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Abstract 

Large transportation hubs are difficult to navigate, especially for people with 

special needs such as those with visual impairment, Autism spectrum disorder (ASD), 

or simply those with navigation challenges. The primary objective of this research is 

to design and develop a novel cyber-physical infrastructure that can effectively and 

efficiently transform existing transportation hubs into smart facilities capable of 

providing better location-aware services. We investigated the integration of a number 

of internet of the things (IoT) elements, including video analytics, Bluetooth beacons, 

mobile computing, and facility semantic models, to provide reliable indoor navigation 

services to people with special needs, yet requiring minimum infrastructure changes. 

Our pilot tests with people with special needs at a multi-floor building in New York 

City has demonstrated the effectiveness of our proposed framework.  

 

INTRODUCTION 

Transitional spaces such as bus terminals, train stations, airports, and multi-

modal transportation hubs have become an increasingly important part of city’s 

infrastructure as we are spending more and more of our lives in these spaces in 

today’s ever more connected world. Transportation facility owners are facing 

growing challenges to accommodate the rising public travel demands while 

improving quality of service. Future transportation facilities need to be smart, 

providing efficient, high-quality, and equitable services to the increasingly diverse 

population. This is especially true for those gigantic transportation hubs because 

wayfinding in these facilities has always been challenges for people with special 

needs such as individuals with visual impairment and Autism Spectrum Disorder 
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(ASD) and people with difficulties in finding places, particularly persons unfamiliar 

with metropolitan areas.  

In the United States alone, the visually impaired population has reached 6.6 

million people and expected to double by 2030 (from 2010 figures) (Varma et al., 

2016). According to Centers for Disease Control and Prevention (CDC), ASD is the 

fastest-growing developmental disorder affecting 1 in every 68 people in the US. One  

common and recurring obstacle that people from both groups face every day is 

navigation, particularly as related to mobility. Using public transportation services is 

the best way for them to travel. However, there are also significant hurdles in using 

them due to their challenges. In 2015, a study conducted at Rutgers University found 

that according to adult respondents on the spectrum and their family members, 35.1% 

of these adults with ASD have difficulty in determining directions/route (Feeley et al., 

2015).  
 

Table 1.  Difficulty with Different Aspects of Walking 

Difficult Aspects of Walking Responses 

Percent of 

Responses

Percent of 

Respondents

Difficulty determining directions/route 247 14.2 35.1

Crossing a street  290 16.7 41.3

Judging the distance and/or speed of 318 18.3 45.2

Walking in areas without sidewalks (on 193 11.1 27.5

Dealing with distractions while walking 282 16.2 40.1

Too many people on the sidewalk  64 3.7 9.1

Too many cars or too much traffic  257 14.8 36.6

Other, please specify: 86 5.0 12.2

Total 1737 100.0 NA
 

While new technologies can be included and integrated into the design and 

construction of new transportation hubs to make them smarter, retrofitting existing 

facilities to make them smarter will be a more cost-effective choice in highly 

developed urban settings. Current emerging mobile computing and IoT technologies, 

together with advances in computer vision techniques used in 3D localization and 

crowd analysis, will provide great opportunities in significantly improving navigation 

services as well as creating innovative approaches to accommodate passengers and 

customers. While the support for these kinds of projects is evident, few studies have 

systematically investigated the synergy of these technologies as a cyber-physical 

infrastructure to enable these services. Most studies have focused on individual 

technological solutions which tend to fail to deliver reliable services in large and 

complex transportation hubs. The purpose of this study is to explore deep integration 

of Internet-of-Things (beacons, surveillance cameras, facility models, and mobile 

devices), Big Data analytics (deep learning, localization, and computing 

infrastructure), and affective computing (cognitive computing) as a novel cyber-

physical system to build smart and accessible transportation hubs (SAT-Hub) capable 

of providing better location-awareness services (e.g. navigation support) to all, 

especially to people with disabilities (visual impairment and ASD) and people with 

navigation challenges. This paper describes and presents preliminary results on a 
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novel cyber-physical infrastructure framework that can effectively and efficiently 

transform existing transportation hubs into smart facilities that are capable of 

providing better location-awareness and personalized navigation services (e.g. finding 

terminals, improving travel experience, obtaining security alerts) to the traveling 

public, especially for the underserved populations including those with visual 

impairment, ASD, or simply navigation challenges. 

