Session: Algorithms, Privacy and Workflows

PODS’18, June 10-15, 2018, Houston, TX, USA

Distributed Statistical Estimation of Matrix Products
with Applications®

David P. Woodruff

Carnegie Mellon University
Pittsburgh, PA, USA
dwoodruf@cs.cmu.edu

ABSTRACT

We consider statistical estimations of a matrix product over the
integers in a distributed setting, where we have two parties Alice
and Bob; Alice holds a matrix A and Bob holds a matrix B, and they
want to estimate statistics of A - B. We focus on the well-studied
{p-norm, distinct elements (p = 0), {o-sampling, and heavy hitter
problems. The goal is to minimize both the communication cost
and the number of rounds of communication.

This problem is closely related to the fundamental set-intersection
join problem in databases: when p = 0 the problem corresponds
to the size of the set-intersection join. When p = oo the output is
simply the pair of sets with the maximum intersection size. When
p = 1 the problem corresponds to the size of the corresponding
natural join. We also consider the heavy hitters problem which
corresponds to finding the pairs of sets with intersection size above
a certain threshold, and the problem of sampling an intersecting
pair of sets uniformly at random.

1 INTRODUCTION

We study the problem of statistical estimations of a matrix product
in the distributed setting. Consider two parties Alice and Bob; Alice
holds a matrix A € {0, 1}™*" and Bob holds a matrix B € {0, 1}*",
and they want to jointly compute a function f defined on A and
B by exchanging messages. The goal is to minimize both the total
communication cost and number of rounds of interaction.

One of the main statistical quantities we consider is the p-norm
ICIl,, of the product C = A B, defined as

1
Il = (Zajetnrlcist?)

Here the matrix product A - B is the standard matrix product over
the integers. Interpreting 0° as 0, we see that p = 0 corresponds to
the number of non-zero entries of C, which, interpreting the rows
of A and columns of B as sets, corresponds to the set-intersection
join size (see Section 1.1 for the formal definition). This can also
be viewed as a matrix form of the well-studied distinct elements

“Qin Zhang is supported by NSF CCF-1525024 and IIS-1633215.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS’18, June 10-15, 2018, Houston, TX, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-4706-8/18/06...$15.00
https://doi.org/10.1145/3196959.3196964

383

Qin Zhang
Indiana University Bloomington
Bloomington, IN, USA
qzhangcs@indiana.edu

problem in the data stream literature (see, e.g., [8, 14, 21]). Again
interpreting the rows of A and the columns of B as sets, the case
p = 1 corresponds to the size of the corresponding natural join
(again see Section 1.1 for the formal definition). The p = 2 case
corresponds to the (squared) Frobenius norm of the matrix product
A - B, which is a norm of fundamental importance in a variety of
distributed linear algebra problems, such as low rank approximation
(for a recent survey, see [34]). The case p = oo corresponds to the
pair of sets of maximum intersection size. Estimating the largest
entry in a Boolean matrix product has also been studied in the
centralized setting. We refer readers to the recent paper [1] and
references therein.

As a closely related problem, we also consider the £y-sampling
problem for which the goal is to sample each non-zero entry in
C = AB with probability (1 + e)m, which corresponds to ap-
proximately outputting a random pair among the intersecting pairs
of sets. {p-sampling is also extensively studied in the data stream
literature [15, 20, 30], and is used as a building block for sketching
various dynamic graph problems (see [28] for a survey).

We also study the approximate heavy hitter problem defined as
follows. Let

HHE(C) = {(L) | €7 = ¢ IICIIp)-

The £,-(¢, €)-heavy-hitter (0 < € < ¢ < 1) problem asks to output
a set S such that

HH‘;(AB) csc HH{;_E(AB).

As outputting the matrix product C requires outputting n> numbers,
it is natural to output the set S as a sparse approximation of C;
indeed this can be viewed as a matrix form of the well-studied
compressed sensing problem.

As mentioned, these basic statistical problems, being interesting
for their own sake, have strong relationships to fundamental prob-
lems in databases. We describe such relationships more formally
below.

Despite a large amount of work on computing p-norms and heavy
hitters on frequency vectors in the streaming literature (see, e.g.,
[31] for a survey), we are not aware of any detailed study of these
basic statistical functions on matrix products. The purpose of this
paper is to introduce a systematic study of statistical estimations
on matrix products.

1.1 Motivation and Applications

Estimating the norm of a matrix product is closely related to two of
the most important operations in relational databases — the composi-
tion and the natural join. Suppose we are given two relations A and
B, where A is defined over attributes (X, Y) and B is defined over

https://doi.org/10.1145/3196959.3196964

Session: Algorithms, Privacy and Workflows

attributes (Y, Z). Assume for simplicity that dom(X) = dom(Y) =
dom(Z) = [n]. We thus have A C [n] X [n] and B C [n] X [n]. The
composition of A and B is defined to be

AoB={(,))|3Tk:(i,k) e AN (k,j) € B}.
The natural join is defined to be
A B ={(i,k,j) | (i,k) € AN (k,)) € B}.

It is easy to see that the natural join corresponds to the composition
together with the requirement that all the “witnesses” k are output.

We further define “projection” sets A; = {k | (i, k) € A} for each
i € [n],and B; = {k | (k,j) € B} for each j € [n]. Then we can
rewrite the composition and natural joins as follows:

Ao B ={(j)|AinB;=+0}

Ava B ={(i,k,j) | k € A; N Bj}.
We thus also refer to compositions as set-intersection joins, and
natural joins as set-intersection joins with witnesses.

As an application of set-intersection joins, consider a job ap-
plication scenario: we have n applicants, with the i-th applicant
having a set of skills A; from the universe {1,...,n}, and n jobs,
with the j-th job requiring a set of skills B;j. Our goal is to find all
the possible applicant-job matches, namely, those pairs (i, j) such
that A; N Bj # (. One may also be interested in the number of such
matches (the {p-norm) or the most qualified applicants (the entry
realizing the {o-norm, or the heavy hitters).

We can further relate set-intersection joins to Boolean matrix
multiplication. Let A and B be two n X n matrices such that each
row A; x is the indicator vector of A;, and each column B, ; is the
indicator vector of B;. Then the non-zero entries of AB exactly cor-
respond to the outputs of the set-intersection joins on {A1, ..., A, }
and {By,...,B,}. If we are interested in estimates to the sizes of
the joins, which are very useful for guiding query optimization
since they can be computed using much less communication than
computing the actual joins, then we have

o ||AB||y = |A o B|, that is, the {p-norm of AB is the size of
the composition of A and B,

o ||AB||; = |A »< B, that is, the £1-norm of AB is the size of
the natural join of A and B.

Finally, ||AB||, corresponds to the pair (i, j) with the maximum
overlap, and {(i,) | (AB)i,j = ¢ ||AB||p} for a threshold ¢ corre-
sponds to the set of heavy hitters, i.e., those pairs of sets whose
intersection size exceeds the threshold. These two problems have
natural applications in inner product similarity joins on a set of
vectors; we refer the reader to recent work [3] on inner product
similarity joins and references therein.

