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ABSTRACT
Recent years have witnessed an increasing popularity of algorithm

design for distributed data, largely due to the fact that massive

datasets are often collected and stored in different locations. In the

distributed setting communication typically dominates the query

processing time. Thus it becomes crucial to design communication

efficient algorithms for queries on distributed data. Simultaneously,

it has been widely recognized that partial optimizations, where

we are allowed to disregard a small part of the data, provide us

significantly better solutions. The motivation for disregarded points

often arise from noise and other phenomena that are pervasive in

large data scenarios.

In this paper we focus on partial clustering problems, k-center,
k-median and k-means, in the distributed model, and provide algo-

rithms with communication sublinear of the input size. As a conse-

quence we develop the first algorithms for the partial k-median and

means objectives that run in subquadratic running time. We also

initiate the study of distributed algorithms for clustering uncertain

data, where each data point can possibly fall into multiple locations

under certain probability distribution.

1 INTRODUCTION
The challenge of optimization over large quantities of data has

brought communication efficient distributed algorithms to the fore.

From the perspective of optimization, it has also become clear that

partial optimizations, where we are allowed to disregard a small part

of the input, enable us to provide significantly better optimization

solutions compared with those which are forced to account for the

whole input. While several algorithms for distributed clustering

have been proposed, partial optimizations for clustering problems,

introduced by Charikar et al. [4], have not received as much at-

tention. While the results of Chen [6] improve the approximation

ratios, the running time of the k-median and k-means versions have

not been improved and the (at least) quadratic running times have

remained as a barrier.

In this paper we study partial clustering under the standard (k, t)-
median/means/center objective functions, where k is the number of
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centers we can use and t is the maximum number of points we can

ignore. In the distributed setting, let s denote the number of sites.

The (k, t)-center problem has recently been studied by Malkomes

et al. [19], who gave a 2-round O(1)-approximation algorithm with

Õ(sk + st) bits of communication
1
, assuming that each point can be

encoded inO(1) bits. In fact, we observe that results from streaming

algorithms [14] can in fact provide us 1-round O(1)-approximation

algorithms with Õ(sk + st) bits of communication for (k, t)-center,
(k, t)-median, and (k, t)-means. However, in many scenarios of

interest, we have n > t ≫ k and t ≫ s . Thus the st term generates

a significant communication burden. In this paper we reduce Õ(st)
to Õ(t) for the (k, t)-center problem, as well as for (k, t)-median and

(k, t)-means problems and unify their treatment. We also provide

the first subquadratic algorithms for median and means version of

this problem.

Large data sets often have erroneous values. Stochastic optimiza-

tion has recently attracted a lot of attention in the field of databases,

and has substantiated as a subfield called ‘uncertain/probabilistic

databases’ (see, e.g., [20]). For the clustering problem, a method

of choice is to first model the underlying uncertainty and then

cluster the uncertain data. Clustering under uncertainty has been

studied in centralized models [8, 15], but the algorithms proposed

therein do not consider communication costs. Note that it typically

requires significantly more communication to communicate a distri-

bution (for an uncertain point) than a deterministic point, and thus

black box adaptations of centralized algorithms do not work well

in the distributed setting. In this paper we propose communication-

efficient distributed algorithms for handling both data uncertainty

and partial clustering. To the best of our knowledge neither dis-

tributed clustering of uncertain data nor partial clustering of uncer-

tain data has been studied. We note that both problems are fairly

natural, and likely to be increasingly useful as distributed cloud

computing becomes commonplace.

Models and Problems.We study the clustering problems in the

coordinatormodel, in which there are s sites and one central coordi-
nator, who are connected by a star communication networkwith the

coordinator at the center. However, direct communication between

sites can be simulated by routing via the coordinator, which at most

doubles the communication. The computation is in terms of rounds.

At each round, the coordinator sends a message (could be an empty

message) to each site and every site sends a message (could be an

empty message) back to the coordinator. The coordinator outputs

the answer at the end. The input A is partitioned into (A1, . . . ,As )
among the s sites. Let ni = |Ai |, and n = |A| =

∑
i ∈[s] ni be the

total input size.

We will consider clustering over a graph with n nodes and an

oracle distance function d(·, ·). An easy example of such is points

1
We hide poly logn factors in the Õ notation.
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in Euclidean space. More complicated examples correspond to doc-

uments and images represented in a feature space and the distance

function is computed via a kernel. We now give the definitions of

(k, t)-center/median/means.

Definition 1.1 ((k, t)-center,median,means). Let A be a set of n
points and k , t are integer parameters (1 ≤ k ≤ n, 0 ≤ t ≤ n). In
the (k, t)-median problem we want to compute

min

K,O⊆A

∑
p∈A\O

d(p,K) subject to |K | ≤ k and |O| ≤ t ,

where d(p,K) = minx ∈K d(p,x). We typically call K the centers and
O the outliers. In the (k, t)-means and the (k, t)-center problem we

replace the objective function

∑
p∈A\O d(p,K)with

∑
p∈A\O d

2(p,K)
and maxp∈A\O d(p,K) respectively.

In the definition above, we assume that centers are chosen from

the input points. In the Eucldiean space, such restriction will only

affect the approximation by a factor of 2.

For the uncertain data, we follow the assigned clustering intro-

duced in [8]. Let P be a finite set of points in a metric space. There

are n input nodes A, where node j follows an independent distribu-

tion Dj over P. Each site i knows the distributions Dj associated

with the nodes j ∈ Ai .

Definition 1.2 (Clustering Uncertain Data). In clustering with

uncertainty, the output is a subset K ⊆ P of size k (centers), a

subsetO ⊆ P of size at most t (ignored points), as well as a mapping

π : A → K . In every realization σ : A → P of the values of the

input nodes, node j ∈ A (now realized as σ (j) ∈ P) is assigned to

the same center π (j) ∈ K . In uncertain (k, t)-median, the goal is to

minimize the expected cost

E
σ∼

∏
j∈A Dj


∑

j ∈A\O

d(σ (j),π (j))

 =
∑

j ∈A\O

E
σ∼Dj

[d(σ (j),π (j))] .

(1)

The definition of uncertain (k, t)-means is basically the same as un-

certain (k, t)-median, except that we replace the objective function

(1) with

∑
j ∈A\O Eσ∼Dj

[
d2(σ (j),π (j))

]
. For uncertain (k, t)-center,

we have two objectives:

max

j ∈A\O

(
E

σ∼Dj
[d(σ (j),π (j))]

)
(2)

E
σ∼

∏
j Dj

[
max

j ∈A\O
d(σ (j),π (j))

]
(3)

Note that these two objectives are not equivalent, since E and
max do not commute in Equation (3) and we cannot equate it to (2).

Equation (2) is in the same spirit as Equation (1), and corresponds to

a per point measurement. We term this problem as uncertain (k, t)-
center-pp. Equation (3) corresponds to a more global measurement

and we term this problem as uncertain (k, t)-center-g. This version
was considered in [8, 15].

Our Results. We present our main results in Table 1 and only

present the results based on 2 rounds. The full set of our results can

be found in Appendix A.We useT to denote the runtime to compute

1-median/means of a node distribution, B to denote the information

needed to encode a point, and I to denote the information needed

to encode a node in the uncertain data case. In the column of Local
Time, the first is the local computation time of all sites, and the

second is the local computation time at the coordinator. Observe

that the total running time is Õ(
∑
i n

2

i ), which becomes Õ(n2/s)
if the partitions are balanced. This shows that we can reduce the

running time by distributing the clustering across many sites.

