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Abstract

Large transportation hubs are difficult to navigate, especially for people with
special needs such as those with visual impairment, Autism spectrum disorder (ASD),
or simply those with navigation challenges. The primary objective of this research is
to design and develop a novel cyber-physical infrastructure that can effectively and
efficiently transform existing transportation hubs into smart facilities capable of
providing better location-aware services. We investigated the integration of a number
of internet of the things (IoT) elements, including video analytics, Bluetooth beacons,
mobile computing, and facility semantic models, to provide reliable indoor navigation
services to people with special needs, yet requiring minimum infrastructure changes.
Our pilot tests with people with special needs at a multi-floor building in New York
City has demonstrated the effectiveness of our proposed framework.

INTRODUCTION

Transitional spaces such as bus terminals, train stations, airports, and multi-
modal transportation hubs have become an increasingly important part of city’s
infrastructure as we are spending more and more of our lives in these spaces in
today’s ever more connected world. Transportation facility owners are facing
growing challenges to accommodate the rising public travel demands while
improving quality of service. Future transportation facilities need to be smart,
providing efficient, high-quality, and equitable services to the increasingly diverse
population. This is especially true for those gigantic transportation hubs because
wayfinding in these facilities has always been challenges for people with special
needs such as individuals with visual impairment and Autism Spectrum Disorder
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(ASD) and people with difficulties in finding places, particularly persons unfamiliar
with metropolitan areas.

In the United States alone, the visually impaired population has reached 6.6
million people and expected to double by 2030 (from 2010 figures) (Varma et al.,
2016). According to Centers for Disease Control and Prevention (CDC), ASD is the
fastest-growing developmental disorder affecting 1 in every 68 people in the US. One
common and recurring obstacle that people from both groups face every day is
navigation, particularly as related to mobility. Using public transportation services is
the best way for them to travel. However, there are also significant hurdles in using
them due to their challenges. In 2015, a study conducted at Rutgers University found
that according to adult respondents on the spectrum and their family members, 35.1%
of these adults with ASD have difficulty in determining directions/route (Feeley et al.,
2015).

Table 1. Difficulty with Different Aspects of Walking

Percent of Percent of
Difficult Aspects of Walking Responses  Responses Respondents
Difficulty determining directions/route 247 14.2 35.1
Crossing a street 290 16.7 41.3
Judging the distance and/or speed of 318 18.3 452
Walking in areas without sidewalks (on 193 11.1 27.5
Dealing with distractions while walking 282 16.2 40.1
Too many people on the sidewalk 64 3.7 9.1
Too many cars or too much traffic 257 14.8 36.6
Other, please specify: 86 5.0 12.2
Total 1737 100.0 NA

While new technologies can be included and integrated into the design and
construction of new transportation hubs to make them smarter, retrofitting existing
facilities to make them smarter will be a more cost-effective choice in highly
developed urban settings. Current emerging mobile computing and IoT technologies,
together with advances in computer vision techniques used in 3D localization and
crowd analysis, will provide great opportunities in significantly improving navigation
services as well as creating innovative approaches to accommodate passengers and
customers. While the support for these kinds of projects is evident, few studies have
systematically investigated the synergy of these technologies as a cyber-physical
infrastructure to enable these services. Most studies have focused on individual
technological solutions which tend to fail to deliver reliable services in large and
complex transportation hubs. The purpose of this study is to explore deep integration
of Internet-of-Things (beacons, surveillance cameras, facility models, and mobile
devices), Big Data analytics (deep learning, localization, and computing
infrastructure), and affective computing (cognitive computing) as a novel cyber-
physical system to build smart and accessible transportation hubs (SAT-Hub) capable
of providing better location-awareness services (e.g. navigation support) to all,
especially to people with disabilities (visual impairment and ASD) and people with
navigation challenges. This paper describes and presents preliminary results on a
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novel cyber-physical infrastructure framework that can effectively and efficiently
transform existing transportation hubs into smart facilities that are capable of
providing better location-awareness and personalized navigation services (e.g. finding
terminals, improving travel experience, obtaining security alerts) to the traveling
public, especially for the underserved populations including those with visual
impairment, ASD, or simply navigation challenges.