REMARK 1. We note that all of these problems and the results in
this paper can be straightforwardly modified to handle the general
case where dom(X) = my, dom(Z) = my and dom(Y) = n, which
corresponds to AB where A € {0,1}"™*" and B € {0,1}"™2_ See
Section 6 for more discussions.

1.2 Our Results

For simplicity we use the notation O(-) to hide poly(log Z5) factors
where € is the multiplicative approximation ratio and J is the error
probability of a randomized communication algorithm. We say that

384

PODS’18, June 10-15, 2018, Houston, TX, USA

X approximates Y within a factor of ¢ if X € [%, yY]where f,y > 1
and fy < a.

Set-Intersection Join Size. We give a 2-round O(n/¢)-bit algo-
rithm that approximates [|AB||,,, p € [0, 2], within a (1 + ¢€) factor.
For the important case of p = 0, this provides a significant im-
provement over the previous O(n/e?) result in [16]. Also, due to
the Q(n/e?) lower bound in [16] for one-round algorithms (i.e.,
algorithms for which Alice sends a single message to Bob, who
outputs the answer), this gives a separation in the complexity of
this problem for one and two-round algorithms. As the algorithm
in [16] is a direct application of an O(1/€2) space streaming algo-
rithm, our algorithm illustrates the power to go beyond streaming
algorithms in this framework.

Pair of Sets with Maximum Intersection Size. We first give a
constant round O(n'? /¢€)-bit algorithm that approximates ||AB||s
within a (2 + €) factor. We complement our algorithm by showing a
few different lower bounds that hold for algorithms with any (not
necessarily constant) number of rounds. First, we show that any al-
gorithm that approximates ||AB||, within a factor of 2 needs Q(n?)
bits of communication, thus necessitating our (2 + ¢€) factor ap-
proximation. Moreover, we show that any algorithm achieving any
constant factor approximation must use Q(n'-%) bits of communica-
tion, which shows that our (2 + €) factor approximation algorithm
has optimal communication, up to polylogarithmic factors.

We next look at approximation algorithms that achieve approxi-
mation factors to ||AB||, that are larger than constant. We show
it is possible to achieve a k-approximation factor using O(n'-%/x)
bits of communication. We complement this with an Q(n!->/x) bit
lower bound.

Finally we show that the fact that the matrices A and B are
binary is crucial. Namely, we first show that for general matrices
A and B with poly(n)-bounded integer entries, there is an Q(n?)
lower bound for any constant factor approximation. For general
approximation factors that may be larger than constant, we show
an upper and lower bound of ©(n?/k?) communication. This shows
an arguably surprising difference in approximation factor versus
communication for binary and non-binary matrices.

Heavy Hitters. We give an O(1)-round protocol that computes
fp—(qﬁ, €)-heavy-hitters, 0 < € < ¢ < 1, and p € (0, 2], with vari-
ous tradeoffs depending on whether Alice and Bob’s matrices are
arbitrary integer matrices, or whether they correspond to binary

matrices. For arbitrary integer matrices, we achieve é(@n) bits

of communication for p = 1, and ON(?n) bits of communication for
every other p € (0,2] \ {1}.

We are able to significantly improve these bounds for binary
matrices, which as mentioned above, have important applications
to database joins. Here we show for every p € (0, 2] an O(1)-round

protocol with O(n + e%) bits of communication.

1.3 Related Work

Early work on studying joins in a distributed model can be found in
[29] (Section 5) and [24]. Here the goal is to output the actual join
rather than its size, and such algorithms, in the worst case, do not

Session: Algorithms, Privacy and Workflows

achieve communication better than the trivial algorithm in which
Alice sends her entire input to Bob for a centralized computation.

With the rise of the MapReduce-type models of computation, a
number of works have been devoted to studying parallel and dis-
tributed computations of joins. Such works have looked at natural
joins, multi-way joins, and similarity joins, in a model called the
massively parallel computation model (MPC) [2, 9, 10, 17, 23, 25, 26].
Unlike our two-party communication model, in MPC there are mul-
tiple parties/machines, and the primary goal is to understand the
round-load (maximum message size received by any server in any
round) tradeoffs of the computation.

In a recent paper [16] the authors and collaborators studied
several join problems in the two-party communication model. The
studied problems include set-intersection joins, set-disjointness joins,
set-equality joins, and at-least-T joins. Our results can be viewed as
a significant extension to the results in [16], as well as a systematic
study of classical data stream problems in the context of matrix
products. In particular, [16] did not study estimating the p-norms of
AB, for any p other than p = 0. For p = 0, they obtain an algorithm
using O(n/e?) communication, which we significantly improve to
O(n/€) communication, and extend to any 0 < p < 2. Moreover, we
obtain the first bounds for approximating ||AB||e, Where perhaps
surprisingly, we are able to obtain an O(1)-approximation in O(n®/?)
communication, beating the naive n? amount of communication.
This leads us to the first algorithms for finding the frequent entries,
or heavy hitters of AB.

While a number of recent works [6, 11, 22, 27, 36] look at dis-
tributed linear algebra problems (for a survey, see [34]), in all pa-
pers that we are aware of, the matrix C is distributed additively.
What this means is that we want to estimate statistics of a matrix
C = A + B, where A and B are held by Alice and Bob, respectively,
who exchange messages with each other. In this paper, we instead
study the setting for which we want to estimate statistics of a matrix
C = A B, where A and B are again held by Alice and Bob, respec-
tively, who exchange messages with each other. Thus, in our setting
the underlying matrix C of interest is distributed multiplicatively.
When C is distributed additively, a common technique is for the
players to agree on a random linear sketching matrix S, and apply it
to their inputs to reduce their size. For example, if Alice has matrix
A and Bob has matrix B, then Alice can send S - A to Bob, who can
compute S(A + B). A natural extension of it in the multiplicative
case is for Alice to send S - A to Bob, who can compute S - A- B. This
is precisely how the algorithm for p = 0 of [16] proceeds. We show
by using the product structure of A - B and more than one round, it
is possible to obtain significantly less expensive algorithms than
this direct sketching approach.

Finally, we would like to mention several papers considering
similar problems but working in the centralized model. In [12],
Cohen uses exponential random variables and applies a minimum
operation to obtain an unbiased estimator of the number of non-
zero entries in each column of a matrix product C = AB. However,
a direct adaptation of this algorithm to the distributed model would
result Q(n/e?) bits of communication and 1-round, which is the
same as using the 1-round {y-sketching protocol applied to each
of the columns in earlier work [16]. In contrast we show that sur-
prisingly, at least to the authors, O(n/e) bits of communication is

385

PODS’18, June 10-15, 2018, Houston, TX, USA

possible with only 2 rounds. In [5], Amossen, Campagna, and Pagh
improve the time complexity of [12], provided € is not too small.
However, a direct adaptation of this algorithm to the distributed
model would result an even higher communication cost of Q(n?).