In particular we have obtained the following. All algorithms

finish in 2 rounds in the coordinator model. We say a solution is an

(α , β)-approximation if it is a solution of cost αC while excluding

βt points, where C is the optimum cost for excluding t points.

(1) We give (O(1), 1)-approximation algorithms with Õ((sk + t)B)
communication for the (k, t)-median (Section 3) and the (k, t)-
center (Theorem 4.3) problems. The lower bounds in [5] for the

t = 0 case indicate that these communication costs are tight, if

we want to output all the outliers (which our algorithms do),

up to logarithmic factors. We also give an (O(1 + 1/ϵ), 1 + ϵ)-
approximation algorithm with Õ((sk + t)B) communication for

the (k, t)-median (with better running time) and the (k, t)-means

(Theorem 3.6) problems.

(2) We show that for (k, t)-median/means and (k, t)-center-pp the

above results are achievable even on uncertain data (Theo-

rem 5.6). For uncertain (k, t)-center-g we obtain an (O(1 +
1/ϵ), 1+ ϵ)-approximation algorithm with Õ(skB + tI + s log∆)
communication, where I is the information to encode the dis-

tribution of an uncertain point, and ∆ is the ratio between the

maximum pairwise distance and the minimum pairwise dis-

tance in the dataset (Theorem 5.14).

Our results for the (k, t)-center problem improves that in [19].

And as far as we are concerned, our results on distributed (k, t)-
median/means and of uncertain input are the first of their kinds.

Our results for distributed (k, t)-median or means also lead to

subquadratic time constant factor approximation centralized al-

gorithms, which have been left open for many years.

Technical Overview. The high level idea of our algorithms is fairly

natural: Each site first performs a preclustering, i.e., it computes

some local solution on its own dataset. Then each site sends the

centers of the local solution, number of attached points to each

center and the ignored points to the coordinator, who will then

solve the induced weighted clustering problem.

A major difficulty is to determine how many points to ignore

in the local solution at each site. Certainly for the sake of safety

each site can ignore t points and send all ignored t points to the

coordinator for a final decision. This would however incurΘ(st) bits
of communication. To reduce the communication of this part toO(t),
we hope to find {t1, . . . , ts } such that

∑
i ti = t and each site i sends

a solution with just ti ignored points. At the cost of an extra round

of communication, we solve the minimization problem

∑
i fi (ti )

subject to

∑
i ti = t for convex functions { fi }. It is tempting to take

fi (ti ) to be the cost of local solution with ti ignored points on site

i , however, such fi is not necessarily convex. The remedy is to take

a lower convex hull of fi instead, which can be shown to have only

a mild effect on the solution cost. The convex hull of t points can
be found in O(t log t) time, and we can further reduce the runtime

without compromising approximation ratio by computing local

solutions on each site for only log t geometrically increasing values

of ti .
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Objective Approx. Centers Ignored Rounds Total Comm. Local Time

median

O (1) k t
2

Õ ((sk + t )B) Õ (n2i ), Õ (k
2t 2(sk + t )3)

O (1 + 1/ϵ ) (1 + ϵ )t Õ ((sk + t )B) Õ (n2i ), Õ ((sk + t )
2)

means O (1 + 1/ϵ ) k (1 + ϵ )t 2 Õ ((sk + t )B) Õ (n2i ), Õ ((sk + t )
2)

center O (1) k t 2 Õ ((sk + t )B) Õ ((k + t )ni ), Õ ((sk + t )2)
uncertain

median/

means/

center-pp

as in the regular case above +O (niT ), unchanged

center-g O (1 + 1/ϵ ) k (1 + ϵ )t 2 Õ (skB + t I + s log∆) Õ (n2i log∆), Õ ((sk + t )
2)

Table 1: Results based on a 2 round algorithms. T denotes the runtime to compute 1-median/mean of a node distribution2, B
the information encoding a point and I the information encoding a node in the uncertain data case. ∆ is the ratio between the
maximum pairwise distance and the minimum pairwise distance in the dataset.

· · ·
y2

p2

y1

p1

y3

p3

y4

p4

Figure 1: An example of a compressed graph produced

For uncertain data, it is natural to reduce the clustering problems

to the deterministic case. To this end, we ‘collapse’ each node j to
its optimal center in P. For instance, for the (k, t)-median problem,

each node j is ‘collapsed’ to yj = argminy∈P Eσ [d(σ (j),y)], called

the 1-median of node j . It may be tempting to consider the clustering

problem on the set of 1-medians, but the ‘collapse’ cost is lost, hence

we construct a compressed graph G that allows us to keep track of

the collapse costs. The graph looks like a clique with tentacles, see

Figure 1. The 1-medians form a clique inG with edge weight being

the distance in the underlying metric space; for each 1-median yj ,
we add a tentacle (an edge) from yj to a new vertex pj with edge

weight being the collapse cost Eσ [d(σ (j),yj )]. We manage to show

that the original clustering problem is equivalent, up to a constant

factor in cost, to the clustering problem on the compressed graph

where the facility vertices are 1-medians {yj } and the demand

vertices are {pj }. Our previous framework for deterministic data is

then applied to the compressed graph.

Lastly, for the global center problem with uncertain data, we

build upon the approach developed in [15], which uses a truncated

distance function Lτ (x ,y) = max{d(x ,y) − τ , 0} instead of the

usual metric distance d(·, ·). Our algorithm performs a parametric

search on τ , and applies our previous framework to solve the global

problem using local solutions. Now in the analysis of the approxi-

mation ratio we need to relate the optimum solution to the solution

with truncated distance function, which is a fairly nontrivial task.

Related Work. In the centralized model, Charikar et al. gives a

3-approximation algorithm for (k, t)-center, and an (O(1),O(1)) bi-
criteria algorithm for (k, t)-median [4]. This bicriteria was later

2
For a general discrete distribution onm points in Euclidean space with P be the

whole space, T = O (m) [10]; for special distributions such as normal distribution,

T = O (1).

removed by Chen [6], who designed an O(1)-approximation algo-

rithm using Õ(k2(k + t)2n3) time. Feldman and Schulman studied

the (k, t)-median problem with different loss functions using the

coreset technique [12].
On uncertain data, Cormode and McGregor considered k-center/

median/means where each Di is a discrete distribution [8]. Guha

and Munagala provided a technique to reduce the uncertain k-
center to the deterministick-median problem [15].Wang and Zhang

studied the special case of k-center on the line [21]. We refer the

readers to the survey by Aggarwal [1].

Clustering on distributed data has been studied only recently. In

the coordinatormodel, in thed-dimensional Euclidean space, Balcan

et al. obtained O(1)-approximation algorithms with Õ((kd + sk)B)
bits of communication for both k-median and k-means [2]. Their

results on k-means were further improved by Liang et al. [18] and

Cohen et al. [7]. Chen et al. provided a set lower bounds for these

problems [5]. In the MapReduce model, Ene et al. designed several

O(1)-approximation O(1)-round algorithms for the k-center and
the k-median problems [11]. Im and Moseley further studied the

partial clustering variant [16], however their algorithms require

communication polynomial inn. Cormode et al. studied thek-center
maintenance problem in the distributed data stream model where

the coordinator can keep track of the cluster centers at any time

step [9].

2 PRELIMINARIES
Notation. We use the following notations in this paper.

• sol(Z ,k, t ,d): A solution (computed by an algorithm) to the

median/means/center problem on point set Z with at most k
centers and at most t outliers, under the distance function d ;
• opt(Z ,k, t ,d): An optimal solution to the median/means or

center problem on point set Z with at most k centers and at

most t outliers, under d ;
• Csol(Z ,k, t ,d): The cost of the solution sol(Z ,k, t ,d);
• Copt(Z ,k, t ,d): The cost of the solution opt(Z ,k, t ,d);
• π (j): The center to which point j is attached.

