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ABSTRACT

Recent years have witnessed an increasing popularity of algorithm
design for distributed data, largely due to the fact that massive
datasets are often collected and stored in different locations. In the
distributed setting communication typically dominates the query
processing time. Thus it becomes crucial to design communication
efficient algorithms for queries on distributed data. Simultaneously,
it has been widely recognized that partial optimizations, where
we are allowed to disregard a small part of the data, provide us
significantly better solutions. The motivation for disregarded points
often arise from noise and other phenomena that are pervasive in
large data scenarios.

In this paper we focus on partial clustering problems, k-center,
k-median and k-means, in the distributed model, and provide algo-
rithms with communication sublinear of the input size. As a conse-
quence we develop the first algorithms for the partial k-median and
means objectives that run in subquadratic running time. We also
initiate the study of distributed algorithms for clustering uncertain
data, where each data point can possibly fall into multiple locations
under certain probability distribution.

1 INTRODUCTION

The challenge of optimization over large quantities of data has
brought communication efficient distributed algorithms to the fore.
From the perspective of optimization, it has also become clear that
partial optimizations, where we are allowed to disregard a small part
of the input, enable us to provide significantly better optimization
solutions compared with those which are forced to account for the
whole input. While several algorithms for distributed clustering
have been proposed, partial optimizations for clustering problems,
introduced by Charikar et al. [4], have not received as much at-
tention. While the results of Chen [6] improve the approximation
ratios, the running time of the k-median and k-means versions have
not been improved and the (at least) quadratic running times have
remained as a barrier.

In this paper we study partial clustering under the standard (k, t)-
median/means/center objective functions, where k is the number of
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centers we can use and ¢ is the maximum number of points we can
ignore. In the distributed setting, let s denote the number of sites.
The (k, t)-center problem has recently been studied by Malkomes
et al. [19], who gave a 2-round O(1)-approximation algorithm with
O(sk + st) bits of communication?, assuming that each point can be
encoded in O(1) bits. In fact, we observe that results from streaming
algorithms [14] can in fact provide us 1-round O(1)-approximation
algorithms with O(sk + st) bits of communication for (k, t)-center,
(k,t)-median, and (k, t)-means. However, in many scenarios of
interest, we have n > t > k and t > s. Thus the st term generates
a significant communication burden. In this paper we reduce O(st)
to O(t) for the (k, t)-center problem, as well as for (k, t)-median and
(k, t)-means problems and unify their treatment. We also provide
the first subquadratic algorithms for median and means version of
this problem.

Large data sets often have erroneous values. Stochastic optimiza-
tion has recently attracted a lot of attention in the field of databases,
and has substantiated as a subfield called ‘uncertain/probabilistic
databases’ (see, e.g., [20]). For the clustering problem, a method
of choice is to first model the underlying uncertainty and then
cluster the uncertain data. Clustering under uncertainty has been
studied in centralized models [8, 15], but the algorithms proposed
therein do not consider communication costs. Note that it typically
requires significantly more communication to communicate a distri-
bution (for an uncertain point) than a deterministic point, and thus
black box adaptations of centralized algorithms do not work well
in the distributed setting. In this paper we propose communication-
efficient distributed algorithms for handling both data uncertainty
and partial clustering. To the best of our knowledge neither dis-
tributed clustering of uncertain data nor partial clustering of uncer-
tain data has been studied. We note that both problems are fairly
natural, and likely to be increasingly useful as distributed cloud
computing becomes commonplace.

Models and Problems. We study the clustering problems in the
coordinator model, in which there are s sites and one central coordi-
nator, who are connected by a star communication network with the
coordinator at the center. However, direct communication between
sites can be simulated by routing via the coordinator, which at most
doubles the communication. The computation is in terms of rounds.
At each round, the coordinator sends a message (could be an empty
message) to each site and every site sends a message (could be an
empty message) back to the coordinator. The coordinator outputs
the answer at the end. The input A is partitioned into (Aq, ..., As)
among the s sites. Let n; = |A;|, and n = |A| = 3;¢[5) ni be the
total input size.

We will consider clustering over a graph with n nodes and an
oracle distance function d(-, -). An easy example of such is points

!We hide poly log n factors in the O notation.
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in Euclidean space. More complicated examples correspond to doc-
uments and images represented in a feature space and the distance
function is computed via a kernel. We now give the definitions of
(k, t)-center/median/means.

Definition 1.1 ((k, t)-center,median,means). Let A be a set of n
points and k, t are integer parameters (1 < k < n,0 <t < n).In
the (k, t)-median problem we want to compute

Z d(p,K) subjectto |K| <k and |O] <t,
peA\O
where d(p, K) = miny g d(p, x). We typically call K the centers and
O the outliers. In the (k, t)-means and the (k, t)-center problem we
replace the objective function 3’ ,c a\0 d(p, K) with ¥ ,ca\0 d%(p.K)
and max,ea\o d(p, K) respectively.

min
K,0cCA

In the definition above, we assume that centers are chosen from
the input points. In the Eucldiean space, such restriction will only
affect the approximation by a factor of 2.

For the uncertain data, we follow the assigned clustering intro-
duced in [8]. Let P be a finite set of points in a metric space. There
are n input nodes A, where node j follows an independent distribu-
tion D; over P. Each site i knows the distributions D; associated
with the nodes j € A;.

Definition 1.2 (Clustering Uncertain Data). In clustering with
uncertainty, the output is a subset K C % of size k (centers), a
subset O C P of size at most ¢ (ignored points), as well as a mapping
7 : A — K. In every realization ¢ : A — P of the values of the
input nodes, node j € A (now realized as o(j) € P) is assigned to
the same center 7(j) € K. In uncertain (k, t)-median, the goal is to
minimize the expected cost
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The definition of uncertain (k, t)-means is basically the same as un-
certain (k, t)-median, except that we replace the objective function
(1) with 3jea\0 Eo~p; [dz(a(j), n(j))]. For uncertain (k, t)-center,
we have two objectives:

(2 1ata)50)) @
Vo | et m)| ®

Note that these two objectives are not equivalent, since E and
max do not commute in Equation (3) and we cannot equate it to (2).
Equation (2) is in the same spirit as Equation (1), and corresponds to
a per point measurement. We term this problem as uncertain (k, t)-
center-pp. Equation (3) corresponds to a more global measurement
and we term this problem as uncertain (k, t)-center-g. This version
was considered in [8, 15].

Our Results. We present our main results in Table 1 and only
present the results based on 2 rounds. The full set of our results can
be found in Appendix A. We use T to denote the runtime to compute
1-median/means of a node distribution, B to denote the information
needed to encode a point, and I to denote the information needed
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to encode a node in the uncertain data case. In the column of Local

Time, the first is the local computation time of all sites, and the

second is the local computation time at the coordinator. Observe

that the total running time is O(Y; n?), which becomes O(n?/s)

if the partitions are balanced. This shows that we can reduce the

running time by distributing the clustering across many sites.

