
Distributed Statistical Estimation of Matrix Products
with Applications∗

David P. Woodruff

Carnegie Mellon University

Pittsburgh, PA, USA

dwoodruf@cs.cmu.edu

Qin Zhang

Indiana University Bloomington

Bloomington, IN, USA

qzhangcs@indiana.edu

ABSTRACT
We consider statistical estimations of a matrix product over the

integers in a distributed setting, where we have two parties Alice

and Bob; Alice holds a matrix A and Bob holds a matrix B, and they
want to estimate statistics of A · B. We focus on the well-studied

ℓp -norm, distinct elements (p = 0), ℓ0-sampling, and heavy hitter

problems. The goal is to minimize both the communication cost

and the number of rounds of communication.

This problem is closely related to the fundamental set-intersection

join problem in databases: when p = 0 the problem corresponds

to the size of the set-intersection join. When p = ∞ the output is

simply the pair of sets with the maximum intersection size. When

p = 1 the problem corresponds to the size of the corresponding

natural join. We also consider the heavy hitters problem which

corresponds to finding the pairs of sets with intersection size above

a certain threshold, and the problem of sampling an intersecting

pair of sets uniformly at random.

1 INTRODUCTION
We study the problem of statistical estimations of a matrix product

in the distributed setting. Consider two parties Alice and Bob; Alice

holds a matrix A ∈ {0, 1}n×n and Bob holds a matrix B ∈ {0, 1}n×n ,
and they want to jointly compute a function f defined on A and

B by exchanging messages. The goal is to minimize both the total

communication cost and number of rounds of interaction.

One of the main statistical quantities we consider is the p-norm
∥C ∥p of the product C = A · B, defined as

∥C ∥p =
(∑

i, j ∈[n]
��Ci, j ��p)1/p .

Here the matrix product A · B is the standard matrix product over

the integers. Interpreting 0
0
as 0, we see that p = 0 corresponds to

the number of non-zero entries of C , which, interpreting the rows

of A and columns of B as sets, corresponds to the set-intersection

join size (see Section 1.1 for the formal definition). This can also

be viewed as a matrix form of the well-studied distinct elements

∗
Qin Zhang is supported by NSF CCF-1525024 and IIS-1633215.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-4706-8/18/06. . . $15.00

https://doi.org/10.1145/3196959.3196964

problem in the data stream literature (see, e.g., [8, 14, 21]). Again

interpreting the rows of A and the columns of B as sets, the case

p = 1 corresponds to the size of the corresponding natural join

(again see Section 1.1 for the formal definition). The p = 2 case

corresponds to the (squared) Frobenius norm of the matrix product

A · B, which is a norm of fundamental importance in a variety of

distributed linear algebra problems, such as low rank approximation

(for a recent survey, see [34]). The case p = ∞ corresponds to the

pair of sets of maximum intersection size. Estimating the largest

entry in a Boolean matrix product has also been studied in the

centralized setting. We refer readers to the recent paper [1] and

references therein.

As a closely related problem, we also consider the ℓ0-sampling

problem for which the goal is to sample each non-zero entry in

C = AB with probability (1 ± ϵ) 1

∥C ∥
0

, which corresponds to ap-

proximately outputting a random pair among the intersecting pairs

of sets. ℓ0-sampling is also extensively studied in the data stream

literature [15, 20, 30], and is used as a building block for sketching

various dynamic graph problems (see [28] for a survey).

We also study the approximate heavy hitter problem defined as

follows. Let

HH
p
ϕ (C) = {(i, j) | C

p
i, j ≥ ϕ ∥C ∥

p
p }.

The ℓp -(ϕ, ϵ)-heavy-hitter (0 < ϵ ≤ ϕ ≤ 1) problem asks to output

a set S such that

HH
p
ϕ (AB) ⊆ S ⊆ HH

p
ϕ−ϵ (AB).

As outputting the matrix productC requires outputting n2 numbers,

it is natural to output the set S as a sparse approximation of C;
indeed this can be viewed as a matrix form of the well-studied

compressed sensing problem.

As mentioned, these basic statistical problems, being interesting

for their own sake, have strong relationships to fundamental prob-

lems in databases. We describe such relationships more formally

below.

Despite a large amount of work on computingp-norms and heavy

hitters on frequency vectors in the streaming literature (see, e.g.,

[31] for a survey), we are not aware of any detailed study of these

basic statistical functions on matrix products. The purpose of this

paper is to introduce a systematic study of statistical estimations

on matrix products.

1.1 Motivation and Applications
Estimating the norm of a matrix product is closely related to two of

the most important operations in relational databases – the composi-
tion and the natural join. Suppose we are given two relationsA and

B, where A is defined over attributes (X ,Y) and B is defined over

Session: Algorithms, Privacy and Workflows PODS’18, June 10-15, 2018, Houston, TX, USA

383

https://doi.org/10.1145/3196959.3196964

attributes (Y ,Z). Assume for simplicity that dom(X) = dom(Y) =
dom(Z) = [n]. We thus have A ⊆ [n] × [n] and B ⊆ [n] × [n]. The
composition of A and B is defined to be

A ◦ B = {(i, j) | ∃k : (i,k) ∈ A ∧ (k, j) ∈ B}.

The natural join is defined to be

A ◃▹ B = {(i,k, j) | (i,k) ∈ A ∧ (k, j) ∈ B}.

It is easy to see that the natural join corresponds to the composition

together with the requirement that all the “witnesses” k are output.

We further define “projection” setsAi = {k | (i,k) ∈ A} for each
i ∈ [n], and Bj = {k | (k, j) ∈ B} for each j ∈ [n]. Then we can

rewrite the composition and natural joins as follows:

A ◦ B = {(i, j) | Ai ∩ Bj , ∅},
A ◃▹ B = {(i,k, j) | k ∈ Ai ∩ Bj }.

We thus also refer to compositions as set-intersection joins, and
natural joins as set-intersection joins with witnesses.

As an application of set-intersection joins, consider a job ap-

plication scenario: we have n applicants, with the i-th applicant

having a set of skills Ai from the universe {1, . . . ,n}, and n jobs,

with the j-th job requiring a set of skills Bj . Our goal is to find all

the possible applicant-job matches, namely, those pairs (i, j) such
that Ai ∩Bj , ∅. One may also be interested in the number of such

matches (the ℓ0-norm) or the most qualified applicants (the entry

realizing the ℓ∞-norm, or the heavy hitters).

We can further relate set-intersection joins to Boolean matrix
multiplication. Let A and B be two n × n matrices such that each

row Ai,∗ is the indicator vector of Ai , and each column B∗, j is the
indicator vector of Bj . Then the non-zero entries of AB exactly cor-

respond to the outputs of the set-intersection joins on {A1, . . . ,An }
and {B1, . . . ,Bn }. If we are interested in estimates to the sizes of

the joins, which are very useful for guiding query optimization

since they can be computed using much less communication than

computing the actual joins, then we have

• ∥AB∥
0
= |A ◦ B|, that is, the ℓ0-norm of AB is the size of

the composition of A and B,
• ∥AB∥

1
= |A ◃▹ B|, that is, the ℓ1-norm of AB is the size of

the natural join of A and B.
Finally, ∥AB∥∞ corresponds to the pair (i, j) with the maximum

overlap, and {(i, j) | (AB)i, j ≥ ϕ ∥AB∥p } for a threshold ϕ corre-

sponds to the set of heavy hitters, i.e., those pairs of sets whose

intersection size exceeds the threshold. These two problems have

natural applications in inner product similarity joins on a set of

vectors; we refer the reader to recent work [3] on inner product

similarity joins and references therein.

Remark 1. We note that all of these problems and the results in
this paper can be straightforwardly modified to handle the general
case where dom(X) = m1, dom(Z) = m2 and dom(Y) = n, which
corresponds to AB where A ∈ {0, 1}m1×n and B ∈ {0, 1}n×m2 . See
Section 6 for more discussions.

1.2 Our Results
For simplicity we use the notation Õ(·) to hide poly(log n

ϵδ) factors
where ϵ is the multiplicative approximation ratio and δ is the error

probability of a randomized communication algorithm. We say that

X approximatesY within a factor of α ifX ∈ [Yβ ,γY]where β ,γ ≥ 1

and βγ ≤ α .

Set-Intersection Join Size. We give a 2-round Õ(n/ϵ)-bit algo-
rithm that approximates ∥AB∥p , p ∈ [0, 2], within a (1 + ϵ) factor.
For the important case of p = 0, this provides a significant im-

provement over the previous Õ(n/ϵ2) result in [16]. Also, due to

the Ω(n/ϵ2) lower bound in [16] for one-round algorithms (i.e.,

algorithms for which Alice sends a single message to Bob, who

outputs the answer), this gives a separation in the complexity of

this problem for one and two-round algorithms. As the algorithm

in [16] is a direct application of an Õ(1/ϵ2) space streaming algo-

rithm, our algorithm illustrates the power to go beyond streaming

algorithms in this framework.

Pair of Sets with Maximum Intersection Size. We first give a

constant round Õ(n1.5/ϵ)-bit algorithm that approximates ∥AB∥∞
within a (2+ ϵ) factor. We complement our algorithm by showing a

few different lower bounds that hold for algorithms with any (not

necessarily constant) number of rounds. First, we show that any al-

gorithm that approximates ∥AB∥∞ within a factor of 2 needs Ω(n2)
bits of communication, thus necessitating our (2 + ϵ) factor ap-
proximation. Moreover, we show that any algorithm achieving any

constant factor approximation must use Ω̃(n1.5) bits of communica-

tion, which shows that our (2 + ϵ) factor approximation algorithm

has optimal communication, up to polylogarithmic factors.

We next look at approximation algorithms that achieve approxi-

mation factors to ∥AB∥∞ that are larger than constant. We show

it is possible to achieve a κ-approximation factor using Õ(n1.5/κ)
bits of communication. We complement this with an Ω(n1.5/κ) bit
lower bound.