In [13], the £;-sampling problem is considered. In this paper we
do not emphasize estimation of ||C||;, since this quantity can be
computed exactly using O(nlog n) bits of communication, as stated
in Remark 2. Similarly £;-sampling can also be done in O(nlog n)
bits of communication, as illustrated in Remark 3.

In [32], it is shown how to apply CountSketch to the entries of a
matrix product C = AB where A, B € R™". The time complexity is
O(nnz(A) + nnz(B) + n - k log k), where nnz(A) denotes the number
of non-zero entries of A, and k is the number of hash buckets in
CountSketch which is at least 1/€2. This outperforms the naive time
complexity of first computing C and then hashing the entries of C
one-by-one. While interesting from a time complexity perspective,
it does not provide an advantage over CountSketch in a distributed
setting. Indeed, for each of the hashes on Alice’s side of the n
outer products computed in [32], the size of the hash is ©(1/€?),
and consequently communicating this to Bob takes ©(n/e?) bits in
total.

2 PRELIMINARIES

In this section we give background on several sketching algorithms
that we will make use of, as well as some basic concepts in com-
munication complexity. We will also describe some mathematical
tools and previous results that will be used in the paper.

For convenience we use A € Z"™" to differentiate A from a
binary matrix, but we will assume that all the input matrices have
polynomially bounded integer entries. For all sketching matrices
we will make use of, without explicitly stated, each of their entries
can be stored in O(1) bits.

Sketches. A sketch sk(x) of a data object x is a summary of x of
small size (sublinear or even polylogarithmic in the size of x) such
that if we want to perform a query (denoted by a function f) on
the original data object x, we can instead apply another function g
on sk(x) such that g(sk(x)) ~ f(x). Sketches are very useful tools
in the development of space-efficient streaming algorithms and
communication-efficient distributed algorithms. Many sketching
algorithms have been developed in the data stream literature. In
this paper we will make use of the following.

LEmMa 2.1 ([19, 21], £p-SKETCH (0 < p < 2)). Forp € [0,2]
and a data vector x € R", there is a sketch sk(x) = Sx where S €

O log L

R (fz 83)Xn is a random sketching matrix, and a function g such
that with probability 1 — 8, g(sk(x)) approximates ||x||,, within a
factor of (1 + €).

Communication Complexity. We will use two-party communi-
cation complexity to prove lower bounds for the problems we study.
In the two-party communication complexity model, there are par-
ties Alice and Bob. Alice gets an input x € X, and Bob gets an input
y € Y. They want to jointly compute a function f : XxXY — Z via
a communication protocol. Let I be a (randomized) communication
protocol, and let 4, rg be the private randomness used by Alice
and Bob, respectively. Let Ilx, v, ,,, -, denote the transcript (the
concatenation of all messages) when Alice and Bob run IT on input

Session: Algorithms, Privacy and Workflows

(X,Y) using private randomness (r4,7g), and let II(X,Y,ra,rB)
denote the output of the protocol. We say II errs with probability §
if for all (x,y) € X X Y,

Pryy,rplllx, v, rars # f(x,y)] < 6.
We define the randomized communication complexity of f, denoted
by Rs(f), to be miny maxx, y, r4, g |[Ix, ¥, 4,15 |» Where |z| denotes
the length of the transcript z.

We next introduce a concept called the distributional communi-
cation complexity. Let p be a distribution over the inputs (X, Y). We
say a deterministic protocol IT computes f with error probability §
on p if

Prx y)~u[llx,y # f(x,y)] < 0.
The §-error distributional communication complexity under input
distribution y, denoted by Dg (f), is the minimum communication
complexity of a deterministic protocol that computes f with error
probability § on u. The following lemma connects distributional
communication complexity with randomized communication com-
plexity.

LEMMA 2.2 (Ya0’s LEMMA). For any function f and any § > 0,
Rs(f) = maxy, Dg(f)

A standard method to obtain randomized communication com-
plexity lower bounds is to first find a hard input distribution y for
a function f, and then try to obtain a lower bound on the distri-
butional communication complexity of f under inputs (X,Y) ~ p.
By Yao’s Lemma, this is also a lower bound on the randomized
communication complexity of f.

We now introduce two well-studied problems in communication
complexity.

Set-Disjointness (DISJ). In this problem we have Alice and
Bob. Alice holds x = (x1,...,x;) € {0,1}?, and Bob holds y =
(Y1, ..,ys) € {0,1}!. They want to compute

DISJ(x,y) = szl(x,- AYi).
LemMMA 2.3 ([7]). Ro.49(DIS%) > Q(n).

Gap-le. In this problem Alice holds x = (x1, ..., x;) € [0,x], and
Bob holds y = (y1,...,y:) € [0,x], with the following promise:
either |x; —y;| < 1 for all i; or for some i, |x; — y;| > k. Define
Gap-leo(x,y) = 1if ||x — yllo = k, and Gap-le(x, y) = 0 otherwise.

LEMMA 2.4 ([7]). Ro.490(Gap-leo) = Q(n/x?).

Tools and Previous Results. We will make use of the following
results on distributed matrix multiplication and {y-sampling on
vectors.

LEMMA 2.5 ([16], DISTRIBUTED MATRIX MULTIPLICATION). Sup-
pose Alice holds a matrix A € R"™", and Bob holds a matrix B €
R™" There is an algorithm for Alice and Bob to compute C4 and Cp
such that with probability 1 — 1/n'°, C4 + Cg = AB. The algorithm
uses O(n+/ |lABl|y) bits of communication and 2 rounds.

LemmMa 2.6 ([20], £o-SAMPLING). For a data vector x € R", there
is a sketch sk(x) = Sx where S € ROWXn s g random sketching
matrix, and a function g such that g(sk(x)) returns i € [n] for each
coordinate x; > 0 with probability 1/||x||,. The process fails with
probability at most 1/n1°.

386

PODS’18, June 10-15, 2018, Houston, TX, USA

Algorithm 1: (1 + €)-Approximation for £, (p € [0,2])

Input :Alice has a matrix A € Z™", and Bob has a matrix
B e Z"™" Let C «— AB
Output: A (1 + €)-approximation of ||C ||§
1 Let S be the sketching matrix in Lemma 2.1;
2 Bob computes sBT ¢ Ré(l/ﬁz)xn of BT and sends it to Alice;
3 Alice computes C (SBTAT)T;
4 Alice partitions the n rows of Cto (up to)
L= Iog1+ﬁ(2np+1) = O(% log n) groups Gy, . .., Gy, such
that Gy contains all i € [n] for which
a+pt < o] <aepts

5 foreach group Gy (¢ € [L]) do
6 Alice randomly samples each i € G, with probability py,
p
€

P
P

e

i

o],
P

Alice sends py to Bob;

7 Alice then replaces all non-sampled rows in A with the

—p —
where py = where ”G(;” = Yiec, ||Cix
P

all-0 vector, obtaining A’, and sends A’ to Bob;

8 Bob computes C’ « A’B, and outputs
P
’

i, p

2rell] LieGy p%

We will also need the standard Chernoff bound.