When Z lies in a metric space and d agrees with the distance func-

tion on the metric space, we omit the parameter d in the notations

above.

Combining Preclustering Solutions.We review a theorem from

[14], which concerns ‘combining’ local solutions into a global so-

lution. The problems considered in the theorem have no outliers
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(t = 0) and lie in a metric space, so we abbreviate the notation

sol(Z ,k, t ,d) to sol(Z ,k), etc.

Theorem 2.1 ([14]). Suppose that A = A1 ⊎ · · · ⊎ As (disjoint
union) and {sol(Ai ,k)} are the preclustering solutions at sites. Let
M = {π (j) : j ∈ A} and L =

∑
j ∈A d(j,π (j)), where π (j) denotes the

preclustering assignment. Consider the weightedk-median problem on
Mwhere the weight ofm ∈ M is defined to be the number of points that
are assigned tom in the preclustering, that is, |{j | j ∈ A,π (j) =m}|.
Then
(i) There exists a weighted k-median solution sol(M,k) such that
Csol(M,k) ≤ 2(L + Copt(A,k)).

(ii) Given any weighted k-median solution sol(M,k), there exists a
k-median solution sol(A,k) such that Csol(A,k) ≤ sol(M,k)+L.

Consequently, there exists a k-median solution sol(A,k) such that
Csol(A,k) ≤ 2γ (L + Copt(A,k)) + L and centers are restricted toM,
where γ is the best approximation ratio for the k-median problem.

Corollary 2.2. The result in Theorem 2.1 extends to
(i) the k-center problem;
(ii) the k-means problem with weaker constants, using a relaxed

triangle inequality;
(iii) the (k, t)-median/means/center approximation on the weighted

point setM (with γ being the corresponding bicriteria approxi-
mation ratio), provided the preclustering does not ignore any
points. Otherwise the total number of ignored points is the sum
of the ignored points in the clustering and preclustering phases.

3 (k, t)-MEDIAN AND (k, t)-MEANS
Our algorithm for distributed (k, t)-median clustering is provided in

Algorithm 1. For integer pairs (i,q), we consider the lexicographical
order as partial order, that is,

(i1,q1) ≺ (i2,q2) if

{
i1 < i2; or
i1 = i2 and q1 < q2.

(4)

Remark 1. In Line 17 of Algorithm 1, (i) no input point is ignored
in the preclustering; (ii) if the preclustering aggregatedq points but the
coordinator’s algorithm chooses less than q copies (to exclude exactly
t ) then the proofs are not affected in any way.

We begin with a theorem about approximating (k, t)-median or

means with a different trade-off from that in [4].

Theorem 3.1 (Proof Omitted). Let ϵ > 0. We can compute
sol(Z ,k, (1+ϵ)t) and sol(Z , (1+ϵ)k, t) for the (k, t)-median problem
in Õ(|Z |2) time such that

Csol(Z ,k, (1 + ϵ)t) ≤ max{6, 6/ϵ} · Copt(Z ,k, t), and

Csol(Z , (1 + ϵ)k, t) ≤ max{6, 6/ϵ} · Copt(Z ,k, t).

The result extends to the (k, t)-means problem with a slightly larger
constant.

Throughout the rest of the section, we denote by t∗i the number of

ignored points from Ai in the global optimum solution opt(A,k, t).
We need the following lemmas.

4Stably means that when ℓ(i1, q1) = ℓ(i2, q2), the sorting algorithm puts ℓ(i1, q1)
before ℓ(i2, q2) if (i1, q1) ≺ (i2, q2) as defined in (4).

4
Element of rank r means the r -th element in a sorted list

Algorithm 1 Distributed (k, (1 + ϵ)t)-median clustering

Input: A = A1 ⊎ · · · ⊎ As , k ≥ 1, t ≥ 0 and ρ > 1

Output: sol(A,k, (1 + ϵ)t) such that Csol(A,k, (1 + ϵ)t) = O(1 +
1/ϵ) · Copt(A,k, t)

1: for each site i do
2: I← {⌊ρr ⌋ : 1 ≤ r ≤ ⌊logρ t⌋, r ∈ Z} ∪ {0, t}

3: Compute sol(Ai , 2k,q) for each q ∈ I
4: Compute the (lower) convex hull of the point set

{(q,Csol(Ai , 2k,q))}q∈I, which induces a function fi (·) defined
on {0, . . . , t}

5: Send the function fi (·) to the coordinator

6: end for
7: Coordinator computes ℓ(i,q) = fi (q − 1) − fi (q) for each 1 ≤

i ≤ s and each 1 ≤ q ≤ t
8: Coordinator stably sorts all {ℓ(i,q)} in decreasing order

3

9: Coordinator finds ℓ(i0,q0) of rank
4ρt and sends ℓ(i0,q0), i0 and

q0 to all sites

10: for each site i do
11: ti ← max{q : ℓ(i,q) ≥ ℓ(i0,q0)} ◃ define max ∅ = 0

12: if i = i0 then
13: ti←min{q ∈ I : q ≥ q0 and Csol(Ai , 2k,q0) = fi0 (q0)}
14: end if
15: Send the coordinator the 2k centers built in sol(Ai , 2k, ti ),

the number of points attached to each center, and the ti unas-
signed points

16: end for
17: Coordinator considers the union of the centers obtained from

each site and the unassigned points, and applies Theorem 3.1

and outputs sol(A,k, (1 + ϵ)t).

Lemma 3.2. It holds that
∑
i Copt(Ai ,k, t

∗
i ) ≤ 2Copt(A,k, t). For

(k, t)-means the constant changes from 2 to 4.

Proof. We shall use an argument used in [14]. Let πopt be the
center projection function and K be the set of optimum centers in

the optimal solution opt(A,k, t). For each Ai , we construct a solu-
tion sol(Ai ,k, t∗i ) by excluding the points excluded in opt(A,k, t)
and choosing

{
argminu ∈Ai d(u,k) : k ∈ K

}
to be the centers. Then

Csol(Ai ,k, t
∗
i ) ≤ 2

∑
x ∈Ai

d(x ,πopt(x)).

Summing over i yields
∑
Csol(Ai ,k, t

∗
i ) ≤ 2Copt(A,k, t). The result

for k-means follows from applying triangle inequality with (a +
b)2 ≤ 2(a2 + b2). �

Lemma 3.3. The t1, . . . , ts computed in Step 11 of Algorithm 1
minimizes

∑
i fi (ti ) subject to

∑
i ti ≤ ρt and 0 ≤ ti ≤ t .

Proof. Suppose that t ′
1
, . . . , t ′s is a minimizer. Since fi (·) is non-

increasing for all i , it must hold that

∑
i t
′
i = ρt . By the definition

of ti , it also holds that
∑
i ti = ρt . If (t ′

1
, . . . , t ′s ) , (t1, . . . , ts ), there

must exist i, j such that t ′i > ti and t
′
j < tj . By the definition of ti

and the sorting of {ℓ(i,q)}, we know that

ℓ(i, ti + 1) ≤ ℓ(i0,q0), ℓ(j, tj ) ≥ ℓ(i0,q0).
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From convexity of fi and that t ′i ≥ ti + 1 and t
′
j + 1 ≤ tj , it follows

that

fi (t
′
i − 1) − fi (t

′
i ) ≤ ℓ(i0,q0) ≤ fj (t

′
j ) − fj (t

′
j + 1)

which means that increasing t ′j by 1 and decreasing t ′i by 1 will not

decrease the sum

G(q′
1
, . . . ,q′s ) :=

∑
i
(fi (0) − fi (t

′
i )).

