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Abstract— For many practical applications, it is a fundamental
problem to estimate the flow cardinalities over big network
data consisting of numerous flows (especially a large quantity of
mouse flows mixed with a small number of elephant flows, whose
cardinalities follow a power-law distribution). Traditionally the
research on this problem focused on using a small amount
of memory to estimate each flow’s cardinality from a large
range (up to 109). However, although the memory needed for each
individual flow has been greatly compressed, when there is an
extremely large number of flows, the overall memory demand can
still be very high, exceeding the availability under some important
scenarios, such as implementing online measurement modules in
network processors using only on-chip cache memory. In this
paper, instead of allocating a separated data structure (called
estimator) for each flow, we take a different path by viewing
all the flows together as a whole: Each flow is allocated with a
virtual estimator, and these virtual estimators share a common
memory space. We discover that sharing at the multi-bit register
level is superior than sharing at the bit level. We propose a
unified framework of virtual estimators that allows us to apply
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the idea of sharing to an array of cardinality estimation solutions,
e.g., HyperLogLog and PCSA, achieving far better memory
efficiency than the best existing work. Our experiment shows
that the new solution can work in a tight memory space of less
than 1 bit per flow or even one tenth of a bit per flow — a quest
that has never been realized before.

Index Terms— Big network data, flow monitoring, elephant
flow, flow cardinality estimation.

I. INTRODUCTION

CARDINALITY estimation is one of the fundamen-

tal problems in the area of network traffic measure-

ment [1]–[6]. In a general definition, it is to estimate the

number of distinct elements in each flow during a measure-

ment period. The flows under measurement may be per-source

flows, per-destination flows, per-source/destination flows, TCP

flows, WWW flows, P2P flows, or abstract flows, such as

client IPs accessing each URL object on a web server or client

IPs querying each keyword. The elements may be destination

addresses, source addresses, ports, values in other header

fields, or even keywords that appear in the payload of packets

in the flow.

Practical Importance: The cardinality problem has many

practical applications. For example, if we treat all packets sent

from the same source address as a flow (per-source flow),

we may use a cardinality estimation module at a gateway

or firewall to detect scanners by measuring the number of

distinct destination addresses in each flow. In this case,

packets belonging to a flow are identified by their common

source address (also called flow label). The elements under

measurement are the destination addresses in the headers of

the packets. In the opposite example, we may treat all packets

to a common destination as a flow and count the number of

distinct source addresses in each flow. When we observe the

cardinality of a certain flow suddenly surges, it may signal a

DDoS attack against the destination address of the flow. For

other applications, a large server farm may learn the popularity

of its content by tracking the number of distinct users that

access each file, where all accesses to a file form an (abstract)

flow; an institutional gateway may determine the popularity

of external web content for caching priority by tracking the

number of outbound web requests for each web content, where

all requests from different users to the same URL form a flow.
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In another example, if Google treats all client IPs that query

a keyword as a flow, the cardinality of the flow suggests

the popularity of the keyword being searched. In this case,

the flow label is the keyword under query. The estimator

that works on per-keyword flows may be implemented as a

function module at the web server. By a recent paper [6],

many data analysis systems at Google, such as Sawzall,

Dremel and PowerDrill, estimate the cardinalities of very large

data sets on a daily basis. As pointed out in [6], cardinality

estimation over large data sets presents a challenge in terms

of computational resources, and memory in particular; for

the PowerDrill system, a non-negligible fraction of queries

historically could not be computed because they exceeded the

available memory.

State of the Art: To deal with big data consisting of a very

large number of flows, we must conserve memory space when

designing a cardinality estimation module. For this purpose,

a series of solutions were developed, including PCSA [7],

MultiResBitmap [4] (a generalization of LinearCounting [8]),

MinCount [9], LogLog [10], and HyperLogLog [11]. They

all allocate a separate data structure, called estimator, for

each individual flow. Every estimator contains a certain num-

ber of registers, bitmaps or other elementary structures. The

most compact estimator in [11] requires hundreds of bytes

to ensure a large estimation range and a good estimation

accuracy.

Challenges: However, as the Internet moves into the era of

big network data, hundreds of bytes per flow can be too much

in some important scenarios — Modern high-speed routers

forward packets at the speed of hundreds of Gigabits or even

hundreds of Terabits per second [12]. The number of data

flows that traverse a core router can be in tens of millions.

Simultaneous tracking of such a large number of flows (each

of which needs hundreds of bytes memory) brings a great chal-

lenge. The reason is that, in order to sustain high throughput,

routers forward packets from incoming ports to outgoing ports

via switching fabric, bypassing main memory and CPU. If one

wants to apply cardinality estimation as an online module to

process packets in real time, one way is to implement it on

network processors at the incoming/outgoing ports and use on-

chip cache memory. However, the commonly-used cache on

processor chips is SRAM, typically a few megabytes, which

may have to be shared among multiple functions for routing,

performance, measurement, and/or security purposes. In such

a context, the memory that can be allocated for the function

of cardinality estimation may be even less than 1 bit per flow.

In another scenario, suppose a web search company wants

to know how many different users have searched the same

phrase (question or sentence) each day, which provides infor-

mation on phrase popularity, useful in optimizing search per-

formance or studying social trends on the Internet [13]. This

is a cardinality estimation problem, where all search records

for a given phrase form a flow. The number of flows (phrases,

questions, sentences) can be in billions. Of course, we can

resort to a data center for such big data, but it will be

welcome if one can find a novel solution that deals with an

extremely large number of flows in the memory of a cheap

commodity computer.

Our Contribution: After decades of development

[4], [7]–[11], it appears very difficult to further compress

the size of an individual estimator much below hundreds

of bits, without sacrificing estimation range or accuracy.

Recently, an interesting idea was proposed to let different

estimators (each for one flow) share bits [3], [5], [14], so that

bits unused by one can be picked up by another. Along this

line, we make three new contributions: First, we discover

that sharing bits is actually inefficient because of too much

noise introduced between estimators. Sharing space is good,

but it should be done differently at the register level, not at

the bit level, where a register is a multi-bit data structure

that will be introduced later. Second, sharing has only been

applied to bitmap and PCSA [7], an early work dated back

to 1985. We develop a framework of virtual estimators

which enables memory sharing for the recent cardinality

estimation solutions, including PCSA [7], LogLog [10] and

HyperLogLog [11], with the last one being the best existing

work. Third, we fully develop the virtual HyperLogLog

solution and the virtual PCSA solution, with a new procedure

for recording per-flow information in the shared space, a set

of formulas for estimating per-flow cardinality with noise

removal, and the analytical results for estimation error under

register sharing. We show that the new solutions can work in

a tight memory space of less than 1 bit per flow or even one

tenth of a bit per flow — a quest that has never been realized

before.

The rest of the paper is organized as follows: Section II

discusses the related work. Section III introduces our new

design of register sharing. Section IV proposes a unified

framework for constructing virtual estimators based on register

sharing. Section V presents the detailed design of a memory-

efficient cardinality estimation solution called virtual Hyper-

LogLog under the framework. Section VI presents another

memory-efficient solution named virtual PCSA under the

same framework to demonstrate the framework’s generalized

applicability. For the two new solutions, Section VII ana-

lyzes their mean and variance. Section VIII evaluates the

performance of the proposed estimation solutions through

experiments based on real network traffic traces. Section IX

draws the conclusion.

