
Crowd Counting With Minimal Data Using

Generative Adversarial Networks For Multiple Target Regression

Greg Olmschenk1 Hao Tang2 Zhigang Zhu1,3

1The Graduate Center of the City University of New York
2Borough of Manhattan Community College - CUNY

3The City College of New York - CUNY

golmschenk@gradcenter.cuny.edu, htang@bmcc.cuny.edu, zhu@cs.ccny.cuny.edu

Abstract

In this work, we use a generative adversarial network

(GAN) to train crowd counting networks using minimal data.

We describe how GAN objectives can be modified to allow

for the use of unlabeled data to benefit inference training

in semi-supervised learning. More generally, we explain

how these same methods can be used in more generic multi-

ple regression target semi-supervised learning, with crowd

counting being a demonstrative example. Given a convolu-

tional neural network (CNN) with capabilities equivalent

to the discriminator in the GAN, we provide experimental

results which show that our GAN is able to outperform the

CNN even when the CNN has access to significantly more

labeled data. This presents the potential of training such

networks to high accuracy with little data. Our primary goal

is not to outpreform the state-of-the-art using an improved

method on the entire dataset, but instead we work to show

that through semi-supervised learning we can reduce the

data required to train an inference network to a given ac-

curacy. To this end, systematic experiments are performed

with various numbers of images and cameras to show un-

der which situations the semi-supervised GANs can improve

results.

1. Introduction

A significant obstacle in many machine learning tasks

is the acquisition of enough ground truth data to train a

complex system. In most tasks which utilize deep neural

networks, one of the most limiting factors is lack of access

to enough training data. This is certainly true in the case

of machine learning algorithms for crowd analysis, where

labeling data is a time consuming and tedious task and where

generalizing to unseen data depends on similar training data.

In this work, we explore the use of generative adversarial

networks in training neural networks for crowd counting

with minimal amounts of data.

Generative adversarial networks (GANs) [2] have been

shown to increase the accuracy of deep networks and allow

for smaller quantities of data to train to high levels of ac-

curacy [6, 7]. However, semi-supervised GANs have only

been used for semi-supervised learning only in classification

problems, and have not been applied to regression problems.

This is both because classification problems are more com-

monly the focus of benchmarks in deep learning, but also

because a classification problem can be simply formulated

into the optimization goals of a GAN. In contrast, it becomes

more difficult to assign goals for adversarial networks in

regression problems, especially given the constraints of the

issue in question. To the best of our knowledge an approach

to using GANs for semi-supervised learning of regression

targets has not previously been proposed.

In this paper, we apply GANs to the structured per pixel

regression problem of generating crowd density images. We

explain the challenges of adapting GANs to this regime, and

provide our solutions to each challenge. More generally, our

algorithm can be applied to any regression problem where

the target is a continuous positive value with higher values

corresponding to a stronger representation of the feature to

be detected. The algorithm works both for single value re-

gression targets, or multiple value (in our case per-pixel)

regression targets. Specifically, to allow for this kind of

training we design a generator which is optimized to pro-

duce the highest possible values using a novel variant of

feature matching where each feature vector is weighted on

the predicted value, and we propose a discriminator loss

function for unlabeled and generated data allowing for train-

ing in the regression regime. Regression is a more general

problem than classification. Specifically, the problem of

classification is a subset of regression problems, so expand-

ing semi-supervised GANs to regression allows for a more

general understanding of their capabilities.

The primary goal of this work is not to outperform the



state-of-the-art methods when trained on a large dataset, but

is to demonstrate the ability of a GAN to train a inference

network to the same level of accuracy with less labeled data

than is required by the inference network without the GAN.

This is done by using the GAN to utilize unlabeled data as

well as the small portion of labeled data. We show that this

approach significantly decreases the amount of data required

to train the network resulting in the same accuracy in many

scenarios. Less data requirements mean less manual work in

labeling and the ability to train even when large quantities

of labeled data are not accessible.

To summarize, we provide the following three primary

contributions: (1) We apply semi-supervised GANs to learn-

ing of the structured per pixel regression problem of generat-

ing crowd density images, and show that it can significantly

reduce the amount of data required to train a predictor for

crowd analysis. (2) A new formulation of GAN objectives is

designed which allows GANs to deal with a set of regression

problems, and showcases how regression may be approached

in general. (3) A systematic study is performed in terms of

the number of images and number of cameras, demonstrat-

ing the capabilities of semi-supervised GANs in various data

limited circumstances.