Therefore

∑
i fi (t

′
i ) =

∑
i fi (0) −G(t

′
1
, . . . , t ′s ) will not increase. We

can continue this procedure until (t ′
1
, . . . , t ′s ) = (t1, . . . , ts ). �

Lemma 3.4. It holds for all i , i0 that ti ∈ I and Csol(Ai , 2k, ti ) =
fi (ti ), where i0 is computed in Step 9 and ti ’s in Step 11 of Algorithm 1.

Proof. Since 0 ∈ I, we need only to consider the i’s with ti , 0.

By the selection of i0 and q0, it must hold that

ℓ(i, ti ) ≥ ℓ(i0,q0) > ℓ(i, ti + 1) for i < i0

ℓ(i, ti ) > ℓ(i0,q0) ≥ ℓ(i, ti + 1) for i > i0,

which implies that ℓ(i, ti ) > ℓ(i, ti + 1) whenever i , i0, i.e.,

fi (ti − 1) − fi (ti ) > fi (ti ) − fi (ti + 1), i , i0.

Hence (i, fi (ti )) is a vertex of the convex hull for all i , i0, that is,
ti ∈ I and fi (ti ) = Csol(Ai , 2k, ti ). �

Now we are ready to bound the ‘goodness’ of local solutions.

Lemma 3.5. Let ρ = 2. It holds that
∑
i Csol(Ai , 2k, ti ) ≤ 12 ·

Copt(A, 2k, t) and
∑
i ti ≤ 3t , where t1, . . . , ts are computed in Step 11

and may be updated in Step 15 of Algorithm 1.

Proof. Let t̂i = min{q ∈ I : q ≥ t∗i }. It follows from Lemma 3.2

with

∑
i t
∗
i ≤ t that

2Copt(A,k, t) ≥
∑
i
Copt(Ai ,k, t

∗
i ) ≥

∑
i
Copt(Ai ,k, t̂i )

≥
1

6

∑
i
Csol(Ai , 2k, t̂i ),

where the last inequality follows from Theorem 3.1 (applied with

ϵ = ρ − 1 = 1). Observe that t̂i ≤ 2t∗i and thus

∑
i t̂i ≤ 2

∑
i t
∗
i ≤ 2t ,

and ∑
i
Csol(Ai , 2k, t̂i ) ≥

∑
i

fi (t̂i ) ≥
∑
i

fi (ti ),

where the last equality follows from Lemma 3.3, and ti ’s are com-

puted in Step 11.

Now, by Lemma 3.4, fi (ti ) = Csol(Ai , 2k, ti ) for all except one i .
The exceptional ti will be replaced by a bigger value, which will not

increase fi (ti ) by the monotonicity of fi , and the first part follows.

This update will increase

∑
i ti by at most t and thus

∑
i ti ≤ 3t . �

Lemma 3.5 and Theorem 3.1 together give the following. Note

that |I| = O(log t).

Theorem 3.6. For the distributed (k, t)-median problem, Algo-
rithm 1 with ρ = 2 outputs sol(A,k, (1+ϵ)t) satisfying Csol(A,k, (1+
ϵ)t)) ≤ O(1 + 1/ϵ) · Copt(A,k, t). The sites communicate a total of
Õ(sk + t) bits of information with the coordinator over 2 rounds.
The runtime at each site is Õ(n2i ) and the runtime at the coordinator
is Õ((sk + t)2). The same result holds for (k, t)-means with larger
constants in the approximation ratio and the runtime.

Proof. The communication cost is straightforward. By Lemma 3.5,

the coordinator will solve the problem of at most 2sk + 3t points.
The claims on approximation ratio and the runtime then follow

from Theorem 3.1, noting that it takes timeO(I log I) = Õ(1) to find
the convex hull. �

If we were only interested in the clustering and not the list of

ignored points, we could set ρ = 1+ δ and change line 12 to line 15

of Algorithm 1 to the following. The sites do not send the ignored

nodes but just the number of them, and the exceptional site runs a

slightly more convoluted algorithm.

12: if i , i0 then
13: Send the coordinator ti , the 2k centers built in sol(Ai , 2k, ti )

and the number of points attached to each center

14: else
15: ti,1 = max{q ∈ I : q ≤ ti and Csol(Ai , 2k,q) = fi (q)}
16: ti,2 = min{q ∈ I : q ≥ ti and Csol(Ai , 2k,q) = fi (q)}
17: Combine sol(Ai , 2k, ti,1) and sol(Ai , 2k, ti,2) to form a solu-

tion sol(Ai , 4k, ti ) by taking the union of themedians, attaching

each point to the closest center among the combined centers,

and ignoring the points with largest ti distances.
18: Send to the coordinator ti , the combined centers and the

number of points attached to each center.

19: end if

Observe that Lemma 3.5 still holds with

∑
i ti ≤ (1 + δ )t , since

we are not changing the exceptional ti . For the exceptional site i ,
suppose that ti = (1 − θ )ti,1 + θti,2 for some θ ∈ (0, 1), we have
(1 − θ )fi (ti,1) + θ fi (ti,2) ≤ fi (ti ). We now argue the next critical

lemma.

Lemma 3.7. Csol(Ai , 4k, ti ) ≤ (1 − θ )fi (ti,1) + θ fi (ti,2).

Proof. We will prove the lemma by carefully designing an as-

signment of n − ti points to the 4k centers which is bounded above

by the right hand side. Since choosing the minimum n−ti distances
will only result in a smaller value, the lemma would follow.

For j = 1, 2, letπj be the center projection function in sol(Ai , 2k, ti, j )
and Pi the set of clustered points in sol(Ai , 2k, ti, j ). For x ∈ P1 ∩P2,
we attach x to the nearer one between the two centers π1(x) and
π2(x), and the incurred cost is

min{d(x ,π1(x)),d(x ,π2(x))} ≤ (1 − θ )d(x ,π1(x)) + θd(x ,π2(x)).
(5)

For x ∈ P1△P2, since only one of π1(x) and π2(x) exist, we
abbreviate it as π (x) for simplicity. Define h(x) for each x ∈ P1△P2
as

h(x) =

{
(1 − θ ) · d(x ,π (x)), x ∈ P1 \ P2;

θ · d(x ,π (x)), x ∈ P2 \ P1.

Let r = |P1 ∩ P2 |, r1 = |P1 \ P2 | and r2 = |P2 \ P1 |. It holds that
r + r1 = n − ti,1 and r + r2 = n − ti,2, thus r1 > r2 and

(1 − θ )r1 + θr2 = n − ti − r .

DefineQ1 = P1\P2 andQ2 = P2\P1. Pick x = argminz∈Q1∪Q2

h(z).
If x ∈ Q1, pick an arbitrary u ∈ Q2, otherwise pick u ∈ Q1. Attach

x to π (x) in the 4k-center solution we are constructing and mark u
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as outlier. Note that this incurs a cost of

d(x ,π (x)) ≤

{
(1 − θ )d(x ,π (x)) + θd(u,π (u)), x ∈ Q1;

(1 − θ )d(u,π (u)) + θd(x ,π (x)), x ∈ Q2,
(6)

by our choice of x , because one of the combination terms is exactly

h(x) and it is smaller than h(u), which is exactly the other term.

Then we remove x and u from Q1 or Q2 depending on the case.