Finally we show that the fact that the matrices A and B are

binary is crucial. Namely, we first show that for general matrices

A and B with poly(n)-bounded integer entries, there is an Ω(n2)
lower bound for any constant factor approximation. For general

approximation factors κ that may be larger than constant, we show

an upper and lower bound of Θ̃(n2/κ2) communication. This shows

an arguably surprising difference in approximation factor versus

communication for binary and non-binary matrices.

Heavy Hitters. We give an O(1)-round protocol that computes

ℓp -(ϕ, ϵ)-heavy-hitters, 0 < ϵ ≤ ϕ ≤ 1, and p ∈ (0, 2], with vari-

ous tradeoffs depending on whether Alice and Bob’s matrices are

arbitrary integer matrices, or whether they correspond to binary

matrices. For arbitrary integer matrices, we achieve Õ(
√
ϕ
ϵ n) bits

of communication for p = 1, and Õ(ϕϵ n) bits of communication for

every other p ∈ (0, 2] \ {1}.
We are able to significantly improve these bounds for binary

matrices, which as mentioned above, have important applications

to database joins. Here we show for every p ∈ (0, 2] an O(1)-round
protocol with Õ(n + ϕ

ϵ 2) bits of communication.

1.3 Related Work
Early work on studying joins in a distributed model can be found in

[29] (Section 5) and [24]. Here the goal is to output the actual join

rather than its size, and such algorithms, in the worst case, do not

Session: Algorithms, Privacy and Workflows PODS’18, June 10-15, 2018, Houston, TX, USA

384

achieve communication better than the trivial algorithm in which

Alice sends her entire input to Bob for a centralized computation.

With the rise of the MapReduce-type models of computation, a

number of works have been devoted to studying parallel and dis-

tributed computations of joins. Such works have looked at natural

joins, multi-way joins, and similarity joins, in a model called the

massively parallel computationmodel (MPC) [2, 9, 10, 17, 23, 25, 26].

Unlike our two-party communication model, in MPC there are mul-

tiple parties/machines, and the primary goal is to understand the

round-load (maximum message size received by any server in any

round) tradeoffs of the computation.

In a recent paper [16] the authors and collaborators studied

several join problems in the two-party communication model. The

studied problems include set-intersection joins, set-disjointness joins,
set-equality joins, and at-least-T joins. Our results can be viewed as

a significant extension to the results in [16], as well as a systematic

study of classical data stream problems in the context of matrix

products. In particular, [16] did not study estimating the p-norms of

AB, for any p other than p = 0. For p = 0, they obtain an algorithm

using Õ(n/ϵ2) communication, which we significantly improve to

Õ(n/ϵ) communication, and extend to any 0 ≤ p ≤ 2. Moreover, we

obtain the first bounds for approximating ∥AB∥∞, where perhaps
surprisingly, we are able to obtain anO(1)-approximation in Õ(n3/2)
communication, beating the naïve n2 amount of communication.

This leads us to the first algorithms for finding the frequent entries,

or heavy hitters of AB.
While a number of recent works [6, 11, 22, 27, 36] look at dis-

tributed linear algebra problems (for a survey, see [34]), in all pa-

pers that we are aware of, the matrix C is distributed additively.
What this means is that we want to estimate statistics of a matrix

C = A + B, where A and B are held by Alice and Bob, respectively,

who exchange messages with each other. In this paper, we instead

study the setting for which we want to estimate statistics of a matrix

C = A · B, where A and B are again held by Alice and Bob, respec-

tively, who exchange messages with each other. Thus, in our setting

the underlying matrix C of interest is distributed multiplicatively.
When C is distributed additively, a common technique is for the

players to agree on a random linear sketching matrix S , and apply it
to their inputs to reduce their size. For example, if Alice has matrix

A and Bob has matrix B, then Alice can send S · A to Bob, who can

compute S(A + B). A natural extension of it in the multiplicative

case is for Alice to send S ·A to Bob, who can compute S ·A ·B. This
is precisely how the algorithm for p = 0 of [16] proceeds. We show

by using the product structure of A · B and more than one round, it

is possible to obtain significantly less expensive algorithms than

this direct sketching approach.

Finally, we would like to mention several papers considering

similar problems but working in the centralized model. In [12],

Cohen uses exponential random variables and applies a minimum

operation to obtain an unbiased estimator of the number of non-

zero entries in each column of a matrix product C = AB. However,
a direct adaptation of this algorithm to the distributed model would

result Ω̃(n/ϵ2) bits of communication and 1-round, which is the

same as using the 1-round ℓ0-sketching protocol applied to each

of the columns in earlier work [16]. In contrast we show that sur-

prisingly, at least to the authors, Õ(n/ϵ) bits of communication is

possible with only 2 rounds. In [5], Amossen, Campagna, and Pagh

improve the time complexity of [12], provided ϵ is not too small.

However, a direct adaptation of this algorithm to the distributed

model would result an even higher communication cost of Ω(n2).
In [13], the ℓ1-sampling problem is considered. In this paper we

do not emphasize estimation of ∥C ∥1, since this quantity can be

computed exactly usingO(n logn) bits of communication, as stated

in Remark 2. Similarly ℓ1-sampling can also be done in O(n logn)
bits of communication, as illustrated in Remark 3.

In [32], it is shown how to apply CountSketch to the entries of a

matrix productC = AB where A,B ∈ Rn×n . The time complexity is

O(nnz(A)+ nnz(B)+n · k logk), where nnz(A) denotes the number

of non-zero entries of A, and k is the number of hash buckets in

CountSketch which is at least 1/ϵ2. This outperforms the naïve time

complexity of first computing C and then hashing the entries of C
one-by-one. While interesting from a time complexity perspective,

it does not provide an advantage over CountSketch in a distributed

setting. Indeed, for each of the hashes on Alice’s side of the n
outer products computed in [32], the size of the hash is Θ̃(1/ϵ2),
and consequently communicating this to Bob takes Θ̃(n/ϵ2) bits in
total.

2 PRELIMINARIES
In this section we give background on several sketching algorithms

that we will make use of, as well as some basic concepts in com-

munication complexity. We will also describe some mathematical

tools and previous results that will be used in the paper.

For convenience we use A ∈ Zn×n to differentiate A from a

binary matrix, but we will assume that all the input matrices have

polynomially bounded integer entries. For all sketching matrices

we will make use of, without explicitly stated, each of their entries

can be stored in Õ(1) bits.
Sketches. A sketch sk(x) of a data object x is a summary of x of

small size (sublinear or even polylogarithmic in the size of x) such
that if we want to perform a query (denoted by a function f) on
the original data object x , we can instead apply another function д
on sk(x) such that д(sk(x)) ≈ f (x). Sketches are very useful tools

in the development of space-efficient streaming algorithms and

communication-efficient distributed algorithms. Many sketching

algorithms have been developed in the data stream literature. In

this paper we will make use of the following.

Lemma 2.1 ([19, 21], ℓp -Sketch (0 ≤ p ≤ 2)). For p ∈ [0, 2]
and a data vector x ∈ Rn , there is a sketch sk(x) = Sx where S ∈

R
O

(
1

ϵ2
log

1

δ

)
×n

is a random sketching matrix, and a function д such
that with probability 1 − δ , д(sk(x)) approximates ∥x ∥p within a
factor of (1 + ϵ).
Communication Complexity. We will use two-party communi-

cation complexity to prove lower bounds for the problems we study.

In the two-party communication complexity model, there are par-

ties Alice and Bob. Alice gets an input x ∈ X, and Bob gets an input

y ∈ Y. They want to jointly compute a function f : X×Y → Z via

a communication protocol. Let Π be a (randomized) communication

protocol, and let rA, rB be the private randomness used by Alice

and Bob, respectively. Let ΠX ,Y ,rA,rB denote the transcript (the

concatenation of all messages) when Alice and Bob run Π on input

Session: Algorithms, Privacy and Workflows PODS’18, June 10-15, 2018, Houston, TX, USA

385

(X ,Y) using private randomness (rA, rB), and let Π(X ,Y , rA, rB)
denote the output of the protocol. We say Π errs with probability δ
if for all (x ,y) ∈ X × Y,

PrrA,rB [ΠX ,Y ,rA,rB , f (x ,y)] ≤ δ .
We define the randomized communication complexity of f , denoted
by Rδ (f), to be minΠ maxx,y,rA,rB

��ΠX ,Y ,rA,rB
��
, where |z | denotes

the length of the transcript z.
We next introduce a concept called the distributional communi-

cation complexity. Let µ be a distribution over the inputs (X ,Y). We

say a deterministic protocol Π computes f with error probability δ
on µ if

Pr(X ,Y)∼µ [ΠX ,Y , f (x ,y)] ≤ δ .
The δ -error distributional communication complexity under input

distribution µ, denoted by D
µ
δ (f), is the minimum communication

complexity of a deterministic protocol that computes f with error

probability δ on µ. The following lemma connects distributional

communication complexity with randomized communication com-

plexity.

Lemma 2.2 (Yao’s Lemma). For any function f and any δ > 0,
Rδ (f) ≥ maxµ D

µ
δ (f).

A standard method to obtain randomized communication com-

plexity lower bounds is to first find a hard input distribution µ for
a function f , and then try to obtain a lower bound on the distri-

butional communication complexity of f under inputs (X ,Y) ∼ µ.
By Yao’s Lemma, this is also a lower bound on the randomized

communication complexity of f .
We now introduce two well-studied problems in communication

complexity.

Set-Disjointness (DISJ). In this problem we have Alice and

Bob. Alice holds x = (x1, . . . ,xt) ∈ {0, 1}t , and Bob holds y =
(y1, . . . ,yt) ∈ {0, 1}t . They want to compute

DISJ(x ,y) = ∨ti=1(xi ∧ yi).
Lemma 2.3 ([7]). R0.49(DISJ) ≥ Ω(n).

Gap-l∞. In this problem Alice holds x = (x1, . . . ,xt) ∈ [0,κ]t , and
Bob holds y = (y1, . . . ,yt) ∈ [0,κ]t , with the following promise:

either |xi − yi | ≤ 1 for all i; or for some i , |xi − yi | ≥ κ. Define
Gap-l∞(x ,y) = 1 if ∥x − y∥∞ ≥ κ, and Gap-l∞(x ,y) = 0 otherwise.