2. Related Work

The work in [9] provides one of the first uses of convolu-

tional neural networks (CNNs) as a method for crowd count-

ing, especially across multiple scenes. While other works

have made valuable alterations to the approach given in this

paper to produce improved state-of-the-art results (such as

multiple scale CNNs [8], or residual network skip connec-

tions [5]), the primary functionality of these approaches,

namely the ability to use CNNs for crowd counting, is still

similar to that which is presented by [9]. Our discriminator

is similar to the CNN of this work, notably in the use of the

joint optimization goal of two outputs of the CNN, one for

count prediction and the other for density prediction. This

CNN then becomes the discriminator half of our GAN. The

main contributions of our work are in formulating how to

allow a GAN to function properly in this set of regression

target problems. We also use the datasets first presented in

[9] as our experimental data.

The use of GANs for minimal data semi-supervised learn-

ing was proposed in [7]. Similar to this work, we wish to

reduce the amount of data required to train the inference

network. However, their approach was designed with clas-

sification problems in mind, and we need to completely

redesign the optimization goals to work in the regime of

problems involving multiple regression targets. The large

scale goals are the same: use a GAN to allow unlabeled

data to provide useful information in training a network for

inference. We use the high level thinking of this approach

as a starting point, but in our crowd counting case, there are

no classes, and as such the loss functions described in [7]

are unusable (and are unusable for regression problems in

general). Our work consists of designing objectives which

work for a regression target, and overcoming the obstacles

in achieving such an objective.

Wasserstein GANs have been shown to produce more

stable training in GANs [1, 3]. As demonstrated in these

works, Wasserstein GANs theoretically converge wherever

a standard GAN converges, and converge in many cases

where the standard GAN does not. We found this approach

to GANs essential in preventing mode collapse and avoiding

unconverging states during training of our network. In our

work, we train the GAN with the discriminator being trained

more frequently than the generator and apply a gradient

penalty to the discriminator, as is proposed in [1, 3].

In [4], a GAN is used in crowd counting. The GAN in

[4] is used to improve the accuracy of the crowd counting

prediction. The GAN in this work consists of a conditional

generator with an input of true images and an output of gen-

erated density maps. A discriminator network then attempts

to distinguish between the generated density maps and the

true density maps. Once this GAN is trained, the generator

is used to produce density maps of the test images, and these

results are used as the predicted density maps. That is, the

generator is used for inference in the testing phase. The

formulation of this GAN is significantly different from our

approach. Most notably, the GAN in [4] is not designed to

train with unlabeled data or to specifically reduce the amount

of data required. [4] expects the training images have the

corresponding labels which can be used for training the dis-

criminator. Our approach allows for the use of unlabeled

data to train, with the goal of requiring significantly less

labeled data. The difference in the goal of the GANs is also

reflected in the structure of the networks being completely

different. These differences include but are not limited to the

generator outputting a density label vs an image, the genera-

tor predicting the labels vs the discriminator predicting the

labels, and the generator using true images as input vs only

using random noise as input.

3. Methodology

3.1. Notation

Throughout this section, we will reuse notation frequently

and so we will initially define a few key elements. x refers

to the input random variable. In our case, a specific value

of this random variable would be an image. If the ground

truth label, y, is provided, this maybe denoted as the pair x,

y. x ∼ pdata denotes that x has a distribution over the real

data, and x ∼ G has a distribution over the fake (generated)

data. The G here is the shortened notation for G(N ) where

N is a spherical normal distribution. Specifically, this is the

generator function being applied to random normal noise. In



general, G represents the generator function and D is the

discriminator function. Both functions require input. For

example D(x) is the discriminator function applied to the

input x. However, as the input to the generator is always a

normal distribution, we usually omit its input in the notation

(i.e. G is the generator applied to the normal distribution).

pmodel denotes the probability distribution of the discrimina-

tor model. Particularly, pmodel(y | x) is the probability of

predicting label y for the given data x. Lastly, E denotes the

expected value of a term over a probability distribution.

3.2. Semi­supervised GANs for Classification

To begin, we present how semi-supervised GANs for

classification are defined. This provides a well understood

basis from which we can extend the model for the regression

regime.