Now, |Q1 | = r1 − 1 and |Q2 | = r2 − 1, and note that

(1 − θ )(r1 − 1) + θ (r2 − 1) = n − ti − r − 1.

Since r1 > r2, we can continue this process until Q2 = ∅. At this

point we have run the procedure above r2 times, and it holds that

(1 − θ )r1 = n − ti − r − r2.

Note that r1 ≥ n − ti − r − r2, so we can choose E ⊆ Q1 to be the

points with smallest n − ti − r − r2 values of h. Attach points in E
to their respective centers and mark the remaining points in Q1 as

outliers. This incurs a cost of∑
x ∈E

d(x ,π (x)) ≤
n − ti − r − r2

r1

∑
x ∈Q1

d(x ,π (x))

= (1 − θ )
∑
x ∈Q1

d(x ,π (x)) (7)

In total we have assigned r + r2 + (n − ti − r − r2) = n − ti points as
desired. The desired upper bound on cost follows from (i) summing

both sides of (5) over P1 ∩ P2; (ii) summing both sides of (6) over

x and the corresponding u during the pairing procedure; and (iii)

Equation (7). Note that (ii) covers (P1△P2) \ Q1, where Q1 is the

post-pairing set. �

As a consequence of Lemma 3.7, Csol(Ai , 4k, ti ) ≤ fi (ti ). Thus
the upper bound on the approximation ratio still holds. Finally, note

that |I| = Õ(1/δ ) and we conclude that

Theorem 3.8. For the distributed (k, t)-median problem, the mod-
ified Algorithm 1 with ρ = 1 + δ outputs sol(A,k, (2 + ϵ + δ )t)
satisfying Csol(A,k, (2 + ϵ + δ )t) ≤ O(1 + 1/ϵ) · Copt(A,k, t). The
sites communicate a total of Õ(sδ−1 + skB) bits of information with
the coordinator over 2 rounds. The runtime on site i is Õ(n2i /δ ) and
the runtime on the coordinator is Õ((sk)2). The same result holds for
(k, t)-means with a larger constant in the approximation ratio.

3.1 Subquadratic-time Centralized Algorithm
We now show an unusual application of Theorem 3.6 in speeding up

existing constant-factor approximation algorithms for (k, t)-median

(or means). Note that the centralized bicriteria approximation al-

gorithms in Charikar [4] are Õ(n3) from n points, and while the

modifications in Theorem 3.1 improve the running time to Õ(n2),
this leaves open the important question: Are there algorithms with
provable constant factor approximation guarantees which are sub-
quadratic? Observe that the question is even more pertinent in the

context of unicriterion approximation, for which the only known

result is a Õ(n3k2t2)-time constant-factor approximation of (k, t)-
median [6]. In the sequel we show that the running time can be

brought to almost linear time. The improvement arises from the

fact that we can simulate a distributed algorithm sequentially.

Lemma 3.9. Suppose that we are given a Õ(n1+α0k2) time algo-
rithm for bicriteria approximation which produces 2k centers or 2t
outliers with approximation factor γ , where α0 ≤ 1. Then we can

produce a similar algorithm with running time Õ(t2)+ Õ
(
n

2+2α
0

2+α
0 k2

)
and approximation c0γ for some absolute constant c0 > 0.

Proof. We will apply Theorem 3.6 after dividing the data arbi-

trarily in s pieces of size n/s . The sequential simulation of the s
sites will take time Õ(s (n/s)1+α0 k2) based on the statement of the

lemma. The coordinator will require time Õ((sk + t)2) = Õ(s2k2) +
Õ(t2). Observe that we can now balance n1+α0 = s2+α0

, which

provides us the optimum s to use and achieve a running time of

Õ(t2) + Õ(s2k2) = Õ(t2) + Õ

(
n

2+2α
0

2+α
0 k2

)
. �

Theorem 3.10. Let α > 0 and suppose that t ≤
√
n. There ex-

ists a centralized algorithm for the (k, t)-median problem that runs
in Õ(n1+αk2) time and outputs a solution sol(A,k, 2t) satisfying
Csol(A,k, 2t) ≤ (1 + 1/α)

O (1)Copt(A,k, t).

Proof. Note that the algorithm in Theorem 3.1 has runtime

Õ(n2), so we can take α0 = 1 in Lemma 3.9 to obtain an algo-

rithm of approximation ratio γ = 6 and runtime Õ(t2 + n4/3k2),

which is Õ(n4/3k2) by our assumption that t ≤
√
n. Repeatedly

applying Lemma 3.9 for j times gives an algorithm of runtime

Õ(n1+1/(2
j−1)k2) and approximation ratio (c0γ )

j
. Let j = log(1 +

1/α), the runtime becomes O(n1+αk2) and the approximation ratio

(1 + 1/α)log(c0γ ) = (1 + 1/α)O (1). �

Remark 2. We remark that

(i) the theorem above also holds for sol(A, 2k, t), where the number
of centers, instead of the outliers, is relaxed.

(ii) for the unicriterion approximation, if we use the algorithm
of runtime Õ(n3t2k2) from [6] instead of the result of Theo-
rem 3.1, we need to balance s3 and s(n/s)1+α0 for an analogy
of Lemma 3.9, which will eventually lead to an algorithm of
runtime O(n1+α t2k2), provided that t ≤ n1/5.

4 (k, t)-CENTER CLUSTERING
Our algorithm for (k, t)-center clustering is presented in Algo-

rithm 2. It is similar to Algorithm 1 but only simpler, because

the preclustering stage admits a simpler algorithm due to Gon-

zalez [13]. For the k-center problem on a point set Z of n points,

Gonzalez’s algorithm outputs a re-ordering of points in Z , say,
p1, . . . ,pn , such that for each 1 ≤ r ≤ n, the solution sol(Z , r ) of
choosing {p1, . . . ,pr } as the r centers is a 2-approximation for the

r -center problem on Z , i.e., Csol(Z , r ) ≤ 2Copt(Z , r ).
The core argument is that the k-center algorithm of Gonzalez

can be used to simultaneously (a) precluster the local data into local

solutions and (b) provide a witness that can be compared globally.

Remark 3. In Algorithm 2, (i) none of the original points is ig-
nored in the preclustering, and (ii) it is possible that the preclustering
aggregated q points but the coordinator’s algorithm chooses less than
q copies to exclude exactly t points. This does not affect the proofs of
(k, t)-center clustering.
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Algorithm 2 Distributed (k, t)-center clustering

1: for each site i do
2: Run Gonzalez’s algorithm and obtain a re-ordering

{a1, . . . ,ani } of the points in Ai
3: for each 1 ≤ q ≤ t do
4: Compute ℓ(i,q) ← min{d(aj ,ak+q ) : j < k + q}
5: end for
6: end for
7: Sites and coordinator sort {ℓ(i,q)}, and follow the subsequent

steps as in Algorithm 1, where the coordinator in the last step

runs the algorithm in [4] for the k-center problem with exactly

t outliers.

We now analyze the performance of Algorithm 2. Denote by

t∗i the number of points ignored from Ai in the global optimum

solution opt(A,k, t). First we show two structural lemmas.

Lemma 4.1. 2Copt(Ai ,k, t) ≥ max

i
Copt(Ai ,k, t

∗
i ).

Proof. Use the same argument in the proof of Lemma 3.2. �

Lemma 4.2. max

i
Copt(Ai ,k, t

∗
i ) ≥ min∑

i ti ≥t

(
max

i
Copt(Ai ,k, ti )

)
.