 

RELATED WORK 

People who are have normal vision rely almost exclusively on their sight to 

orient themselves in a new indoor environment. As for people with visual impairment, 

eyesight is not a useable or reliable perception means, and they need to use 

alternative sensory tools to collect information to explore the environment. In spite of 

this need, the majority of the tools available to this population of people are not able 

to tell them their locations accurately, not even for navigation. For example, a white 

cane can help them to determine whether an area is walkable or not, but it cannot 

provide users their location information. Guide dogs may help to lead users to walk 

along known paths, but users still need other information to reason their locations 

when they want to change their routes, let alone to say owning a guide dog is 

expensive. GPS is sometimes used for localization in outdoor environments, but GPS 

signals can rarely be detected indoors or in dense urban areas because GPS signals 

are weakened and scattered by walls, roofs, and other obstructions (Agarwal et al., 

2002). 

Similarly, ASD individuals welcome technological solutions in order to 

overcome many of their daily obstacles. Among those obstacles, one common and 

recurring obstacle is navigation, in particular in indoor settings. Outdoor areas have 

signs, maps, and GPS-based navigation systems that can help a person navigate to 

their destination, whereas indoor navigation is often proved to be a much more 

difficult task. Because of this, lack of adequate navigation capabilities has limited 

their opportunities to use public transportation services. In many circumstances, ASD 

individuals may get lost or are unable to find their destinations in a complex building. 

In situations like these, not all ASD individuals are comfortable enough to seek help 

from strangers due to several reasons like communication difficulties, language 

problems, or social issues. 

In recent years, researchers and several startups have been working on indoor 

GPS systems such as WiFi- or Bluetooth-based navigation approaches, and a few 

public facilities even have tested such approaches (i.e. SFO airport) (Indoor.rs, 2016). 

Some have proposed localization using the magnetic field (Li et al., 2012) while 

others have suggested using accelerometers and compasses on mobile devices in 

order to detect the speed and direction of the user (Collin et al., 2003). However, 

these methods are very much prone to error and may not be supported by all devices. 

Recently, localization using Bluetooth Low Energy (BLE) beacons has emerged as a 

viable method of positioning considering its wide availability and low cost (Gruman, 

2014). However, these approaches with fixed beacons often require large-scale 

infrastructure changes and tedious sensor (beacon) installations and calibrations. 

These kinds of requirements are very costly and difficult to meet in large public 

transportation centers, all of which having frequent 3D environment changes and 
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large volume of passengers. Needed are approaches that would require minimum 

infrastructure changes and sensor installations. Semantic facility model-based 

navigation could be a potential solution. However, relying on semantic models alone 

would be problematic because these kinds of facilities are simply changing so fast 

and models become obsolete quickly. 

Another means to provide indoor localization and navigation services is 

computer vision based approaches. Previous work (Hu et al., 2014) explored methods 

to process images by image matching and estimate the location information. However, 

image matches are error-prone in the indoor and urban environments with large 

textureless areas. Some other studies have explored using Structure from Motion 

(SfM) to create street 3D models in the outdoor environment and recognizing the 

places utilizing images from Internet (Sattler et al., 2015; Torii et al., 2015; Zeisl et 

al., 2015). Some researchers use Bag of Words (BoW) (Cao et al., 2016) or ConvNet 

features (Sünderhauf et al., 2015) to represent outdoor environments for localization. 

Among these studies, very few of them focus on indoor scenarios, especially for an 

assistive localization purpose. In addition, a practical SfM model heavily relies on the 

richness and distinguishes of environmental features extracted from the images, 

which is hard to use in environments where few features are available and detected 

features often tend to be repetitive in space.  

The rise of mobile and wearable devices as ubiquitous sensors has greatly 

accelerated the advancement of both general computer vision research and assistive 

applications. Farinella et al. (Farinella et al., 2015) uses Android phones to implement 

an image classification system with DCT-GIST based scene context classifier. Some 

others apply Google Glass and develop an outdoor university campus tour guide 

application system by training and recognizing the images captured by Glass camera 

(Altwaijry et al., 2014). Paisios, a blind researcher, creates a smart phone app for the 

Wi-Fi based blind navigation system (Paisios, 2012). Manduchi proposes a sign-

based way-finding system and tests the blind volunteers with smart phones to find 

and decode the information embedded in the color marks pasted on the indoor walls 

(Manduchi, 2012). However, in spite of the technology promise demonstrated in 

these studies, few research work exist on designing user-friendly smart phone apps 

for helping visually impaired people to localize themselves and navigate through an 

indoor environment. 

 

PROPOSED APPROACH 

Our proposed solution to provide reliable indoor navigation services in major 

transportation hubs relies on integration of Internet-of-Things (beacons, surveillance 

cameras, facility models, and mobile devices), data analytics (deep learning and 

localization), and affective computing (cognitive human factors). The proposed 

cyber-physical system is designed to require minimum infrastructure changes as it 

leverages existing cyberinfrastructures such as surveillance cameras, facility models, 

and mobile phones, and incorporates a minimum number of beacons to achieve 

reliable navigation services. Figure 1 shows four essential elements in our proposed 

framework. In the following, we detail the technical innovations in each of these 

elements. 
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make the installation and maintenance of both fixed and mobile beacons more 

effective. 3D locations of beacons can be planned either interactively or automatically 

in the 3D digital model for the best coverage, and visualized in a virtual reality 

display for each installation. When a user comes into the facility, his/her App will be 

able to detect at least three of the beacons with known locations to obtain a relatively 

accurate location (from a meter to several meters). Then the 2D-3D registration 

approach will be used to further refine and track the location of the user. 