Lemma 2.4 ([7]). R0.49(Gap-l∞) ≥ Ω(n/κ2).

Tools and Previous Results. We will make use of the following

results on distributed matrix multiplication and ℓ0-sampling on

vectors.

Lemma 2.5 ([16], Distributed Matrix Multiplication). Sup-
pose Alice holds a matrix A ∈ Rn×n , and Bob holds a matrix B ∈
Rn×n . There is an algorithm for Alice and Bob to computeCA andCB
such that with probability 1 − 1/n10, CA +CB = AB. The algorithm
uses Õ(n

√
∥AB∥

0
) bits of communication and 2 rounds.

Lemma 2.6 ([20], ℓ0-Sampling). For a data vector x ∈ Rn , there
is a sketch sk(x) = Sx where S ∈ RÕ (1)×n is a random sketching
matrix, and a function д such that д(sk(x)) returns i ∈ [n] for each
coordinate xi > 0 with probability 1/∥x ∥

0
. The process fails with

probability at most 1/n10.

Algorithm 1: (1 + ϵ)-Approximation for ℓp (p ∈ [0, 2])
Input :Alice has a matrix A ∈ Zn×n , and Bob has a matrix

B ∈ Zn×n . Let C ← AB
Output :A (1 + ϵ)-approximation of ∥C ∥pp

1 Let S be the sketching matrix in Lemma 2.1;

2 Bob computes SBT ∈ RÕ (1/β 2)×n
of BT and sends it to Alice;

3 Alice computes C̃ ← (SBTAT)T ;
4 Alice partitions the n rows of C̃ to (up to)

L = log
1+β (2np+1) = O(1β logn) groups G1, . . . ,GL , such

that Gℓ contains all i ∈ [n] for which
(1 + β)ℓ ≤

C̃i,∗

p
p
< (1 + β)ℓ+1;

5 foreach group Gℓ (ℓ ∈ [L]) do
6 Alice randomly samples each i ∈ Gℓ with probability pℓ ,

where pℓ =
ρ
|Gℓ | ·

G̃ℓ

p
p

C̃

p
p

where

G̃ℓ

p
p
=

∑
i ∈Gℓ

C̃i,∗

p
p
;

Alice sends pℓ to Bob;

7 Alice then replaces all non-sampled rows in A with the

all-0 vector, obtaining A′, and sends A′ to Bob;

8 Bob computes C ′ ← A′B, and outputs∑
ℓ∈[L]

∑
i ∈Gℓ

1

pℓ

C ′i,∗

pp .
We will also need the standard Chernoff bound.

Lemma 2.7 (Chernoff Bound). Let X1, . . . ,Xn be independent
Bernoulli random variables such that Pr[Xi = 1] = pi . Let X =∑
i ∈[n] Xi . Let µ = E[X]. It holds that Pr[X ≥ (1 + δ)µ] ≤ e−δ

2µ/3

and Pr[X ≤ (1 − δ)µ] ≤ e−δ
2µ/2 for any δ ∈ (0, 1).

3 (1 + ϵ)-APPROXIMATION OF ℓP (P ∈ [0, 2])
For notational convenience (in order to unify ℓ0 and ℓp for constant

p ∈ (0, 2]), we define ∥x ∥0
0
= ∥x ∥

0
to be the number of non-zero

entries of x .
Note that for a constant p, approximating ∥C ∥p within a (1 + ϵ)

factor and approximating ∥C ∥pp within a (1 + ϵ) factor are asymp-

totically equivalent – we can always scale the multiplicative error ϵ
by a factor of p (a constant), which will not change the asymptotic

communication complexity. We will thus use these interchangeably

for convenience.

The Idea. The high level idea of the algorithm is as follows. We

first perform a rough estimation – we try to estimate the ℓp -norm

of each row of C within a (1 +
√
ϵ) factor. We then sample rows

of C with respect to their estimated (p-th power of their) ℓp -norm,

obtaining a matrixC ′. We finally useC ′ to obtain a finer estimation

(i.e., a (1 + ϵ)-approximation) of ∥C ∥pp .

Algorithm. Set parameters β = ϵ1/2, ρ = 10
4β2/ϵ2 = 10

4/ϵ . The
algorithm for approximating ℓp -norms for p ∈ [0, 2] is presented in
Algorithm 1. We describe it in words below.

Alice and Bob first try to estimate the ℓp -norm of each row in

C within a factor of (1 + β). This can be done by letting Bob send

Session: Algorithms, Privacy and Workflows PODS’18, June 10-15, 2018, Houston, TX, USA

386

an ℓp -sketch of BT of size Õ(1/β2) to Alice using the sketch in

Lemma 2.1; Alice then computes C̃ = (SBTAT)T . With probability

0.99, we have that for all i ∈ [n],

C̃i,∗

p
p
∈

[

Ci,∗

pp , (1 + β) ·

Ci,∗

pp] . (1)

We note that we can set β = ϵ (instead of β =
√
ϵ) and directly

get a (1+ϵ) approximation of

Ci,∗

pp for each row i (and thus ∥C ∥pp).
This is exactly what was done in [16]. However, the communication

cost in this case is Õ(n/ϵ2), which is higher than our goal by a factor
of 1/ϵ .

Alice then sends Bob

C̃i,∗

p
p
for all i ∈ [n]. Both parties partition

all the rows of C̃ into up to L = O(1/β · logn) groups G1, . . . ,GL ,

such that the ℓ-th group Gℓ contains all i ∈ [n] for which

(1 + β)ℓ ≤

C̃i,∗

p

p
< (1 + β)ℓ+1. (2)

By (1) and (2), we have that for each i ∈ Gℓ ,

(1 + β)ℓ ≤

Ci,∗

pp < (1 + 3β) · (1 + β)ℓ . (3)

For a fixed group Gℓ , let ∥Gℓ ∥
p
p =

∑
i ∈Gℓ

Ci,∗

pp and

G̃ℓ

p
p
=∑

i ∈Gℓ

C̃i,∗

p
p
. For each ℓ ∈ [L], set

pℓ =
ρ

|Gℓ |
·

G̃ℓ

p
p

/

C̃

p
p
.

By (1) we have

pℓ ∈
[
1

2

· ρ

|Gℓ |
·
∥Gℓ ∥

p
p

∥C ∥pp
, 2 · ρ

|Gℓ |
·
∥Gℓ ∥

p
p

∥C ∥pp

]
(4)

For each ℓ ∈ [L], Alice randomly samples each i ∈ Gℓ with prob-

ability pℓ . Alice then sends BobA′ which consists of all the sampled

rows ofAwith other rows being replaced by all-0 vectors. Bob then

computes C ′ = A′B, and outputs

∑
ℓ∈[L]

∑
i ∈Gℓ

1

pℓ

C ′i,∗

pp as the

approximation to ∥C ∥pp .
We can show the following regarding Algorithm 1.

Theorem 3.1. For anyp ∈ [0, 2], there is an algorithm that approx-
imates ∥AB∥p forA,B ∈ Zn×n within a (1+ϵ) factor with probability
1 − 1/n10, using Õ(n/ϵ) bits of communication and 2 rounds.

Correctness. For each ℓ ∈ [L], and each i ∈ Gℓ , let X
ℓ
i be a 0/1

random variable such that X ℓ
i = 1 if i ∈ Gℓ is sampled by Alice,

and X ℓ
i = 0 otherwise. Define

Z ℓ =
1

pℓ

∑
i ∈Gℓ

(

Ci,∗

pp − ∥Gℓ ∥
p
p

|Gℓ |

)
X ℓ
i .

It is clear that E[Z ℓ] = 0. We now compute its variance.

Var[Z ℓ] = 1

p2
ℓ

∑
i ∈Gℓ

©­«
(

Ci,∗

pp − ∥Gℓ ∥

p
p

|Gℓ |

)2
Var[X ℓ

i]
ª®¬

≤ 1

pℓ

∑
i ∈Gℓ

(

Ci,∗

pp − ∥Gℓ ∥
p
p

|Gℓ |

)2

≤ 1

pℓ

∑
i ∈Gℓ

(
3β ·
∥Gℓ ∥

p
p

|Gℓ |

)2
(by (3))

=
9β2 · (∥Gℓ ∥

p
p)2

pℓ |Gℓ |

≤ 18β2

ρ
· ∥Gℓ ∥

p
p · ∥C ∥

p
p . (by (4))

Define Z =
∑

ℓ∈[L] Z
ℓ
. We then have E[Z] = 0, and

Var[Z] =
∑
ℓ∈[L]

Var[Z ℓ]

≤ 18β2

ρ
· ∥C ∥pp ·

∑
ℓ∈[L]

∥Gℓ ∥
p
p

≤ 18β2

ρ
(∥C ∥pp)2.

By Chebyshev’s inequality, we have

Pr[|Z | ≥ ϵ · ∥C ∥pp] ≤
Var[Z]
(ϵ · ∥C ∥pp)2

=
18β2

ρϵ2
≤ 0.01.

We thus have

����∑ℓ∈[L]
∑
i ∈Gℓ

1

pℓ

C ′i,∗

pp − ∥C ∥pp ���� ≤ ϵ ∥C ∥pp with

probability 0.99 (conditioned on (1) holding, which happens with

probability 0.99 as well).

Finally note that we can always boost the success probability of

the algorithm from 0.9 to (1 − 1/n10) using the standard median

trick and paying anotherO(logn) factor in the communication cost

(which will be absorbed by the Õ(·) notation).
Complexity. The communication cost of sending the ℓp -sketch

in the first round is O(n/β2 · logn) words. The cost of sending the

sampled rows is bounded by

∑
ℓ∈[L](pℓ |Gℓ | · n). Thus the total

communication cost is bounded by∑
ℓ∈[L]

(pℓ |Gℓ | · n) +
(
n

β2
· logn

)
= Õ(n) ·

(
ρ +

1

β2

)
= Õ (n/ϵ) (by our choices of ρ and β).

It is clear that the whole algorithm finishes in 2 rounds of com-

munication.

