observe a
space-processing tradeoff between VHLL and vPCSA. As our
experiment will show, vHLL is more efficient in space; alter-
natively, it estimates flow cardinalities more accurately under
the same space availability. But vPCSA incurs smaller per-
packet processing overhead. It requires one memory access
on a single bit per packet, whereas VHLL requires possibly
two memory accesses on a five-bit register per packet.

B. Offline Component for Estimating Flow Cardinality

Given a flow label f for offline query, we construct My
from the stored M. Recall that n, is the total number of
distinct elements that have been recorded by the estimator My,
including both elements in flow f and those in other flows that
share registers in M. We estimate ns by the equation:

1y =1/¢ x 5 x 9t 355 LZB(Aff[j])’ (12)
where ¢ is the bias correction factor that is equal to 0.77351,
and LZB(x) returns the position of the lowest zero bit, among
all the thirty-two bits of integer x. Note that the lowest bit
position starts from 0, and, hence, LZB(...010011111) = 5.
However, the estimation equation in (12) has a bias problem
when dealing with small cardinalities whose load factor ng/s
is smaller than 20. Hence, a small bias correction term is
proposed by literature [26], which is presented as follows:

1y =1/¢ x s x (27/¢ — 27w 2/%), (13)

where Z represents the summation term E‘;;é LZB(M([5]),
and, for the two constants, x = 1.75, and ¢ = 0.77351.

Similar to HyperLogLog, when the cardinality estimated
by (13) is smaller than 2.5s, another estimation equation based
on LinearCounting [8] is used, i.e., s, = —slog V', where V'
is the fraction of registers in My equal to zeros.

We can estimate the grand flow cardinality n from the whole
register array M, using the equation (13), where 725 is replaced
with 7, s is replaced with m, and M} is replaced with M.
After computing both 77, and n, we further use the equation (5)
to compute the estimated flow cardinality 77y.

VII. ESTIMATION BIAS AND VARIANCE

This section analyzes the bias and standard error of our
vHLL and vPCSA estimators. By [11], we have the following
theorem about the bias and standard error of HyperLoglLog.

Theorem 1: Let ng be the number of distinct elements that
are mapped to a HyperLoglLog estimator My. Suppose the
number s of registers in My is more than 16.

o If ns is sufficiently large, the estimate 1ns by (9) is

asymptotically almost unbiased in the sense that

niE(nAs) =1+ 61(ns) +o(1),

where |61(ns)] <5 x 107 as soon as s > 16.
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e The standard error defined as n—b«/Var(ng) satisfies

1 s
o Var(rns) = % + 02(ns) + o(1),
where |62(ns)| < 5 x 107% as soon as s>16. The
constants 35 being bounded, with $1¢ = 1.106, 032 =
1.070, Bgq = 1.054, PB12s = 1.046, and [ = 1.039.
As stated in the HyperLoglog paper [11], the functions 6,
and s represent oscillating functions of a tiny amplitude, and
they can be safely neglected for all practical purposes.
Additionally, according to [7], we have the following theo-
rem that states the bias and standard error of PCSA.
Theorem 2: Let ng be the number of distinct elements that
flow into a PCSA estimator, whose number of registers is s.
The cardinality estimation ns generated by PCSA in (12) has
the following characterizations of the bias and standard error:

L B(,) ~ 1+ €(s),

Ns Ng

Var(ns) =~ n(s),

where quantities €(s) and 1)(s) satisfy as s gets large:

e(s) ~ N (2s), n(s) ~VA/V/5,

where \ is a constant, which can be closely approximated by
0.61 for all values of s. The detailed formula of \ is

2 42 log” 2
== -1 N~ o

12 2 12
where 7y is the Euler-Mascheroni constant with v = 0(5)772
The function N (x) is defined as N (z) = -, (]# where
v(j) is the number of ones in the binary representation of j.