RELATED WORK

People who are have normal vision rely almost exclusively on their sight to
orient themselves in a new indoor environment. As for people with visual impairment,
eyesight is not a useable or reliable perception means, and they need to use
alternative sensory tools to collect information to explore the environment. In spite of
this need, the majority of the tools available to this population of people are not able
to tell them their locations accurately, not even for navigation. For example, a white
cane can help them to determine whether an area is walkable or not, but it cannot
provide users their location information. Guide dogs may help to lead users to walk
along known paths, but users still need other information to reason their locations
when they want to change their routes, let alone to say owning a guide dog is
expensive. GPS is sometimes used for localization in outdoor environments, but GPS
signals can rarely be detected indoors or in dense urban areas because GPS signals
are weakened and scattered by walls, roofs, and other obstructions (Agarwal et al.,
2002).

Similarly, ASD individuals welcome technological solutions in order to
overcome many of their daily obstacles. Among those obstacles, one common and
recurring obstacle is navigation, in particular in indoor settings. Outdoor areas have
signs, maps, and GPS-based navigation systems that can help a person navigate to
their destination, whereas indoor navigation is often proved to be a much more
difficult task. Because of this, lack of adequate navigation capabilities has limited
their opportunities to use public transportation services. In many circumstances, ASD
individuals may get lost or are unable to find their destinations in a complex building.
In situations like these, not all ASD individuals are comfortable enough to seek help
from strangers due to several reasons like communication difficulties, language
problems, or social issues.

In recent years, researchers and several startups have been working on indoor
GPS systems such as WiFi- or Bluetooth-based navigation approaches, and a few
public facilities even have tested such approaches (i.e. SFO airport) (Indoor.rs, 2016).
Some have proposed localization using the magnetic field (Li et al., 2012) while
others have suggested using accelerometers and compasses on mobile devices in
order to detect the speed and direction of the user (Collin et al., 2003). However,
these methods are very much prone to error and may not be supported by all devices.
Recently, localization using Bluetooth Low Energy (BLE) beacons has emerged as a
viable method of positioning considering its wide availability and low cost (Gruman,
2014). However, these approaches with fixed beacons often require large-scale
infrastructure changes and tedious sensor (beacon) installations and calibrations.
These kinds of requirements are very costly and difficult to meet in large public
transportation centers, all of which having frequent 3D environment changes and
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large volume of passengers. Needed are approaches that would require minimum
infrastructure changes and sensor installations. Semantic facility model-based
navigation could be a potential solution. However, relying on semantic models alone
would be problematic because these kinds of facilities are simply changing so fast
and models become obsolete quickly.

Another means to provide indoor localization and navigation services is
computer vision based approaches. Previous work (Hu et al., 2014) explored methods
to process images by image matching and estimate the location information. However,
image matches are error-prone in the indoor and urban environments with large
textureless areas. Some other studies have explored using Structure from Motion
(SfM) to create street 3D models in the outdoor environment and recognizing the
places utilizing images from Internet (Sattler et al., 2015; Torii et al., 2015; Zeisl et
al., 2015). Some researchers use Bag of Words (BoW) (Cao et al., 2016) or ConvNet
features (Siinderhauf et al., 2015) to represent outdoor environments for localization.
Among these studies, very few of them focus on indoor scenarios, especially for an
assistive localization purpose. In addition, a practical SfM model heavily relies on the
richness and distinguishes of environmental features extracted from the images,
which is hard to use in environments where few features are available and detected
features often tend to be repetitive in space.

The rise of mobile and wearable devices as ubiquitous sensors has greatly
accelerated the advancement of both general computer vision research and assistive
applications. Farinella et al. (Farinella et al., 2015) uses Android phones to implement
an image classification system with DCT-GIST based scene context classifier. Some
others apply Google Glass and develop an outdoor university campus tour guide
application system by training and recognizing the images captured by Glass camera
(Altwaijry et al., 2014). Paisios, a blind researcher, creates a smart phone app for the
Wi-Fi based blind navigation system (Paisios, 2012). Manduchi proposes a sign-
based way-finding system and tests the blind volunteers with smart phones to find
and decode the information embedded in the color marks pasted on the indoor walls
(Manduchi, 2012). However, in spite of the technology promise demonstrated in
these studies, few research work exist on designing user-friendly smart phone apps
for helping visually impaired people to localize themselves and navigate through an
indoor environment.