In [7], semi-supervised learning is accomplished by hav-

ing a set of examples labeled among K real classes as well

as a set of examples which are unlabeled, but known to be

among the K classes. A K + 1th class which is made to

represent a "fake" class is also used. In this GAN, the dis-

criminator is optimized to give labeled examples probability

distributions favoring their true class, to give unlabeled im-

ages probability distributions that favor any of the first K

classes, and to give generated image distributions that favor

the K + 1th class. Conversely, the generator is optimized to

have the generated images given distributions favoring the

first K classes. In this way, real unlabeled images can be

used to train the discriminator and allows for less labeled

data. Formally, [7] describes the discriminator loss as

LD = Lsupervised + Lunsupervised (1)

Lsupervised =

− E
x,y∼pdata(x,y)log[pmodel(y | x, y < K + 1)]

(2)

Lunsupervised =

− E
x∼pdata(x)log[1− pmodel(y = K + 1 | x)]

− Ex∼Glog[pmodel(y = K + 1 | x)].

(3)

To understand what is happening in this semi-supervised

learning more intuitively, we can imagine a case of an ideal

discriminator and generator. The generator would eventually

learn to produce data which exactly matches the true data

distribution. That is, the likelihood the generator generates

any specific image is the same as the likelihood that the im-

age exists in true data. For this to happen, the discriminator

must have forced the generator to learn this, meaning the

discriminator too knows exactly the data distribution. This

is how using a generator may make the discriminator more

accurate.

While we use the high level concepts of this approach in

our own work, the objectives as outlined here are inapplica-

ble in the case of regression targets. There can be no N+1th

class (as there are no classes) meaning the loss functions

need to be completely reformulated. Our method works to

overcome this issue.

3.3. Discriminator

A label in our data is a crowd density map (an array of real

numbers). Thus, instead of a cross entropy typically used in

classification problems, we define our supervised loss using

an L1,1 loss (equivalent to L1 if the matrix is flattened) over

the elements of the true density labels compared with the

predicted ones,

Lsupervised = E
x,y∼pdata(x,y) ‖y −D(x)‖1 . (4)

Note that our supervised loss function omits a logarithm,

as we are using a Wasserstein GAN [1]. GANs have been

shown converge more consistently using a loss function

based on an Earth Mover’s distance (or Wasserstein distance)

even among classification problems [1]. Our network also

uses a discriminator training gradient penalty of Wasserstein

GANs as opposed to the weight clipping proposed by [1], as

weight clipping was shown to result in a GAN which pro-

duces pathological behavior while gradient penalty results in

more consistent convergence over a wider range of network

architectures [3].

In the classification case, there were two terms to the

unsupervised loss. For clarity, in the following description of

our proposed approach we define these two terms separately

with

Lunsupervised = Lunlabeled + Lgenerated. (5)

This way we can define the intuition for the definition of

Lunlabeled and Lgenerated individually. For the case of loss

from the generated images, we wish to punish the discrimi-

nator for seeing any amount of people (any density), as the

generated images contain no true images of people. So here

our loss is given by

Lgenerated = Ex∼G ‖D(x)‖1 . (6)

With this, in a sense our equivalent of the K + 1th class is

zero density. Note however, that even real images contain

areas of pixels with zero density.

As we do not know the true label for the unlabeled, train-

ing the discriminator toward an exact value can be detrimen-

tal toward the overall accuracy. For example, consider a

case where we assume, based on the labeled images from

the camera, that the unlabeled image has a label ŷ, but the

true (unknown) label is y. If the discriminator predicts y and

our loss function has no leniency, the discriminator will be

trained to move away from the correct answer it predicted

towards ŷ. Instead, we use a loss function which allows for

a range of "correct" answers as we do not know which is

true. Specifically, we use a loss function for which a range



of input values produces zero loss. That is, if the difference

of the predicted from the true value is small enough, no loss

is produced. However, beyond a given difference threshold,

loss is non-zero. Specifically, our unlabeled loss is

Lunlabeled = E
x∼pdata(x)

[

max

(

1

α

∑

ye −
∑

D(x), 0

)

+

max
(

∑

D(x)− α
∑

ye, 0
) ]

(7)

where α is an experimentally chosen hyperparameter (see

Section 4) and is greater than 1. ye is average labeling of

known count labels for the labeled images being used for

training (in implementation, these are the images for a given

step of training). Note here that the values are summed

before differences are computed. This is because there is

no information on the locations of the person densities in

unlabeled images and only the approximate count is useful

(i.e. comparing density maps would not be).