In particular we have obtained the following. All algorithms
finish in 2 rounds in the coordinator model. We say a solution is an
(a, p)-approximation if it is a solution of cost aC while excluding
Pt points, where C is the optimum cost for excluding ¢ points.

(1) We give (O(1), 1)-approximation algorithms with O((sk + t)B)
communication for the (k, t)-median (Section 3) and the (k, t)-
center (Theorem 4.3) problems. The lower bounds in [5] for the
t = 0 case indicate that these communication costs are tight, if
we want to output all the outliers (which our algorithms do),
up to logarithmic factors. We also give an (O(1 + 1/¢€),1 + €)-
approximation algorithm with O((sk + t)B) communication for
the (k, t)-median (with better running time) and the (k, t)-means
(Theorem 3.6) problems.

(2) We show that for (k, t)-median/means and (k, t)-center-pp the
above results are achievable even on uncertain data (Theo-
rem 5.6). For uncertain (k, t)-center-g we obtain an (O(1 +
1/€), 1+ €)-approximation algorithm with O(skB + tI + s log A)
communication, where I is the information to encode the dis-
tribution of an uncertain point, and A is the ratio between the
maximum pairwise distance and the minimum pairwise dis-
tance in the dataset (Theorem 5.14).

Our results for the (k, t)-center problem improves that in [19].
And as far as we are concerned, our results on distributed (k, t)-
median/means and of uncertain input are the first of their kinds.
Our results for distributed (k, t)-median or means also lead to
subquadratic time constant factor approximation centralized al-
gorithms, which have been left open for many years.

Technical Overview. The high level idea of our algorithms is fairly
natural: Each site first performs a preclustering, i.e., it computes
some local solution on its own dataset. Then each site sends the
centers of the local solution, number of attached points to each
center and the ignored points to the coordinator, who will then
solve the induced weighted clustering problem.

A major difficulty is to determine how many points to ignore
in the local solution at each site. Certainly for the sake of safety
each site can ignore t points and send all ignored t points to the
coordinator for a final decision. This would however incur O(st) bits
of communication. To reduce the communication of this part to O(t),
we hope to find {t1, ..., ts} such that }; t; = t and each site i sends
a solution with just #; ignored points. At the cost of an extra round
of communication, we solve the minimization problem }; fi(#;)
subject to }; t; = t for convex functions { f; }. It is tempting to take
fi(t;) to be the cost of local solution with #; ignored points on site
i, however, such f; is not necessarily convex. The remedy is to take
a lower convex hull of f; instead, which can be shown to have only
a mild effect on the solution cost. The convex hull of ¢ points can
be found in O(t log t) time, and we can further reduce the runtime
without compromising approximation ratio by computing local
solutions on each site for only log t geometrically increasing values
of ;.
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Objective Approx. Centers | Ignored | Rounds Total Comm. Local Time
3 Y n2) O(K2+2 3
median O(1) & t 2 C?((sk +t)B) O(r}i),ZO(IS te(sk +2t) )
O(1+1/e) (1+e)t O((sk + t)B) O(ng), O((sk + ¢))

means O(1 +1/e) k (1+e)t 2 O((sk + t)B) O(nd), O((sk + 1%
center 0(1) k t 2 O((sk + t)B) O((k + t)n;), O((sk + £)?)

uncertain

median/ as in the regular case above +0(n;T), unchanged
means/

center-pp

centerrg | O1+1/e) |k [+ | 2 [ OGkB+tl+slogh) | On?logA), O((sk + )

Table 1: Results based on a 2 round algorithms. T denotes the runtime to compute 1-median/mean of a node distribution?, B
the information encoding a point and I the information encoding a node in the uncertain data case. A is the ratio between the
maximum pairwise distance and the minimum pairwise distance in the dataset.

P3
P2 P4
P

Y2 Y4

Y1

Figure 1: An example of a compressed graph produced

For uncertain data, it is natural to reduce the clustering problems
to the deterministic case. To this end, we ‘collapse’ each node j to
its optimal center in P. For instance, for the (k, t)-median problem,
each node j is ‘collapsed’ to y; = arg min cp Eqsld(o(j),y)], called
the 1-median of node j. It may be tempting to consider the clustering
problem on the set of 1-medians, but the ‘collapse’ cost is lost, hence
we construct a compressed graph G that allows us to keep track of
the collapse costs. The graph looks like a clique with tentacles, see
Figure 1. The 1-medians form a clique in G with edge weight being
the distance in the underlying metric space; for each 1-median yj;,
we add a tentacle (an edge) from y; to a new vertex p; with edge
weight being the collapse cost Es [d(o(j), yj)]. We manage to show
that the original clustering problem is equivalent, up to a constant
factor in cost, to the clustering problem on the compressed graph
where the facility vertices are 1-medians {y;} and the demand
vertices are {p;}. Our previous framework for deterministic data is
then applied to the compressed graph.

Lastly, for the global center problem with uncertain data, we
build upon the approach developed in [15], which uses a truncated
distance function L;(x,y) = max{d(x,y) — 7,0} instead of the
usual metric distance d(:, -). Our algorithm performs a parametric
search on 7, and applies our previous framework to solve the global
problem using local solutions. Now in the analysis of the approxi-
mation ratio we need to relate the optimum solution to the solution
with truncated distance function, which is a fairly nontrivial task.

Related Work. In the centralized model, Charikar et al. gives a
3-approximation algorithm for (k, t)-center, and an (O(1), O(1)) bi-
criteria algorithm for (k, t)-median [4]. This bicriteria was later

ZFor a general discrete distribution on m points in Euclidean space with P be the
whole space, T = O(m) [10]; for special distributions such as normal distribution,
T =0(1).
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removed by Chen [6], who designed an O(1)-approximation algo-
rithm using O(k?(k + t)2n?) time. Feldman and Schulman studied
the (k, t)-median problem with different loss functions using the
coreset technique [12].

On uncertain data, Cormode and McGregor considered k-center/
median/means where each D; is a discrete distribution [8]. Guha
and Munagala provided a technique to reduce the uncertain k-
center to the deterministic k-median problem [15]. Wang and Zhang
studied the special case of k-center on the line [21]. We refer the
readers to the survey by Aggarwal [1].

Clustering on distributed data has been studied only recently. In
the coordinator model, in the d-dimensional Euclidean space, Balcan
et al. obtained O(1)-approximation algorithms with O((kd + sk)B)
bits of communication for both k-median and k-means [2]. Their
results on k-means were further improved by Liang et al. [18] and
Cohen et al. [7]. Chen et al. provided a set lower bounds for these
problems [5]. In the MapReduce model, Ene et al. designed several
O(1)-approximation O(1)-round algorithms for the k-center and
the k-median problems [11]. Im and Moseley further studied the
partial clustering variant [16], however their algorithms require
communication polynomial in n. Cormode et al. studied the k-center
maintenance problem in the distributed data stream model where
the coordinator can keep track of the cluster centers at any time
step [9].