LEMMA 2.7 (CHERNOFF BouND). Let Xy, ..., X, be independent
Bernoulli random variables such that Pr[X; = 1] = p;. Let X =
Yie[n] Xi- Let i = E[X]. It holds that Pr[X > (1 + §)u] < e=On/3
andPr[X < (1 -98)u] < e~ 0% Hl2 forany § € (0,1).

3 (1 +€)-APPROXIMATION OF ¢ (P € [0,2])

For notational convenience (in order to unify ¢y and ¢, for constant
p € (0,2]), we define ||x||8 = ||x||y to be the number of non-zero
entries of x.

Note that for a constant p, approximating ||C||,, within a (1+e€)

factor and approximating ||C||§ within a (1 + €) factor are asymp-
totically equivalent — we can always scale the multiplicative error e
by a factor of p (a constant), which will not change the asymptotic
communication complexity. We will thus use these interchangeably
for convenience.

The Idea. The high level idea of the algorithm is as follows. We
first perform a rough estimation - we try to estimate the £,-norm
of each row of C within a (1 + +/€) factor. We then sample rows
of C with respect to their estimated (p-th power of their) £,-norm,
obtaining a matrix C’. We finally use C’ to obtain a finer estimation
(i.e., a (1 + €)-approximation) of ||C||§.

Algorithm. Set parameters f = el/2, p = 10°42/€? = 10*/e. The
algorithm for approximating £,-norms for p € [0, 2] is presented in
Algorithm 1. We describe it in words below.

Alice and Bob first try to estimate the £,-norm of each row in
C within a factor of (1 + f). This can be done by letting Bob send

Session: Algorithms, Privacy and Workflows

an {y-sketch of BT of size O(1/ f?) to Alice using the sketch in
Lemma 2.1; Alice then computes C = (SBTAT)T. with probability

0.99, we have that for all i € [n],
14
& [lesels.a+ - flcia) - W

We note that we can set § = ¢ (instead of § = v/€) and directly
get a (1+€) approximation of”Ci, . ||§ for each row i (and thus ||C||§)

Hci,*

This is exactly what was done in [16]. However, the communication
cost in this case is O(n/€?), which is higher than our goal by a factor
of 1/e.

Alice then sends Bob Hé;

P
foralli € [n]. Both parties partition
P

all the rows of C into up to L = O(1/f - log n) groups G, . ..,Gy,
such that the ¢-th group G contains all i € [n] for which
a+p) < |G <avpi. @)
P
By (1) and (2), we have that for each i € G,
1+p <llCidllh <@ +3p) -1 +p)". 3)
—~||P
For a fixed group Gy, let ||G[||Z = 2ieG, “Ci,* o and ”G[” =
P
— ||
2ieG, ||Ci,«|| - Foreach ¢ € [L], set
P
adl, /1,
pe = |Gf| ‘ ” /”
By (1) we have
1 p lGdly o lIGelh
vl G e e e | @
et " iGed eit

For each ¢ € [L], Alice randomly samples each i € G, with prob-
ability py. Alice then sends Bob A’ which consists of all the sampled
rows of A with other rows being replaced by all-0 vectors. Bob then

= A’B, and outputs Y se(r Ci. as the

computes C’ ZleG[e
approximation to ||C||§.
We can show the following regarding Algorithm 1.

THEOREM 3.1. Foranyp € [0, 2], there is an algorithm that approx-
imates ||AB||p for A, B € Z™™ within a (1+¢€) factor with probability

1-1/n', using O(n/€) bits of communication and 2 rounds.

Correctness. For each ¢ € [L], and each i € Gy, let Xf bea0/1
random variable such that Xf = 1ifi € Gy is sampled by Alice,
and Xf = 0 otherwise. Define
IGelly
Pxt.
Gel

5 (uci,*uz .

ieGy
It is clear that E[Z?] = 0. We now compute its variance.

1
A -
pe

|| ||" ’
var(z'] = 5 Y (II s P Var[x{]
pf ieGy
GellP\?
< - (nc,-,*ng— ” G‘"””
pe &2, |Gel

387

PODS’18, June 10-15, 2018, Houston, TX, USA

1 IGII*

] Carernl BT
9B IGellp)?
B Pe1Gel
< B2 et cir. Gy @)
= 0 4 y

Define Z = 3r¢(r) Z%. We then have E[Z] = 0, and
Var[Z] = Z Var[Zf]
Ce[L]
18/3
< el - " Gl
te[L]
18ﬂ2

< ——(llclB)>.
p P

By Chebyshev’s inequality, we have

Var[Z 1832
Pr{|Z] = e -||CI[}] < L}, = —'i <0.01.
(e-lICIL)* P
We thus have ’zte 1 Ziec & |[Ch p—||C||§' < e|[C|l} with

probability 0.99 (conditioned on (1) holding, which happens with
probability 0.99 as well).

Finally note that we can always boost the success probability of
the algorithm from 0.9 to (1 — 1/n!%) using the standard median
trick and paying another O(log n) factor in the communication cost
(which will be absorbed by the O(-) notation).

Complexity. The communication cost of sending the £,-sketch
in the first round is O(n/? - log n) words. The cost of sending the
sampled rows is bounded by 3. ,¢[1](p¢ |Gel - n). Thus the total
communication cost is bounded by

(e 1Gel -+ (7 g
& G
~ 1
- 00 (p)
= O(n/e) (by our choices of p and).

It is clear that the whole algorithm finishes in 2 rounds of com-
munication.

REMARK 2. We comment that for p = 1, ||AB||; can actually be
computed exactly using O(n log n) bits of communication and 1 round:
Alice simply sends |A*,j \1 for each j € [n] to Bob, and then Bob

computes Y je(n) (”A*’j”1 . ||B]*H1) which is exactly ||AB||;.

REMARK 3. We can also perform {1-sampling on C = AB using
O(nlogn) bits of communication and 1 round. Alice sends for each
j € [n] the value ||A*,j||1 and a random sample from column A, ;.
Bob computes for each j € [n] the value ”A*,j”l . ||Bj,*H1 as well

as Lje[n] (”A*sj”l 1B«
portional to ||A*,j||1 . ||Bj’* |1. Finally, Bob samples a random entry
b € Bj «, and ifa € A, j is the uniform sample in A, j that Alice sent
to Bob, Bob outputs the pair (a, b) as the {1-sample.

1),from which he samples a j € [n] pro-

Session: Algorithms, Privacy and Workflows

3.1 {y-Sampling

We now present a simple algorithm for £y-sampling. Recall that the
goal of {p-sampling on matrix C = AB is to sample each non-zero
entry in C with probability (1 + e)m.