N”(O) +

A. Estimation Bias
Given an arbitrary flow f, we know from Section IV that
n, is the sum of the flow cardinality ny and a noise random
variable n, — ny with a binomial distribution of Bino(n —
nyg, ). For Vi € [0,n —ny], we have
s

Prob{n,—n; =i}= ( Z"f>(_)i(1__)"nfi. (14)

m m

Under the condition of ny —ny = 4, by Theorem 1, for the

vHLL solution, we have

E(ris | ng —ny =i) = (ngy +4)(1+ 61 (ng +14) + o(1))
R ng+i, (15)

with a small error bounded by a ratio of 5 x 10~°. Similarly,
for the vPCSA, according to Theorem 2, we have

E(ris | ng —ny =1i) = (ny +1)(1 + €(s))

~ (np+i)(140.31/s) mnp+i.  (16)
Hence, for both virtual estimators vHLL and vPCSA,
nfnf
E(r,) = Y E(is | ns—ny =i) x Prob{n, — ny =i}
i=0
" n—n s s
. —nf i n—mgs—i
~~ X —)" (1 —— f
S i (M) e
s
= — — 17
ny + (n nf)m 17
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The value of n is estimated based on the entire array
M or through a separate estimator with hundreds of bytes
(i.e., much more than 16 registers). For the vHLL solution,
from Theorem 1, we have E(n) =n (1+d1(n)+o(1)) = n,
with a very small error bounded by a ratio of 5 x 1075. For
the VPCSA solution, from Theorem 2, we have E(i) ~ n
(140.31/m) =~ n.

Applying E(n) = n and E(ris) = ny + (n —ny) >
estimation formula (5), we have

to the

E(ﬁf):mn?s( - (ﬁ)
<< D) =

Hence, both vHLL and vPCSA are asymptotically unbiased.

B. Estimation Variance
Next we derive the variance of 1iy.

Var(iy) (mmjs)2<Va7;gﬁs) n Vc;:gﬁ))
_ ( ms )Q(E(TiSQ) - (E(TZS))Q . Var(ﬁ))
m—s 52 m2
- (m”z 8)2<E(ﬁ32) - (E(Tis))2+(%)2Var(ﬁ))

With Vi € [0,n — ny), under the condition of ny — ny = 1,
by Theorem 1, for the vHLL solution, we have

\/Var (s | ns—n

F=1)= %+5g(nf+i)+o(1)
5 1u
=G

where we use 1.04 to approximate s, assuming s> 128,
which is always the case in our experiments later. Hence,

42 N2

(ng +1)°.

ng+1
(20)

Var(ng | ng —ny =1) ~ 21)

Similarly, for the vVPCSA solution, by Theorem 2, we have

! \/Varn|n ng=1)r~ £ Vo6l 078
ng+i AV AV RV
(22)
Hence, for vPCSA,
2
Var(rg |ns —ny =1) & (ny+1)>. (23)

When estimating the grand flow cardinality n, we have

1.042
—— n? for vHLL,

0.782
n? for vPCSA,
m

Var(n) ~

Var(n) = (24)

where m is the number of registers in the physu:al estimator
M, and we let m > 128. Because E(n9 | ns = ny +
i) = Var(ns | ng —ny = 1) + ( (s |ns — ny = z)) ,
from (15) and (21), when s is sufficiently large, we have

B2 (ny +19)?

. +(nf+i)2
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Fig. 10.
cardinality ny=4 x 10%.

where [ is equal to 1.04 for vHLL, and is equal to 0.78 for
vPCSA. Combining (14) with the above equation, we have

E(ris?)

= Eong
n—ng 2 n—mn S S e —i

S LA ol IERT

s—ng)?)

ng —ny = i) Prob{ns —ny =i}

= (i +1)(nf +2nfE(ns—nf)+E((n

2
= (% +1)(ns? +2ns(n - ng)—

+n=np)=(1= =)+ (n—np)(=))
=t )P -np i 2y,
(25)

Applying (17), (24) and (25) to (19), we have

2
) (G emnn 2y’
62
2

= (1= )+ (2 =n?), (26)

where (3 is equal to 1.04 for vHLL, and to 0.78 for vPCSA.

Since 0.78 is a smaller value of (3 than 1.04, from (26),
it may appear that vVPCSA has smaller variance than vHLL,
suggesting that vPCSA is more accurate. However, a PCSA
register is 32 bits long, while a HLL register is only 5 bits
long. A four-byte machine word can accommodate only one
PCSA register, but it can accommodate six HLL registers.
So when vHLL and vPCSA solutions are given the same
amount of memory, the total number of registers or the
m value for vHLL is six times larger than that of VPCSA,
which will reduce the standard error of VHLL by 45%. Later
in Section VIII-E, we will empirically compare the accuracy
of VHLL and vPCSA.