3.4. Generator

The generator is trained on a modified version of the fea-

ture matching loss described by [7]. Once again, the main

difference in our generator as compared to [7] comes from

training in the case of regression targets, and more specifi-

cally, our crowd counting case. In this case, we want the gen-

erator’s goal to be able to produce highly crowded examples

(as interpreted by the discriminator). Here we use feature

matching as the generator goal as described by [7]. Nor-

mally, feature matching is simply used to match the features

that arise in the discriminator from the real images. Instead,

we want features which result in the highest predictions for

density and count to be the goal of the generator’s matching.

That is, we don’t want the generator to match the features

for floors or walls, but instead to match the features in areas

the discriminator sees as containing crowds of individuals.

If this were not the case, the discriminator and generator

could simply "agree" to have the generator produce realistic,

uncrowded images, as it could meet both networks’ goals.

To force the generator to work toward features that represent

crowded portions of the images, each feature vector on the

intermediate layer is weighted based on the predicted output

value of that vector by the discriminator. In this way, the

generator tries to produce images whose feature vectors in

the discriminator match the feature vectors in the real data

that have the largest count and density predictions. With

f(x) denoting the activations on the final layer before the

output layer and z being noise to input into the generator,

the generator loss is given by

LG =

∥

∥

∥

∥

Ex∼pdata

[

D(x)� f(x)
∑

D(x)

]

− Ez∼pz
f(G(z))

∥

∥

∥

∥

1
(8)

The second term of this loss function is simply getting the

expected values for the activations of an intermediate layer

of the discriminator for fake images. That is, the mean

features of fake data. The first term does something similar

for real data. The only difference is that the real features

are weighted by how much crowd density they correspond

to. Thus, the generator tries to produce images that have

features similar to more crowded images.

3.5. Dual Optimization Goal

One additional complication comes from training a net-

work with a second optimization goal. As shown by [9],

better crowd counting results can be achieved by training a

network to produce both a density map and a separate total

count value. The last layer of our network is actually two lay-

ers in parallel, one for density and one for count. The density

layer is trained to produce a density map which matches the

true values of the label. The count layer is trained to produce

values which, when summed, match the true summed value

of the label. Because of this, we actually have two losses for

both discriminator and generator. Luckily, other than which

output of the discriminator is used, all the losses are identical

in both cases except the labeled loss of the discriminator for

the case of the count. That loss is given by

Lsupervised = E
x,y∼pdata(x,y)

[

∑

y −
∑

D(x)
]

. (9)

Note that the only difference is that rather than the norm

distance between the arrays, the loss is the difference of the

sum of the arrays. We use the same network for our CNN as

[9].

4. Implementation

In this work we use the Shanghai Jiao Tong University

WorldExpo’10 crowd counting dataset [9]. The process of

selecting cameras for use in training is done entirely ran-

domly, and this random selection process was not repeated

based on trial results. The number of cameras and images

used for each experiment is given in Section 5.

The original dataset consists of images, head positions, a

region of interest within which head positions were labeled,

and average person height at any given point within the

image. Using this, we created a crowd density map for

each image. This was done by creating two 2D gaussian

distributions which approximately fit the shape of a human,

with one gaussian covering the head and the other covering

the body. This gaussian was sized according the average

person height for each head position. The sum of the values

of the two gaussians is equal to 1. This way, the sum of

the entire density map label is equivalent to the number of

individuals within that image. An example of the images in

the dataset as well as the corresponding labels can be seen

in Figure 1.





ion of the Wasserstein GAN, we allow the discriminator to

train to convergence between steps of training the genera-

tor (the value of this demonstrated and explained [1]). We

additionally apply a gradient penalty to the discriminator

during GAN training (the value of this is demonstrated and

explained in [3]). The α defined in the unlabeled loss from

methodology was set to 2 during our experiments.

When training the GAN, each step of training uses the

labeled, unlabeled, and fake (generated) images. For each, a

equal batch size of images is used on each training step for

each type of data (i.e. N labeled, N unlabeled, and N fake).

Both the labeled and unlabeled datasets are finite. When all

the images of one of these two datasets have been cycled

through, it repeats, though with a new shuffling of the data.