The idea is fairly simple: we employ an {y-sketch and {p-samplers
in parallel. We first use the £-sketch to sample a column of C pro-
portional to its £{p-norm, and then apply the {p-sampler to that
column. For the first step, we use the one-way {y-sketching algo-
rithm in Lemma 2.1 to approximate the £yp-norm of each column of
C within a factor of 1 + €. For the second step, we use the one-way
{o-sampling algorithm for vectors in Lemma 2.6 for each column

of C.

THEOREM 3.2. There is an algorithm that performs {y-sampling on
C with success probability 0.9 using O(n/€?) bits of communication
and 1 round.

Proor. The size of the {y-sampler (i.e., the sketching matrix S)
in Lemma 2.6 is bounded by O(n), and the size of the €y-sketch
in Lemma 2.1 is bounded by O(n/e?). Thus the total number of
bits of communication is bounded by O(n/€?) + O(n) = O(n/e?).
The algorithm finishes in 1 round since both the {y-sketch and
{o-sampler can be computed in one round.

The success probability follows from a union bound on the suc-
cess probabilities of the £y-sketch and ¢y-sampler for each of the n
columns of C. O

4 (2 +¢)-APPROXIMATION OF £,

In this section we give almost tight upper and lower bounds for
approximating ||C||, that is, the maximum entry in the matrix
product C. We first consider the product of binary matrices, and
then consider the product of general matrices.

4.1 Upper Bounds for Binary Matrices

4.1.1 An Upper Bound for 2 + € Approximation.

The Idea. The high level idea is to scale down each entry of C
so that ||C||; is as small as possible subject to the constraint that
the largest entry of C is still approximately preserved (after scaling
back). This down-scaling can be done by sampling each 1-entry
of A with a certain probability (we replace the non-sampled 1’s by
0’s). Let A’ be the matrix of A after applying sampling. Alice and
Bob then communicate for each item j € [n] the number of rows
and columns in A” and B respectively that contain item j (i.e., those
rows and columns with j-th coordinate equal to 1), and the one with
the smaller number sends all the indices of those rows/columns
to the other party. After this, Alice and Bob can compute matrices
C1 and C; independently such that C = C; + Cy, and then output
max{||C1|le s |C2]l0 } as an approximation to ||C|| -

Algorithm. Let L = log,, [lAll; = O(E™%), sety = 1ke"
We present the algorithm in Algorithm 2, and describe it in words
below.

For{=0,1,...,L, Alice samples each 1-entry in A with proba-
bility py = 1/(1 + €)? (i.e., with probability (1 — py) the 1-entry is
replaced by a 0-entry). Let A¢ be the matrix after sampling A with
probability py, and let CY = A?B.

388

PODS’18, June 10-15, 2018, Houston, TX, USA

Algorithm 2: (2 + €)-Approximation for {co

Input :Alice has a matrix A € {0,1}"*", and Bob has a
matrix B € {0,1}""*". Let C < AB
Output: A (2 + €)-approximation of ||C||o,

1 foreach ¢ < 0,1,...,L do

2 Alice samples each ‘1’ in A with probability
pe=1/(1+)t (and replaces those non-sampled 1’s by
0’s), obtaining matrix A£;

3 | LetCl — A’B;

4 foreach ¢ < 0,1,...,Ldo

5 Alice and Bob compute ||C’?“1 using Remark 2;

6 Let £* be the smallest index ¢ € {0, 1,...,L} for which
L el < v

7 foreach j € [n] do

8 Let uj « ‘{i eln]|je Af*}| and

vj < |{i €[n]]j€Bi}|;

9 if uj < vj then

10 L Alice sends Ij « {i | j € Af*} to Bob;

11 else

12 L Bob sends Ij « {i | j € B;} to Alice;

13 Alice and Bob use the I;’s to compute matrices C4 and Cp
respectively such that cl’ =cp+Cp;

14 Alice and Bob compute ||C4l|« and ||Cp||o, and output

max{[[Calle /pe-: ICB o /P }-

For each £ = 0,1,...,L, Alice and Bob compute HCE”1 using
Remark 2. Let £* be the smallest index € € {0,1,...,L} such that
el < yn.

Let us focus on A®” and B, and consider each item j € [n]. For
convenience we identify the rows of A”" and columns of B as sets
{Af*, e ,Af:} and {By, ..., By} respectively. Suppose j appears
uj times in Alice’s sets, and v; times in Bob’s sets. Alice and Bob
exchange the information of u; and v; for all j € [n]. Then for
each j € [n], if uj < v; then Alice sends all the indices of sets Af*
containing j to Bob, otherwise Bob sends all the indices of sets B;
containing j to Alice.

At this point, Alice and Bob can form matrices C4 and Cp re-
spectively so that C4 + Cg = C, where C4 corresponds to the
portion of each entry of C¢" restricted to the items j for which
Alice knows the intersections (in other words, Alice knows the
inner product defining the entry C!" restricted to a certain subset
of items), and similarly define Cg. Finally Alice and Bob output
max{||Calleo /Pe+» |ICB|leo /Pe+ } as the approximation of ||C|| -

We have the following theorem.

THEOREM 4.1. Algorithm 2 approximates ||AB||, for two Boolean
matrices A, B € {0, 1} " within a (2 + €) factor with probability 0.9
using O(n'-> /€) bits of communication and 3 rounds.

Correctness. We first show that the claimed approximation holds.
The following lemma is a key ingredient.

Session: Algorithms, Privacy and Workflows

LEMMA 4.2. With probability 1—1/n?, ”Cf* H /pe+ approximates
(o]
|IClloo within a factor of 1 + €.

ProOF. We assume that ||C||; > yn? since otherwise there is
nothing to prove (in this case we have py+ = 1 and ct" = o).

We first define a few events.

e el = br

&y: For all pairs (i,), if Cf] > %y, then Cf;./pg* approximates

Ci,j within a factor of 1 + €.

&s: For all pairs (i,), ifCl.{:*j < %y, then C; ; < %y/pg*.

In words, &; states that the maximum entry of ct” will be large.

&, states that for all large entries (i, j) in C’", the values Cf*j, after

rescaling by a factor of 1/pg+, can be used to approximate C; j
within a factor of 1 + €. Es states that for all small entries (i, j) in
cl’, the corresponding values C;, j cannot be the maximum in the
matrix C.

It is not difficult to see that if all three events hold then Lemma 4.2
holds. Indeed, by &; we can approximate each C; j by Cf*] /pe+

within a factor of 1 + € as long as Cf; > %y, and by &; we have

”Cf* ” > %y. Therefore
(&)

IClles 2 5y /(-1 +) > 7y/pe- ©)

By &s, for all (i, j) with Cf] < %y, we have C; j < %)//pg*; by (5)
we know that these entries (i, j) cannot be the maximum in C. We
can thus conclude that HC‘J*” approximates ||C||,, /pg+ within a
factor of 1 + €. h

In the rest of this section we show that each of &1, E;, E3 holds
with probability 1 — 1/n*. The success probability in Lemma 4.2
follows by a union bound.