2 PRELIMINARIES
Notation. We use the following notations in this paper.

e sol(Z,k,t,d): A solution (computed by an algorithm) to the
median/means/center problem on point set Z with at most k
centers and at most ¢ outliers, under the distance function d;

e opt(Z, k,t,d): An optimal solution to the median/means or
center problem on point set Z with at most k centers and at
most t outliers, under d;

o Cso/(Z,k,t,d): The cost of the solution sol(Z, k, t, d);

o Copt(Z, k, t,d): The cost of the solution opt(Z, k, t, d);

e 7(j): The center to which point j is attached.

When Z lies in a metric space and d agrees with the distance func-
tion on the metric space, we omit the parameter d in the notations
above.

Combining Preclustering Solutions. We review a theorem from
[14], which concerns ‘combining’ local solutions into a global so-
lution. The problems considered in the theorem have no outliers
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(t = 0) and lie in a metric space, so we abbreviate the notation
sol(Z, k,t,d) to sol(Z, k), etc.

THEOREM 2.1 ([14]). Suppose that A = A @ --- @ A (disjoint
union) and {sol(A;,k)} are the preclustering solutions at sites. Let
M = {n(j):j € A} and L = 3 jcp d(j, 7(j)), where n(j) denotes the
preclustering assignment. Consider the weighted k-median problem on
M where the weight of m € M is defined to be the number of points that
are assigned to m in the preclustering, that is, |{j | j € A, #(j) = m}|.
Then

(i) There exists a weighted k-median solution sol(M, k) such that

Csol(M, k) < 2(L + Copt(A, k)).
(ii) Given any weighted k-median solution sol(M, k), there exists a
k-median solution sol(A, k) such that Cyo((A, k) < sol(M, k)+L.
Consequently, there exists a k-median solution sol(A, k) such that
Csol(A, k) < 2y(L + Copt(A, k)) + L and centers are restricted to M,
where y is the best approximation ratio for the k-median problem.

COROLLARY 2.2. The result in Theorem 2.1 extends to

(i) the k-center problem;
(ii) the k-means problem with weaker constants, using a relaxed
triangle inequality;

(iii) the (k, t)-median/means/center approximation on the weighted
point set M (with y being the corresponding bicriteria approxi-
mation ratio), provided the preclustering does not ignore any
points. Otherwise the total number of ignored points is the sum
of the ignored points in the clustering and preclustering phases.

3 (k,t)-MEDIAN AND (k, t)-MEANS
Our algorithm for distributed (k, t)-median clustering is provided in
Algorithm 1. For integer pairs (i, q), we consider the lexicographical
order as partial order, that is,

i1 < ip; or

i1 =1is and q1 < q2.

(i1,q1) < (i2,q2) if { 4)

REMARK 1. In Line 17 of Algorithm 1, (i) no input point is ignored
in the preclustering; (ii) if the preclustering aggregated q points but the

coordinator’s algorithm chooses less than q copies (to exclude exactly
t) then the proofs are not affected in any way.

We begin with a theorem about approximating (k, t)-median or
means with a different trade-off from that in [4].

THEOREM 3.1 (PROOF OMITTED). Let € > 0. We can compute
sol(Z,k, (1+e)t) and sol(Z, (1 + €)k, t) for the (k, t)-median problem
in O(|Z|?) time such that

Csol(Z,k, (1 + €)t) < max{6,6/¢} - Copt(Z, k, t), and
CSO|(27 (l + G)k', t) < max{6, 6/6} : COpt(Z’ k7 t)’
The result extends to the (k,t)-means problem with a slightly larger

constant.

Throughout the rest of the section, we denote by ¢ the number of
ignored points from A; in the global optimum solution opt(A, k, t).
We need the following lemmas.

4 Stably means that when £(i1, q1) = €(iz, g2), the sorting algorithm puts £(iy, ;)
before £(iz, q2) if (i1, 1) < (i2, g2) as defined in (4).
“Element of rank r means the r-th element in a sorted list
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Algorithm 1 Distributed (k, (1 + €)¢)-median clustering

Input: A=A1W-- WA k>1,t>0andp>1
Output: sol(A,k, (1 + €)t) such that Cso(A, k, (1 + €)t) = O(1 +
1/e) - Copt(A, k,t)
1: for each site i do
2 ]Ie{l_p’]:lﬁrsLlogth,rEZ}U{O,t}
3 Compute sol(A;, 2k, q) for each g € I
4 Compute the (lower) convex hull of the point set
{(q, Cso1 (A, 2k, q)) g1, which induces a function f;(-) defined
on {0,...,t}
5: Send the function f;(-) to the coordinator
6: end for
7: Coordinator computes £(i, q) = fi(q — 1) — fi(q) for each 1 <
i<sandeachl<g<t
8: Coordinator stably sorts all {€(i, q)} in decreasing order>
9: Coordinator finds ¢(ig, qo) ofrank4pt and sends €(ig, qo), ip and
qo to all sites

10: for each site i do

11: t; « max{q : £(i,q) > €(ip, qo0)} > define max 0 = 0
12: if i = ip then

13: ti«—min{q € I: g > qo and Cso((A;, 2k, q0) = fi,(90)}
14: end if

15: Send the coordinator the 2k centers built in sol(4A;, 2k, t;),

the number of points attached to each center, and the ¢; unas-
signed points

end for

Coordinator considers the union of the centers obtained from
each site and the unassigned points, and applies Theorem 3.1
and outputs sol(A, k, (1 + €)t).

16:
17:

LEMMA 3.2. It holds that 3; Copt(Ai, k, 1) < 2Copt(A, k, t). For
(k, t)-means the constant changes from 2 to 4.

Proor. We shall use an argument used in [14]. Let 7opt be the
center projection function and K be the set of optimum centers in
the optimal solution opt(A, k, t). For each A;, we construct a solu-
tion sol(A;, k, t]) by excluding the points excluded in opt(A, k, t)
and choosing {arg min,, eh,; duk) 1k € K} to be the centers. Then

Cool(Ais k1) <2 )" d(x, Topt(x).
x€A;
Summing over i yields }; Cso1(Aj, k, t;‘) < ZCOPt(A, k,t). The result

for k-means follows from applying triangle inequality with (a +
b)? < 2(a® + b?). o

LEmMMA 3.3. The t1,...,ts computed in Step 11 of Algorithm 1
minimizes Y; fi(t;) subjectto}}; t; < pt and0 < t; < t.