II. RELATED WORK

Cardinality estimation is different from the related prob-

lem of flow-size estimation [15], which counts the number

of elements (e.g., packets or bytes) in each flow through

CountMin sketches (a generic tool for estimating the fre-

quency of each element in a multiset) [16], CountSketch [17],

Counter Braids [18], Lossy Counting [19] or Randomized

Counter Sharing [15], with the goal of learning flow dis-

tribution or identifying heavy hitters. Consider all packets

from a source address as a flow. Suppose the source sends

10,000 packets to a single destination address. The flow size

is 10,000 when we measure the number of packets, but the

flow cardinality is just one if we measure the distinct number

of destination addresses in this flow. In short, cardinality

estimation needs to remove duplicates, which makes it a more

difficult problem since it has to somehow “remember” the
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Fig. 1. Measurement results of the bitmap approach, whose estimation range is limited. Each flow is represented by one point. The x-coordinate is the true
cardinality, and the y-coordinate is the estimated cardinality. The closer a point is to the equality line, the more accurate the estimation is. (a) 1280 bits per
flow. (b) 96 bits per flow. (c) 32 bits per flow. (d) less than 1 bit per flow.

Fig. 2. Measurement results of PCSA or FM sketch named after Flajolet and Martin. (a) 1280 bits per flow, 40 registers of 32 bits each, 13% error.
(b) 96 bits per flow, 3 registers of 32 bits each. (c) 32 bits per flow, 1 register of 32 bits. (d) less than 1 bit per flow.

observed elements for duplicate removal, while measuring a

flow size only needs a counter.

Hash Table and Bitmap: It is too costly to design an esti-

mator based on a hash table that stores all elements to remove

duplicates. Instead, we may use a bitmap [8]: Initially all bits

are zeros. Each arrival element is hashed to a bit which is

then set to one. Duplicates are automatically filtered out since

they are mapped to the same bit. At the end of a measurement

period, the cardinality estimation is n̂ = −b lnV [8], where

b is the number of bits used, V is the fraction of bits whose

values remain zeros, and n̂ is the estimated flow cardinality.

The problem of bitmap is that the estimation range is

bounded by b ln b. Hence, the bitmap has to be huge to handle

a very large flow. Fig. 1 shows the simulation results, where

the bitmap size is 1280 bits per flow in the leftmost plot,

96 bits per flow in the second plot, and 32 bits per flow in the

third, respectively. Each flow is represented by a point, whose

x-coordinate is the actual cardinality and y-coordinate is the

estimated cardinality. The equality line is also shown. The

closer a point is to the line, the more accurate the estimation

is. The leftmost plot clearly shows a limited estimation

range. As the bitmap size shrinks, the range shrinks quickly,

as shown by plots (b)-(d). Note that “less than 1 bit” per

flow will not work for the bitmap approach. Variants of the

bitmap approach also own the problem of limited estimation

range [2], [20], [21].

MultiResBitmap and PCSA: Sampling is one of the main

methods in the literature for dealing with the estimation range

problem. MultiResBitmap [4] is essentially the concatenation

of multiple bitmaps, which have exponentially decreasing

sampling probabilities. If we let the sampling probabilities

be 1
2 , 1

22 , . . . , 1
2w and set each bitmap to its minimum size

(a single bit), then we have the smallest MultiResBitmap,

equivalent to an FM sketch of the earlier PCSA [7]. An FM

sketch, also referred to as a register in the literature, can give

an estimation up to 2w, where w is the number of bits in the

register. For example, w = 32 for an estimation range of 232.

To ease understanding, we illustrate one such PCSA register

in Fig. 5. The register has an array of bits, and the probabilities

for these bits to receive stream elements decreases exponen-

tially by the series 1
2 , 1

22 , 1
23 , . . .. As the input stream elements

flow into a register, they will be pseudo-randomly mapped to

the bit array. If a bit has received any elements, the bit will be

set to one; Otherwise, the bit will remain zero. Note that the

× mark in Fig. 5 represents that a bit is either zero or one.

By maintaining the state of this bit array upon the arrivals of

stream elements, PCSA algorithm always knows the position

of leftmost zero bit, which is denoted by symbol M ′ in Fig. 5.

Such a bit array is called a PCSA register, which can give an

independent estimation of the stream cardinality as 2M ′

.

However, the estimation result from a single register is very

inaccurate. To improve accuracy, FM uses multiple registers

and returns the average of their estimations. Fig. 2 presents

the simulation results of FM. It clearly has a larger estimation

range, but its estimation accuracy is low even when there are

40 registers in the first plot. The estimation results are discrete

when there are just a few registers in the second and third plots.

LogLog and HyperLogLog: The memory efficiency of

PCSA still leaves much space for improvement: Its register

size must be log2 nmax + O(1) bits, where nmax is the

upper bound of measured cardinality, e.g., nmax = 232.

In contrast, follow-up algorithms named LogLog [10] and

HyperLogLog [11] can reduce the memory cost per register to

only log2 log2 nmax+O(1) bits [10]. Such significant memory
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Fig. 3. Measurement results of LogLog. (a) 1280 bits per flow, 256 registers of 5 bits each, 8.1% error. (b) 80 bits per flow, 16 registers of 5 bits each,
33% error. (c) 5 bits per flow, 1 register of 5 bits. (d) less than 1 bit per flow.

Fig. 4. Measurement results of HyperLogLog. (a) 1280 bits per flow, 256 registers of 5 bits each, 6.5% error. (b) 80 bits per flow, 16 registers of 5 bits
each, 26% error. (c) 5 bits per flow, 1 register of 5 bits. (d) less than 1 bit per flow.

Fig. 5. A register used by PCSA vs. a register of LogLog and HyperLogLog.

compression is because, instead of maintaining the state of an

entire bit array as in Fig. 5, LogLog and HyperLogLog1 use a

multi-bit register to record only the position of rightmost one

bit, which is called “LogLog register”. We denote it by the

symbol M in Fig. 5, which can give 2M as an independent

estimation of the stream cardinality.

Therefore, both LogLog [10] and HyperLogLog [11] can

compress the size of each register from 32 bits to only 5 bits

for the same estimation range of 232. Their performance is

presented in Figures 3 and 4. The estimation accuracy of

LogLog and HyperLogLog (HLL) is much better than PCSA,

because smaller registers mean more of them can be allocated

from the same memory budget, which drives the estimation

variance down. However, they still do not work well for 80 bits

in the second plot of Fig. 3 and Fig. 4 (with the relative

standard error being 33% for LogLog and 26% for HLL),

1HyperLogLog [11] is a variant of LogLog [10] to further improve accuracy.
Although they both use the observation of position M shown in Fig. 5, they
adopt different methods to aggregate the estimation results of a set of registers.
LogLog uses geometric averaging, while HyperLogLog uses harmonic mean,
in order to mitigate the impact of outlier registers with abnormally large
estimations, thereby appreciably increasing the quality of estimations.