For &1, we only need to show that C[*Hl > %ynz. Recall that
{* is the smallest index £ € {0,1,...,L} such that HCt)”1 < ynz.
We thus have Cf*’l‘ .
entry of CY"~! with probability 1/(1+€). By a Chernoff bound, with

> yn?. We can view ct as sampling each

probability 1 — 1/n'® we have “C[*H1 > %ynz. Consequently, we

have

c"*” >
(o]

‘Cf*Hl /2 gy

For &, let us first focus on a particular pair (i, j). Let z = C; j,
and let k1, ..., k, € [n] be the indices for which Af,*k, =B, ;=1
forallt =1,...,z For each t € [z], define the random variable X;

such that X; = 1if Af*k is sampled in A and X + = 0 otherwise.
s Rt

Let X = X;¢[z] X¢. We thus have X = Cf; and
E[X] = Xse) E[Xe] = pee - 2. (6)

The claim is E[X] > %y with probability 1 — 1/n1. Suppose
to the contrary that E[X] < %ﬁy. We can just consider the case
that E[X] € [%y, %y) and argue that with probability 1 — 1/n1°
we have X < %y, which contradicts the assumption of & that
X = Cf} > %y. Note that this is sufficient since if E[X] < %y then
the probability that X < %y will be even higher. In the case when

389

PODS’18, June 10-15, 2018, Houston, TX, USA

E[X] € [%y, %y), by a Chernoff bound we have

X € [(1 - €)E[X], (1 +€)E[X]] C

1 1
g gy)
with probability 1 — 1/n10.

Now in the case that E[X] > %y, by another Chernoff bound we
have X € [(1 - €)E[X], (1 + €)E[X]] with probability 1 — 1/n1; in
other words, X /pe- (= Cﬁ;/pg*) approximates E[X]/pe«(= z = Cy j)
within a factor of 1 + €. Finally, by a union bound on at most n?
pairs (i, j), the probability that &, holds is at least 1 — 1/n%.

For &3, we again focus on a particular pair (i, j), and will reuse the
notation in the analysis of E;. The observation is that if E[X] > 1y,
then X > (1-¢€)E[X] > %y with probability 1—1/n'°, contradicting
the assumption of ;. We thus have C; j = z = E[X]/pp+ < %y/pg*
with probability 1 — 1/n'°. Finally by a union bound on at most n?
pairs of (i, j), the probability that &3 holds is at least 1 — 1/n*. O

We now wrap up the correctness proof of the theorem. At the
end of Algorithm 2 Alice and Bob obtain two matrices C4 and Cp
such that C4 + Cg = CY". We thus have max{||Calle ICBlle} =

HCf* “ /2. Combining this with Lemma 4.2 we obtain
[Se)
IClle _
2(1+¢)

Complexity. By Remark 2, the step of computing ||Cl7”l for
all ¢ = 0,1,...,L costs O(L - n) = O(n) bits. The exchanging
of {uj,vj | j € [n]} costs O(n) bits. The last step of computing
max{[|Calle » ICB Il } costs O(1) bits.

Now we consider the step of exchanging the indices of sets
containing j for each j € [n]. We analyze two cases. In the case that
uj,vj > /e, there will be at most

ICallo IICB
Pex

IIOO}
<(1+6€)|Cllso -
=<9l

2 2
<2

o
1 Uuj - vj

such items j. The total communication for such j’s is bounded by

2 2,

Jiuj,vi>\n/e €20

O(yen') = O(n'3/e).

yn?
nje? - 22¢

Vije - 2f

min{u;, vj}

IA

In the case that min{u;, vj} < vn/e, we directly have

Z min{u;j,vj} < Z vnje < nl/e.

jmin{uj,v;}<yn/e Jjé€ln]

Summing up, the total communication cost is bounded by O(n'- /¢).

Finally we show that Algorithm 2 can be implemented in 3
rounds. In Round 1, for each level ¢ Alice sends Bob {HA*J”1 |je
[n]} so that Bob can compute ||AB||; according to Remark 2, and
consequently finds ¢*. In Round 2, Bob sends ¢* to Alice, together
with all I; corresponding to those j with u; > v;. In Round 3, Alice
sends Bob all I; corresponding to those j with u; < v;. Alice also
forms C4, computes and sends ||C4l| to Bob. Finally Bob forms
Cp, and computes max{||Calls » ||CB|l} as the final output.

Session: Algorithms, Privacy and Workflows

Algorithm 3: k-Approximation for £

Input :Alice has a matrix A € {0, 1}™*", and Bob has a
matrix B € {0,1}™ ", Let C «— AB
Output: A k-approximation of ||C||,

1 Set ¢ = min{a/x, 1} where a = 10 log n;

2 Alice samples each column of A with probability g (and
replaces those non-sampled columns by the all-0 vector),
obtaining A’. Let D « A’B;

3 Alice and Bob compute ||D||; and ||C||y;

4 if ||D||; = 0 then

5 if ||C||; = 0 then Output 0;

6 else Output 1;

7 else

8 Follow Algorithm 2 and further sample A’ with probability

pe = 1/2¢ (instead of pp=1/(1+)t) for

£=0,1,...,log, ||A’||;, and with the threshold yn? at

Line 6 being replaced by a/x - n?. Finally output

max{[|Calle /(q - pe+). ICBIlos /(q - pe-)}-

4.1.2 An Upper Bound for General k-Approximation.

The Idea and Algorithm. We next consider protocols obtaining a
k-approximation to ||C||, for a general approximation factor x > 1.
One way to do this is to exactly follow Algorithm 2. That is, we
first scale down the entries of C by sampling the 1-entries in A to a
level for which ||C{)||1 < an?/x where « is the approximation ratio,
and a = O(logn). If we continue to follow Algorithm 2, then we
will get an O(n'-® /) bound. We now show how to improve the
bound to O(n!-% /).

The main change we make to Algorithm 2 is that we add a
universe sampling step at the beginning. More precisely, we sample
each column of A with probability ¢ = min{a/x, 1} where a =
10* log n, and then replace all non-sampled columns in A with all-0
vectors, obtaining a new matrix A”. Let D = A’B. Recall that C = AB.
We compute ||C||; and ||D||;.

With this new universe sampling step it is possible to have
|ID|l; = 0. If this happens then we also check ||C||;. If ||C||; = 0
then we simply output 0; otherwise we output 1. If || D|[; > 0, then
we follow Algorithm 2 to do further sampling on A’, obtaining
Al A% . Let cl = AlBfor ¢ = 1,2,.... We again stop at the
first level ¢* for which HCF*
each (surviving) universe item j the indices of sets that contain j,
in exactly the same way as that in Algorithm 2.

The algorithm in presented in Algorithm 3. We have the follow-
ing theorem.