PROPOSED APPROACH

Our proposed solution to provide reliable indoor navigation services in major
transportation hubs relies on integration of Internet-of-Things (beacons, surveillance
cameras, facility models, and mobile devices), data analytics (deep learning and
localization), and affective computing (cognitive human factors). The proposed
cyber-physical system is designed to require minimum infrastructure changes as it
leverages existing cyberinfrastructures such as surveillance cameras, facility models,
and mobile phones, and incorporates a minimum number of beacons to achieve
reliable navigation services. Figure 1 shows four essential elements in our proposed
framework. In the following, we detail the technical innovations in each of these
elements.
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Semantic Facility Model Crowd Analysis

Beacon based Localization Individualized Plan Planning

Figure 1. Proposed Framework to enable personalized indoor navigation
assistance to people with special need

3D semantic facility model based localization

We use a 2D-3D registration approach to register smart phone images from
multiple users with a pre-built semantic 3D facility model to infer absolute 3D
locations of users. In our proposed framework, we develop a base framework in
which facility users and the 3D semantic model of a facility can collaboratively work
to realize robust and real-time localizations. To facilitate the process, we create a
database of feature distributions for key positions in the facility based on the point
cloud data and semantic facility model. We discard or discount those features that are
from facility elements that will likely change over the time, and boost those with
more permanent installations. The key positions will be determined based on how
distinctly features distribute at selected vantage views from candidate key positions.
We further assert that passive image capture and registration approach may not be
effective whereas providing some directions to the users will greatly accelerate the
converging process during localization because of two reasons: (i) Poor coverage—
data collected from people without directions will likely have poor coverage of
scenes with informative features; (ii) Data quality—without directions, data gathered
is uncoordinated, resulting in low quality with more noise, making it difficult to
process it, e.g., capturing the scene under different angles/positions, abruptly shaking
device during capture, etc. This leads to the need of beacon based localization.
Beacon-based indoor localization

When vision based localization fails, beacon-based indoor localization is the
backstop to ensure the availability of adequate navigation services in our proposed
framework. However, apart from simply deploying a dense network of fixed
Bluetooth beacons with known locations, a unique feature of the proposed work is the
utilization of the 3D semantic model for the beacon installation. Both installing and
calibrating beacons are tedious and challenging. Therefore, the use of 3D model will
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make the installation and maintenance of both fixed and mobile beacons more
effective. 3D locations of beacons can be planned either interactively or automatically
in the 3D digital model for the best coverage, and visualized in a virtual reality
display for each installation. When a user comes into the facility, his/her App will be
able to detect at least three of the beacons with known locations to obtain a relatively
accurate location (from a meter to several meters). Then the 2D-3D registration
approach will be used to further refine and track the location of the user.
Video based crowd analysis

A unique component of our proposed approach is integrating crowd analysis
into indoor navigation services. Traditional indoor navigation services rarely consider
contextual information when providing navigation guidance. However, this could be
an important issue for people with special needs. For example, ASD individuals may
prefer to choose paths that have less dense crowds due to psychological factors;
people with visual impairment try to avoid large open space due to difficulty to find
references for localization; and people in wheel chairs can navigate along paths with
less crowds far more conveniently than along those with large crowds. In our
proposed framework, we analyze the video feeds in real-time from surveillance
cameras in the facility to evaluate the density of crowds in different parts of the
facility. The analysis results will be incorporated into path choices.

Context-aware navigation guidance

The proposed framework also includes a user-centric, activity-aware and
feedback-enabled services with the support of the surveillance camera system to
provide human crowd analysis results. In our framework, path planning for a user is
made based on the following five factors: 1) Both the user’s current location and
his/her destination; 2) The user’s planned schedule (for example the time to take a
bus); 3) The special needs of the user; 4) The semantic 3D models with all the
important facility labels; and 5) The crowd analysis results from the surveillance
cameras. This is a graph planning problem with multiple cost attributes, and probably
the graph and the path need to be updated if the path is not very short. As examples, a
visually impaired or wheelchair user should avoid stairs. We will also need to adapt
the path based on user’s feedback. If an ASD user gets stuck and panic at certain
location, the App will need to re-route the path, probably will also need to put them to
wait if certain areas that they have to pass are too crowded and their time still allow
them to wait.