Proof. It follows from the fact that

∑
i t
∗
i = t . �

Theorem 4.3. For the distributed (k, t)-center problem, Algorithm 2
outputs sol(A,k, t) satisfying Csol(A,k, t) ≤ O(1) · Copt(A,k, t). The
sites communicate a total of Õ((sk + t)B) bits of information to the
coordinator over 2 rounds. The runtime on site i is Õ((k + t)ni ) and
the runtime on the coordinator is Õ((sk + t)2).

Proof. The approximation ratio follows from a similar argu-

ment to that of Theorem 3.6, using Lemma 4.1 and 4.2. The coordi-

nator runtime follows from [4, Theorem 3.1] and the site runtime

from [13], noting that we need only the first k + t points of the
reordering of each Ai . The communication cost is clear from Algo-

rithm 2. �

5 CLUSTERING UNCERTAIN INPUT
Recall that in the setting of clustering with uncertainty there is an

underlying metric space (P,d). We are given a set of input nodes

j ∈ A which correspond to distributions Dj on P. In this section

we shall use nodes to indicate the input and points to indicate

deterministic objects in the metric space P. We shall denote by σ (j)
a realization of node j and by π (j) the center node to which j is
attached. Our goal in the (k, t)-median problem in this context is

to compute

min

K⊆P,O⊆A
|K | ≤k, |O | ≤t


∑

j ∈A\O

(
min

π (j)
E
σ
[d(σ (j),π (j))]

) . (8)

For (k, t)-means we use d2(·, ·) and for (k, t)-center-pp we usemaxj
instead of

∑
j .

Define d̂ : A × P → R as d̂(j,p) = Eσ [d(σ (j),p)], the objective
function (8) is then reduced to the usual (k, t)-median problem with

the new distance function d̂ . However, this definition only allows

the computation of distance between an input node and a point in

P. To extend d̂ to a pair of input nodes, the site holding Ai will
need to know the point set

⋃
j ∈Ai′ supp(Dj ) from some other site

i ′. This will blow up the communication cost, and thus naively

using this distance function in combination with the algorithms

developed previously will not work well. To circumvent this issue

we combine the notion of 1-median introduced in [8] along with the

framework in Theorem 2.1, and introduce a compression scheme

to evaluate distances.

Definition 5.1. For each node j, define its 1-median and 1-mean

to be

yj = argmin

y∈P
E
σ
[d(σ (j),y)], y′j = argmin

y∈P
E
σ
[d2(σ (j),y)],

respectively.

Definition 5.2 (Compressed graph). The compressed graph G(A)
is a weighted graph on vertices P ∪ {pj }j ∈A, where the edges are
as follows: (1) each pair (u,v) ∈ P is an edge with weight d(u,v),
and (2) for each j ∈ A, the vertex pj is connected only to yj with
weight ℓj = Eσ [d(σ (j),yj )]. Define the distance dG (u,v) between
two vertices u, v inG to be the length of the shortest path between

u and v in G.

For the compressed graph G, we can also consider the follow-

ing (k, t)-median problem, where we restrict the demand points

to {pj } and the possible centers to {yj }, and the distance function

is the length of shortest path on G. We continue to use the nota-

tions sol(G,k, t), Csol(G,k, t), etc., to denote the solution and the

corresponding cost of (k, t)-median problem on G. The following
two lemmas show that (k, t)-median problem in Eqn (8) is, up to

some constant factor in the approximation ratio, equivalent to the

(k, t)-median problem on the compressed graph.

Lemma 5.3. If there exists a solution sol(A,k, t) of cost Csol(A,k, t)
to the objective in Equation (8), then there exists a solution sol(G(A),k, t)
on the compressed graph such that Csol(G(A),k, t) ≤ 5Csol(A,k, t).

Proof. Let A′ be the set of clustered nodes in the feasible (k, t)-
median solution of the original problem with the objective in (8).

Define the set of center pointsM = {yj : j ∈ A
′}. For each j ∈ A′,

letyπ (j) = argminy∈M d(π (j),y). Let sol(G(A),k, t) be the solution
of connecting each point pj (j ∈ A

′
) to yπ (j) in the compressed

graph G. We try to upper bound the cost Csol(G(A),k, t):

Csol(G(A),k, t) =
∑
j ∈A′

dG (yπ (j),pj ) (definition of Csol)

=
∑
j ∈A′

(
d(yπ (j),yj ) + dG (yj ,pj )

)
(definition of dG )

≤
∑
j ∈A′

d(yπ (j),π (j)) +
∑
j ∈A′

d(π (j),yj ) +
∑
j ∈A′

dG (yj ,pj )

(triangle inequality)

≤ 2

∑
j ∈A′

d(π (j),yj ) +
∑
j ∈A′
ℓj ,

where the last line follows from d(yπ (j),π (j)) ≤ d(π (j),yj ) by the

definition (optimality) of yπ (j).
Observe that for any realization σ (j), it holds that

d(yj ,π (j)) ≤ d(yj ,σ (j)) + d(σ (j),π (j)).
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Taking expectation over σ ,

d(yj ,π (j)) ≤ Eσ
d(yj ,σ (j)) + Eσ

d(σ (j),π (j)) = ℓj + Eσ
d(σ (j),π (j)).

Summing over j ∈ A′,∑
j ∈A′

d(yj ,π (j)) ≤
∑
j ∈A′
ℓj+

∑
j ∈A′
E
σ
d(σ (j),π (j)) ≤

∑
j ∈A′
ℓj+Copt(A,k, t).

(9)

We next bound

∑
j ∈A′ ℓj . This is exactly the cost of connecting each

j ∈ A′ to its 1-median, which is the optimal solution of at most

n − t centers for A′. The optimal cost for n − t centers is clearly less
than that for k centers and hence

∑
j ∈A′ ℓj ≤ Copt(A,k, t).

Therefore Csol(G(A),k, t) ≤ 2 · 2Copt(A,k, t) + Copt(A,k, t) =
5Copt(A,k, t) as claimed. �

Lemma 5.4. If there exists a solution sol(G(A),k, t) of cost
Csol(G(A),k, t) on the compressed graph, then there exists a solution
sol(A,k, t) for the problem formulated in (8) such that Csol(A,k, t) ≤
2Csol(G(A),k, t).

Proof. Let A′′ be the set of clustered nodes in sol(G(A),k, t).
A similar argument of increasing the number of centers as in

Lemma 5.3 yields that

∑
j ∈A′′ ℓj ≤ Csol(G(A),k, t). Suppose that pj

is assigned to π (j) in sol(G(A),k, t) in the compressed graph. Note

that π (j) ∈ P. Let sol(A,k, t) be the solution of attaching j to π (j)
in P, and the cost can be bounded as

Csol(A,k, t) =
∑
j ∈A′′
E
σ
(d(σ (j),π (j))) (definition of Csol)

≤
∑
j ∈A′′
E
σ

(
d(σ (j),yj )

)
+

∑
j ∈A′′

d(yj ,π (j))

(triangle inequality)

≤
∑
j ∈A′′
ℓj +

∑
j ∈A′′

dG (pj ,π (j))

(definition of dG , see below)

≤ 2Csol(G(A),k, t), (definition of Csol)

where the third line follows fromdG (pj ,π (j)) = d(pj ,yj )+d(yj ,π (j)) ≥
d(yj ,π (j)). �

The equivalence between the original problem and the one on

the compressed graph also holds for the (k, t)-center-pp and the

(k, t)-means problems.

Lemma 5.5. Lemma 5.3 and Lemma 5.4 both hold

(a) for (k, t)-center-pp with the same constants; and
(b) for (k, t)-means with slightly larger constants.