We give an intuitive explanation to the three terms in (26)
between the parentheses after (%) We know that the noise
ns —ny in a virtual estimator follows a binomial distribution
Bino(n — ny, =), whose mean value is given by (3) as
(n — nf)r and whose variance is (n —ngp)>(1 = 2.
The noise variance is captured by the second term in (26).
The average number of elements a virtual estimator receives

Var(ny) ~ (

+ (n—ng)—

Relative standard error of vHLL with respect to s, n, and ny. (a) Flow cardinality ny=1 x 104,

(b) Flow cardinality n ;=2 X 10%. (c) Flow

is ny + (n — ny)~, the flow cardinality plus the mean

noise. So on average, Jthe variance of a virtual estimator is
B (ng + (n — ) ) , which is the first term in (26). The

thlrd term (m)2 fn is caused by the estimation error of the

grand flow cardinality n.

C. Relative Standard Error
We define the relative standard error as
StdErr(ﬁ) = M.
ny nf

From (26) and (27), we observe that the relative standard

error (or error in short) increases as the grand-flow cardinality

n increases, and it reduces as the target-flow cardinality

Ny Grows.

Below we use some numerical examples to illustrate the
above observations and the interplay between different sources
of estimation error. Suppose the allocated memory is m =
256K. Consider a target flow cardinality of ny = 10%
Figure 10(a) shows the estimation error of VHLL numeri-
cally computed from (27) with respect to s (the number of
registers per virtual estimator) on the horizontal axis and n
(the combined cardinality of all flows) for different curves.
Starting from 16, as s increases, the error drops quickly, thanks
to improved estimation accuracy from the virtual estimator
My as predicted by Theorem 1. However, when s increases
further (more than 256 in the figure), the rate of improvement
drops significantly, which can also be predicted by Theorem 1
with its factor of improvement being —=. Moreover, as s
increases, the error caused by noise 1ncreases Combining
these two factors, we observe that when s is relatively
large (for a wide range from 500 to 2000 in the figure), its
impact on the error becomes more or less stabilized.

From Figure 10(a) to Figure 10(c), we increase ny and
observe that the error decreases, which means that the rel-
ative standard error is smaller for flows of larger cardinali-
ties (although their absolute errors can still be larger). When
n increases, the error increases, as predicted.

27)

VIII. EXPERIMENTAL EVALUATION

We have implemented both VHLL and vPCSA algorithms,
which are both based on register-sharing. We compare their
performance through experiments using real network traces
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downloaded from CAIDA [25]. The traces are captured by
a high-speed monitor named equinix-sanjose (located in San
Jose, CA, US), which is connected to a 10-Gbit/s Ethernet
backbone link. Each trace file captures the packets in 1 minute.
In order to create larger traces for our experiments, we
download 60 traces and combine them into 6 larger ones, each
for 10 consecutive minutes. The statistics of the large traces
can be found in the following table.

time(min) | num of flows | total cardinality | avg flow cardinality
1-10 1473306 2675506 1.8
11-20 1013517 1856676 1.8
21-30 1648779 3005649 1.8
31-40 1562288 2881330 1.8
41-50 1612709 3280242 2.0
51-60 1612605 3280138 2.0

We consider per-source flows and measure the number of
distinct destinations that each source sends packets to. The
distribution of the flows with respect to the cardinality has
been shown previously in Figure 6. We design the experi-
ments primarily for evaluating how accurate the proposed new
solutions of cardinality estimation are. We also include a case
study on detecting super destinations.

Among the new solutions, VHLL outperforms vPCSA in
space-accuracy tradeoff. In order to save space, we only
include the results of vHLL for detailed evaluation in tight-
memory setting, while providing the performance comparison
between VPCSA and vHLL in the end.

A. Estimation Accuracy in Tight Memory

We evaluate the impact of memory space on the accuracy
of cardinality estimation for vHLL. For the proposed vHLL,
we configure the value of s to 512 by default, but will vary
its value in later experiments. Recall that m is the total

actual cardinality (x1000)

actual cardinality (x1000)

(b) (©

Performance of VHLL with 0.1 bit memory per flow. (a) vHLL with 0.1 bit per flow. (b) Estimation bias. (c) Estimation accuracy.

number of registers in the common pool. Its value depends
on the overall available memory. The average number of
flows in all six traces is about 1.5 millions. We vary the
available memory space from 0.375 Mb to 0.15 Mb, such
that the average memory per flow is about 0.25 bit and
0.1 bit, respectively. The corresponding experimental results
are presented in Figures 11 and 12, respectively. Again, each
flow is represented by a point, whose z-coordinate is the true
cardinality and y-coordinate is the estimated cardinality. The
equality line is also shown. The closer a point is to the line,
the more accurate the estimation is.