PRrOOF. Suppose that ¢/, ..., t; is a minimizer. Since f;(-) is non-
increasing for all i, it must hold that }; t/ = pt. By the definition
of t;, it also holds that }; t; = pt. If (t],...,t5) # (t1,. .., ), there
must exist i, j such that ¢/ > t; and tjf < tj. By the definition of t;
and the sorting of {£(i, q)}, we know that

€3, t; + 1) < €(io, q0), €0, tj) = €(io, qo)-
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From convexity of f; and that t] > ¢; + 1 and t]f +1 < t;, it follows
that
filt] = 1) = fi(¢]) < Lio, qo) < f5(t)) = fi(¢] + 1)
) . . , . ’ :
which means that increasing t; by 1 and decreasing ¢ by 1 will not
decrease the sum

Glgy,-- - q) = ) (fil0) = filt]).

Therefore ) ; fl(tl') =2 fi(0) - G(t{, ..
can continue this procedure until (¢, ..

., ;) will not increase. We
) =(t, . ). m}
LEMMA 3.4. It holds for alli # iy thatt; € I and Cso((A, 2k, t;) =
fi(ti), whereip is computed in Step 9 and t;’s in Step 11 of Algorithm 1.
Proor. Since 0 € I, we need only to consider the i’s with ¢; # 0.
By the selection of ip and qo, it must hold that
€(i, ti) > €(ip, qo) > €(i, t; + 1) for

€(i, t;) > €(io, qo) = €(i, t; + 1) for

i<io
i > i,
which implies that £(i, t;) > €(i, t; + 1) whenever i # iy, i.e.,
filti = 1) = fi(ti) > fi(ts) = fi(ti + 1),
Hence (i, fi(¢;)) is a vertex of the convex hull for all i # iy, that is,
t; € Tand fi(ti) = Cso1(Aj, 2k, t;). O

i #ip.

Now we are ready to bound the ‘goodness’ of local solutions.

LEMMA 3.5. Let p = 2. It holds that Y; Cso1(Aj, 2k, t;) < 12 -
Copt(A, 2k, t) and 3.; t; < 3t, wherety, ..., ts are computed in Step 11
and may be updated in Step 15 of Algorithm 1.

PROOF. Let {; = min{q € I: ¢ > t}}. It follows from Lemma 3.2
with }; ¢ <t that

2Coptlh ki, t) 2 ) Copt(hi ko t]) 2 > CoptlAis k. i)
i i

1 .
2 < Zl: Csol(Aj, 2k, 1),

where the last inequality follows from Theorem 3.1 (applied with
€ = p—1=1). Observe that {; < 2t7 and thus }; <2y, tr <2t
and

D Gl 2k f) 2 37 filh) = ) filt),

where the last equality follows from Lemma 3.3, and ¢;’s are com-
puted in Step 11.

Now, by Lemma 3.4, fi(t;) = Cso1(Aj, 2k, t;) for all except one i.
The exceptional ¢; will be replaced by a bigger value, which will not
increase fj(t;) by the monotonicity of f;, and the first part follows.
This update will increase };; t; by at most t and thus }}; t; < 3t. O

Lemma 3.5 and Theorem 3.1 together give the following. Note
that |I| = O(log?).

THEOREM 3.6. For the distributed (k, t)-median problem, Algo-
rithm 1 with p = 2 outputs sol(A, k, (1+¢)t) satisfying Cso1(A, k, (1+
e)t)) < O(1 + 1/€) - Copt(A, k, t). The sites communicate a total of
O(sk + t) bits of information with the coordinator over 2 rounds.
The runtime at each site is é(nlg) and the runtime at the coordinator
is O((sk + t)). The same result holds for (k,t)-means with larger
constants in the approximation ratio and the runtime.
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Proor. The communication cost is straightforward. By Lemma 3.5,
the coordinator will solve the problem of at most 2sk + 3t points.
The claims on approximation ratio and the runtime then follow
from Theorem 3.1, noting that it takes time O(IlogI) = O(1) to find
the convex hull. O

If we were only interested in the clustering and not the list of
ignored points, we could set p = 1+ § and change line 12 to line 15
of Algorithm 1 to the following. The sites do not send the ignored
nodes but just the number of them, and the exceptional site runs a
slightly more convoluted algorithm.

12: if i # ip then
13: Send the coordinator t;, the 2k centers built in sol(A;, 2k, t;)
and the number of points attached to each center

14: else

150 1,1 = max{q € I: q < t; and Cso1(Ai, 2k, q) = fi(q)}

16 fip=min{gel:q >t and Cui(Ai, 2K,q) = fi(g)

17: Combine sol(A;, 2k, t; 1) and sol(A;, 2k, t; 2) to form a solu-

tion sol(A;, 4k, t;) by taking the union of the medians, attaching
each point to the closest center among the combined centers,
and ignoring the points with largest ¢; distances.

Send to the coordinator t;, the combined centers and the
number of points attached to each center.
end if

18:

19:

Observe that Lemma 3.5 still holds with }; t; < (1 + )¢, since
we are not changing the exceptional t;. For the exceptional site i,
suppose that t; = (1 — 0)t; 1 + 0t; 2 for some 6 € (0,1), we have
(1= 6)fi(ti,1) + 0fi(ti2) < fi(t;). We now argue the next critical
lemma.

LEMMA 3.7. Cso(Aj, 4k, t;) < (1= 0)fi(ti1) + 0fi(ti2).

Proor. We will prove the lemma by carefully designing an as-
signment of n — t; points to the 4k centers which is bounded above
by the right hand side. Since choosing the minimum n —t; distances
will only result in a smaller value, the lemma would follow.

For j = 1,2, let j be the center projection function in sol(A;, 2k, tij)
and P; the set of clustered points in sol(A;, 2k, t; j). For x € Py N P,,
we attach x to the nearer one between the two centers 1(x) and
m5(x), and the incurred cost is

min{d(x, m1(x)), d(x, m2(x))} < (1 = 6)d(x, m1(x)) + 0d(x, m2(x)).
(5)
For x € PjAP;, since only one of 1(x) and mp(x) exist, we
abbreviate it as 7(x) for simplicity. Define h(x) for each x € P1AP;
as
(1-0)-d(x, 7(x), x€Py\Py
h(x) =
0 - d(x, n(x)), x € Py \ P.

Letr = |Py N Py|, r1 = |P1 \ P2| and rp = [Py \ P1]. It holds that
r+rp=n—tijandr+ry =n—t;2 thusry > ry and

(1=-0r1+0rp=n—t;—r.