Remark 2. We comment that for p = 1, ∥AB∥
1
can actually be

computed exactly usingO(n logn) bits of communication and 1 round:
Alice simply sends

A∗, j

1
for each j ∈ [n] to Bob, and then Bob

computes
∑
j ∈[n]

(

A∗, j

1
·

Bj,∗

1

)
, which is exactly ∥AB∥

1
.

Remark 3. We can also perform ℓ1-sampling on C = AB using
O(n logn) bits of communication and 1 round. Alice sends for each
j ∈ [n] the value

A∗, j

1
and a random sample from column A∗, j .

Bob computes for each j ∈ [n] the value

A∗, j

1
·

Bj,∗

1
as well

as
∑
j ∈[n]

(

A∗, j

1
·

Bj,∗

1

)
, from which he samples a j ∈ [n] pro-

portional to

A∗, j

1
·

Bj,∗

1
. Finally, Bob samples a random entry

b ∈ Bj,∗, and if a ∈ A∗, j is the uniform sample in A∗, j that Alice sent
to Bob, Bob outputs the pair (a,b) as the ℓ1-sample.

Session: Algorithms, Privacy and Workflows PODS’18, June 10-15, 2018, Houston, TX, USA

387

3.1 ℓ0-Sampling
We now present a simple algorithm for ℓ0-sampling. Recall that the

goal of ℓ0-sampling on matrix C = AB is to sample each non-zero

entry in C with probability (1 ± ϵ) 1

∥C ∥
0

.

The idea is fairly simple: we employ an ℓ0-sketch and ℓ0-samplers

in parallel. We first use the ℓ0-sketch to sample a column of C pro-

portional to its ℓ0-norm, and then apply the ℓ0-sampler to that

column. For the first step, we use the one-way ℓ0-sketching algo-

rithm in Lemma 2.1 to approximate the ℓ0-norm of each column of

C within a factor of 1 + ϵ . For the second step, we use the one-way

ℓ0-sampling algorithm for vectors in Lemma 2.6 for each column

of C .

Theorem 3.2. There is an algorithm that performs ℓ0-sampling on
C with success probability 0.9 using Õ(n/ϵ2) bits of communication
and 1 round.

Proof. The size of the ℓ0-sampler (i.e., the sketching matrix S)
in Lemma 2.6 is bounded by Õ(n), and the size of the ℓ0-sketch

in Lemma 2.1 is bounded by Õ(n/ϵ2). Thus the total number of

bits of communication is bounded by Õ(n/ϵ2) + Õ(n) = Õ(n/ϵ2).
The algorithm finishes in 1 round since both the ℓ0-sketch and

ℓ0-sampler can be computed in one round.

The success probability follows from a union bound on the suc-

cess probabilities of the ℓ0-sketch and ℓ0-sampler for each of the n
columns of C . �

4 (2 + ϵ)-APPROXIMATION OF ℓ∞
In this section we give almost tight upper and lower bounds for

approximating ∥C ∥∞, that is, the maximum entry in the matrix

product C . We first consider the product of binary matrices, and

then consider the product of general matrices.

4.1 Upper Bounds for Binary Matrices
4.1.1 An Upper Bound for 2 + ϵ Approximation.

The Idea. The high level idea is to scale down each entry of C
so that ∥C ∥

1
is as small as possible subject to the constraint that

the largest entry of C is still approximately preserved (after scaling

back). This down-scaling can be done by sampling each 1-entry

of A with a certain probability (we replace the non-sampled 1’s by

0’s). Let A′ be the matrix of A after applying sampling. Alice and

Bob then communicate for each item j ∈ [n] the number of rows

and columns in A′ and B respectively that contain item j (i.e., those
rows and columns with j-th coordinate equal to 1), and the one with
the smaller number sends all the indices of those rows/columns

to the other party. After this, Alice and Bob can compute matrices

C1 and C2 independently such that C ≈ C1 +C2, and then output

max{∥C1∥∞ , ∥C2∥∞} as an approximation to ∥C ∥∞.

Algorithm. Let L = log
1+ϵ ∥A∥1 = O(lognϵ). Set γ =

10
4
logn
ϵ 2 .

We present the algorithm in Algorithm 2, and describe it in words

below.

For ℓ = 0, 1, . . . ,L, Alice samples each 1-entry in A with proba-

bility pℓ = 1/(1 + ϵ)ℓ (i.e., with probability (1 − pℓ) the 1-entry is

replaced by a 0-entry). Let Aℓ
be the matrix after sampling A with

probability pℓ , and let Cℓ = AℓB.

Algorithm 2: (2 + ϵ)-Approximation for ℓ∞
Input :Alice has a matrix A ∈ {0, 1}n×n , and Bob has a

matrix B ∈ {0, 1}n×n . Let C ← AB
Output :A (2 + ϵ)-approximation of ∥C ∥∞

1 foreach ℓ ← 0, 1, . . . ,L do
2 Alice samples each ‘1’ in A with probability

pℓ = 1/(1 + ϵ)ℓ (and replaces those non-sampled 1’s by

0’s), obtaining matrix Aℓ
;

3 Let Cℓ ← AℓB;

4 foreach ℓ ← 0, 1, . . . ,L do
5 Alice and Bob compute

Cℓ

1
using Remark 2;

6 Let ℓ∗ be the smallest index ℓ ∈ {0, 1, . . . ,L} for which

Cℓ

1
≤ γn2;

7 foreach j ∈ [n] do
8 Let uj ←

���{i ∈ [n] | j ∈ Aℓ∗
i }

���, and
vj ← |{i ∈ [n] | j ∈ Bi }|;

9 if uj ≤ vj then
10 Alice sends Ij ← {i | j ∈ Aℓ∗

i } to Bob;

11 else
12 Bob sends Ij ← {i | j ∈ Bi } to Alice;

13 Alice and Bob use the Ij ’s to compute matrices CA and CB
respectively such that Cℓ∗ = CA +CB ;

14 Alice and Bob compute ∥CA∥∞ and ∥CB ∥∞, and output

max{∥CA∥∞ /pℓ∗ , ∥CB ∥∞ /pℓ∗ }.

For each ℓ = 0, 1, . . . ,L, Alice and Bob compute

Cℓ

1
using

Remark 2. Let ℓ∗ be the smallest index ℓ ∈ {0, 1, . . . ,L} such that

Cℓ

1
≤ γn2.

Let us focus on Aℓ∗
and B, and consider each item j ∈ [n]. For

convenience we identify the rows of Aℓ∗
and columns of B as sets

{Aℓ∗
1
, . . . ,Aℓ∗

n } and {B1, . . . ,Bn } respectively. Suppose j appears
uj times in Alice’s sets, and vj times in Bob’s sets. Alice and Bob

exchange the information of uj and vj for all j ∈ [n]. Then for

each j ∈ [n], if uj ≤ vj then Alice sends all the indices of sets Aℓ∗
i

containing j to Bob, otherwise Bob sends all the indices of sets Bi
containing j to Alice.

At this point, Alice and Bob can form matrices CA and CB re-

spectively so that CA + CB = Cℓ∗
, where CA corresponds to the

portion of each entry of Cℓ∗
restricted to the items j for which

Alice knows the intersections (in other words, Alice knows the

inner product defining the entry Cℓ∗
restricted to a certain subset

of items), and similarly define CB . Finally Alice and Bob output

max{∥CA∥∞ /pℓ∗ , ∥CB ∥∞ /pℓ∗ } as the approximation of ∥C∥∞.
We have the following theorem.

Theorem 4.1. Algorithm 2 approximates ∥AB∥∞ for two Boolean
matrices A,B ∈ {0, 1}n×n within a (2+ ϵ) factor with probability 0.9
using Õ(n1.5/ϵ) bits of communication and 3 rounds.

Correctness. We first show that the claimed approximation holds.

The following lemma is a key ingredient.

Session: Algorithms, Privacy and Workflows PODS’18, June 10-15, 2018, Houston, TX, USA

388

Lemma 4.2. With probability 1− 1/n2,

Cℓ∗

∞
/pℓ∗ approximates

∥C ∥∞ within a factor of 1 + ϵ .

Proof. We assume that ∥C ∥
1
> γn2 since otherwise there is

nothing to prove (in this case we have pℓ∗ = 1 and Cℓ∗ = C).
We first define a few events.

E1:

Cℓ∗

∞
≥ 1

2
γ .

E2: For all pairs (i, j), if Cℓ∗
i, j ≥

1

8
γ , then Cℓ∗

i, j/pℓ∗ approximates

Ci, j within a factor of 1 + ϵ .

E3: For all pairs (i, j), if Cℓ∗
i, j <

1

8
γ , then Ci, j <

1

4
γ/pℓ∗ .

In words, E1 states that the maximum entry of Cℓ∗
will be large.

E2 states that for all large entries (i, j) in Cℓ∗
, the values Cℓ∗

i, j , after

rescaling by a factor of 1/pℓ∗ , can be used to approximate Ci, j
within a factor of 1 + ϵ . E3 states that for all small entries (i, j) in
Cℓ∗

, the corresponding values Ci, j cannot be the maximum in the

matrix C .
It is not difficult to see that if all three events hold then Lemma 4.2

holds. Indeed, by E2 we can approximate each Ci, j by Cℓ∗
i, j/pℓ∗

within a factor of 1 + ϵ as long as Cℓ∗
i, j ≥

1

8
γ , and by E1 we have

Cℓ∗

∞
≥ 1

2
γ . Therefore

∥C ∥∞ ≥
1

2

γ/(pℓ∗ (1 + ϵ)) >
1

4

γ/pℓ∗ . (5)

By E3, for all (i, j) with Cℓ∗
i, j <

1

8
γ , we have Ci, j <

1

4
γ/pℓ∗ ; by (5)

we know that these entries (i, j) cannot be the maximum in C . We

can thus conclude that

Cℓ∗

∞
approximates ∥C ∥∞ /pℓ∗ within a

factor of 1 + ϵ .

In the rest of this section we show that each of E1, E2, E3 holds
with probability 1 − 1/n4. The success probability in Lemma 4.2

follows by a union bound.