In Figure 11, plot (a) shows the performance of vHLL with
average memory of 0.25 bit per flow. The points are clustered
around the equality line (y = x), indicating good accuracy.
Plot (b) shows estimation bias. The vertical axis is the relative
bias defined as F(=—=L). Since there are too few flows for
some cardinalities (especially the large ones) in our Internet
trace, we divide the horizontal axis into measurement bins
of width from 5000 on the high end in the plots to 1000 in
the low end to ensure that each bin has a sufficient number
of flows 25, and measure the bias and standard deviation in
each bin. Plot (c) shows estimation accuracy. The vertical axis
is the relative standard error of the estimation results, which

%(n’) The measurement also uses the bin
method as previously explained.

As the average memory per flow decreases further to
0.1 bit, Figure 12 show that vHLL still works with gradually
deteriorating accuracy. We also point out that although the
relative standard errors for small flows are higher, it does not
entirely diminish the usefulness of these estimations because
the absolute errors for small flows are in fact much smaller
than those of large ones. For example, by examining the first

is defined as
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plot of each figure, one will not mistaken a small flow for a
large one due to the modest absolute error.

B. Impact of Value s on vHLL

Our second set of experiments evaluate the impact of s
(number of registers per virtual estimator) on estimation accu-
racy. We fix the average memory to 0.5 bit per flow, but change
s from 512 to values: 128, 256 and 1024. The results are shown
in Fig. 13(a)-(c), respectively. Corresponding relative standard
errors are shown in Figure 14(a)-(c), respectively.

We observe that when s is relatively small at 128, the esti-
mation accuracy in Figure 13(a) is noticeably worse than
that in Figure 13(b), which is evident from the fact that the
points of the former surround the equality line less tightly.
Quantitatively, the errors in Figure 14(a) with s = 128 are
larger than those in Figure 14(c) for vHLL with s = 1024.
For example, when the actual cardinality is 20000, the relative
standard error under s = 128 is 10.9%, while that under
5 =512 1s 6.5%.

However, when s becomes large enough (more than 256),
for a wide range of values, the impact of s on the estima-
tion accuracy stabilizes, which is evident when comparing
Figure 13(b) and Figure 13(c), whose s values are 256 and 512,
respectively. For example, when the actual cardinality is
20000, their errors are 8.1% and 6.5%, based on from
Figures 14(b) and 14(c), respectively.

In Figure 14, we have also illustrated the theoretical stan-
dard deviation predicted by equations (27) and (26), where
the error factor § is assigned to 1.04 for vHLL. So the
above empirical observations are consistent with our analy-
sis in Section VII and the numerical results in Fig. 10
(which has different parameters though). The reasons for these

observations were explained in Section VII-C and will not be
repeated here.

C. Impact of Overall Traffic

Our third set of experiments investigate how the overall
traffic volume affects estimation accuracy. The overall traffic
volume is characterized by n, the sum of all flows’ cardi-
nalities, because duplicates in the traffic must be removed
in our context. The greater the value of n is, the larger the
average noise level on each register will be, which will in turn
negatively affect the estimation accuracy of a virtual estimator
consisting of s registers.

We artificially increase the cardinality of each flow by a
factor randomly chosen from the range of [1, 3], which doubles
the cardinality on average. The value of n is thus expected
to be doubled. We then repeat the experiment in Figure 13
with average memory of 0.5 bit per flow. The results are
presented in Figure 15, where plot (a) shows raw estimated
cardinalities, plot (b) shows the estimation bias, and plot (c)
shows the relative standard error. The bias remains close to
zero, particularly for large flows. The error is modest, but
larger than that in Figure 13(c) where the value of n is half,
which confirms our prediction above.

We further enlarge n by increasing the cardinality of each
flow with a factor randomly chosen from the range of [1,7].
The value of n is expected to be increased by four folds. The
results are presented in Figure 16. Again the bias is close to
one, but the error increases.