Define Q1 = P;\ P2 and Q3 = P2\ P;. Pick x = arg min, o, 40, h(z).
If x € Q1, pick an arbitrary u € Qy, otherwise pick u € Q. Attach
x to 7(x) in the 4k-center solution we are constructing and mark u
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as outlier. Note that this incurs a cost of

(1 - 0)d(x, n(x)) + 0d(u, ©(u)),
(1 - 0)d(u, 7(w)) + 0d(x, n(x)),

x € Q1
XEQz,

d(x, m(x)) < { (6)
by our choice of x, because one of the combination terms is exactly
h(x) and it is smaller than h(u), which is exactly the other term.
Then we remove x and u from Q; or Q2 depending on the case.
Now, |Q1| = r1 — 1 and |Qz| = rz — 1, and note that

(1_9)(V1—1)+0(r2—1):n_tl._r_1.

Since r1 > ry, we can continue this process until Q = 0. At this
point we have run the procedure above r; times, and it holds that

1=Qri=n—ti—r—rs.

Note that r{ > n—t; —r — ry, so we can choose E C Q; to be the
points with smallest n — t; — r — rp values of h. Attach points in E
to their respective centers and mark the remaining points in Q; as
outliers. This incurs a cost of

> dew ) < TS G n()
x€E ! x€Q,
=(1-0) Y dxx(x) @)

x€Q

In total we have assigned r + ry + (n —t; —r — ry) = n—t; points as
desired. The desired upper bound on cost follows from (i) summing
both sides of (5) over P; N Py; (ii) summing both sides of (6) over
x and the corresponding u during the pairing procedure; and (iii)
Equation (7). Note that (ii) covers (P1AP;) \ Q1, where Q; is the
post-pairing set. O

As a consequence of Lemma 3.7, Cso1(Aj, 4k, t;) < fi(t;). Thus
the upper bound on the approximation ratio still holds. Finally, note
that |I| = O(1/8) and we conclude that

THEOREM 3.8. For the distributed (k, t)-median problem, the mod-
ified Algorithm 1 with p = 1 + § outputs sol(A, k, (2 + € + 9)t)
satisfying Cso(A, k, (2 + € + 8)t) < O(1 + 1/€) - Copt(A, k, t). The
sites communicate a total of O(s6~1 + skB) bits of information with
the coordinator over 2 rounds. The runtime on site i is O(n%/é) and
the runtime on the coordinator is O((sk)?). The same result holds for
(k, t)-means with a larger constant in the approximation ratio.

3.1 Subquadratic-time Centralized Algorithm

We now show an unusual application of Theorem 3.6 in speeding up
existing constant-factor approximation algorithms for (k, t)-median
(or means). Note that the centralized bicriteria approximation al-
gorithms in Charikar [4] are O(n?) from n points, and while the
modifications in Theorem 3.1 improve the running time to O(n?),
this leaves open the important question: Are there algorithms with
provable constant factor approximation guarantees which are sub-
quadratic? Observe that the question is even more pertinent in the
context of unicriterion approximation, for which the only known
result is a O(n®k%t2)-time constant-factor approximation of (k, t)-
median [6]. In the sequel we show that the running time can be
brought to almost linear time. The improvement arises from the
fact that we can simulate a distributed algorithm sequentially.
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LEMMA 3.9. Suppose that we are given a O(n'*%k?) time algo-

rithm for bicriteria approximation which produces 2k centers or 2t
outliers with approximation factor y, where ap < 1. Then we can

~ - 2+2ag
produce a similar algorithm with running time O(t?) + O (n Zrag kz)
and approximation coy for some absolute constant cy > 0.

Proor. We will apply Theorem 3.6 after dividing the data arbi-
trarily in s pieces of size n/s. The sequential simulation of the s
sites will take time O(s (n/s)' " k?) based on the statement of the
lemma. The coordinator will require time O((sk + £)%) = O(s%k?) +
O(%). Observe that we can now balance n'*® = §2*®%  hich
provides us the optimum s to use and achieve a running time of

2420

O(t?) + O(s?k?) = 0(t*) + O (nW kz) ) o

THEOREM 3.10. Let a > 0 and suppose thatt < +/n. There ex-
ists a centralized algorithm for the (k, t)-median problem that runs
in O(n'*k?) time and outputs a solution sol(A, k,2t) satisfying
Csol(A, k. 2t) < (1+ 1/a) 0D Copt (A, k. ).

Proor. Note that the algorithm in Theorem 3.1 has runtime
O(n?), so we can take oy = 1 in Lemma 3.9 to obtain an algo-
rithm of approximation ratio y = 6 and runtime O(t? + n#/3k?),
which is O(n*/3k?) by our assumption that t < +n. Repeatedly
applying Lemma 3.9 for j times gives an algorithm of runtime
O(n'*1/@-1g2) and approximation ratio (coy). Let j = log(1 +
1/a), the runtime becomes O(n'**k?) and the approximation ratio
(1+ 1/a)oseoy) = (1 +1/a)O00), O

REMARK 2. We remark that

(i) the theorem above also holds for sol(A, 2k, t), where the number
of centers, instead of the outliers, is relaxed.

(ii) for the unicriterion approximation, if we use the algorithm
of runtime O(n*t2k?) from [6] instead of the result of Theo-
rem 3.1, we need to balance s> and s(n/s)1T% for an analogy
of Lemma 3.9, which will eventually lead to an algorithm of
runtime O(n'*%t2k?), provided that t < n'/°.

4 (k,t)-CENTER CLUSTERING

Our algorithm for (k, t)-center clustering is presented in Algo-
rithm 2. It is similar to Algorithm 1 but only simpler, because
the preclustering stage admits a simpler algorithm due to Gon-
zalez [13]. For the k-center problem on a point set Z of n points,
Gonzalez’s algorithm outputs a re-ordering of points in Z, say,
P1,---»Ppn, such that for each 1 < r < n, the solution sol(Z, r) of
choosing {p1,...,pr} as the r centers is a 2-approximation for the
r-center problem on Z, i.e., Cso|(Z, ) < 2Copt(Z, 7).

The core argument is that the k-center algorithm of Gonzalez
can be used to simultaneously (a) precluster the local data into local
solutions and (b) provide a witness that can be compared globally.

REMARK 3. In Algorithm 2, (i) none of the original points is ig-
nored in the preclustering, and (ii) it is possible that the preclustering
aggregated q points but the coordinator’s algorithm chooses less than
q copies to exclude exactly t points. This does not affect the proofs of
(k, t)-center clustering.
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Algorithm 2 Distributed (k, t)-center clustering

1: for each site i do
2: Run Gonzalez’s algorithm and obtain a re-ordering
{ai,...,an;} of the points in A;
foreach1 < g <tdo
Compute £(i, q) < min{d(aj, ax4q) : j < k +q}
end for
: end for
. Sites and coordinator sort {£(i, q)}, and follow the subsequent
steps as in Algorithm 1, where the coordinator in the last step
runs the algorithm in [4] for the k-center problem with exactly
t outliers.