The fake images are newly generated on each step, as the

generator is changing during training.

All code, including data preprocessing and hyperparame-

ters, can be found at (repository link will be provided upon

paper acceptance).

5. Experiments

5.1. Evaluation Protocol

The Shanghai Jiao Tong University WorldExpo’10 crowd

counting dataset is used for our experiments. The dataset

includes images and videos from 109 cameras, and consists

of a training dataset and a testing dataset. We used the

WorldExpo’10 training data, and from it generated a set of

training datasets, and a single validation dataset, and a single

testing dataset (in addition to the original WorldExpo’10

testing dataset). Our training datasets (as a group), validation

dataset, and each testing dataset are entirely disjoint from one

another, in particular disjoint in their use of cameras/scenes.

CNN and GAN models are trained using a varying number

of cameras (1, 3, 5, 10 and 20) and varying number of images

(1, 3, 5, 10 and 20) per camera in order to systematically

compare the performance of the two models; details of the

selections will be provided in Section 5.2. However, the

same testing datasets and validation dataset are used for all

the trained models.

One testing dataset is simply the WorldExpo’10 testing

dataset, and it consists of 600 images from 5 cameras. We

want to note that no images from cameras in the testing

dataset are included in the training dataset and vice versa.

That is, training and testing is preformed across scenes. The

datasets are disjoint in camera source selection. Each camera

from this test dataset has 120 images. This dataset contains

2 of the most crowded scenes (in the entire WorldExpo’10

database), 2 of the least crowded scenes (and 1 additional

scene). While this provides a good challenging case to test

on, it is not very representative of the training data. As such,

we prepared the additional testing dataset. This provides

better insight into how accurate the methods will be when

testing on data whose statistics more closely match the train-

ing data statistics (i.e. this dataset is specifically chosen

randomly from the same data generating distribution, rather

than hand chosen to be a challenging case). The second

testing dataset is from a subset of the WorldExpo’10 training

dataset. This testing dataset consists of 370 images from 10

cameras. These cameras were randomly chosen from among

the full dataset before any models were trained. No images

from cameras in the validation dataset are included in the

training dataset and vice versa. Again, the two datasets are

disjoint camera source selection as well.We note that in gen-

eral results are better on our randomly chosen testing dataset

then on the original testing dataset. Finally, the validation

dataset consists of a different 307 images from 10 cameras,

and was only used to try different models and examine how

well they generalize without comparing against the final

testing datasets.

In each of the following experiments, we train both a

CNN model and a GAN model on the same set of labeled

data (for each of the camera-image number combinations).

The GAN additionally uses the unlabeled images from the

cameras in the trial’s training dataset (the CNN has no way

to profitably use this data). Each resulting model is used to

predict the person count of each image in both test datasets.

The accuracies between the two methods are compared. In

every case, the GAN uses as its discriminator a network

identical to the CNN. As we compare the two methods using

a varying number of cameras and varying number of images

per camera, this gives both an understanding of the amount

of total image data required by each network as well as the

distinct scene information (number of cameras) required by

each network.

The unlabeled data from the GAN model consists of video

from which the labeled image data was taken for training.

The GAN allows for any number of these frames to be used

with no additional labeling (which is the primary advantage

of the GAN). As such, in these experiments, we used all

(unlabeled) video data for any camera within the training set

(that is, the number of cameras the GAN has access to is still

limited). Though the video lengths vary, on average there is

approximately 2 minutes of video for each camera with 50

FPS. It should be noted that as this is video data, many of

the frames are near identical to others.

5.2. Semi­Supervised Results

We demonstrate the ability of a GAN to train an inference

network using less labeled data than would be required to

achieve the same level of accuracy by an identical inference

network outside a GAN. The process of selecting cameras is

done entirely randomly, and this random selection process

was not repeated based on trial results. For each set of

experiments, the cameras and images chosen are consistent

between experiments. That is, when 10 cameras are used,



the first 5 of these cameras are the ones used in the 5 camera

trial. The same is true for the images used. Specifically, in

the table, the training dataset used for any trial is a subset of

the training dataset for the trial to the right and below it on

the table. Although cameras were chosen randomly, to allow

for reproducibility, the list of cameras and images used is

provided in the appendix (supplementary material). In the

GAN cases, the unlabeled image data which is used is only

from the cameras which are in the labeled set for that trial

(i.e. no cameras are included which are not included in that

training set). In all the training cases listed, the networks are

trained for 7000 epochs.