TABLE I

COMPARISON OF THE PRIOR ART

let alone less than one bit per flow. A work that analyzes

the theoretical bound of the memory efficiency of cardinality

estimation problem can be found in [22].

Performance Summary: The performance of the tradi-

tional cardinality estimators is summarized in Table I, where

MinCount [9], [23] takes a different approach by hashing

each arrival element and keeping a number of smallest hash

values, from which the estimation is made (using the range

of the smallest hash values). In the second column, m is

the number of smallest hash values kept by MinCount, the

number of bits used by MultiResBitmap, or the number of

registers used by other approaches. The total memory cost is

m multiplied by the size of each memory unit (hash value, bit

or register).

For a single flow, the memory needed to control the standard

error within 5% of the actual cardinality is given in the last col-

umn, which shows the progress in memory saving over the past

decades: If we use PCSA as the initial benchmark, the seminal

work of LogLog cuts the memory requirement by more than

half. The followup HyperLogLog cuts the memory further by

more than 30%. HyperLogLog has made great impact on IT

industry and was adopted by Google [6], PostgreSQL, P2P

systems [24], and DDoS attack detection systems [11].
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Fig. 6. Flow distribution: each point shows the number (y-coordinate) of
flows having a certain cardinality (x-coordinate).

III. OUR NEW APPROACH OF REGISTER SHARING

AND VIRTUAL ESTIMATORS

A. Motivation: Waste of Space

The traditional solutions allocate one estimator for each

flow, which however causes a serious waste of space.

As an example, we download network traffic traces from

CAIDA [25]. Consider per-source flows. The cardinality of

each flow is the number of distinct destination IP addresses

contacted by a source. We illustrate the distribution of the

flow cardinalities in Fig. 6, where the measurement period is

10 minutes and each point shows the number (y-coordinate) of

flows that have a certain cardinality (x-coordinate). A roughly

straight line on a log-log plot is often considered as the sig-

nature of a power law distribution (rougly y = 3 ·104 ·x−1.7).

This log-scale figure shows that the vast majority of flows

have small cardinalities, while a small number of flows have

large cardinalities.

Without knowing the flows’ cardinalities beforehand (which

are in fact what we want to figure out), the estimators of

all flows are set according to the maximum range of cardi-

nality, requiring hundreds of bits even for the best estimator.

However, if a flow turns out to be small, e.g., with a cardinality

of 1, most of the bits will be left unused and thus wasted.

B. Memory Sharing among Virtual Estimators

One way to exploit unused bits is to share bits among the

estimators. Two solutions were proposed for sharing among

bitmaps [3] and FM sketches [5]. In the compact spread

estimator (CSE) [3], a bitmap is allocated for each flow, but

all bitmaps share their bits from a common bit pool. However,

it is difficult to extend the estimation range of bitmaps without

incurring large overhead or causing estimation inaccuracy.

In the probabilistic multiplicity counting solu-

tion (PMC) [5], an estimator with multiple FM sketches is

allocated to each flow. In fact, PMC was originally designed

for estimating the flow size (i.e., the number of packets in each

flow), but it can be easily modified for estimating the flow

cardinality, which is not commonly true for other flow-size

estimators. As illustrated in Fig. 7, the FM sketches (called

registers) of all estimators share their bits from a common bit

pool uniformly at random, so that mostly unused higher-order

bits in the registers can be utilized.

Our idea is to propose yet another memory-sharing method,

i.e., share memory at the register level, as depicted in Fig. 8.

Fig. 7. Bit sharing as in [5], where the FM sketches (registers) share their
individual bits from a common bit pool.

Fig. 8. Register sharing, where the estimators share their registers from a
common register pool.

The estimators of different flows share their registers from a

common register array. Here, we define a register as a multi-

bit data structure, which could be either a PCSA register or a

HyperLogLog register as shown in Fig. 5. Unlike a single bit,

a register having multiple bits is able to give an independent

estimation about the cardinality of stream elements that are

mapped to this register. Given a fixed array of registers,

we dynamically create an estimator for a new flow by ran-

domly drawing a number of registers from the array. In a

sense, the array of registers are physical, but the estimators are

logical because they are created on the fly without additional

memory allocation. Hence, they are called virtual estimators.

Suppose a system allocates a certain amount of physical

memory to the function of cardinality estimation. The number

of bits available may be smaller than the number of flows.

If this is the case, the number of registers in M will certainly

be even smaller. Each register is thus shared by many virtual

estimators, ensuring that the register is fully utilized.

Consider the virtual estimator of an arbitrary flow. What

it estimates is actually the cardinality of the flow plus the

noise introduced by other flows that share its registers. Refer

to Figure 8 where estimator 1 and estimator 2 share a common

register. If the register records 5 elements from the flow of esti-

mator 1 and 6 elements from the flow of estimator 2, the final

result will be 11 elements recorded. From the viewpoint of

estimator 1, the register carries its flow’s information as well

as noise from other flows. The same is true from the viewpoint

of estimator 2.

Because the registers in all virtual estimators are randomly

picked, there is an equal opportunity for any two registers from

different estimators to be mapped to the same physical register

in M . Hence, as one virtual estimator records an element of its

flow into one of its registers, the probability for this operation

to cause noise to any other virtual estimator is the same. When

there are a large number of virtual estimators and each of them

randomly chooses a large number of registers, the noise that
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they cause to each other will be roughly uniform. Such uniform

noise can be measured and removed.

Of course, there may exist registers that are hit by the virtual

estimators of elephant flows. However, the number of large

elephant flows is often exponentially fewer than the number of

small flows; see Fig. 6 for example. That means the number of

registers that carry abnormally large noise account for a small

fraction of all registers in M . If the estimator of a small flow

contains one or a few registers of large noise, the technique of

harmonic averaging can be used to remove the effect of such

outliers (which is already done by [10], [11]).

IV. A FRAMEWORK FOR VIRTUAL-

ESTIMATOR SOLUTIONS

We propose a framework for developing virtual-estimator

solutions that enable register-level sharing for mainstream

sketches, e.g., PCSA [7], LogLog [10], and HLL [11]. The

next section will show as an example how to apply the

framework to HLL for a virtual-estimator solution named

vHLL. The next next section will show another example of

applying the framework to PCSA for a second solution named

vPCSA.

In the framework, we use a single array M of m registers

to store the cardinality information of all flows. The ith
register in the array is denoted by M [i], 0≤ i <m. The

size of the registers is set based on the type of estimators

used [7], [10], [11] and the maximum range of cardinality

to be estimated. For example, in the vHLL solution, the size

of registers is five bits, in order to measure big cardinalities

up to 225 ≈ 4 × 109. Each flow has s virtual registers that

are randomly selected from M through hash functions. These

registers logically form a virtual estimator, denoted as Mf ,

where f is the label of the flow. The ith register of the virtual

estimator, denoted as Mf [i], 0 ≤ i < s, is selected from M
as follows:

Mf [i] = M [Hi(f)], (1)

where Hi(. . .) is a hash function which is in the range [0, m).
We want to stress that Mf is not a separate data structure.