N TR

We now analyze the performance of Algorithm 2. Denote by
t} the number of points ignored from A; in the global optimum
solution opt(A, k, t). First we show two structural lemmas.

LEMMA 4.1. ZCOPt(Ai, k,t) > max Copt(Ai, k, tl*)
1
Proor. Use the same argument in the proof of Lemma 3.2. O

max Copt (A, k, ;) | .
1

ti>t

itiz

LEMMA 4.2. max Copt(A;, k, t}) = Zmin
13

Proor. It follows from the fact that }’; ¢ = ¢. ]

THEOREM 4.3. For the distributed (k, t)-center problem, Algorithm 2
outputs sol(A, k, t) satisfying Csol(A, k, t) < O(1) - Copt(A, k, ). The
sites communicate a total of O((sk + t)B) bits of information to the
coordinator over 2 rounds. The runtime on site i is O((k + t)n;) and
the runtime on the coordinator is O((sk + t)?).

Proor. The approximation ratio follows from a similar argu-
ment to that of Theorem 3.6, using Lemma 4.1 and 4.2. The coordi-
nator runtime follows from [4, Theorem 3.1] and the site runtime
from [13], noting that we need only the first k + ¢ points of the
reordering of each A;. The communication cost is clear from Algo-
rithm 2. O

5 CLUSTERING UNCERTAIN INPUT

Recall that in the setting of clustering with uncertainty there is an
underlying metric space (P, d). We are given a set of input nodes
Jj € A which correspond to distributions 9; on #. In this section
we shall use nodes to indicate the input and points to indicate
deterministic objects in the metric space . We shall denote by o(j)
a realization of node j and by 7(j) the center node to which j is
attached. Our goal in the (k, t)-median problem in this context is
to compute

min E
KCP,0Ch

|K|<k,|O|<t [JEA\O

(rirrlg;zg[d(a@, il ®)

For (k, t)-means we use d?(-, -) and for (k, t)-center-pp we use max;
instead of };;.

Defined : A X P — R as J(i,p) = Es[d(a(j),p)], the objective
function (8) is then reduced to the usual (k, t)-median problem with
the new distance function d. However, this definition only allows
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the computation of distance between an input node and a point in
P. To extend d to a pair of input nodes, the site holding A; will
need to know the point set | Jjea, supp(D;) from some other site
i’. This will blow up the communication cost, and thus naively
using this distance function in combination with the algorithms
developed previously will not work well. To circumvent this issue
we combine the notion of 1-median introduced in [8] along with the
framework in Theorem 2.1, and introduce a compression scheme
to evaluate distances.

Definition 5.1. For each node j, define its 1-median and 1-mean
to be

yj = argminE[d(0(j), y)l, y} = argminE[d*(o(j), )],
yeP © yeP 9

respectively.

Definition 5.2 (Compressed graph). The compressed graph G(A)
is a weighted graph on vertices P U {p;};jea, where the edges are
as follows: (1) each pair (u,v) € P is an edge with weight d(u, v),
and (2) for each j € A, the vertex p; is connected only to y; with
weight £; = E;[d(c(j), yj)]. Define the distance dg(u, v) between
two vertices u, v in G to be the length of the shortest path between
uandvinG.

For the compressed graph G, we can also consider the follow-
ing (k, t)-median problem, where we restrict the demand points
to {p;} and the possible centers to {y;}, and the distance function
is the length of shortest path on G. We continue to use the nota-
tions sol(G, k, t), Cso((G, k, t), etc., to denote the solution and the
corresponding cost of (k, t)-median problem on G. The following
two lemmas show that (k, t)-median problem in Eqn (8) is, up to
some constant factor in the approximation ratio, equivalent to the
(k, t)-median problem on the compressed graph.

LEMMA 5.3. Ifthere exists a solution sol(A, k, t) of cost Cso (A, k, t)
to the objective in Equation (8), then there exists a solution sol(G(A), k, t)
on the compressed graph such that Cs,|(G(A), k, t) < 5Cs01(A, k, t).

Proor. Let A’ be the set of clustered nodes in the feasible (k, t)-
median solution of the original problem with the objective in (8).
Define the set of center points M = {y; : j € A’}. For each j € A,
lety, ;) = arg min, ¢y d(7(j), y). Let sol(G(A), k, t) be the solution
of connecting each point p; (j € A’) to y,(; in the compressed
graph G. We try to upper bound the cost Cs,(G(A), k, t):

Csol(G(A), k, 1) = Z d6(Yr(j) Pj) (definition of Cyqy)
jeA!

= Z (d(y,z(,-),yj) +dg(yj, Pj)) (definition of dg)

jeA!
< D dWrp () + Y d(i)yp) + ) dowsp))

JEA! JEA! jea

(triangle inequality)
<2 ) dx(hy)+ Y. 6,
jeA! jeA!

where the last line follows from d(y(;), 7(j)) < d(x(j), y;) by the
definition (optimality) of y ;).
Observe that for any realization o(j), it holds that

d(yj, () < d(y;, o(j)) + d(a(j), 7(j))-
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Taking expectation over o,
d(yj, 7() < Bd(y;, o () + Ed(a(j), 2()) = {; + Ed(a(j), 2())-
Summing over j € A/,

Dd () < Y G+ Ed(0(j), 7())) < D+ Coptlh, ks ).

JEA JeA  jeA’ JeA!
)

We next bound 3’ ;e s ;. This is exactly the cost of connecting each
j € A’ to its 1-median, which is the optimal solution of at most
n—t centers for A’. The optimal cost for n — t centers is clearly less
than that for k centers and hence ZjEA/ tj < Copt(A k. t).
Therefore Cs,|(G(A), k. t) < 2 - 2Copt(A, k, ) + Copt(A, k,t) =
5Copt(A, k, t) as claimed. O

LEMMA 5.4. If there exists a solution sol(G(A), k, t) of cost
Csol(G(A), k, t) on the compressed graph, then there exists a solution
sol(A, k, t) for the problem formulated in (8) such that Cso (A, k, t) <
2Cso1(G(A), k, 1).

Proor. Let A’ be the set of clustered nodes in sol(G(A), k, t).
A similar argument of increasing the number of centers as in
Lemma 5.3 yields that 3 jc s £ < Cso1(G(A), k, t). Suppose that p;
is assigned to 7z(j) in sol(G(A), k, t) in the compressed graph. Note
that z(j) € P. Let sol(A, k, t) be the solution of attaching j to z(j)
in P, and the cost can be bounded as

Cuol(hk.D) = )" E(d(o().7(j))  (definition of Cy,))
jeA”
<> E (d(a()), yj)) + 2, Ay x()
jear jen”

(triangle inequality)
< 4+ ) dalpj ()
JEA” JEA”
(definition of dg, see below)

< 2C501(G(A), k, 1), (definition of Csy)

where the third line follows from dg (p;, 7(j)) = d(pj, y;)+d(y;, 7(j)) =

d(yj, 7(7)- o

The equivalence between the original problem and the one on
the compressed graph also holds for the (k, t)-center-pp and the
(k, t)-means problems.