. < an?/x, and then exchange for

THEOREM 4.3. Algorithm 3 approximates ||AB||, for two Boolean
matrices A,B € {0, 1} " within a factor of x for any k € [4,n]
with probability 0.9 using O(n'- /x) bits of communication and O(1)
rounds.

Correctness. For simplicity we assume that a/kx < 1 (and thus
q = a/k), since otherwise D = C and the arguments will follow
those in Algorithm 2.

390

PODS’18, June 10-15, 2018, Houston, TX, USA

We define two events, and will show that each holds with proba-
bility 1 — 1/n*.
&Ey: For all pairs (i, j), if Dj; 2

Ci,j within a factor of 2.
&s: For all pairs (i, j), if D;,j < %(x, then C; ; < %a/q.

%a, then D; j/q approximates

We first assume that || D||,, > 0. Consider a pair (i, j), if D; j <
éa, then we know by &s that C; ; < %a/q = }}KA Otherwise if
D;j > %a then by &4 we know that D; ;/q approximates C; ;
within a factor of 2. We thus conclude that ||D||,, approximates
[|C||oo within a factor of k/4 if ||D||,, > 0.

In the case that ||D||,, = 0, by Es we know that all entries in
C are less than k/4. Then we can test whether [|C||; > 0. If the
answer is yes then we can output 1, which already approximates
||Cl|s Within a factor of k; otherwise we know that C is the zero
matrix, and we can output 0.

The proofs that each of &4 and &5 hold with probability 1 - 1/n*
are analogous to those for &; and &3 in the proof of Lemma 4.2.

Complexity. The analysis of the communication cost is again sim-
ilar to that of Algorithm 2, and the bottleneck is still the exchange
of the indices of sets containing j for each j € [n]. We again analyze

two cases. Note that after sampling we have “Cf* H1 = O(n?/k), and
the universe size is O(n/x).

e If min{uj,v;} < +/n, then since the universe size is O(n/x),
the total communication is upper bounded by O(n/x) - Vi =
O(n3 k).

e If min{u;,v;} > /n, then since

Cf*Hl = O(n?/x), the total
communication is upper bounded by

el = outro

Therefore the total communication is bounded by O(n?/x). The
number of rounds is clearly bounded by O(1).

4.2 Lower Bounds for Binary Matrices

In this section we show that our algorithms for £o-norm estimation
in Section 4.1 are almost tight in the sense that (1) Q(n?) bits of
communication is needed if we want to go beyond a 2 + € approxi-
mation, and (2) for any approximation k we need to use Q(n% /x)
bits of communication.

4.2.1 A Lower Bound for 2-Approximation.

THEOREM 4.4. Any algorithm that approximates ||AB||, for two
Boolean matrices A, B € {0,1}"™" within a factor of 2 with proba-
bility 0.51 needs Q(n?) bits of communication, even if we allow an
unbounded number of communication rounds.

Proor. We perform a reduction from the two-player set-disjointness

(see Section 2) on strings of length (n/2)? = n?/4, where Alice has x
and Bob has y. Alice creates an n/2 X n/2 matrix A’ indexed by the
coordinates in x, that is, the i-th (i = 1,...,n/2) row of A’ consists
of the ((i - 1)% + 1)-th, ..., in_th coordinates of x. Similarly, Bob
creates an n/2 X n/2 matrix B’ indexed by the coordinates in y.
Next, Alice creates an n X n input matrix
AT
S

Session: Algorithms, Privacy and Workflows

where I is an n/2 X n/2 identity matrix, and 0 is an n/2 X n/2 all-0
matrix. Bob creates an n X n input matrix

I o
B 0|’
Note that A and B are both binary matrices, as needed for the

reduction to the ||AB||, problem.
The key is to observe that

B =

A-B= ™)
We thus have ||A - Bl = ||A” + B’||o, whichis 2 if x Ny # 0, and
1 otherwise. The claimed lower bound for approximating ||C||,
within a factor of 2 follows from the Q(n?) lower bounds for two-
player set-disjointness on strings of length ©(n?) for success prob-
ability 0.51 (Lemma 2.3). O

A'+B 0
0 0

4.2.2 A Lower Bound for General xk-Approximation.

THEOREM 4.5. For any k € [1,n], any randomized algorithm that
approximates ||AB||, for two Boolean matrices A,B € {0,1}™*"

~ 3
within a factor of k with probability 0.52 needs Q (nf /K) bits of
communication, even if we allow an unbounded number of communi-
cation rounds.

The proof is again by a reduction from a communication prob-
lem which is highly structured. We first introduce a few simple
communication problems which will be used as building blocks to
construct the final communication problem that we will use for the
reduction.

Set f = 4/501log n/n, and set k = 1/(4x %) where k is the approx-

imation ratio.

The AND Problem. In this problem Alice holds a bit x and Bob holds
a bit y. They want to compute AND(x,y) = x A y.
Let X be Alice’s input and Y be Bob’s input. We define two
input distributions for (X,Y). Let W be a random bit such that
Pr[W = 0] = Pr[W = 1] = 1/2; let A be the distribution of W.
v1: We first choose W ~ . If W = 0, we set (X, Y) = (0, 0) with
probability 1 — §, and (X, Y) = (0, 1) with probability . If
W = 1, we set (X,Y) = (0,0) with probability 1 — 8, and
(X,Y) = (1, 0) with probability S.

p1: Set (X,Y) = (0,0) with probability 1/2, and (X, Y) = (1,1)
with probability 1/2.

The DIST Problem. Recall the set-disjointness problem introduced
in Section 2, where Alice holds x = (x1,...,xx) € {0, l}k, and
Bob holds y = (y1,...,y;) € {0,1}*, and they want to compute
DISJ(x, y) = VK_ AND(x;, ;).

Let X = (X1, ...,Xy) be Alice’s input, and Y = (Y1,...,Y;) be
Bob’s input. We again define two input distributions for (X, Y).

vi: Set (X;,Y;) ~ vy foreach i € [k].

Hi: We first set (X;,Y;) ~ vg, and then pick M uniformly at

random from {1,...,k}, and reset (X, Yar) ~ p1.

The SUM Problem. In this problem Alice holds u = (uy,...,up)

where u; € {0, 1}¥ for each i € [n], and Bob holds v = (v1, ..., v,)

where v; € {0, 1}* for eachi € [n]. They want to compute SUM(u, v)
;1:1 DISJ(u;i, v;).

391

PODS’18, June 10-15, 2018, Houston, TX, USA

Let U = (Uy,...,Uy) be Alice’s input, and V = (Vq,...,V,) be
Bob’s input. We define the following input distribution for (U, V).

¢: We first set (Uj, Vi) ~ vi, and then pick a D uniformly at
random from {1, ...,n}, and reset (Up, Vp) ~ p.

Note that under (U, V) ~ ¢, Pr[SUM(U, V) = 0] = Pr[SUM(U, V) =
1] = 1/2. Using the standard information complexity machinery
(which we omit here; and can be found in for example [18, 35]) we
can show the following.