PRELIMINARY RESULTS

In order to test the proposed framework, we have conducted pilot tests at a
multi-floor facility in New York City. The facility has high definition surveillance
cameras in place and it provides services to people with visual impairment. Estimote
beacons (Estimote, 2016) are installed in the facility during our study. Although the
facility was not a true transportation hub, it provides a great opportunity to test and
validate our proposed approach with the easy reach to one of the groups we would
like to provide services. The pilot provides foundational knowledge to expand our
approach to transit stations and transportation hubs. In the following, we describe the
development and testing of the framework at this facility.
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3D semantic model and image model registration

As the first step, we utilized a terrestrial laser scanner (Figure 2a) to create a
high-fidelity 3D model of the facility. The facility is represented with colorized 3D
point cloud (Figure 2b) with dense annotation of building elements (Figure 2¢). The
creation of dense annotation is realized with a semi-automated segmentation and
labeling tool developed as part of this project. Basically, the tool segments the point
clouds through a region growing method (Rusu, 2010) and the segmented point
clouds are manually annotated.

Semantically Labeled Point Cloud

¢
Y

(a) (b) (c)
Figure 2. (a) Facility modeling with terrestrial laser scanning; (b) Colorized
point cloud data of the facility; (c) Point clouds with dense annotation of
building elements (in this case, elevator doors)

In this component, we also investigated registration of mobile phone image of
the user with the 3D semantic model to provide user more accurate location and
orientation information to get to his/her desired location. The registration between
mobile images and facility point cloud data is solved by determining the projection
between corresponding pixels/points. Denote a point as C = [X,Y, Z,1]7, and a pixel
as ¢ = [u, v, 1]". The projection from a 3D point on to a 2D pixel could be expressed
as:

c = A[R|t]C (1)
Where A includes intrinsic camera parameters, R and T are extrinsic camera
parameters, including rotation and translation of the camera, according to the
reference coordinate. Figure 3 shows alignment of a user view of the elevation from
his mobile phone with the point cloud data.
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User’s view of the elevator

Figure 3. Registration of mobile phone image with the 3D semantic model

Deep learning for crowd analysis

We have been studying deep learning methods to improve the accuracy of
crowd density estimation for the low- or mid- density crowd (Zhang et al., 2015), and
tackle the high-density crowd using a regression-based method (Lempitsky and
Zisserman, 2010; Chen et al., 2012). So far we have obtained very promising results
on both crowd counting and crowd density estimation (Figure 4) based on
convolutional neural networks (CNNs) (Jia et al., 2014). Though other convolutional
neural networks have been used for crowd detection (Zhang, Li, Wang and Yang,
2015), our proposed pixel-wise calculation structure of the neural network is novel
for the application of crowd density detection. From a high level perspective, the
program would take as input a single color frame from the surveillance footage and
output a form of “heat map” showing where people are at in the image and how many
people there are. The “heat map” visualizes the count of the number of people per
pixel of the image. Since a person takes up more than one pixel — and the sum of the
total values within the body of a person is 1, the value per pixel is low. Where
multiple people are occluding one another, we expect a higher value in that area. That
is, even though that specific pixel only shows part of one person, the program should
use surrounding pixels to determine that one person is occluding another. From this,
any portion of the image can be considered, and within that portion the count of
people can be determined. Additionally, these values can be averaged over time to
compare the density of people per period of time.

The detection process is performed by a convolutional neural network. A brief
explanation of how this works is as follows: an artificial neuron (which exists in the
form of code) “looks™ at the values in a tiny patch of pixels in the image. Each neuron
has a certain pattern of values it “likes” to see in this patch. The closer the patch
matches what the neuron likes to see, the higher value the neuron itself outputs.
Additional layers of neurons then look at the output of the previous layers,
themselves each liking their own pattern from that pervious layer. In this way, early
neurons might like to see something like lines while the later layer neurons like to see
combinations of lines in certain shapes. Finally, the entire network of neurons is
made to like the appearance of people or groups of them. The neurons are trained to
like the patterns they do, by training them on manually annotated data with density of
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people as described above. That is, known input is given to the network, the output is
compared with the expected true output, and all the neurons are adjusted to more
closely make the network’s output match the expected output.

Our results showed the network had a prediction error of ~10% the count of
people per image frame in the camera footage tested. This accuracy is acceptable for
general statistics, the crowd avoidance navigation, and crowd simulation verification.
This accuracy comes from a small training set of data (due to the large amounts of
time required to annotate data). We believe accuracy would improve simply with
more ground truth data without any improvements to the network itself. Figure 4
shows example detection results using an early version of the network being applied
on publicly available data. The later networks were trained and designed confidential
video footage at the facilities we were testing at. The later footage includes more
challenging data, particularly in regards to occlusions.