It is merely a logical construction based on registers selected

from M , and it is not explicitly constructed during online oper-

ation. In all our later formulas, one should treat the notation

Mf [i] simply as M [Hi(f)], referring to a register in M .

The hash function Hi, 0≤ i < s, can be implemented from

a master function H(. . .):

Hi(f) = H(f | i) or Hi(f) = H(f ⊕R[i]), (2)

where ‘|’ is the concatenation operator, ‘⊕’ is the XOR

operator, and R[i] is a constant whose bits differ randomly

for different indexes i. The master hash function H we have

adopted in experiments is METRO hash or MURMUR3 hash.

At the beginning of each measurement period, all registers

are reset to zeros. The arrival stream of elements is abstracted

as a sequence of 〈f, e〉 pairs, where f is a flow label and e is

an element of the flow. For example, if a router measures

per-source flows for their numbers of distinct destination

addresses, it extracts from each arrival packet the source

Fig. 9. Distribution of number of distinct elements in a register.

address as the flow label and the destination address in the

IP header as the element to be recorded. For each pair 〈f, e〉,
we record e in one of the registers of Mf based on the

cardinality estimation methods in [7], [10], or [11], depending

on which one is used.

At the end of a measurement period, the register array M is

offloaded to a server for long-term storage. Given a flow label

f in offline query, we reconstruct its virtual estimator Mf by

copying s registers from M at indices Hi(f), 0≤ i < s. Let

ns be the number of distinct elements recorded by Mf , which

is the flow’s cardinality plus the noise introduced by other

flows due to register sharing. Let nf be the actual cardinality

of flow f . The noise term is ns − nf . We use the estimation

formula from [7], [10], or [11] (depending on which one is

used) to give an estimation n̂s of ns. Below we focus on noise

estimation.

Let n be the sum of all flows’ cardinalities. From the flow

f ’s point of view, the elements of all other flows, n − nf of

them, are noise. Let Y be a random variable for the number of

noise elements recorded by an arbitrary register in M . When

the number of flows and the number of registers per estimator

are both sufficiently large and the cardinality of any flow is

negligibly small when comparing with n, Y approximately

follows the binomial distribution Bino(n − nf , 1
m ), because

each noise element has approximately an equal chance to

be recorded by any register due to the random selection

of registers by virtual estimators. Such an approximation

is supported by Fig. 9 about the distribution results from

the experiments in Section VIII. The figure shows that the

experimental distribution approximately follows the computed

binomial curve. They do not match exactly, but the approx-

imation is good enough to provide accuracy in cardinality

estimation. In particular, the mean value (used in the estimator)

of the experimental distribution aligns very well with that of

the binomial distribution.

Hence, we have

E(Y ) =
n − nf

m
.

The total noise, ns−nf , is the sum of individual noises in the

s registers of Mf . Hence, ns − nf can be considered as the

sum of s independent random variables of Bino(n− nf , 1
m ).

E(ns − nf ) = s E(Y ) = s
n − nf

m
(3)

By the law of large numbers in the probability theory, the rel-

ative variance V ar(
ns−nf

E(ns−nf ) ) approaches to zero when s is
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large. In this case, E(ns − nf ) can be approximated by an

instance value, ns − nf . We have

ns − nf ≈ n − nf

m
s, nf ≈ ms

m − s

(ns

s
− n

m

)

. (4)

We define a grand flow as the combination of all flows. With

a few hundreds of extra bytes and applying the HyperLogLog,

we can obtain an accurate estimation n̂ for n (see Table I),

while the additional memory overhead is negligible when

comparing with the memory space M . Alternatively, since the

elements of the grand flow distribute approximately in uniform

over M , we can use the entire register array M as an estimator

to give an estimation for n (using HyperLogLog, for example).

Let n̂f be our estimation of nf . We have the following

estimation formula from (4).

n̂f =
ms

m − s
·
( n̂s

s
− n̂

m

)

(5)

In the virtual estimator of flow f , we regard the stream

elements belonging to flow f as signals, and regard the

elements from other flows (that are by chance mapped to

flow fs registers) as noises. Then, the above equation removes

the noise by subtracting the expected value of the cardinality

of noises (i.e., s
m n̂). We can only remove the noise mean

but cannot completely remove the variance in noise, which

is higher when the noise level is higher. Thus, the larger the

signal-to-noise ratio is, the better accuracy we will have for

the noise removal operation. Elephant flows with large signal-

to-noise ratio can remove noises with not much accuracy

loss. But mouse flows with very small signal-to-noise ratio

will inevitably suffer from low estimation accuracy. In the

next section, we will select vHLL, i.e., virtual HyperLogLog,

to discuss its operations and performance in details.

Also note that our virtual estimator for per-flow cardinality

estimation can be easily extended to solving the problem of

identifying top-k largest flows. Suppose the line card of a high-

speed router maintains two data structures simultaneously: a

vHLL sketch as described above, and a min-heap structure to

record the IDs of top-k flows. When a new packet arrives at

the line card, its packet processing module will read the vHLL

sketch and check whether the flow of the incoming packet has

its estimated cardinality larger than the flow at the tree root of

min-heap. If it is true, then this new flow will be inserted into

the heap structure as a new member of top-k flows, and the

flows that are no longer qualified to be top-k will be removed.

V. VIRTUAL HYPERLOGLOG ESTIMATOR

In this section, as an example, we apply the framework of

virtual estimators on HyperLogLog for a new solution, vHLL,

based on register-level sharing. This solution consists of two

components: one for recording the stream of packets in the

virtual HyperLogLog estimators, and the other for estimating

the cardinality of an arbitrary flow f .

A. Record Flow Elements in Virtual Estimator

Consider a flow f . When a measurement period begins, all

registers in its virtual estimator Mf are reset to zeros. For each

arrival element e of flow f , we perform the hashing below:

H(e) = 〈x1x2 . . .〉
p = 〈x1x2 . . . xb〉
q = 〈xb+1xb+2, . . .〉, (6)

where 〈x1 x2 . . .〉 is binary format of the hash output H(e),
p denotes the leading b bits with b equal to log2 s, and

q represents the remaining bits. Using the value of p, we can

map e pseudo-randomly to a register Mf [p mod s]. For clarity,

we will breviate Mf [p mod s] simply as Mf [p] afterwards.

The operation of recording e is simple: Let ρ(q) be the

number of leading zeros in q plus one; for example, if q =
001 . . ., then ρ(q) = 3. Clearly, the probability of ρ(q) = i
is (1

2 )i, for ∀i > 0. We update Mf [p] if its current value is

smaller than ρ(q). Namely,

Mf [p] := max
(

Mf [p], ρ(q)
)

, (7)

where := is assignment operator. Hence, Mf [p] has

recorded (one plus) the longest run of leading zeros from any

element mapped to the register. Suppose Mf [p] = M [Hp(f)]
as in (1), and Hp(f) = H(f | p) as in (2). Combining (7), (1)

and (2),

M [H(f | p)] := max
(

M [H(f | p)], ρ(q)
)

. (8)

Eq. (8) shows that the operations are actually performed on

the physical register array M , and the virtual estimator is just

logical in the online recording phase.