Proof. (a) Observe that

∑
j is replaced with maxj and Equa-

tion (9) rewrites to

max

j ∈A′
d(yj ,π (j)) ≤ max

j ∈A′
ℓj + Copt(A,k, t).

The remainder of the equations hold with this transformation.

(b) Note that we used triangle inequality in the proof above. Al-

though the square of the distance does not obey the triangle

inequality, we can nevertheless apply (a +b)2 ≤ 2a2 + 2b2 after
the triangle inequality. The derivations above will go through

and the results hold with slightly larger constants. �

Algorithm 3 A Compression Scheme for Distributed Partial Clus-

tering of Uncertain Data

1: for each site i do
2: Compute ℓj = Eσ [d(σ (j),yj )] for all j ∈ Ai
3: Construct the compressed graph of Ai as described in Defi-

nition 5.2

4: Run any algorithm corresponding to Section 3 and Section 4

on the compressed graph, with the following change: whenever

the site has to communicate pj , it also sends yj (or y
′
j ) and the

values of Eσ [d(σ (j),yj )] (or Eσ [d
2(σ (j),y′j )]).

5: end for

The overall algorithm is summarized in Algorithm 3. Note that

we cannot just cluster the {yj }; the graph is necessary. To im-

plement the algorithm, we need to show that each site is able to

compute the distance function individually. Indeed, note that any

site that containspj will also contain the correspondingyj ory
′
j and

the value Eσ [d(σ (j),yj )] or Eσ [d
2(σ (j),y′j )] respectively. Therefore

the distance oracle on the graph can be implemented by the site in

constant time.

Theorem 5.6. For the distributed (k, t)-median problem, Algo-
rithm 3 outputs sol(A,k, (1 + ϵ)t) such that Csol(A,k, (1 + ϵ)t) =
O(1+1/ϵ)·Copt(A,k, t). The sites communicate a total of Õ((sk+t)B)
bits of information to the coordinator over 2 rounds. The runtime on
site i is Õ(n2i +niT ), whereT is the runtime to compute 1-median, and
the runtime on the coordinator is Õ((sk + t)2). The same result holds
for the (k, t)-median and center-pp problems with larger constants.

Proof. By Lemma 5.4 for themedian problem and Lemma 5.5 for

the means and center-pp problems, it suffices to show that we can

solve the (k, t)-median problem on the compressed graph. The result

then follows from Theorem 3.6 and Theorem 3.8 with the following

amendments: When a site sends the t or ti potential outliers, it
needs to send the yj and the corresponding values Eσ [d(σ (j),yj )]

or Eσ [d
2(σ (j),y′j )], which at most doubles the communication cost.

The runtime is increased by O(niT ) due to Step 2 since computing

ℓj on the compressed graph takes O(T ) time. �

Other results claimed in Table 2 follow from analogous amend-

ments to Theorem 3.8.

The global k-Center case. We now focus on (k, t)-center-g. In
this setting Dj ’s are independent and we optimize

min

K⊆P,O⊆A
|K | ≤k, |O | ≤t

(
E

σ∼
∏

j Dj

[
max

j ∈A\O
d(σ (j),π (j))

])
.

Definition 5.7 (Truncated distance [15]). For τ ≥ 0, define Lτ :

P ×P → R as Lτ (u,v) = max{d(u,v) −τ , 0} and ρτ : A×P → R
as ρτ (j,u) = Eσ [Lτ (σ (j),u)]. Note that Lτ (·, ·) is not a metric for

τ > 0.

Definition 5.8. Given a node set Z ⊆ A, let P(Z ) ⊆ P be the as-

sociated point set corresponding to possible realizations of nodes in

Z . Let sol(Z ,k, t , ρτ ) and opt(Z ,k, t , ρτ ) be a solution by algorithm

and the global optimum solution respectively to the (k, t)-median

problem on node set Z where the centers are restricted to P(Z )
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and the weighted assignment cost of assigning node j ∈ Z to center

m ∈ P(Z ) is ρτ (j,m). The costs Csol(Z ,k, t , ρτ ) and Copt(Z ,k, t , ρτ )
are defined analogously.

Let dmin and dmax denote the minimum and the maximum dis-

tance, respectively, between two distinct points in P and let ∆ =
dmax/dmin. The algorithm is presented in Algorithm 4.

Algorithm 4 Algorithm for (k, t)-center-g

1: All parties compute dmin and dmax

2: Each party creates T = {2idmin/18 : 0 ≤ i ≤ ⌈log
2
∆⌉ + 2}

3: for each τ ∈ T do
4: All parties run Algorithm 2 with the following changes:

when it calls Algorithm 1 as a subroutine, sol(Ai , 2k,q) in Algo-

rithm 1 is replaced with sol(Ai , 2k,q, ρ6τ ) and the sites obtain

the numbers of local outliers {ti (τ )}
5: end for
6: Coordinator finds τ̂ =min{τ ∈ T :

∑
i Csol(Ai , 2k, ti (τ ), ρ6τ ) ≤

12τ }
7: Coordinator solves (k, t)-center-g on the preclustering solu-

tions sol(Ai , 2k, ti (τ̂ ), ρ6τ ) and outputs sol(A,k, (1 + ϵ)t).

Now we try to analyze the performance of Algorithm 4. We first

show an analogy of Theorem 3.1 that we can compute a constant

approximation to Copt(Z ,k, t , ρτ ). The proof is omitted.

Lemma 5.9. Let τ ≥ 0. For the (k, t)-center problem on Z , we can
compute in Õ((k + t)|Z |) time sol(Z ,k, (1 + ϵ)t , ρ9τ ) or sol(Z , (1 +
ϵ)k, t , ρ3τ ) such that

Csol(Z ,k, (1 + ϵ)t , ρ9τ ) ≤ max{6, 6/ϵ} · Copt(Z ,k, t , ρτ )

Csol(Z , (1 + ϵ)k, t , ρ3τ ) ≤ max{6, 6/ϵ} · Copt(Z ,k, t , ρτ )

We next show that the τ̂ computed in Step 6 is a good choice of τ
andwill ensure that the preclustering solutions sol(Ai , 2k, ti (τ̂ ), ρ2τ̂ )
can be combined to yield a good global solution. Specifically we

have the following two lemmas.

Lemma 5.10. The τ̂ computed in Step 6 satisfies the following two
conditions.

(i)
∑
i Csol(Ai , 2k, ti (τ̂ ), ρ6τ̂ ) ≤ 12τ̂ ;

(ii)
∑
i Copt(Ai ,k, t

′
i , ρ2τ̂ ) ≥ 2τ̂ for all {t ′i } s.t.

∑
i t
′
i ≤ t ,

Proof. Note that τmax = maxT > dmax/6, it always holds that

ρ6τmax
= 0. Thus the condition

∑
i Csol(Ai , 2k, ti (τmax), ρ6τmax

) ≤

12τmax holds, and τ̂ exists and satisfies condition (i).