We tested the trained models using a varying number of

cameras with a varying number of images. For each case,

training using the CNN (discriminator) alone and training

with the GAN is compared. These results can be seen in

Tables 1 and 2. For each experiment, the number of cameras

is given along with the number of images used per camera.

The data is explicitly limited so that we can experiment on

how much data is needed to train the system to different

levels of accuracy, and to compare how much data is needed

with the generator to how much is needed without it. The

numbers of images and cameras used are referring to the

training dataset only. In all trials the entirety of both testing

datasets are used. Table 1 shows the results on the randomly

chosen test dataset and Table 2 are the results on the original

WorldExpo’10 test dataset. Again, there is no overlap of

cameras between the test datasets and the training datasets

(or between the two test datasets).

When trained using the entire database of available data,

the CNN and GAN reach an accuracy of 11.1 and 14.2 for the

random test dataset, and 19.7 and 23.9 for the original test

dataset. Training using the entire dataset, the CNN performs

better. The CNN outperforming the GAN in this case is

likely due to the GAN introducing a bias and the labeled

data samples for training CNN is already sufficient.

5.3. Analysis

We have made the following interesting observations.

(1) When data is limited, training using the semi-

supervised GAN usually allows the network to train to higher

accuracies than the CNN with the same, limited amount of

labeled data. This is true on both the random test dataset and

the original test dataset, even though the errors on the ran-

dom test dataset are much lower than on the testing dataset

(again, due to the random test dataset more closely matching

the training dataset distribution).

(2) The effectiveness of the GAN is most pronounced

when the labeled data is most limited. This makes sense as

what the semi-supervised GAN does is to provide a form of

regularization that is based on real, but unlabeled data. It

discourages the discriminator from overfitting the data as

it’s method needs to have reasonable results on the much

larger unlabeled dataset as well. This suggests that much

more powerful networks could be used while mitigating the

likelihood of overfitting. When we reach approximately

50-60 total images, the CNN begins to occasionally outper-

form the GAN. As noted, when training using the entire

dataset, the CNN performs better. The CNN outperforming

the GAN in these cases is likely due to the GAN introducing

a bias. Specifically, the expected value of the unlabeled data

is greater than zero. As this introduces a bias in the training,

taken to the extreme of unlimited data, the bias will create

error. The stronger the bias introduced, the lower amounts

of data that the unbiased network will begin to outperform

the biased network. Though speculative, we believe a loss

function which removes this bias would remove the advan-

tage of the CNN while keeping the advantage of the GAN.

This might be done using feature matching of a feature layer

instead of count matching on the unlabeled data, but this is

left for future work.

(3) In general, the increase in number of cameras reduces

the error in both CNN and GAN cases. With the same num-

ber of total training images, the error tends to be lower with

more cameras. This is due to additional scenes, lighting

conditions, etc being included in these cases to be general-

ized to the testing cameras which are not seen in training.

Additional images usually only give additional configura-

tions of individuals in the images. This also suggests that

using unlabeled data from unseen cameras in the GAN may

provide the GAN a significant increase in advantage, but this

is left for future work.

(4) The estimation errors on both testing datasets mostly

exhibit consistent trends with regards to the numbers of

cameras and images, and for both CNN and GAN. However

we have noticed a few outliers on both the testing datasets:

For example, in both testing data, the errors of both GAN

and CNN trained on 5 cameras x 5 images is significantly

higher than would be expected given trend of surrounding

data points. In both datasets, the GAN does very poorly

with only a single image from a single camera. At the same

time, the CNN does poorly with several images from a single

camera. Particularly when dealing with only a single camera,

the exact images in question and luck during training may

play a significant role.