LEMMA 5.5. Lemma 5.3 and Lemma 5.4 both hold

(a) for (k,t)-center-pp with the same constants; and
(b) for (k,t)-means with slightly larger constants.

ProoF. (a) Observe that }; is replaced with max; and Equa-
tion (9) rewrites to

d(y;j, 7(j)) < max€; + Copt(A, k. 1).
max d(y;, 7(j)) < max (; + Copt (A, k. )

The remainder of the equations hold with this transformation.
(b) Note that we used triangle inequality in the proof above. Al-
though the square of the distance does not obey the triangle
inequality, we can nevertheless apply (a + b)? < 2a® + 2b? after
the triangle inequality. The derivations above will go through
and the results hold with slightly larger constants. ]
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Algorithm 3 A Compression Scheme for Distributed Partial Clus-
tering of Uncertain Data

1: for each site i do

2: Compute {; = Ex[d(0(j),y;)] for all j € A;

3 Construct the compressed graph of A; as described in Defi-
nition 5.2

4 Run any algorithm corresponding to Section 3 and Section 4
on the compressed graph, with the following change: whenever
the site has to communicate pj, it also sends y; (or yj’.) and the
values of E¢[d(0(j), y)] (o1 Eg[d*(a(j), y))])-

5. end for

The overall algorithm is summarized in Algorithm 3. Note that
we cannot just cluster the {y;}; the graph is necessary. To im-
plement the algorithm, we need to show that each site is able to
compute the distance function individually. Indeed, note that any
site that contains p; will also contain the corresponding y; or y]’. and

the value Es [d(a(j), yj)] or Eo [d%(a(j), y;)] respectively. Therefore

the distance oracle on the graph can be implemented by the site in
constant time.

THEOREM 5.6. For the distributed (k, t)-median problem, Algo-
rithm 3 outputs sol(A, k, (1 + e)t) such that Cso|(A, k, (1 + €)t) =
O(1+1/€)-Copt(A, k, t). The sites communicate a total of(j((sk +1)B)
bits of information to the coordinator over 2 rounds. The runtime on
sitei is O(n? +n;T), whereT is the runtime to compute 1-median, and
the runtime on the coordinator is O((sk + t)?). The same result holds
for the (k,t)-median and center-pp problems with larger constants.

Proor. By Lemma 5.4 for the median problem and Lemma 5.5 for
the means and center-pp problems, it suffices to show that we can
solve the (k, t)-median problem on the compressed graph. The result
then follows from Theorem 3.6 and Theorem 3.8 with the following
amendments: When a site sends the t or t; potential outliers, it
needs to send the y; and the corresponding values Eq [d(c(j), y;)]
or B¢ [d?(a(j), yJ’.)], which at most doubles the communication cost.
The runtime is increased by O(n;T) due to Step 2 since computing
£ on the compressed graph takes O(T) time. O

Other results claimed in Table 2 follow from analogous amend-
ments to Theorem 3.8.

The global k-Center case. We now focus on (k, t)-center-g. In
this setting D;’s are independent and we optimize

min E [ max_d(c(j), HU))]) .
|Kff;:;T5?gt(0~ﬂf o, lieklo

Definition 5.7 (Truncated distance [15]). For > 0, define L :
PXxP — Ras L;(u,v) = max{d(u,v)— 7,0} and p; : AXP > R
as pr(j,u) = Eq¢[L7(0(j), u)]. Note that L,(-, -) is not a metric for
T > 0.

Definition 5.8. Given a node set Z C A, let P(Z) C P be the as-
sociated point set corresponding to possible realizations of nodes in
Z.Letsol(Z,k,t, pr) and opt(Z, k, t, p;) be a solution by algorithm
and the global optimum solution respectively to the (k, t)-median
problem on node set Z where the centers are restricted to £(Z)
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and the weighted assignment cost of assigning node j € Z to center
m € P(Z)is pr(j, m). The costs Cso(Z, k, t, pr) and Copt (Z, k, t, p7)
are defined analogously.

Let dpin and dpmax denote the minimum and the maximum dis-
tance, respectively, between two distinct points in P and let A =
dmax/dmin- The algorithm is presented in Algorithm 4.

Algorithm 4 Algorithm for (k, ¢)-center-g

. All parties compute dpi,, and dmax
: Each party creates T = {2%dyin /18 : 0 < i < [log, A] + 2}
: for each r € T do

All parties run Algorithm 2 with the following changes:
when it calls Algorithm 1 as a subroutine, sol(A;, 2k, ) in Algo-
rithm 1 is replaced with sol(A;, 2k, g, psr ) and the sites obtain
the numbers of local outliers {¢;(z)}
5. end for
6: Coordinator finds 7 =min{r € T : }}; Cso1(A, 2k, t;(1), por) <

127}

7. Coordinator solves (k, t)-center-g on the preclustering solu-
tions sol(A;, 2k, t;(), per ) and outputs sol(A, k, (1 + €)t).

W e

Now we try to analyze the performance of Algorithm 4. We first
show an analogy of Theorem 3.1 that we can compute a constant
approximation to Copt(Z, k, t, pr). The proof is omitted.

LEMMA 5.9. Let 7 > 0. For the (k, t)-center problem on Z, we can
compute in O((k + t)|Z]) time sol(Z, k, (1 + €)t, por) orsol(Z, (1 +
€)k,t, p3r) such that

Csol(Z,k, (1 + €)t, por) < max{6,6/e} - Copt(Z, k. t, pr)
Csol(Z,(1 + €)k, t, p3r) < max{6,6/e} - Copt(Z, k. t, pr)

We next show that the 7 computed in Step 6 is a good choice of ¢
and will ensure that the preclustering solutions sol(A;, 2k, t;(7), p27)
can be combined to yield a good global solution. Specifically we
have the following two lemmas.

LEMMA 5.10. The © computed in Step 6 satisfies the following two
conditions.

(i) Zi Csol(Ai, 2k, 1i(%), pez) < 12%;
(i) X Copt(Ai, k. t], paz) = 27 forall {t]} s.t. 3¥; t! < t,

Proor. Note that rmax = max T > dmax /6, it always holds that
P67, = 0. Thus the condition }; Cso(Aj, 2k, ti(Tmax)s Porye) <
127max holds, and 7 exists and satisfies condition (i).