Video based crowd analysis 

A unique component of our proposed approach is integrating crowd analysis 

into indoor navigation services. Traditional indoor navigation services rarely consider 

contextual information when providing navigation guidance. However, this could be 

an important issue for people with special needs. For example, ASD individuals may 

prefer to choose paths that have less dense crowds due to psychological factors; 

people with visual impairment try to avoid large open space due to difficulty to find 

references for localization; and people in wheel chairs can navigate along paths with 

less crowds far more conveniently than along those with large crowds. In our 

proposed framework, we analyze the video feeds in real-time from surveillance 

cameras in the facility to evaluate the density of crowds in different parts of the 

facility. The analysis results will be incorporated into path choices. 

 

Context-aware navigation guidance 

The proposed framework also includes a user-centric, activity-aware and 

feedback-enabled services with the support of the surveillance camera system to 

provide human crowd analysis results. In our framework, path planning for a user is 

made based on the following five factors: 1) Both the user’s current location and 

his/her destination; 2) The user’s planned schedule (for example the time to take a 

bus); 3) The special needs of the user; 4) The semantic 3D models with all the 

important facility labels; and 5) The crowd analysis results from the surveillance 

cameras. This is a graph planning problem with multiple cost attributes, and probably 

the graph and the path need to be updated if the path is not very short. As examples, a 

visually impaired or wheelchair user should avoid stairs. We will also need to adapt 

the path based on user’s feedback. If an ASD user gets stuck and panic at certain 

location, the App will need to re-route the path, probably will also need to put them to 

wait if certain areas that they have to pass are too crowded and their time still allow 

them to wait.  

 

PRELIMINARY RESULTS 

In order to test the proposed framework, we have conducted pilot tests at a 

multi-floor facility in New York City. The facility has high definition surveillance 

cameras in place and it provides services to people with visual impairment. Estimote 

beacons (Estimote, 2016) are installed in the facility during our study. Although the 

facility was not a true transportation hub, it provides a great opportunity to test and 

validate our proposed approach with the easy reach to one of the groups we would 

like to provide services. The pilot provides foundational knowledge to expand our 

approach to transit stations and transportation hubs. In the following, we describe the 

development and testing of the framework at this facility. 
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3D semantic model and image model registration 

As the first step, we utilized a terrestrial laser scanner (Figure 2a) to create a 

high-fidelity 3D model of the facility. The facility is represented with colorized 3D 

point cloud (Figure 2b) with dense annotation of building elements (Figure 2c). The 

creation of dense annotation is realized with a semi-automated segmentation and 

labeling tool developed as part of this project. Basically, the tool segments the point 

clouds through a region growing method (Rusu, 2010) and the segmented point 

clouds are manually annotated. 

 

 

 

 

(a) (b) (c) 

Figure 2. (a) Facility modeling with terrestrial laser scanning; (b) Colorized 

point cloud data of the facility; (c) Point clouds with dense annotation of 

building elements (in this case, elevator doors) 

 

In this component, we also investigated registration of mobile phone image of 

the user with the 3D semantic model to provide user more accurate location and 

orientation information to get to his/her desired location. The registration between 

mobile images and facility point cloud data is solved by determining the projection 

between corresponding pixels/points. Denote a point as ܥ = [ܺ, ܻ, ܼ, 1]், and a pixel 

as ܿ = ,ݑ] ,ݒ 1]். The projection from a 3D point on to a 2D pixel could be expressed 

as: ܿ =  (1)   ܥ[࢚|ࡾ]࡭

Where A includes intrinsic camera parameters, R and T are extrinsic camera 

parameters, including rotation and translation of the camera, according to the 

reference coordinate. Figure 3 shows alignment of a user view of the elevation from 

his mobile phone with the point cloud data. 
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Figure 3. Registration of mobile phone image with the 3D semantic model 