6. Conclusions

In this work, we’ve used GANs to train crowd counting

with less data than is required to train an equivalent inference

network. We’ve demonstrated a case of how to allow GAN

based semi-supervised learning to be usable in a multiple tar-

get regression problem. We’ve used a presented a weighted

feature matching approach and provided a lenient unlabeled

loss goal. We have given experimental results to show that

a GAN network outperforms an equivalent CNN using sig-

nificantly less data. Our ongoing work include the use of



Random Test Dataset Error

Number of

training cameras
Number of training images per camera

1 3 5 10 20

1
CNN 93.2 116.8 131.5 25.2 32.0

GAN 134.0 70.1 37.5 32.4 19.9

3
CNN 46.8 29.1 17.4 25.0 21.7

GAN 26.1 28.0 28.8 22.4 19.9

5
CNN 31.3 29.2 48.9 13.5

GAN 22.2 24.4 27.9 18.2

10
CNN 31.0 17.8 17.4

GAN 29.4 24.3 17.5

20
CNN 26.1 25.8

GAN 22.7 24.1

Table 1. A table of the mean absolute error when the network is trained with varying amounts of data with or without the generator. For each

experiment, the number of cameras is given along with the number of images used per camera. Additionally, it is shown whether the GAN or

the plain CNN is used. The test dataset is the same for every case

Original WorldExpo’10 Test Dataset Errorr

Number of

training cameras
Number of training images per camera

1 3 5 10 20

1
CNN 65.8 168.5 189.2 32.8 45.9

GAN 169.5 74.3 53.5 36.0 27.9

3
CNN 73.3 60.3 35.0 29.6 30.2

GAN 112.6 36.4 30.5 32.3 32.9

5
CNN 58.0 55.5 68.1 23.7

GAN 33.6 40.1 42.8 30.2

10
CNN 52.3 25.7 24.6

GAN 40.0 31.5 26.8

20
CNN 46.6 38.7

GAN 39.5 32.7

Table 2. A table of the mean absolute error when the network is trained with varying amounts of data with or without the generator. For each

experiment, the number of cameras is given along with the number of images used per camera. Additionally, it is shown whether the GAN or

the plain CNN is used. The test dataset is the same for every case

loss functions which do not include a bias (which leads to

the CNN outperforming the GAN on the full dataset), and

compare the performance of our GAN model with the state-

of-the art methods.

7. Acknowledgments

This research was performed under appointments to the

U.S. Department of Homeland Security (DHS) Science &

Technology Directorate Office of University Programs, ad-

ministered by the Oak Ridge Institute for Science and Edu-

cation (ORISE) through an interagency agreement between

the U.S. Department of Energy (DOE) and DHS. ORISE is

managed by ORAU under DOE contract number DE-AC05-

06OR23100 and DE-SC0014664. All opinions expressed in

this paper are the author’s and do not necessarily reflect the

policies and views of DHS, DOE, or ORAU/ORISE. This

work is also supported by the U.S. Computing resources were

supported by Azure for Research. National Science Foun-

dation through Award EFRI-1137172 and SCC-Planning-

1737533. Additional support by a CUNY-Bentley CRA.



References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

“Wasserstein gan”. In: arXiv preprint arXiv:1701.07875

(2017).

[2] Ian Goodfellow et al. “Generative adversarial nets”.

In: Advances in neural information processing systems.

2014, pp. 2672–2680.

[3] Ishaan Gulrajani et al. “Improved training of wasser-

stein gans”. In: arXiv preprint arXiv:1704.00028

(2017).

[4] Jiawen Li et al. “An end-to-end generative adversarial

network for crowd counting under complicated scenes”.

In: Broadband Multimedia Systems and Broadcast-

ing (BMSB), 2017 IEEE International Symposium on.

IEEE. 2017, pp. 1–4.

[5] Mark Marsden et al. “ResnetCrowd: A Residual Deep

Learning Architecture for Crowd Counting, Violent

Behaviour Detection and Crowd Density Level Classi-

fication”. In: arXiv preprint arXiv:1705.10698 (2017).

[6] Alec Radford, Luke Metz, and Soumith Chintala. “Un-

supervised representation learning with deep convo-

lutional generative adversarial networks”. In: arXiv

preprint arXiv:1511.06434 (2015).

[7] Tim Salimans et al. “Improved techniques for training

gans”. In: Advances in Neural Information Processing

Systems. 2016, pp. 2234–2242.

[8] Lingke Zeng et al. “Multi-scale Convolutional Neu-

ral Networks for Crowd Counting”. In: arXiv preprint

arXiv:1702.02359 (2017).

[9] Cong Zhang et al. “Cross-scene crowd counting via

deep convolutional neural networks”. In: Proceedings

of the IEEE Conference on Computer Vision and Pat-

tern Recognition. 2015, pp. 833–841.