For E1, we only need to show that

Cℓ∗

1

≥ 1

2
γn2. Recall that

ℓ∗ is the smallest index ℓ ∈ {0, 1, . . . ,L} such that

Cℓ

1
≤ γn2.

We thus have

Cℓ∗−1

1

> γn2. We can view Cℓ∗
as sampling each

entry ofCℓ∗−1
with probability 1/(1+ϵ). By a Chernoff bound, with

probability 1 − 1/n10 we have

Cℓ∗

1

≥ 1

2
γn2. Consequently, we

have

Cℓ∗

∞
≥

Cℓ∗

1

/n2 ≥ 1

2
γ .

For E2, let us first focus on a particular pair (i, j). Let z = Ci, j ,

and let k1, . . . ,kz ∈ [n] be the indices for which Aℓ∗

i,kt
= Bkt , j = 1

for all t = 1, . . . , z. For each t ∈ [z], define the random variable Xt
such that Xt = 1 if Aℓ∗

i,kt
is sampled in Aℓ∗

, and Xt = 0 otherwise.

Let X =
∑
t ∈[z] Xt . We thus have X = Cℓ∗

i, j , and

E[X] = ∑
t ∈[z] E[Xt] = pℓ∗ · z. (6)

The claim is E[X] ≥ 1

16
γ with probability 1 − 1/n10. Suppose

to the contrary that E[X] < 1

16
γ . We can just consider the case

that E[X] ∈ [1
32
γ , 1

16
γ) and argue that with probability 1 − 1/n10

we have X < 1

8
γ , which contradicts the assumption of E2 that

X = Cℓ∗
i, j ≥

1

8
γ . Note that this is sufficient since if E[X] < 1

32
γ then

the probability that X < 1

8
γ will be even higher. In the case when

E[X] ∈ [1
32
γ , 1

16
γ), by a Chernoff bound we have

X ∈ [(1 − ϵ)E[X], (1 + ϵ)E[X]] ⊆
[
1

64

γ ,
1

8

γ

)
with probability 1 − 1/n10.

Now in the case that E[X] ≥ 1

16
γ , by another Chernoff bound we

have X ∈ [(1 − ϵ)E[X], (1 + ϵ)E[X]] with probability 1 − 1/n10; in
other words,X/pℓ∗ (= Cℓ∗

i, j/pℓ∗) approximates E[X]/pℓ∗ (= z = Ci, j)
within a factor of 1 + ϵ . Finally, by a union bound on at most n2

pairs (i, j), the probability that E2 holds is at least 1 − 1/n4.
For E3, we again focus on a particular pair (i, j), andwill reuse the

notation in the analysis of E2. The observation is that if E[X] ≥ 1

4
γ ,

thenX ≥ (1−ϵ)E[X] ≥ 1

8
γ with probability 1−1/n10, contradicting

the assumption of E3. We thus haveCi, j = z = E[X]/pℓ∗ < 1

4
γ/pℓ∗

with probability 1 − 1/n10. Finally by a union bound on at most n2

pairs of (i, j), the probability that E3 holds is at least 1 − 1/n4. �

We now wrap up the correctness proof of the theorem. At the

end of Algorithm 2 Alice and Bob obtain two matrices CA and CB
such that CA +CB = C

ℓ∗
. We thus have max{∥CA∥∞ , ∥CB ∥∞} ≥

Cℓ∗

∞
/2. Combining this with Lemma 4.2 we obtain

∥C ∥∞
2(1 + ϵ) ≤ max

{
∥CA∥∞
pℓ∗

,
∥CB ∥∞
pℓ∗

}
≤ (1 + ϵ) ∥C∥∞ .

Complexity. By Remark 2, the step of computing

Cℓ

1
for

all ℓ = 0, 1, . . . ,L costs Õ(L · n) = Õ(n) bits. The exchanging

of {uj ,vj | j ∈ [n]} costs Õ(n) bits. The last step of computing

max{∥CA∥∞ , ∥CB ∥∞} costs Õ(1) bits.
Now we consider the step of exchanging the indices of sets

containing j for each j ∈ [n]. We analyze two cases. In the case that

uj ,vj >
√
n/ϵ , there will be at most

Cℓ∗

1

≤ 2γn2

uj · vj
such items j. The total communication for such j’s is bounded by∑

j :uj ,vj>
√
n/ϵ

min{uj ,vj } ≤
∑
ℓ≥0

γn2

n/ϵ2 · 22ℓ
·
√
n/ϵ · 2ℓ

= Õ(γϵn1.5) = Õ(n1.5/ϵ).

In the case that min{uj ,vj } ≤
√
n/ϵ , we directly have∑

j :min{uj ,vj }≤
√
n/ϵ

min{uj ,vj } ≤
∑
j ∈[n]

√
n/ϵ ≤ n1.5/ϵ .

Summing up, the total communication cost is bounded by Õ(n1.5/ϵ).
Finally we show that Algorithm 2 can be implemented in 3

rounds. In Round 1, for each level ℓ Alice sends Bob {

A∗, j

1
| j ∈

[n]} so that Bob can compute ∥AB∥
1
according to Remark 2, and

consequently finds ℓ∗. In Round 2, Bob sends ℓ∗ to Alice, together

with all Ij corresponding to those j with uj > vj . In Round 3, Alice

sends Bob all Ij corresponding to those j with uj ≤ vj . Alice also
forms CA, computes and sends ∥CA∥∞ to Bob. Finally Bob forms

CB , and computes max{∥CA∥∞ , ∥CB ∥∞} as the final output.

Session: Algorithms, Privacy and Workflows PODS’18, June 10-15, 2018, Houston, TX, USA

389

Algorithm 3: κ-Approximation for ℓ∞
Input :Alice has a matrix A ∈ {0, 1}n×n , and Bob has a

matrix B ∈ {0, 1}n×n . Let C ← AB
Output :A κ-approximation of ∥C ∥∞

1 Set q = min{α/κ, 1} where α = 10
4
logn;

2 Alice samples each column of A with probability q (and

replaces those non-sampled columns by the all-0 vector),

obtaining A′. Let D ← A′B;
3 Alice and Bob compute ∥D∥

1
and ∥C ∥

1
;

4 if ∥D∥
1
= 0 then

5 if ∥C ∥
1
= 0 then Output 0;

6 else Output 1;

7 else
8 Follow Algorithm 2 and further sample A′ with probability

pℓ = 1/2ℓ (instead of pℓ = 1/(1 + ϵ)ℓ) for
ℓ = 0, 1, . . . , log

2
∥A′∥

1
, and with the threshold γn2 at

Line 6 being replaced by α/κ · n2. Finally output

max{∥CA∥∞ /(q · pℓ∗), ∥CB ∥∞ /(q · pℓ∗)}.

4.1.2 An Upper Bound for General κ-Approximation.

The Idea andAlgorithm. We next consider protocols obtaining a

κ-approximation to ∥C ∥∞ for a general approximation factor κ > 1.

One way to do this is to exactly follow Algorithm 2. That is, we

first scale down the entries of C by sampling the 1-entries in A to a

level for which

Cℓ

1
≤ αn2/κ where κ is the approximation ratio,

and α = Θ(logn). If we continue to follow Algorithm 2, then we

will get an Õ(n1.5/
√
κ) bound. We now show how to improve the

bound to Õ(n1.5/κ).
The main change we make to Algorithm 2 is that we add a

universe sampling step at the beginning. More precisely, we sample

each column of A with probability q = min{α/κ, 1} where α =
10

4
logn, and then replace all non-sampled columns in A with all-0

vectors, obtaining a newmatrixA′. LetD = A′B. Recall thatC = AB.
We compute ∥C ∥

1
and ∥D∥

1
.

With this new universe sampling step it is possible to have

∥D∥
1
= 0. If this happens then we also check ∥C ∥

1
. If ∥C ∥

1
= 0

then we simply output 0; otherwise we output 1. If ∥D∥
1
> 0, then

we follow Algorithm 2 to do further sampling on A′, obtaining
A1,A2, Let Cℓ = AℓB for ℓ = 1, 2, We again stop at the

first level ℓ∗ for which

Cℓ∗

1

≤ αn2/κ, and then exchange for

each (surviving) universe item j the indices of sets that contain j,
in exactly the same way as that in Algorithm 2.

The algorithm in presented in Algorithm 3. We have the follow-

ing theorem.

Theorem 4.3. Algorithm 3 approximates ∥AB∥∞ for two Boolean
matrices A,B ∈ {0, 1}n×n within a factor of κ for any κ ∈ [4,n]
with probability 0.9 using Õ(n1.5/κ) bits of communication andO(1)
rounds.

Correctness. For simplicity we assume that α/κ ≤ 1 (and thus

q = α/κ), since otherwise D = C and the arguments will follow

those in Algorithm 2.

We define two events, and will show that each holds with proba-

bility 1 − 1/n4.
E4: For all pairs (i, j), if Di, j ≥ 1

8
α , then Di, j/q approximates

Ci, j within a factor of 2.

E5: For all pairs (i, j), if Di, j <
1

8
α , then Ci, j <

1

4
α/q.

We first assume that ∥D∥∞ > 0. Consider a pair (i, j), if Di, j <
1

8
α , then we know by E5 that Ci, j <

1

4
α/q = 1

4
κ. Otherwise if

Di, j ≥ 1

8
α then by E4 we know that Di, j/q approximates Ci, j

within a factor of 2. We thus conclude that ∥D∥∞ approximates

∥C ∥∞ within a factor of κ/4 if ∥D∥∞ > 0.

In the case that ∥D∥∞ = 0, by E5 we know that all entries in

C are less than κ/4. Then we can test whether ∥C ∥
1
> 0. If the

answer is yes then we can output 1, which already approximates

∥C ∥∞ within a factor of κ; otherwise we know that C is the zero

matrix, and we can output 0.

The proofs that each of E4 and E5 hold with probability 1− 1/n4
are analogous to those for E2 and E3 in the proof of Lemma 4.2.