D. A Case Study: Detect Super Destinations

Our fourth set of experiments applies VHLL to a hypo-
thetical application for detecting so-called super destinations.
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TABLE I

FALSE POSITIVE RATIO AND FALSE NEGATIVE RATIO
WITH RESPECT TO MEMORY COST

TABLE III

€ = 10%, FALSE POSITIVE RATIO AND FALSE NEGATIVE
RATIO WITH RESPECT TO MEMORY COST

Memory (bit per flow) FPI:IHLIﬁ‘NR
0.25 0.039 | 0.026

0.5 0.034 | 0.013

1 0.012 | 0.014

Memory (bit per flow) FPI: HLI;,NR
0.25 0.014 | 0.010

0.5 0.003 | 0.003

1 0.003 | 0.002

TABLE IV

In this case study, we consider per-destination flows and mea-
sure the number of distinct sources that access a destination
address in each measurement period, using the same Internet
traces. Suppose the policy is to report all the destinations
that have been accessed by 5,000 or more sources within a
measurement period. These super destinations may be used
for profiling the popular servers (or services) in the net-
work or triggering anomaly warnings (such as DDoS attacks)
if they were never reported as super destinations before.

If a destination with a cardinality less than 5,000 is reported,
it is called a false positive. If a destination with a cardinality
5,000 or above is not reported, it is called a false negative.
We define the false positive ratio (FPR) as the number of
false positives divided by the total number of destinations
reported. Based on this definition, if FRP is 0.1, it means 10%
of the reported destinations should not have been reported.
We define the false negative ratio (FNR) as the number of
false negatives divided by the number of destinations whose
cardinalities are 5,000 or more.

The experimental results are shown in Table II. vHLL has
non-negligible FPR and FNR since its estimated cardinality
is not exactly the true cardinality. To confine impreciseness
to a certain degree, the policy may be relaxed to report all

€ = 20%, FALSE POSITIVE RATIO AND FALSE NEGATIVE
RATIO WITH RESPECT TO MEMORY COST

Memory (bit per flow) FPI: HLI;,NR
0.25 0.007 | 0.006

0.5 0.0 0.0

1 0.0 0.0

destinations whose estimated cardinalities are 5000 x (1 — €)
or above, where 0 < € < 1. If a destination less than
5000 x (1 — 2¢) gets reported, it is called an e-false positive.
If a destination with a true cardinality 5,000 or more is not
reported, it is called an e-false negative. The FPR and FNR
are defined the same as before. The experimental results for
€ = 10% are shown in Table III, and those for ¢ = 20%
are shown in Table IV, where the FPR and FNR for vHLL
are merely 0.7% and 0.6%, respectively, when the memory is
0.25 bit per flow. In Table IV, when the memory grows to at
least 0.5 bit per flow, FPR and FNR for vHLL become zeros.

E. Comparison Study of vHLL and vPCSA

In the last set of experiments, we evaluate the performance
of VHLL and vPCSA together to demonstrate the broad
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Fig. 17.
s = m/28. (c) Comparison of estimation accuracy.

applicability of our virtual estimator framework on different
types of estimators. In Figure 17(a) and (b), we present the
estimation accuracy of VHLL and vPCSA, respectively, under
the same amount of memory, 0.5 bit per flow. The two plots
show that both solutions can generate good-quality cardinality
estimations for elephant flows.

In Figure 17(c), we present both the empirical standard
deviation of the estimation results in the previous two plots
and the theoretical standard deviation predicted by equa-
tions (27) and (26), where the error factor (3 is replaced
by 1.04 for vHLL and by 0.78 for vPCSA. The empirical
results and the theoretical results are consistent, both showing
that the standard deviation of VHLL is 45% smaller than
that of vVPCSA.

IX. CONCLUSION

In this paper, we have proposed a unified framework for
developing efficient solutions to the problem of estimating
cardinalities for a very large number of streaming flows.
From this framework, we examine two new solutions in
details, including a particularly powerful solution called virtual
HyperLoglLog (VHLL). Through analysis and experimental
evaluation, we show that vHLL can use a compact memory
space (down to 0.1 bit per flow on average) to estimate
the cardinalities of flows with wide range and reasonable
accuracy. This new capability enables on-chip implementation
of cardinality estimation needed for online applications that
can keep up with the line speed of modern routers, or allow
efficient processing of big data by using low-cost commodity
computers instead of expensive high-performance computing
systems.
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