Per-Packet Processing Cost: Whenever a packet e arrives,

our vHLL algorithm needs to use equation (8) to update a

particular register. In order to locate the register, it requires two

hash operations: H(f |p), and H(e) for getting p and q values

in (6). After locating the register M [H(f |p)], it also requires at

most two memory accesses for updating its value, i.e., reading

M [H(f | p)] and writing M [H(f | p)] back if its value

changes. Note that the writing operation happens rarely since

the likelihood for ρ(q) > M [H(f |p)] to happen will decrease

exponentially as the register’s value increases. Consider an

arbitrary register of value v at the end of a measurement

period. There are at most v writes to this register. Each distinct

element recorded by the register has a probability of (1/2)v

to set its value to v. Hence, the expected number of distinct

elements recorded by the register is about 2v. Hence, the

write/read ratio is v/2v. As an example, the average register

value in our experiments (Section VIII) is about 7, which

corresponds to a write/read ratio of 7/27 ≈ 5.5%, suggesting

infrequent write operations. Nonetheless, in a pipelined design,

as most packets only require read and some packets require

an additional write, the pipeline will be stalled (for the time

of one memory access) each time write occurs.

B. Flow Cardinality Estimation

Given a flow label f for offline query, we construct Mf from

the stored M . Consider an arbitrary register Mf [i], 0≤ i < s.

Any element mapped to this register had a probability of 1

2Mf [i]

to set the register to its current value. Hence, the estimation for

the number of elements mapped to this register is 2Mf [i] [11].
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Recall that ns is the total number of distinct elements

that have been recorded by the estimator Mf , including both

elements in flow f and those in other flows that share registers

in Mf . In order to estimate ns, the normalized harmonic mean

is applied to aggregate the estimations from all registers in Mf :

n̂s = αs · s2 ·
(

∑s−1

j=0
2−Mf [j]

)−1

, (9)

where αs is a bias correction constant. The mathematical

expression of αs is quite complicated. So instead its numerical

values are often used in practice: α16 = 0.673, α32 = 0.697,

α64 = 0.709, and αs = 0.7213/(1 + 1.079/s) when s≥ 128.

The estimator in (9) is good for large cardinalities, but it

is severely biased when dealing with small cardinalities [11].

For a small cardinality, we treat Mf as a bitmap of s bits,

with each register Mf [i] converted to one bit, whose value is

1 when Mf [i] > 0 or zero otherwise. The estimation formula

is n̂s = −s logV , where V is the fraction of bits in the bitmap

that are zeros [8]. This formula is used when the cardinality

estimation by (9) is smaller than 2.5 s.

Recall that we can estimate the sum n̂ of all flow cardinal-

ities based on a separate estimator or simply from the whole

array M using (9) where n̂s is replaced with n̂, s is replaced

with m, and Mf is replaced with M . After computing both n̂s

and n̂, we use (5) to compute the estimated flow cardinality n̂f .

VI. VIRTUAL PCSA ESTIMATOR

In this section, as another example, we apply the framework

of virtual estimators to PCSA [7] for another solution named

virtual PCSA (vPCSA). This solution consists of two compo-

nents: an online component for recording the stream of packets

into the virtual PCSA estimators, and the offline component

for estimating the cardinality of an arbitrary flow f .

A. Online Component for Recording Flow Elements

Consider a flow f . For each arrival element e of flow f ,

we perform the same hash operation as in (6). Then, using

the value of p, we can map the element e to a register

Mf [p mod s], which is abbreviated as Mf [p] for clarity. Using

the value of ρ(q), we can record the element e at an appropriate

bit of the register Mf [p], using the equation below:

Mf [p] := Mf [p] ∨
(

1 
 (ρ(q) − 1)
)

, (10)

where 
 is the bitwise left shift operator, and ∨ is the bitwise

OR operator. So the above equation assigns the [ρ(q)−1]th bit

of the register Mf [p] to one. Typically, when implementing the

PCSA algorithm, each register Mf [p] is given 32 bits memory.

The probabilities for these bits to be assigned to one reduces

exponentially as 2−1, 2−2, 2−3, . . ., from low end to high end.

Suppose the pth register of virtual estimator Mf is mapped

to the Hp(f)th register of physical estimator M , i.e., Mf [p] =
M [Hp(f)] as in (1). Suppose the hash function Hp is imple-

mented by the concatenation operator |, which is Hp(f) =
H(f | p) as in (2). By combining (10), (1) and (2), we have

M [H(f | p)] := M [H(f | p)] ∨
(

1 
 (ρ(q) − 1)
)

. (11)

Per-Packet Processing Cost: When a packet e arrives, our

vPCSA algorithm will use equation (11) to update a particular

register. In order to locate the register, it requires two hash

operations: H(f | p), and H(e) for getting p and q values

in (6). After locating the register M [H(f | p)], it requires

only one memory access for updating its value, i.e., setting the

(ρ(q)− 1)th bit of register M [H(f | p)] to one. We observe a

space-processing tradeoff between vHLL and vPCSA. As our

experiment will show, vHLL is more efficient in space; alter-

natively, it estimates flow cardinalities more accurately under

the same space availability. But vPCSA incurs smaller per-

packet processing overhead. It requires one memory access

on a single bit per packet, whereas vHLL requires possibly

two memory accesses on a five-bit register per packet.

B. Offline Component for Estimating Flow Cardinality

Given a flow label f for offline query, we construct Mf

from the stored M . Recall that ns is the total number of

distinct elements that have been recorded by the estimator Mf ,

including both elements in flow f and those in other flows that

share registers in Mf . We estimate ns by the equation:

n̂s = 1/φ × s × 2
1
s

�s−1
j=0 LZB(Mf [j]), (12)

where φ is the bias correction factor that is equal to 0.77351,

and LZB(x) returns the position of the lowest zero bit, among

all the thirty-two bits of integer x. Note that the lowest bit

position starts from 0, and, hence, LZB(. . . 010011111) = 5.

However, the estimation equation in (12) has a bias problem

when dealing with small cardinalities whose load factor ns/s
is smaller than 20. Hence, a small bias correction term is

proposed by literature [26], which is presented as follows:

n̂s = 1/φ × s ×
(

2Z/s − 2−κ·Z/s
)

, (13)

where Z represents the summation term
∑s−1

j=0 LZB(Mf [j]),
and, for the two constants, κ = 1.75, and φ = 0.77351.

Similar to HyperLogLog, when the cardinality estimated

by (13) is smaller than 2.5s, another estimation equation based

on LinearCounting [8] is used, i.e., n̂s = −s logV , where V
is the fraction of registers in Mf equal to zeros.

We can estimate the grand flow cardinality n from the whole

register array M , using the equation (13), where n̂s is replaced

with n̂, s is replaced with m, and Mf is replaced with M .

After computing both n̂s and n̂, we further use the equation (5)

to compute the estimated flow cardinality n̂f .

VII. ESTIMATION BIAS AND VARIANCE

This section analyzes the bias and standard error of our

vHLL and vPCSA estimators. By [11], we have the following

theorem about the bias and standard error of HyperLogLog.