Complexity. The analysis of the communication cost is again sim-

ilar to that of Algorithm 2, and the bottleneck is still the exchange

of the indices of sets containing j for each j ∈ [n]. We again analyze

two cases. Note that after sampling we have

Cℓ∗

1

= Õ(n2/κ), and
the universe size is Õ(n/κ).
• If min{uj ,vj } ≤

√
n, then since the universe size is Õ(n/κ),

the total communication is upper bounded by Õ(n/κ) ·
√
n =

Õ(n1.5/κ).
• If min{uj ,vj } >

√
n, then since

Cℓ∗

1

= Õ(n2/κ), the total
communication is upper bounded by

Cℓ∗

1

/
√
n = Õ(n1.5/κ).

Therefore the total communication is bounded by Õ(n2/κ). The
number of rounds is clearly bounded by O(1).

4.2 Lower Bounds for Binary Matrices
In this section we show that our algorithms for ℓ∞-norm estimation

in Section 4.1 are almost tight in the sense that (1) Ω(n2) bits of
communication is needed if we want to go beyond a 2 + ϵ approxi-

mation, and (2) for any approximation κ we need to use Ω(n
3

2 /κ)
bits of communication.

4.2.1 A Lower Bound for 2-Approximation.

Theorem 4.4. Any algorithm that approximates ∥AB∥∞ for two
Boolean matrices A,B ∈ {0, 1}n×n within a factor of 2 with proba-
bility 0.51 needs Ω(n2) bits of communication, even if we allow an
unbounded number of communication rounds.

Proof. Weperform a reduction from the two-player set-disjointness

(see Section 2) on strings of length (n/2)2 = n2/4, where Alice has x
and Bob has y. Alice creates an n/2 × n/2 matrix A′ indexed by the

coordinates in x , that is, the i-th (i = 1, . . . ,n/2) row of A′ consists
of the ((i − 1)n

2
+ 1)-th, . . . , in

2
-th coordinates of x . Similarly, Bob

creates an n/2 × n/2 matrix B′ indexed by the coordinates in y.
Next, Alice creates an n × n input matrix

A =

[
A′ I
0 0

]
,

Session: Algorithms, Privacy and Workflows PODS’18, June 10-15, 2018, Houston, TX, USA

390

where I is an n/2 × n/2 identity matrix, and 0 is an n/2 × n/2 all-0
matrix. Bob creates an n × n input matrix

B =

[
I 0
B′ 0

]
.

Note that A and B are both binary matrices, as needed for the

reduction to the ∥AB∥∞ problem.

The key is to observe that

A · B =
[
A′ + B′ 0

0 0

]
. (7)

We thus have ∥A · B∥∞ = ∥A′ + B′∥∞, which is 2 if x ∩ y , ∅, and
1 otherwise. The claimed lower bound for approximating ∥C ∥∞
within a factor of 2 follows from the Ω(n2) lower bounds for two-
player set-disjointness on strings of length Θ(n2) for success prob-
ability 0.51 (Lemma 2.3). �

4.2.2 A Lower Bound for General κ-Approximation.

Theorem 4.5. For any κ ∈ [1,n], any randomized algorithm that
approximates ∥AB∥∞ for two Boolean matrices A,B ∈ {0, 1}n×n

within a factor of κ with probability 0.52 needs Ω̃
(
n

3

2 /κ
)
bits of

communication, even if we allow an unbounded number of communi-
cation rounds.

The proof is again by a reduction from a communication prob-

lem which is highly structured. We first introduce a few simple

communication problems which will be used as building blocks to

construct the final communication problem that we will use for the

reduction.

Set β =
√
50 logn/n, and set k = 1/(4κβ2) where κ is the approx-

imation ratio.

The AND Problem. In this problem Alice holds a bit x and Bob holds

a bit y. They want to compute AND(x ,y) = x ∧ y.
Let X be Alice’s input and Y be Bob’s input. We define two

input distributions for (X ,Y). Let W be a random bit such that

Pr[W = 0] = Pr[W = 1] = 1/2; let λ be the distribution ofW .

ν1: We first chooseW ∼ λ. IfW = 0, we set (X ,Y) = (0, 0) with
probability 1 − β , and (X ,Y) = (0, 1) with probability β . If
W = 1, we set (X ,Y) = (0, 0) with probability 1 − β , and
(X ,Y) = (1, 0) with probability β .

µ1: Set (X ,Y) = (0, 0) with probability 1/2, and (X ,Y) = (1, 1)
with probability 1/2.

The DISJ Problem. Recall the set-disjointness problem introduced

in Section 2, where Alice holds x = (x1, . . . ,xk) ∈ {0, 1}k , and
Bob holds y = (y1, . . . ,yk) ∈ {0, 1}k , and they want to compute

DISJ(x ,y) = ∨ki=1AND(xi ,yi).
Let X = (X1, . . . ,Xk) be Alice’s input, and Y = (Y1, . . . ,Yk) be

Bob’s input. We again define two input distributions for (X ,Y).
νk : Set (Xi ,Yi) ∼ ν1 for each i ∈ [k].
µk : We first set (Xi ,Yi) ∼ νk , and then pick M uniformly at

random from {1, . . . ,k}, and reset (XM ,YM) ∼ µ1.

The SUM Problem. In this problem Alice holds u = (u1, . . . ,un)
where ui ∈ {0, 1}k for each i ∈ [n], and Bob holds v = (v1, . . . ,vn)
wherevi ∈ {0, 1}k for each i ∈ [n]. Theywant to compute SUM(u,v) =∑n
i=1 DISJ(ui ,vi).

Let U = (U1, . . . ,Un) be Alice’s input, and V = (V1, . . . ,Vn) be
Bob’s input. We define the following input distribution for (U ,V).

ϕ: We first set (Ui ,Vi) ∼ νk , and then pick a D uniformly at

random from {1, . . . ,n}, and reset (UD ,VD) ∼ µk .
Note that under (U ,V) ∼ ϕ, Pr[SUM(U ,V) = 0] = Pr[SUM(U ,V) =

1] = 1/2. Using the standard information complexity machinery

(which we omit here; and can be found in for example [18, 35]) we

can show the following.

Theorem 4.6. Any deterministic algorithm solving SUM(U ,V)
correctly with probability 0.51 under (U ,V) ∼ ϕ needs Ω(βkn) bits
of communication.

Input Reduction. We now perform a reduction from SUM to the ℓ∞-
norm estimation problem. Given (U ,V) ∼ ϕ, we construct matrices

A and B as follows. We set A = [A1, . . . ,An/k] where A1 = . . . =

An/k , and for each Az (z ∈ [n/k]) we have Azi,∗ = Ui for all i ∈ [n].
Similarly, we set B = [B1, . . . ,Bn/k]T where B1 = . . . = Bn/k , and
for each Bz (z ∈ [n/k]) we have Bz∗,i = Vi for all i ∈ [n]. Let ψ
denote the resulting distribution of (A,B). We have the following

lemma.

Lemma 4.7. For any κ, any deterministic algorithm that approxi-
mates ∥AB∥∞ within a factor ofκ with probability δ under (A,B) ∼ ψ
can be used to compute SUM(U ,V) with probability (δ + 0.01) under
(U ,V) ∼ ϕ.

Proof. Let (U ,V) ∼ ϕ, and let (A,B) be constructed using (U ,V)
as described in the input reduction above. Let C = AB. We first

compute the value of ∥C ∥∞.
We analyze two cases.When SUM(U ,V) = 0, we haveDISJ(Ui ,Vi) =

0 for all i ∈ [n]. Consider a pair (i, j) (i, j ∈ [n], i , j). We analyze

the inner product ⟨Ai,∗,B∗, j ⟩. For each t ∈ [k], the probability that

Ai,t = Bt, j = 1 is at most β2. We thus have

E[⟨Ai,∗,B∗, j ⟩] ≤ β2n.

By a Chernoff bound we have ⟨Ai,∗,B∗, j ⟩ ≤ 2β2n with probability

1 − e−β 2n/3 ≥ 1 − 1/n10. By a union bound on all pairs (i, j) (i , j),
we have that with probability 1 − 1/n8, Ci, j = ⟨Ai,∗,B∗, j ⟩ ≤ 2β2n
for all (i, j) (i , j). Consequently,

∥C ∥∞ ≤ 2β2n. (8)

When SUM(U ,V) = 1, we have DISJ(Ui ,Vi) = 0 for all i ∈ [n]\D,
and DISJ(UD ,VD) = 1. We thus have

∥C ∥∞ ≥ n/k . (9)

By our choices of parameters β and k , we have

(n/k)/(2β2n) = 2κ > κ .

The lemma thus follows from (8) and (9). �

Theorem 4.5 follows from Lemma 4.7, Theorem 4.6, our choices

of β and k , and Yao’s minimax lemma.

Session: Algorithms, Privacy and Workflows PODS’18, June 10-15, 2018, Houston, TX, USA

391

4.3 General Matrices
Finally we observe that the communication complexity for approx-

imating ∥AB∥∞ for non-binary matrices A,B is significantly differ-

ent than that for binary matrices.

Theorem 4.8. Let A ∈ Zn×n and B ∈ Zn×n . In the two-party
communication model we have:

(1) There is an algorithm that computes ∥AB∥∞ within a factor κ
using Õ(n2/κ2) bits of communication and one round.

(2) Any algorithm that approximates ∥AB∥∞ within a factor κ
needs Ω̃(n2/κ2) bits of communication, even if we allow an
arbitrary number of communication rounds.

For the upper bound, we first recall a simple algorithm for sketch-

ing ∥x ∥∞ (x ∈ Zn).1 We first partition the vector x inton/κ2 blocks
each of size κ2, and then use the AMS sketching algorithm [4] for

ℓ2-norm estimation for each block; the sketch size is Õ(1) if we
target an O(1)-approximation and 1 − 1/n10 success probability.

Since for each vector y ∈ Zκ2

we have ∥y∥∞ ∈
[∥y ∥

2

κ , ∥y∥2
]
, we

obtain a sketch of size Õ(n/κ2) for estimating ∥x ∥∞ within a factor

of κ. Denote this sketching matrix by S ∈ RÕ (n/κ2)×n
.