Next we show that condition (ii) holds. Let {t ′i } be an arbitrary se-
quence satisfying that

∑
i t
′
i ≤ t . Similarly to the proof of Lemma 3.3,

one can show that

∑
i Csol(Ai , 2k, t

′
i , ρ6τ̂ ) ≥

∑
i Csol(Ai , 2k, ti (τ̂ ), ρ6τ̂ ),

using the fact that

∑
i t
′
i ≤ t < ρt =

∑
i ti . Combining with

Lemma 5.9 with ϵ = 1, we have that

6

∑
i
Copt(Ai ,k, t

′
i , ρ2τ̂ ) ≥

∑
i
Csol(Ai , 2k, t

′
i , ρ6τ̂ )

≥
∑
i
Csol(Ai , 2k, ti (τ̂ ), ρ6τ̂ ) ≥ 12τ̂ ,

whence condition (ii) follows. �

Lemma 5.11. Suppose that τ̂ satisfies the condition (i) and (ii) of
Lemma 5.10, a γ -approximation of the weighted center-g problem
induced by preclustering sol(Ai , 2k, ti (τ̂ ), ρ6τ̂ ) is anO(γ ) approxima-
tion of Copt(A,k, t).

To prove this lemma, we need the following two auxiliary lem-

mas.

Lemma 5.12. 2Copt(A,k, t , ρτ ) ≥
∑
i Copt(Ai ,k, t

∗
i , ρ2τ ), where

t∗i is the number of ignored nodes from Ai in the global optimum
solution opt(A,k, t , ρτ ).

Proof. Fix a realization of the nodes. The proofmimics Lemma 3.2

for each realization. It then uses the observation that Lτ (u1,u2) +
Lτ (u2,u3) ≥ L2τ (u1,u3) and takes the expectation. �

Lemma 5.13. If Copt(Z ,k, t , ρτ ) ≥ τ then Copt(Z ,k, t) ≥ τ/3.

Proof. The case of t = 0 (no outliers) is proved in [15, Lemma

4.4]. For a general t > 0, let Z ′ ⊆ Z be the set of clustered point

in opt(Z ,k, t), then Copt(Z ′,k, 0, ρτ ) = Copt(Z ,k, t , ρτ ) ≥ τ , thus
Copt(Z ,k, t) = Copt(Z

′,k, 0) ≥ τ/3. �

Proof of Lemma 5.11. It follows from Lemma 5.12 and condi-

tion (ii) of Lemma 5.10 that

2Copt(A,k, t , ρτ̂ ) ≥
∑
i
Copt(Ai ,k, t

∗
i , ρ2τ̂ ) ≥ 2τ̂ ,

where t∗i is the number of ignored nodes from Ai in the global

optimum solution opt(A,k, t , ρτ̂ ). It then follows from Lemma 5.13

that Copt(A,k, t) ≥ τ̂/3,
To simplify the notation, in the rest of the proof we shorthand

ti (τ̂ ) as ti . Let A
∗
i ⊆ Ai be the set of nodes clustered in the global

optimum solution opt(A,k, t). Consider “collapsing” the nodes in
A∗i to their corresponding centers in sol(Ai , 2k, ti , ρ6τ̂ ) while keep-
ing the same centers in sol(A,k, t). If a node in A∗i is marked as an

outlier in sol(Ai , 2k, ti , ρ2τ̂ ) then it is not moved, and it continues

to be excluded from the calculation. This movement increases the

expectation of the maximum assignment by 6τ̂+Csol(Ai , 2k, ti , ρ2τ̂ ).
Now consider the same process where we collapse A∗i for all i . The
total increase across the different i is 6τ̂ +

∑
i Csol(Ai , 2k, ti , ρ6τ̂ )

because the increase in 6τ̂ arises from distance truncation and is

common. Thus we achieve a solution of cost at most

γ

(
Copt(A,k, t) + 6τ̂ +

∑
i
Csol(Ai , 2k, ti , ρ6τ̂ )

)
.

Now consider “expanding” the nodes of Ai from the preclustering

to the distribution Dj . By that logic the expected maximum can

increase by at most 2τ̂ +
∑
i Csol(Ai , 2k, ti , ρ2τ̂ ), which by condition

(i) of Lemma 5.10 totals to O(γτ̂ ) = O(γ )Copt(A,k, t). The lemma

follows. �

We state the main theorem for the (k, t)-center-g problem to

conclude this section.

Theorem 5.14. For the distributed (k, t)-center-g problem, Algo-
rithm 4 outputs sol(A,k, (1 + ϵ)t) satisfying Csol(A,k, (1 + ϵ)t) =
O(1 + 1/ϵ) · Copt(A,k, t). The sites communicate a total of Õ(skB +
s log∆ + tI ) bits of information to the coordinator over 2 rounds,
where I is the bit complexity to encode a node. The runtime at site i is
Õ((k + t)ni log∆) and the runtime at the coordinator is Õ((sk + t)2).
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Objective Approx. Centers Ignored Rounds Total Comm. Local Time

median O (1) k t 1 Õ ((sk + st )B) Õ (n2i ), Õ (k
2s3t 5)

2 Õ ((sk + t )B) Õ (n2i ), Õ (k
2t 2(sk + t )3)

(2 + δ )t 2 Õ (s/δ + skB) Õ (n2i ), Õ (s
2k7)

means/

median

O (1 + 1/ϵ )
k, (1 + ϵ )t or (1 + ϵ )k, t 1 Õ ((sk + st )B) Õ (n2i ), Õ ((sk + st )

2)

2 Õ ((sk + t )B) Õ (n2i ), Õ ((sk + t )
2)

k (2 + ϵ + δ )t
2 Õ (s/δ + skB) Õ (n2i ), Õ ((sk )

2)
(1 + ϵ )k (2 + δ )t

center O (1) k t 1 Õ ((sk + st )B) Õ ((k + t )ni ), Õ ((sk + st )2)
2 Õ ((sk + t )B) Õ ((k + t )ni ), Õ ((sk + t )2)

(2 + δ )t 2 Õ (s/δ + skB) Õ (n2i ), Õ ((sk)
2)

uncertain

median/

means/

center-pp

as in the regular case above +O (niT ), unchanged

center-g

O (1 + 1/ϵ ) k (1 + ϵ )t 2 Õ (skB + t I + s log∆) Õ (n2i log∆), Õ ((sk + t )
2)

O (1) t 1 Õ (s(kB + t I ) log∆) Õ ((k + t )ni log∆), Õ (s2(k + t )2)

Table 2: Our results.T denotes the runtime to compute 1-median/mean of a node distribution, I is the information encoding a
node in the uncertain data case, B the information encoding a point and ∆ the ratio between the maximum pairwise distance
and the minimum pairwise distance in the dataset.

Proof. The claim on approximation ratio follows fromLemma 5.11.

To determine τ̂ , the communication cost increases by a factor of

log∆; to send the preclustering solutions, the communication cost

for sending the outliers increases by a factor of I . The runtime

follows from Lemma 5.9 with an increase of a factor of log∆. �

We remark that the dependence on log∆ can be removed with

another pass where each site computes a τi using binary search.

The discussion is omitted in the interest of simplicity.

Other results claimed in Table 2 follow from analogous amend-

ments to Theorem 3.8.
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A THE FULL SET OF OUR RESULTS
We summarize the full set of our results in Table 2. Besides the main

results that already appear in Table 1, all the 1-round results in

Table 2 basically follow from setting ti = t for all sites i . The results
for (k, t)-median/means that ignore (2 + δ )t or (2 + ϵ + δ )t points
basically follow from Theorem 3.8, where for (k, t)-median with k
centers (unicriterion) we need to apply again the 1-round result,

and for (k, t)-median/means with (1 + ϵ)k centers we simply use

the second inequality of Theorem 3.1 instead of the first one at the

final clustering step at the coordinator. The result for (k, t)-center
that ignore (2 + δ )t points is due to the following modifications on

Algorithm 4: sites do not send the total (1 + δ )t local outliers to the

coordinator, and thereafter the coordinator performs the second

level clustering with (another) t outliers, we have (2 + δ )t outliers
in total.
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