Theorem 1: Let ns be the number of distinct elements that

are mapped to a HyperLogLog estimator Mf . Suppose the

number s of registers in Mf is more than 16.

• If ns is sufficiently large, the estimate n̂s by (9) is

asymptotically almost unbiased in the sense that

1

ns
E(n̂s) = 1 + δ1(ns) + o(1),

where |δ1(ns)| < 5 × 10−5 as soon as s≥ 16.
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• The standard error defined as 1
ns

√

V ar(n̂s) satisfies

1

ns

√

V ar(n̂s) =
βs√

s
+ δ2(ns) + o(1),

where |δ2(ns)| < 5 × 10−4 as soon as s≥ 16. The

constants βs being bounded, with β16 = 1.106, β32 =
1.070, β64 = 1.054, β128 = 1.046, and β∞ = 1.039.

As stated in the HyperLogLog paper [11], the functions δ1

and δ2 represent oscillating functions of a tiny amplitude, and

they can be safely neglected for all practical purposes.

Additionally, according to [7], we have the following theo-

rem that states the bias and standard error of PCSA.

Theorem 2: Let ns be the number of distinct elements that

flow into a PCSA estimator, whose number of registers is s.

The cardinality estimation n̂s generated by PCSA in (12) has

the following characterizations of the bias and standard error:

1

ns
E(n̂s) ≈ 1 + ε(s),

1

ns

√

V ar(n̂s) ≈ η(s),

where quantities ε(s) and η(s) satisfy as s gets large:

ε(s) ∼ λ/(2s), η(s) ∼
√

λ/
√

s,

where λ is a constant, which can be closely approximated by

0.61 for all values of s. The detailed formula of λ is

λ =
π2

12
− γ2

2
− N ′(0) − N ′′(0) +

log2 2

12
,

where γ is the Euler-Mascheroni constant with γ = 0.5772 . . ..

The function N(x) is defined as N(x) =
∑

j≥1
(−1)v(j)

jx , where

v(j) is the number of ones in the binary representation of j.

A. Estimation Bias

Given an arbitrary flow f , we know from Section IV that

ns is the sum of the flow cardinality nf and a noise random

variable ns − nf with a binomial distribution of Bino(n −
nf , s

m ). For ∀i ∈ [0, n − nf ], we have

Prob{ns−nf = i}=

(

n − nf

i

)

(
s

m
)i(1 − s

m
)n−nf−i. (14)

Under the condition of ns − nf = i, by Theorem 1, for the

vHLL solution, we have

E(n̂s | ns − nf = i) = (nf + i)
(

1 + δ1(nf + i) + o(1)
)

≈ nf + i, (15)

with a small error bounded by a ratio of 5× 10−5. Similarly,

for the vPCSA, according to Theorem 2, we have

E(n̂s | ns − nf = i) = (nf + i)
(

1 + ε(s)
)

≈ (nf +i)
(

1+0.31/s
)

≈ nf +i. (16)

Hence, for both virtual estimators vHLL and vPCSA,

E(n̂s) =

n−nf
∑

i=0

E(n̂s | ns − nf = i) × Prob{ns − nf = i}

≈
n−nf
∑

i=0

(nf + i)×
(

n − nf

i

)

(
s

m
)i(1 − s

m
)n−nf−i

= nf + (n − nf )
s

m
. (17)

The value of n̂ is estimated based on the entire array

M or through a separate estimator with hundreds of bytes

(i.e., much more than 16 registers). For the vHLL solution,

from Theorem 1, we have E(n̂) = n (1 + δ1(n) + o(1)) ≈ n,

with a very small error bounded by a ratio of 5 × 10−5. For

the vPCSA solution, from Theorem 2, we have E(n̂) ≈ n
(1 + 0.31/m) ≈ n.

Applying E(n̂) ≈ n and E(n̂s) ≈ nf + (n − nf ) s
m to the

estimation formula (5), we have

E(n̂f ) =
ms

m − s

(E(n̂s)

s
− E(n̂)

m

)

≈ ms

m − s

(nf + (n − nf ) s
m

s
− n

m

)

= nf . (18)

Hence, both vHLL and vPCSA are asymptotically unbiased.

B. Estimation Variance

Next we derive the variance of n̂f .

V ar(n̂f ) =
( ms

m − s

)2
(V ar(n̂s)

s2
+

V ar(n̂)

m2

)

=
( ms

m − s

)2
(E(n̂s

2) −
(

E(n̂s)
)2

s2
+

V ar(n̂)

m2

)

=
( m

m − s

)2
(

E(n̂s
2) −

(

E(n̂s)
)2

+(
s

m
)2V ar(n̂)

)

(19)

With ∀i ∈ [0, n − nf ), under the condition of ns − nf = i,
by Theorem 1, for the vHLL solution, we have

1

nf + i

√

V ar(n̂s | ns − nf = i) =
βs√

s
+ δ2(nf + i) + o(1)

=
βs√

s
≈ 1.04√

s
, (20)

where we use 1.04 to approximate βs, assuming s≥ 128,

which is always the case in our experiments later. Hence,

V ar(n̂s | ns − nf = i) ≈ 1.042

s
(nf + i)2. (21)

Similarly, for the vPCSA solution, by Theorem 2, we have

1

nf + i

√

V ar(n̂s | ns − nf = i) ≈
√

λ√
s
≈

√
0.61√
s

≈ 0.78√
s

.

(22)

Hence, for vPCSA,

V ar(n̂s | ns − nf = i) ≈ 0.782

s
(nf + i)2. (23)

When estimating the grand flow cardinality n, we have

V ar(n̂) ≈ 1.042

m
n2 for vHLL,

V ar(n̂) ≈ 0.782

m
n2 for vPCSA, (24)

where m is the number of registers in the physical estimator

M , and we let m ≥ 128. Because E(n̂s
2 | ns = nf +

i) = V ar(n̂s | ns − nf = i) +
(

E(n̂s |ns − nf = i)
)2

,

from (15) and (21), when s is sufficiently large, we have

E(n̂s
2 | ns − nf = i) ≈ β2(nf + i)2

s
+ (nf + i)2

= (
β2

s
+ 1)(nf + i)2.
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Fig. 10. Relative standard error of vHLL with respect to s, n, and nf . (a) Flow cardinality nf =1 × 104. (b) Flow cardinality nf =2 × 104. (c) Flow

cardinality nf =4× 104.

where β is equal to 1.04 for vHLL, and is equal to 0.78 for

vPCSA. Combining (14) with the above equation, we have

E(n̂s
2)

=

n−nf
∑

i=0

E(n̂s
2 | ns − nf = i)Prob{ns − nf = i}

≈
∑n−nf

i=0
(
β2

s
+1)(nf +i)2

(

n − nf

i

)

(
s

m
)i(1− s

m
)n−nf−i

= (
β2

s
+ 1)

(

nf
2 + 2nfE(ns − nf ) + E((ns − nf )2)

)

= (
β2

s
+ 1)

(

nf
2 + 2nf (n − nf )

s

m

+ (n − nf )
s

m
(1 − s

m
) + (n − nf )2(

s

m
)2

)

= (
β2

s
+ 1)

(

(nf + (n − nf )
s

m
)2 + (n − nf)

s

m
(1 − s

m
)
)

.