In the matrix product setting Alice simply applies S to A and

sends SA ∈ RÕ (n/κ2)×n
to Bob. Bob then estimates the ℓ∞-norm of

each column of C(= AB) using SA and B (and computing SA · B),
and then outputs maxj ∈[n]

C∗, j

∞.
For the lower bound, we again use the technique in Section 4.2.1

to convert a matrix product to a matrix sum, and then perform a

reduction from the ℓ∞-norm estimation problem (see Section 2).

Given two vectors x ,y ∈ [0,κ]n2/4
, we construct A′,B′ and A,B ex-

actly the sameway as that in Section 4.2.1.We then have ∥A · B∥∞ =
∥A′ + B′∥∞, which evaluates to κ if Gap-l∞(x ,y) = 1, and evaluates

to at most 1 if Gap-l∞(x ,y) = 0. The lower bound follows from

Lemma 2.4.

5 APPROXIMATE HEAVY HITTERS
In this section we consider the ℓp -(ϕ, ϵ)-heavy-hitter problem de-

scribed in the introduction. We first propose an algorithm for prod-

ucts of general matrices, and then consider the problem for binary

matrices.

5.1 General Matrices
We first consider p = 1. General p ∈ (0, 2] can be handled in a

similar way.

The Idea. The idea for computing approximate heavy hitters is

similar to our ideas for the ℓ∞-norm, that is, we sample 1-entries

in A to scale down the values of entries inC to a level such that the

heavy-hitter entries are still non-zero, while there are not many

non-zero entries corresponding to non-heavy-hitter entries. Let C ′

denote the matrix C after we scale down. Since there cannot be

many heavy hitters, the number of non-zero entries in C ′ is small.

We can thus perform a sparse recovery algorithm on C ′ to find all

the heavy hitters.

Algorithm. Wepresent the algorithm in Algorithm 4, and describe

it in words below.

1
This algorithm was described in [33].

Algorithm 4: Computing ℓ1-(ϕ, ϵ)-Heavy-Hitters
Input :Alice has a matrix A ∈ Õ(n/κ2)n×n , and Bob has a

matrix B ∈ Õ(n/κ2)n×n . Let C ← AB
Output :ℓ1-(ϕ, ϵ)-Heavy-Hitters of C

1 Alice and Bob compute ∥C ∥
1
;

2 Set the sampling rate β ← min

 10
4
logn(

ϵ
ϕ

)
2

· ϕ
8
∥C ∥

1

, 1

;
3 Alice samples each 1-entry in A with probability β (and

replaces all the non-sampled 1’s by 0’s), obtaining matrix Aβ
;

let Cβ ← AβB;

4 Alice and Bob then use Lemma 2.5 to recover all the non-zero

entries of Cβ
; the recovered matrix Cβ

is distributed at

Alice’s side and Bob’s side, denoted by CA and CB where

Cβ = CA +CB ;

5 Alice creates C ′A consisting of all entries in CA that are larger

than
ϵ β
8
∥C ∥

1
, and sends C ′A to Bob. Bob outputs all entries

in C ′ = C ′A +CB that are at least β · (ϕ − ϵ
2
) ∥C ∥

1
.

Alice and Bob first compute ∥C ∥
1
using Remark 2. Next, similar

to Algorithm 2 for approximating ∥C ∥∞, we sample the 1-entries in

matrix A. The sampling is simpler in this case since we only need

to sample the entries at the fixed ratio β . Let Cβ
be the resulting

matrix after sampling.

Alice and Bob then use Lemma 2.5 to recover all the non-zero

entries inCβ
; the entries of the recoveredCβ

are distributed across

the two parties, denoted byCA andCB whereCβ = CA +CB . Alice
then sends all “heavy” entries in CA, that is, those whose values

are larger than
ϵ β
8
∥C ∥

1
, to Bob. Bob then outputs all the heavy

hitters in C ′ which is constructed by adding the heavy entries of

CA (received from Alice) to CB .

Theorem 5.1. Algorithm 4 computes the ℓ1-(ϕ, ϵ)-heavy-hitters
(0 < ϵ ≤ ϕ ≤ 1) of AB, where A,B ∈ Zn×n , with probability 0.9 and

using Õ(
√
ϕ
ϵ n) bits of communication and O(1) rounds.

We will assume that ∥C ∥
1
≥ 10

4
logn(

ϵ
ϕ

)
2

· ϕ
8

=
8·104ϕ logn

ϵ 2 , since oth-

erwise β = 1, and then Cβ = C , in which case the proof is only

simpler.

Correctness. We define two events.

E6: For all pairs (i, j), ifCi, j ≥ ϕ
8
∥C ∥

1
, thenC

β
i, j/β approximates

Ci, j within a factor of 1 + ϵ
4ϕ .

E7: For all pairs (i, j), if Ci, j < ϕ
8
∥C ∥

1
, then C

β
i, j/β <

ϕ
4
∥C ∥

1
.

The correctness of Theorem 5.1 holds if both E6 and E7 hold. To
see this, first consider those pairs (i, j) for whichCi, j < ϕ

8
∥C∥

1
. By

E7 we have

C ′i, j ≤ C
β
i, j ≤ β ·

ϕ

4

∥C ∥
1
< β · (ϕ − ϵ

2

) ∥C ∥
1
.

Thus pair (i, j) will not be output in Step 5 of Algorithm 4.

Session: Algorithms, Privacy and Workflows PODS’18, June 10-15, 2018, Houston, TX, USA

392

We next consider those pairs (i, j) with Ci, j ≥ ϕ
8
∥C ∥

1
. By E6

we have that C
β
i, j ∈

[
βCi, j
1+ ϵ

4ϕ
, β(1 + ϵ

4ϕ)Ci, j
]
. Now we consider two

cases.

(1) If Ci, j ≥ ϕ ∥C ∥1, then

C ′i, j ≥ C
β
i, j −

ϵβ

8

∥C ∥
1

≥
βCi, j

1 + ϵ
4ϕ
− ϵβ

8

∥C ∥
1

≥ βϕ ∥C ∥
1

1 + ϵ
4ϕ
− ϵβ

8

∥C ∥
1

≥ β
(
ϕ − ϵ

2

)
∥C ∥

1
.

Thus pair (i, j) will be output.
(2) If Ci, j ≤ (ϕ − ϵ) ∥C ∥1, then

C ′i, j ≤ βC
β
i, j ≤ β

(
1 +

ϵ

4ϕ

)
Ci, j

≤ β

(
1 +

ϵ

4ϕ

)
(ϕ − ϵ) ∥C ∥

1

≤ β
(
ϕ − ϵ

2

)
∥C ∥

1
.

Thus pair (i, j) will not be output.
In the following we show that both E6 and E7 hold with proba-

bility 1 − 1/n4.
For E6, for a fixed pair (i, j), by sampling we have

E[Cβ
i, j] = β ·Ci, j ≥ β ·

ϕ

8

∥C ∥
1
.

By a Chernoff bound we have

Pr
[���Cβ

i, j − E[C
β
i, j]

���] ≥ ϵ

4ϕ
· E[Cβ

i, j]

≤ 2 · e−(
ϵ
4ϕ)

2β ϕ
8
∥C ∥

1
/3

≤ 1/n10.

By a union bound over the at most n2 (i, j) pairs, we have that with
probability 1 − 1/n4, Cβ

i, j/β approximates Ci, j within a factor of

(1 + ϵ
4ϕ) for all pairs (i, j).

For E7, consider a fixed pair (i, j). IfCi, j < ϕ
8
∥C ∥

1
, thenE[Cβ

i, j] <
β · ϕ

8
∥C ∥

1
. By a Chernoff bound we have that C

β
i, j ≤ 2β · ϕ

8
∥C ∥

1

with probability 1 − 1/n10. Thus the probability that E7 holds is at
least 1 − 1/n4 by a union bound over all (i, j) pairs.

Complexities. Step 1 can be done using Õ(n) bits (Remark 2).

By a Chernoff bound, it holds with probability 1 − 1/n10 that

Cβ

1

≤ 2β ∥C ∥
1
= O

(
ϕ
ϵ 2 logn

)
. Consequently we have

Cβ

0

≤

Cβ

1

= O(ϕϵ 2 logn). By Lemma 2.5 we have that with probability

1 − 1/n10 Alice and Bob can recover all non-zero entries of Cβ
in

Step 4 using Õ(
√
ϕ
ϵ n) bits of communication and 2 rounds. The

communication in Step 5 is bounded by Õ(1/ϵ). We thus can bound

the total communication by Õ(
√
ϕ
ϵ n).

Finally, it is easy to see that the algorithm terminates in O(1)
rounds.

The above analysis can be straightforwardly extended to ℓp -

norms for all constants p ∈ (0, 2] simply by replacing the sampling

probability β by βp at Line 2, and replacing ∥C ∥
1
and matrix entries

Mi, j by ∥C ∥pp and

��Mi, j
��p

respectively at Lines 1, 2 and 5. At Line 1

one can use Algorithm 1 to estimate ∥C ∥pp up to a factor of (1+ ϵ
4ϕ),

which costs Õ(ϕϵ n) bits of communication by Theorem 3.1, and is

the bottleneck here.

Corollary 5.2. For two matrices A,B ∈ Zn×n , there is an algo-
rithm that computes the ℓp -(ϕ, ϵ)-heavy-hitters (0 < ϵ ≤ ϕ ≤ 1,p ∈
(0, 2]) of AB with probability 0.9 using Õ(ϕϵ n) bits of communication
and O(1) rounds.

5.2 Binary Matrices
In this section we show that we can do better for binary matrices

by employing the idea we use for ℓ∞-norm estimation. Again Alice

holds A ∈ {0, 1}n×n and Bob holds B ∈ {0, 1}n×n , and let C = AB.
Due to the similarity of the approach compared with the ℓ∞-norm
case (Section 4.1), we do not repeat some of the details.

We first assume that ∥AB∥pp ≥ 100ϕ logn/ϵ2, and will consider

the other case later. The algorithm is as follows.