Figure 4. Crowd detection using deep learning

Beacon-based indoor localization

We installed Estimote Beacons in the facility to test the performance of
beacon-based indoor localization. With Estimote beacons, we explored two methods
of positioning using Bluetooth “beacons”: trilateration and fingerprinting. Our goal
was to determine which method would yield a position that was closest to the real
position of the device. Trilateration works under two assumptions: (1) We know the
ground truth positions of all of the beacons installed, and (2) the distances calculated
using the received signal strengths are accurate. This second assumption is
problematic because of the interference that may be caused by obstructions and other
devices. Fingerprinting, on the other hand, is the process by which a “snapshot” of
the area’s radio landscape is taken before localization is actually done (Subhan et al.,
2011). Fingerprint-based localization involves comparing the current radio conditions
around the device with this snapshot, which consists of multiple “fingerprints.”
Whereas trilateration required a very high accuracy (for the RSSIs - received signal
strength indicators) in order to precisely determine a position, fingerprinting naturally
assumes that the RSSIs are error-prone. This is reflected in the algorithm, which
defines a margin of error for the measured data RSSI in relation to the fingerprint
RSSI. Furthermore, the algorithm also assumes that the client may naturally miss one
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of the beacons in the fingerprint (potentially from walking around or due to
congestion). Thus, we are able to almost guarantee that a position will be computed
and that this calculated position is very near to the real position. The resulting
fingerprint map using three Estimote Beacons (Estimote, 2016) is shown in Figure 5.
By comparison between the two approaches, the fingerprinting is a very viable and
very robust method of localization and is a preferred approach to provide location-
based services inside large, complex transportation hubs.
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Figure 5. Server-generated map of fingerprints (blue circles) and beacons (red
triangles) in the test area. Grid lines on hand-drawn floor plan represent tiles on
floor. Axes represent pixel coordinates. 76 fingerprints were taken at 21
locations (average: ~3.6 fingerprints per location). In this visualization, the unit
of both axes is in pixels.

Path planning and navigation assistance

The path planning element is encapsulated in a mobile application which
leverages user location information (computed from the registration of image
captured by user and the 3D facility model, and beacon-based localization), semantic
facility model or simply a floor plan of the facility, and crowd analysis results to
make decisions on paths that consider users’ personal need. The mobile application is
capable of providing multi-mode sensory feedback such as vibration and voice to
users to achieve assistive navigation. Figure 6 shows an example test scenario where
a user used the mobile app to navigate our studied facility using both the beacon-
based localization and floor-plan-based path planning algorithms we developed on
Android smart phones. Our study has shown that the app is capable of providing
personalized travel guidance utilizing semantic 3D model, crowd analysis results, and
strategically placed beacons.
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Figure 6. Beacon-based localization and floor-plan-based path planning.

CONCLUSION

This project investigated a novel cyber-physical infrastructure framework that
can effectively and efficiently transform existing transportation hubs into smart
facilities that are capable of providing better location-aware services (e.g. finding
terminals, improving travel experience, obtaining security alerts) to the traveling
public, especially for the underserved populations including those with visual
impairment, ASD, or simply those with navigation challenges. We conducted our
pilot test at a multi-floor building in New York City to evaluate the feasibility of our
proposed framework. This initial test has demonstrated that it is feasible to integrate
our proposed Internet of the Things elements (including video analytics, BLE
beacons, mobile phone apps, and LiDAR-scanned 3D digital models) into a coherent
framework to provide navigation services to people with special need. Future
improvements would include using the 3D model to automatically determine
information about the surveillance camera scene (such as camera pose and
environment structure). This will not only improve the accuracy of the network, but
more importantly provide a way in which the network can be generalized to all
cameras in a facility without specific training the network to each individual camera.
This could also make the network viable for completely different facilities and
useable in any location, which will be our follow-on work. Future research will also
focus on the best beacon and fingerprinting density and RSSI margin of error.
Another area of interest is the best method for selecting the user’s current coordinates
during fingerprinting. Existing services automatically assume that the location that
the user selects on the floor plan is correct. However, there is no way for the user to
actually know if they are correct or are off by inches or feet. Thus, a better method
for self-localization during fingerprinting is also certainly a future area of research.
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Lastly, it is in our team’s agenda to test this framework in several public transit hubs
in New York City and New Jersey.
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