(25)

Applying (17), (24) and (25) to (19), we have

V ar(n̂f ) ≈
( m

m − s

)2
(β2

s

(

nf + (n − nf )
s

m

)2

+ (n − nf )
s

m
(1− s

m
)+(

s

m
)2

β2

m
n2

)

, (26)

where β is equal to 1.04 for vHLL, and to 0.78 for vPCSA.

Since 0.78 is a smaller value of β than 1.04, from (26),

it may appear that vPCSA has smaller variance than vHLL,

suggesting that vPCSA is more accurate. However, a PCSA

register is 32 bits long, while a HLL register is only 5 bits

long. A four-byte machine word can accommodate only one

PCSA register, but it can accommodate six HLL registers.

So when vHLL and vPCSA solutions are given the same

amount of memory, the total number of registers or the

m value for vHLL is six times larger than that of vPCSA,

which will reduce the standard error of vHLL by 45%. Later

in Section VIII-E, we will empirically compare the accuracy

of vHLL and vPCSA.

We give an intuitive explanation to the three terms in (26)

between the parentheses after
(

m
m−s

)2
. We know that the noise

ns − nf in a virtual estimator follows a binomial distribution

Bino(n − nf , s
m ), whose mean value is given by (3) as

(n − nf ) s
m and whose variance is (n − nf ) s

m (1 − s
m ).

The noise variance is captured by the second term in (26).

The average number of elements a virtual estimator receives

is nf + (n − nf ) s
m , the flow cardinality plus the mean

noise. So on average, the variance of a virtual estimator is
β2

s

(

nf + (n − nf ) s
m

)2
, which is the first term in (26). The

third term ( s
m )2 β2

m n2 is caused by the estimation error of the

grand flow cardinality n.

C. Relative Standard Error

We define the relative standard error as

StdErr
( n̂f

nf

)

=

√

V ar(n̂f )

nf
. (27)

From (26) and (27), we observe that the relative standard

error (or error in short) increases as the grand-flow cardinality

n increases, and it reduces as the target-flow cardinality

nf grows.

Below we use some numerical examples to illustrate the

above observations and the interplay between different sources

of estimation error. Suppose the allocated memory is m =
256K. Consider a target flow cardinality of nf = 104.

Figure 10(a) shows the estimation error of vHLL numeri-

cally computed from (27) with respect to s (the number of

registers per virtual estimator) on the horizontal axis and n
(the combined cardinality of all flows) for different curves.

Starting from 16, as s increases, the error drops quickly, thanks

to improved estimation accuracy from the virtual estimator

Mf as predicted by Theorem 1. However, when s increases

further (more than 256 in the figure), the rate of improvement

drops significantly, which can also be predicted by Theorem 1

with its factor of improvement being 1√
s

. Moreover, as s
increases, the error caused by noise increases. Combining

these two factors, we observe that when s is relatively

large (for a wide range from 500 to 2000 in the figure), its

impact on the error becomes more or less stabilized.

From Figure 10(a) to Figure 10(c), we increase nf and

observe that the error decreases, which means that the rel-

ative standard error is smaller for flows of larger cardinali-

ties (although their absolute errors can still be larger). When

n increases, the error increases, as predicted.

VIII. EXPERIMENTAL EVALUATION

We have implemented both vHLL and vPCSA algorithms,

which are both based on register-sharing. We compare their

performance through experiments using real network traces
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Fig. 11. Performance of vHLL with 0.25 bit memory per flow. (a) vHLL with 0.25 bit per flow. (b) Estimation bias. (c) Estimation accuracy.

Fig. 12. Performance of vHLL with 0.1 bit memory per flow. (a) vHLL with 0.1 bit per flow. (b) Estimation bias. (c) Estimation accuracy.

downloaded from CAIDA [25]. The traces are captured by

a high-speed monitor named equinix-sanjose (located in San

Jose, CA, US), which is connected to a 10-Gbit/s Ethernet

backbone link. Each trace file captures the packets in 1 minute.

In order to create larger traces for our experiments, we

download 60 traces and combine them into 6 larger ones, each

for 10 consecutive minutes. The statistics of the large traces

can be found in the following table.

We consider per-source flows and measure the number of

distinct destinations that each source sends packets to. The

distribution of the flows with respect to the cardinality has

been shown previously in Figure 6. We design the experi-

ments primarily for evaluating how accurate the proposed new

solutions of cardinality estimation are. We also include a case

study on detecting super destinations.

Among the new solutions, vHLL outperforms vPCSA in

space-accuracy tradeoff. In order to save space, we only

include the results of vHLL for detailed evaluation in tight-

memory setting, while providing the performance comparison

between vPCSA and vHLL in the end.

A. Estimation Accuracy in Tight Memory

We evaluate the impact of memory space on the accuracy

of cardinality estimation for vHLL. For the proposed vHLL,

we configure the value of s to 512 by default, but will vary

its value in later experiments. Recall that m is the total

number of registers in the common pool. Its value depends

on the overall available memory. The average number of

flows in all six traces is about 1.5 millions. We vary the

available memory space from 0.375 Mb to 0.15 Mb, such

that the average memory per flow is about 0.25 bit and

0.1 bit, respectively. The corresponding experimental results

are presented in Figures 11 and 12, respectively. Again, each

flow is represented by a point, whose x-coordinate is the true

cardinality and y-coordinate is the estimated cardinality. The

equality line is also shown. The closer a point is to the line,

the more accurate the estimation is.

In Figure 11, plot (a) shows the performance of vHLL with

average memory of 0.25 bit per flow. The points are clustered

around the equality line (y = x), indicating good accuracy.

Plot (b) shows estimation bias. The vertical axis is the relative

bias defined as E(
nf−n̂f

nf
). Since there are too few flows for

some cardinalities (especially the large ones) in our Internet

trace, we divide the horizontal axis into measurement bins

of width from 5000 on the high end in the plots to 1000 in

the low end to ensure that each bin has a sufficient number

of flows 25, and measure the bias and standard deviation in

each bin. Plot (c) shows estimation accuracy. The vertical axis

is the relative standard error of the estimation results, which

is defined as

√
V ar(n̂f )

nf
. The measurement also uses the bin

method as previously explained.

As the average memory per flow decreases further to

0.1 bit, Figure 12 show that vHLL still works with gradually

deteriorating accuracy. We also point out that although the

relative standard errors for small flows are higher, it does not

entirely diminish the usefulness of these estimations because

the absolute errors for small flows are in fact much smaller

than those of large ones. For example, by examining the first
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Fig. 13. Cardinality estimation with different values of s under average memory of 0.5 bit per flow (m = 217). (a) Virtual estimator size s = 128.
(b) Virtual estimator size s = 256. (c) Virtual estimator size s = 1024.

Fig. 14. Relative standard errors of cardinality estimation with different values of s under average memory of 0.5 bit per flow (m = 217). (a) Virtual
estimator size s = 128. (b) Virtual estimator size s = 256. (c) Virtual estimator size s = 1024.

plot of each figure, one will not mistaken a small flow for a

large one due to the modest absolute error.