 
Deep learning for crowd analysis 

We have been studying deep learning methods to improve the accuracy of 

crowd density estimation for the low- or mid- density crowd (Zhang et al., 2015), and 

tackle the high-density crowd using a regression-based method (Lempitsky and 

Zisserman, 2010; Chen et al., 2012). So far we have obtained very promising results 

on both crowd counting and crowd density estimation (Figure 4) based on 

convolutional neural networks (CNNs) (Jia et al., 2014). Though other convolutional 

neural networks have been used for crowd detection (Zhang, Li, Wang and Yang, 

2015), our proposed pixel-wise calculation structure of the neural network is novel 

for the application of crowd density detection. From a high level perspective, the 

program would take as input a single color frame from the surveillance footage and 

output a form of “heat map” showing where people are at in the image and how many 

people there are. The “heat map” visualizes the count of the number of people per 

pixel of the image. Since a person takes up more than one pixel – and the sum of the 

total values within the body of a person is 1, the value per pixel is low. Where 

multiple people are occluding one another, we expect a higher value in that area. That 

is, even though that specific pixel only shows part of one person, the program should 

use surrounding pixels to determine that one person is occluding another. From this, 

any portion of the image can be considered, and within that portion the count of 

people can be determined. Additionally, these values can be averaged over time to 

compare the density of people per period of time. 

The detection process is performed by a convolutional neural network. A brief 

explanation of how this works is as follows: an artificial neuron (which exists in the 

form of code) “looks” at the values in a tiny patch of pixels in the image. Each neuron 

has a certain pattern of values it “likes” to see in this patch. The closer the patch 

matches what the neuron likes to see, the higher value the neuron itself outputs. 

Additional layers of neurons then look at the output of the previous layers, 

themselves each liking their own pattern from that pervious layer. In this way, early 

neurons might like to see something like lines while the later layer neurons like to see 

combinations of lines in certain shapes. Finally, the entire network of neurons is 

made to like the appearance of people or groups of them. The neurons are trained to 

like the patterns they do, by training them on manually annotated data with density of 
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of the beacons in the fingerprint (potentially from walking around or due to 

congestion). Thus, we are able to almost guarantee that a position will be computed 

and that this calculated position is very near to the real position. The resulting 

fingerprint map using three Estimote Beacons (Estimote, 2016) is shown in Figure 5. 

By comparison between the two approaches, the fingerprinting is a very viable and 

very robust method of localization and is a preferred approach to provide location-

based services inside large, complex transportation hubs.  

 
Figure 5. Server-generated map of fingerprints (blue circles) and beacons (red 

triangles) in the test area. Grid lines on hand-drawn floor plan represent tiles on 

floor. Axes represent pixel coordinates. 76 fingerprints were taken at 21 

locations (average: ~3.6 fingerprints per location). In this visualization, the unit 

of both axes is in pixels.  

 

Path planning and navigation assistance 

The path planning element is encapsulated in a mobile application which 

leverages user location information (computed from the registration of image 

captured by user and the 3D facility model, and beacon-based localization), semantic 

facility model or simply a floor plan of the facility, and crowd analysis results to 

make decisions on paths that consider users’ personal need. The mobile application is 

capable of providing multi-mode sensory feedback such as vibration and voice to 

users to achieve assistive navigation. Figure 6 shows an example test scenario where 

a user used the mobile app to navigate our studied facility using both the beacon-

based localization and floor-plan-based path planning algorithms we developed on 

Android smart phones. Our study has shown that the app is capable of providing 

personalized travel guidance utilizing semantic 3D model, crowd analysis results, and 

strategically placed beacons. 
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Figure 6. Beacon-based localization and floor-plan-based path planning. 

CONCLUSION 

This project investigated a novel cyber-physical infrastructure framework that 

can effectively and efficiently transform existing transportation hubs into smart 

facilities that are capable of providing better location-aware services (e.g. finding 

terminals, improving travel experience, obtaining security alerts) to the traveling 

public, especially for the underserved populations including those with visual 

impairment, ASD, or simply those with navigation challenges. We conducted our 

pilot test at a multi-floor building in New York City to evaluate the feasibility of our 

proposed framework. This initial test has demonstrated that it is feasible to integrate 

our proposed Internet of the Things elements (including video analytics, BLE 

beacons, mobile phone apps, and LiDAR-scanned 3D digital models) into a coherent 

framework to provide navigation services to people with special need. Future 

improvements would include using the 3D model to automatically determine 

information about the surveillance camera scene (such as camera pose and 

environment structure). This will not only improve the accuracy of the network, but 

more importantly provide a way in which the network can be generalized to all 

cameras in a facility without specific training the network to each individual camera. 

This could also make the network viable for completely different facilities and 

useable in any location, which will be our follow-on work. Future research will also 

focus on the best beacon and fingerprinting density and RSSI margin of error. 

Another area of interest is the best method for selecting the user’s current coordinates 

during fingerprinting. Existing services automatically assume that the location that 

the user selects on the floor plan is correct. However, there is no way for the user to 

actually know if they are correct or are off by inches or feet. Thus, a better method 

for self-localization during fingerprinting is also certainly a future area of research. 
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Lastly, it is in our team’s agenda to test this framework in several public transit hubs 

in New York City and New Jersey.  
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