Step 1: Alice and Bob first estimate Lp = ∥C ∥p within a factor of

2, denoted by L′p .
Step 2: Alice samples each column of A with probability β =

min

{
α

ϕ1/pL′p
, 1

}
for α = (104 logn)1/p , obtaining A′. Let C ′ = A′B.

Alice and Bob then exchange the indices of sets containing j for
each surviving item j ∈ [n] as Step 7-12 in Algorithm 2, obtaining

CA and CB for which C ′ = CA +CB .
Step 3: Alice and Bob try to verify for each non-zero entry in

CA or CB whether it is indeed a heavy hitter. Let SA, SB consist of

all the entries (i, j) in CA,CB for which (CA)
p
i, j ≥ β

pϕ(L′p)p/20 or
(CB)

p
i, j ≥ βpϕ(L′p)p/20, respectively. Then for each entry (i, j) ∈

SA ∪ SB , Alice and Bob try to estimate Ci, j within a (1 + ϵ/(2ϕ))
factor by sampling Õ(1/(ϵ/ϕ)2) coordinates of their correponding
row and column in A and B.

By Chernoff bounds, one has that after sampling we have with

probability (1− 1/n10) that (1) the number of sampled columns ofA
(or, the number of surviving universe items) is bounded by Õ(βn),
and (2) ∥C ′∥

1
= Õ(βL1).

The correctness proof is identical to that for the ℓ∞-norm esti-

mation algorithms in Section 4.1. We next turn to analyzing the

communication cost.

The first step costs Õ(n) bits of communication by Theorem 3.1.

For the second step, reusing the notation uj ,vj for each universe

item j in Algorithm 2, we analyze two cases:

• If min{uj ,vj } ≤
√
L1/n, then since there are at most Õ(βn)

surviving universe items, the total communication is upper

bounded by

Õ(βn) ·
√

L1
n
= Õ

(√
n

ϕ1/p
·
√
L1
Lp

)
.

Session: Algorithms, Privacy and Workflows PODS’18, June 10-15, 2018, Houston, TX, USA

393

• If min{uj ,vj } >
√
L1/n, then since ∥C ′∥

1
= Õ(βL1), the

total communication is upper bounded by

Õ

(
βL1√
L1/n

)
= Õ

(√
n

ϕ1/p
·
√
L1
Lp

)
.

It is easy to see that the third step costs Õ((ϕ/ϵ)2 · 1/ϕ) = Õ(ϕ/ϵ2)
bits of communication since there can be at most Õ(1/ϕ) entries
whose p-th powers are at least βpϕL′pp/20. Summing up, the total

communication is bounded by Õ(Z) where

Z = n +

√
n

ϕ1/p
·
√
L1
Lp
+
ϕ

ϵ2

≤ n +
ϕ

ϵ2
+

n
1

2

ϕ1/p
·
√
L1

L2/(n
1

2
− 1

p)

≤ n +
ϕ

ϵ2
+
n
1− 1

p

ϕ1/p
(
√
L1 ≤ L2)

≤ 2

(
n +

ϕ

ϵ2

)
.

(
ϕ

ϵ2
≥ 1

ϕ

)
In the case that ∥AB∥pp < 100ϕ logn/ϵ2, we can just omit the

subsampling in Step 2 of the algorithm. A similar analysis gives a

communication cost of Õ(n +
√
ϕn
ϵ + 1

ϵ) = Õ(n +
ϕ
ϵ 2).

Theorem 5.3. There is an algorithm that computes the ℓp -(ϕ, ϵ)-
heavy-hitters (0 < ϵ ≤ ϕ ≤ 1,p ∈ (0, 2]) of AB, where A,B ∈
{0, 1}n×n , with probability 0.9 and using Õ(n + ϕ

ϵ 2) bits of commu-
nication and O(1) rounds.

6 CONCLUDING REMARKS
In this paper we studied a set of basic statistical estimation problems

of matrix products in the distributed model, including the ℓp -norms,

distinct elements, ℓ0-sampling and heavy hitters. These problems

have a number of applications in database joins.

We would like to mention again that our algorithms for square

matrices can be straightforwardly modified to handle rectangular

matrices where A ∈ Σm×n (m ≥ n) and B ∈ Σn×m . We briefly list

here how our main upper bounds look like on rectangular matrices.

All the algorithms remain the same (we of course have to change

some occurrences of n tom in several places).

• The communication cost for (1 + ϵ)-approximating ℓp (p ∈
[0, 2]) with Σ = Z remains Õ(n/ϵ).
• The communication cost for (2 + ϵ)-approximating ℓ∞ with

Σ = {0, 1} becomes Õ(m1.5), and that for κ-approximating

ℓ∞ with Σ = {0, 1} becomes Õ(m1.5/κ)
• The communication cost for ℓp -(ϕ, ϵ)-heavy-hitters with

Σ = Z remains Õ(ϕϵ n), and that for ℓp -(ϕ, ϵ)-heavy-hitters
with Σ = {0, 1} remains Õ(n + ϕ

ϵ 2).

REFERENCES
[1] A. Abboud and A. Rubinstein. Distributed PCP theorems for hardness of approx-

imation in P. CoRR, abs/1706.06407, 2017.

[2] F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a map-reduce envi-

ronment. IEEE Trans. Knowl. Data Eng., 23(9):1282–1298, 2011.
[3] T. D. Ahle, R. Pagh, I. P. Razenshteyn, and F. Silvestri. On the complexity of inner

product similarity join. In PODS, pages 151–164, 2016.
[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.
[5] R. R. Amossen, A. Campagna, and R. Pagh. Better size estimation for sparse

matrix products. Algorithmica, 69(3):741–757, 2014.
[6] M. Balcan, Y. Liang, L. Song, D. P. Woodruff, and B. Xie. Communication efficient

distributed kernel principal component analysis. In KDD, pages 725–734, 2016.
[7] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics

approach to data stream and communication complexity. J. Comput. Syst. Sci.,
68(4):702–732, 2004.

[8] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting

distinct elements in a data stream. In RANDOM, pages 1–10, 2002.

[9] P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel query

processing. In PODS, pages 273–284, 2013.
[10] P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In PODS,

pages 212–223, 2014.

[11] C. Boutsidis, D. P. Woodruff, and P. Zhong. Optimal principal component analysis

in distributed and streaming models. In STOC, pages 236–249, 2016.
[12] E. Cohen. Structure prediction and computation of sparse matrix products. J.

Comb. Optim., 2(4):307–332, 1998.
[13] E. Cohen and D. D. Lewis. Approximating matrix multiplication for pattern

recognition tasks. J. Algorithms, 30(2):211–252, 1999.
[14] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base

applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.
[15] G. Frahling, P. Indyk, and C. Sohler. Sampling in dynamic data streams and

applications. Int. J. Comput. Geometry Appl., 18(1/2):3–28, 2008.
[16] D. V. Gucht, R. Williams, D. P. Woodruff, and Q. Zhang. The communication

complexity of distributed set-joins with applications to matrix multiplication. In

PODS, pages 199–212, 2015.
[17] X. Hu, Y. Tao, and K. Yi. Output-optimal parallel algorithms for similarity joins.

In PODS, pages 79–90, 2017.
[18] Z. Huang, B. Radunovic, M. Vojnovic, and Q. Zhang. Communication complexity

of approximate matching in distributed graphs. In STACS, pages 460–473, 2015.
[19] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data

stream computation. In FOCS, pages 189–197, 2000.
[20] H. Jowhari, M. Saglam, and G. Tardos. Tight bounds for lp samplers, finding

duplicates in streams, and related problems. In PODS, pages 49–58, 2011.
[21] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for the distinct

elements problem. In PODS, pages 41–52, 2010.
[22] R. Kannan, S. Vempala, and D. P. Woodruff. Principal component analysis and

higher correlations for distributed data. In COLT, pages 1040–1057, 2014.
[23] B. Ketsman and D. Suciu. A worst-case optimal multi-round algorithm for parallel

computation of conjunctive queries. In PODS, pages 417–428, 2017.
[24] D. Kossmann. The state of the art in distributed query processing. ACM Comput.

Surv., 32(4):422–469, 2000.
[25] P. Koutris, P. Beame, and D. Suciu. Worst-case optimal algorithms for parallel

query processing. In ICDT, pages 8:1–8:18, 2016.
[26] P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In PODS,

pages 223–234, 2011.

[27] Y. Liang, M. Balcan, V. Kanchanapally, and D. P. Woodruff. Improved distributed

principal component analysis. In NIPS, pages 3113–3121, 2014.
[28] A. McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20,

2014.

[29] P. Mishra and M. H. Eich. Join processing in relational databases. ACM Comput.
Surv., 24(1):63–113, 1992.

[30] M. Monemizadeh and D. P. Woodruff. 1-pass relative-error lp-sampling with

applications. In SODA, pages 1143–1160, 2010.
[31] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and

Trends in Theoretical Computer Science, 1(2), 2005.
[32] R. Pagh. Compressed matrix multiplication. TOCT, 5(3), 2013.
[33] M. E. Saks and X. Sun. Space lower bounds for distance approximation in the

data stream model. In STOC, pages 360–369, 2002.
[34] D. P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and

Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.
[35] D. P. Woodruff and Q. Zhang. An optimal lower bound for distinct elements in

the message passing model. In SODA, pages 718–733, 2014.
[36] D. P. Woodruff and P. Zhong. Distributed low rank approximation of implicit

functions of a matrix. In ICDE, pages 847–858, 2016.

Session: Algorithms, Privacy and Workflows PODS’18, June 10-15, 2018, Houston, TX, USA

394

	Abstract
	1 Introduction
	1.1 Motivation and Applications
	1.2 Our Results
	1.3 Related Work

	2 Preliminaries
	3 (1+)-Approximation of p (p [0, 2])
	3.1 0-Sampling

	4 (2+)-Approximation of
	4.1 Upper Bounds for Binary Matrices
	4.2 Lower Bounds for Binary Matrices
	4.3 General Matrices

	5 Approximate Heavy Hitters
	5.1 General Matrices
	5.2 Binary Matrices

	6 Concluding Remarks
	References