B. Impact of Value s on vHLL

Our second set of experiments evaluate the impact of s
(number of registers per virtual estimator) on estimation accu-

racy. We fix the average memory to 0.5 bit per flow, but change

s from 512 to values: 128, 256 and 1024. The results are shown

in Fig. 13(a)-(c), respectively. Corresponding relative standard

errors are shown in Figure 14(a)-(c), respectively.

We observe that when s is relatively small at 128, the esti-

mation accuracy in Figure 13(a) is noticeably worse than

that in Figure 13(b), which is evident from the fact that the

points of the former surround the equality line less tightly.

Quantitatively, the errors in Figure 14(a) with s = 128 are

larger than those in Figure 14(c) for vHLL with s = 1024.

For example, when the actual cardinality is 20000, the relative

standard error under s = 128 is 10.9%, while that under

s = 512 is 6.5%.

However, when s becomes large enough (more than 256),

for a wide range of values, the impact of s on the estima-

tion accuracy stabilizes, which is evident when comparing

Figure 13(b) and Figure 13(c), whose s values are 256 and 512,

respectively. For example, when the actual cardinality is

20000, their errors are 8.1% and 6.5%, based on from

Figures 14(b) and 14(c), respectively.

In Figure 14, we have also illustrated the theoretical stan-

dard deviation predicted by equations (27) and (26), where

the error factor β is assigned to 1.04 for vHLL. So the

above empirical observations are consistent with our analy-

sis in Section VII and the numerical results in Fig. 10

(which has different parameters though). The reasons for these

observations were explained in Section VII-C and will not be

repeated here.

C. Impact of Overall Traffic

Our third set of experiments investigate how the overall

traffic volume affects estimation accuracy. The overall traffic

volume is characterized by n, the sum of all flows’ cardi-

nalities, because duplicates in the traffic must be removed

in our context. The greater the value of n is, the larger the

average noise level on each register will be, which will in turn

negatively affect the estimation accuracy of a virtual estimator

consisting of s registers.

We artificially increase the cardinality of each flow by a

factor randomly chosen from the range of [1, 3], which doubles

the cardinality on average. The value of n is thus expected

to be doubled. We then repeat the experiment in Figure 13

with average memory of 0.5 bit per flow. The results are

presented in Figure 15, where plot (a) shows raw estimated

cardinalities, plot (b) shows the estimation bias, and plot (c)

shows the relative standard error. The bias remains close to

zero, particularly for large flows. The error is modest, but

larger than that in Figure 13(c) where the value of n is half,

which confirms our prediction above.

We further enlarge n by increasing the cardinality of each

flow with a factor randomly chosen from the range of [1, 7].
The value of n is expected to be increased by four folds. The

results are presented in Figure 16. Again the bias is close to

one, but the error increases.

D. A Case Study: Detect Super Destinations

Our fourth set of experiments applies vHLL to a hypo-

thetical application for detecting so-called super destinations.
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Fig. 15. Cardinality estimation with n doubled under average memory of 0.5 bits per flow. (a) n is doubled. (b) Estimation bias. (c) Estimation accuracy

Fig. 16. Cardinality estimation with n increased four folds under average memory of 0.5 bits per flow. (a) n is increased by four folds. (b) Estimation bias.
(c) Estimation accuracy.

TABLE II

FALSE POSITIVE RATIO AND FALSE NEGATIVE RATIO

WITH RESPECT TO MEMORY COST

In this case study, we consider per-destination flows and mea-

sure the number of distinct sources that access a destination

address in each measurement period, using the same Internet

traces. Suppose the policy is to report all the destinations

that have been accessed by 5,000 or more sources within a

measurement period. These super destinations may be used

for profiling the popular servers (or services) in the net-

work or triggering anomaly warnings (such as DDoS attacks)

if they were never reported as super destinations before.

If a destination with a cardinality less than 5,000 is reported,

it is called a false positive. If a destination with a cardinality

5,000 or above is not reported, it is called a false negative.

We define the false positive ratio (FPR) as the number of

false positives divided by the total number of destinations

reported. Based on this definition, if FRP is 0.1, it means 10%

of the reported destinations should not have been reported.

We define the false negative ratio (FNR) as the number of

false negatives divided by the number of destinations whose

cardinalities are 5,000 or more.

The experimental results are shown in Table II. vHLL has

non-negligible FPR and FNR since its estimated cardinality

is not exactly the true cardinality. To confine impreciseness

to a certain degree, the policy may be relaxed to report all

TABLE III

ε = 10%, FALSE POSITIVE RATIO AND FALSE NEGATIVE

RATIO WITH RESPECT TO MEMORY COST

TABLE IV

ε = 20%, FALSE POSITIVE RATIO AND FALSE NEGATIVE

RATIO WITH RESPECT TO MEMORY COST

destinations whose estimated cardinalities are 5000 × (1 − ε)
or above, where 0 ≤ ε < 1. If a destination less than

5000× (1− 2ε) gets reported, it is called an ε-false positive.

If a destination with a true cardinality 5,000 or more is not

reported, it is called an ε-false negative. The FPR and FNR

are defined the same as before. The experimental results for

ε = 10% are shown in Table III, and those for ε = 20%
are shown in Table IV, where the FPR and FNR for vHLL

are merely 0.7% and 0.6%, respectively, when the memory is

0.25 bit per flow. In Table IV, when the memory grows to at

least 0.5 bit per flow, FPR and FNR for vHLL become zeros.

E. Comparison Study of vHLL and vPCSA

In the last set of experiments, we evaluate the performance

of vHLL and vPCSA together to demonstrate the broad
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Fig. 17. Compare vHLL and vPCSA when they are given the same amount of memory of 0.5 bits per flow. (a) vHLL with s = m/28. (b) vPCSA with
s = m/28. (c) Comparison of estimation accuracy.

applicability of our virtual estimator framework on different

types of estimators. In Figure 17(a) and (b), we present the

estimation accuracy of vHLL and vPCSA, respectively, under

the same amount of memory, 0.5 bit per flow. The two plots

show that both solutions can generate good-quality cardinality

estimations for elephant flows.

In Figure 17(c), we present both the empirical standard

deviation of the estimation results in the previous two plots

and the theoretical standard deviation predicted by equa-

tions (27) and (26), where the error factor β is replaced

by 1.04 for vHLL and by 0.78 for vPCSA. The empirical

results and the theoretical results are consistent, both showing

that the standard deviation of vHLL is 45% smaller than

that of vPCSA.

IX. CONCLUSION

In this paper, we have proposed a unified framework for

developing efficient solutions to the problem of estimating

cardinalities for a very large number of streaming flows.

From this framework, we examine two new solutions in

details, including a particularly powerful solution called virtual

HyperLogLog (vHLL). Through analysis and experimental

evaluation, we show that vHLL can use a compact memory

space (down to 0.1 bit per flow on average) to estimate

the cardinalities of flows with wide range and reasonable

accuracy. This new capability enables on-chip implementation

of cardinality estimation needed for online applications that

can keep up with the line speed of modern routers, or allow

efficient processing of big data by using low-cost commodity

computers instead of expensive high-performance computing

systems.
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