Next we show that condition (ii) holds. Let {t/} be an arbitrary se-
quence satisfying that }’; t; < t. Similarly to the proof of Lemma 3.3,

one can show that 3; Cso1(Aj, 2k, ], pez) = 3 Csol(Ai, 2k, ti(2), pez),

using the fact that };¢/ < t < pt = };t;. Combining with
Lemma 5.9 with € = 1, we have that

6 Z Copt(Ai, k. t], pyz) = Z Cool (A, 2k, ], pez)
1 13
> > Cool(hr 2k, 1i(7). poz) 2 121,
i

whence condition (ii) follows. O
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LEMMA 5.11. Suppose that © satisfies the condition (i) and (ii) of
Lemma 5.10, a y-approximation of the weighted center-g problem
induced by preclustering sol(A;, 2k, t;(%), pgs ) is an O(y) approxima-
tion ofCopt (A, k, t).

To prove this lemma, we need the following two auxiliary lem-
mas.

LEMMA 5.12. 2Copt(A, k. t, pr) = X; Copt(Ai, k, t}, par), where
t7 is the number of ignored nodes from A; in the global optimum
solution opt(A, k, t, pr).

Proor. Fix arealization of the nodes. The proof mimics Lemma 3.2
for each realization. It then uses the observation that £ (uy, us) +
L (uz,u3) = Lo7(u1,u3) and takes the expectation. O

LEmMMA 5.13. If Copt(Z, k, t, pr) = 7 then Copt(Z, k,t) 2 /3.

Proor. The case of t = 0 (no outliers) is proved in [15, Lemma
4.4]. For a general t > 0, let Z’ C Z be the set of clustered point
in opt(Z, k, t), then Copt(Z’,k, 0, pz) = Copt(Z,k,t, pr) = 7, thus
Copt(Z, k,t) = Copt(Z’,k, 0) > 1/3. [m}

ProoF oF LEMMA 5.11. It follows from Lemma 5.12 and condi-
tion (ii) of Lemma 5.10 that

zcopt(Aa k.t,pz) > Z Copt(Aia k, t;k,sz) > 21,
i

where ¢ is the number of ignored nodes from A; in the global
optimum solution opt(A, k, t, p;). It then follows from Lemma 5.13
that Copt (A, k, t) > /3,

To simplify the notation, in the rest of the proof we shorthand
ti(7) as t;. Let A’lf C A; be the set of nodes clustered in the global
optimum solution opt(A, k, t). Consider “collapsing” the nodes in
A to their corresponding centers in sol(A;, 2k, t;, psz ) while keep-
ing the same centers in sol(A, k, t). If a node in A;f is marked as an
outlier in sol(A;, 2k, t;, po;) then it is not moved, and it continues
to be excluded from the calculation. This movement increases the
expectation of the maximum assignment by 67 +Cyo(A;, 2k, t;, p2z).
Now consider the same process where we collapse A7 for all i. The
total increase across the different i is 67 + ); Cso1(A, 2k, ti, pss)
because the increase in 67 arises from distance truncation and is
common. Thus we achieve a solution of cost at most

¥ | Copt(A k. 1) + 6% + 3" Coop(Aris 2K, ti, pz) | -
i

Now consider “expanding” the nodes of A; from the preclustering
to the distribution 9;. By that logic the expected maximum can
increase by at most 27 + 33; Cso1(Aj, 2k, t;, pa; ), which by condition
(i) of Lemma 5.10 totals to O(y%) = O(y)Copt(A, k, t). The lemma
follows. O

We state the main theorem for the (k, t)-center-g problem to
conclude this section.

THEOREM 5.14. For the distributed (k, t)-center-g problem, Algo-
rithm 4 outputs sol(A, k, (1 + €)t) satisfying Cso1(A, k, (1 + €)t) =
O(1 + 1/€) - Copt(A, k, t). The sites communicate a total ofé(skB +
slog A + tI) bits of information to the coordinator over 2 rounds,
where I is the bit complexity to encode a node. The runtime at site i is
O((k + t)n; log A) and the runtime at the coordinator is O((sk + 1)?).
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Objective Approx. Centers Ignored Rounds Total Comm. Local Time
: 1 O((sk + st)B) O(n?), O(k?s%t%)
median o) k 2 O((sk + t)B) O(n?), O(K*t2(sk + )*)
2+ &)t 2 O(s/5 + skB) O(n?), O(s*k7)
A Y n2) O 2
, K, (1+€)tor (1+ )k, t O((sk + st)B) Olm;). Ol(sk +s1)')
means O(1+1/e) 2 O((sk + t)B) O(n?), O(sk + t)?)
median k (2+ec+o) < 5(n2). O((skY:
arok | @eow | 2 O(s/3 + skB) O, O((sky*)
: 1 O((sk +st)B) O((k + t)n;), O((sk +st)?)
center o) k 2 O((sk + t)B) O((k + t)ny), O((sk + )%
2+ 6)t 2 O(s/8 + skB) O(n?), O((sk)®)
uncertain
median/ as in the regular case above +0(n; T), unchanged
means/
center-pp
A (2 A 2
center-g O(1+1/e) & (1+e)t 2 O~(skB + t1+slogA) ) O(n7logA), O((fk +1)°) 4
0(1) t 1 O(s(kB + tD)logA) | O((k + t)n; log A), O(s®(k + t)%)

Table 2: Our results. T denotes the runtime to compute 1-median/mean of a node distribution, I is the information encoding a
node in the uncertain data case, B the information encoding a point and A the ratio between the maximum pairwise distance

and the minimum pairwise distance in the dataset.

Proor. The claim on approximation ratio follows from Lemma 5.11.
To determine 7, the communication cost increases by a factor of
log A; to send the preclustering solutions, the communication cost
for sending the outliers increases by a factor of I. The runtime
follows from Lemma 5.9 with an increase of a factor of logA. O

We remark that the dependence on log A can be removed with
another pass where each site computes a 7; using binary search.
The discussion is omitted in the interest of simplicity.

Other results claimed in Table 2 follow from analogous amend-
ments to Theorem 3.8.
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A THE FULL SET OF OUR RESULTS

We summarize the full set of our results in Table 2. Besides the main
results that already appear in Table 1, all the 1-round results in
Table 2 basically follow from setting t; = t for all sites i. The results
for (k, t)-median/means that ignore (2 + §)t or (2 + € + §)t points
basically follow from Theorem 3.8, where for (k, t)-median with k
centers (unicriterion) we need to apply again the 1-round result,
and for (k, t)-median/means with (1 + €)k centers we simply use
the second inequality of Theorem 3.1 instead of the first one at the
final clustering step at the coordinator. The result for (k, t)-center
that ignore (2 + &)t points is due to the following modifications on
Algorithm 4: sites do not send the total (1 + &)t local outliers to the
coordinator, and thereafter the coordinator performs the second
level clustering with (another) ¢ outliers, we have (2 + §)t outliers
in total.
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