THEOREM 4.6. Any deterministic algorithm solving SUM(U, V)
correctly with probability 0.51 under (U, V) ~ ¢ needs Q(fkn) bits
of communication.

Input Reduction. We now perform a reduction from SUM to the {o-
norm estimation problem. Given (U, V) ~ ¢, we construct matrices
Aand B as follows. We set A = [Al,..., A% where Al = ... =
A"k and for each A® (z € [n/k]) we have Af’* = U foralli € [n].
Similarly, we set B = [B, . .. ,B"/k]T where B! = ... = Bk and
for each B* (z € [n/k]) we have B:’i = Vi foralli € [n]. Let ¢
denote the resulting distribution of (A, B). We have the following
lemma.

LEmMmaA 4.7. For any x, any deterministic algorithm that approxi-
mates ||AB|| o, within a factor of k with probability § under (A, B) ~
can be used to compute SUM(U, V) with probability (5 + 0.01) under
U.V) ~¢.

Proor. Let (U, V) ~ ¢, and let (A, B) be constructed using (U, V)
as described in the input reduction above. Let C = AB. We first
compute the value of ||C|| .

We analyze two cases. When SUM(U, V) = 0, we have DISJ(U;, V;) =
0 for all i € [n]. Consider a pair (i,) (i,j € [n],i # j). We analyze
the inner product (A;,«, Bs,j). For each t € [k], the probability that
Aj+ = By j = 1is at most ,32. We thus have

E[<Ai,*, B*,])] < ﬁzn.

By a Chernoff bound we have (A; «, Bx j) < 2%n with probability
1—eFni3 > 1/n'°. By a union bound on all pairs (i,) (i # j),
we have that with probability 1 — 1/n%, C; j = (A; «, B« j) < 2f%n
for all (i, j) (i # j). Consequently,

IClles < 25%n. (8)

When SUM(U, V) = 1, we have DISJ(U;, V;) = 0 for alli € [n]\D,
and DISJ(Up, Vp) = 1. We thus have

ICllco = n/k. ©)
By our choices of parameters f§ and k, we have
(n/k)/(2B%n) = 2k > k.
The lemma thus follows from (8) and (9). O

Theorem 4.5 follows from Lemma 4.7, Theorem 4.6, our choices
of f and k, and Yao’s minimax lemma.

Session: Algorithms, Privacy and Workflows

4.3 General Matrices

Finally we observe that the communication complexity for approx-
imating ||AB||, for non-binary matrices A, B is significantly differ-
ent than that for binary matrices.

THEOREM 4.8. Let A € Z™" and B € Z™™. In the two-party
communication model we have:

(1) There is an algorithm that computes ||AB||,, within a factor k
using O(n®/x?) bits of communication and one round.

(2) Any algorithm that approximates ||AB||, within a factor k
needs Q(n? /x?) bits of communication, even if we allow an
arbitrary number of communication rounds.

For the upper bound, we first recall a simple algorithm for sketch-
ing ||x|| (x € Z™).! We first partition the vector x into n/x? blocks
each of size x?, and then use the AMS sketching algorithm [4] for
£5-norm estimation for each block; the sketch size is O(1) if we
target an O(1)-approximation and 1 — 1/n'® success probability.

%2 iy, |, we

obtain a sketch of size O(n/x?) for estimating ||x||,, within a factor

of k. Denote this sketching matrix by S € RO(/x*)xn

In the matrix product setting Alice simply applies S to A and
sends SA € RO(/%*)Xn 5 Bob. Bob then estimates the £o-norm of
each column of C(= AB) using SA and B (and computing SA - B),
and then outputs max;e[,) ”C*JHoo'

For the lower bound, we again use the technique in Section 4.2.1
to convert a matrix product to a matrix sum, and then perform a

reduction from the {w-norm estimation problem (see Section 2).
n?/4

Since for each vector y € 7" we have Iyl € [

Given two vectors x, y € [0, k] , we construct A’, B’ and A, B ex-
actly the same way as that in Section 4.2.1. We then have ||A - B||, =
|A” + B’|| o, which evaluates to k if Gap-ls(x, y) = 1, and evaluates
to at most 1 if Gap-lw(x,y) = 0. The lower bound follows from
Lemma 2.4.

5 APPROXIMATE HEAVY HITTERS

In this section we consider the £5-(¢, €)-heavy-hitter problem de-
scribed in the introduction. We first propose an algorithm for prod-
ucts of general matrices, and then consider the problem for binary
matrices.

5.1 General Matrices

We first consider p = 1. General p € (0,2] can be handled in a
similar way.

The Idea. The idea for computing approximate heavy hitters is
similar to our ideas for the {-norm, that is, we sample 1-entries
in A to scale down the values of entries in C to a level such that the
heavy-hitter entries are still non-zero, while there are not many
non-zero entries corresponding to non-heavy-hitter entries. Let C’
denote the matrix C after we scale down. Since there cannot be
many heavy hitters, the number of non-zero entries in C’ is small.
We can thus perform a sparse recovery algorithm on C’ to find all
the heavy hitters.

Algorithm. We present the algorithm in Algorithm 4, and describe
it in words below.

! This algorithm was described in [33].

392

PODS’18, June 10-15, 2018, Houston, TX, USA

Algorithm 4: Computing {1-(¢, €)-Heavy-Hitters

Input :Alice has a matrix A € O(n/x?)™™" and Bob has a
matrix B € O(n/k?)"™". Let C «— AB
Output: {1-(§, €)-Heavy-Hitters of C

1 Alice and Bob compute ||C||;;

10* logn
2 s
(5) -2ne,

3 Alice samples each 1-entry in A with probability f§ (and

2 Set the sampling rate f < min

replaces all the non-sampled 1’s by 0s), obtaining matrix A?;
let CF — AP B;

4 Alice and Bob then use Lemma 2.5 to recover all the non-zero
entries of C8 ; the recovered matrix CP is distributed at
Alice’s side and Bob’s side, denoted by C4 and Cg where
Cch =cp+Cp;

5 Alice creates C; consisting of all entries in Cy that are larger
than % ICll;, and sends C/, to Bob. Bob outputs all entries
in C" = C, +Cp that are at least § - (¢ — 5) [|C|l;.

Alice and Bob first compute ||C||; using Remark 2. Next, similar
to Algorithm 2 for approximating ||C||.,, we sample the 1-entries in
matrix A. The sampling is simpler in this case since we only need
to sample the entries at the fixed ratio . Let CP be the resulting
matrix after sampling.

Alice and Bob then use Lemma 2.5 to recover all the non-zero
entries in CP ; the entries of the recovered CP are distributed across
the two parties, denoted by C4 and Cg where ch=c ‘A + Cp. Alice
then sends all “heavy” entries in Cg4, that is, those whose values

are larger than % [IC]l;, to Bob. Bob then outputs all the heavy
hitters in C” which is constructed by adding the heavy entries of
C4 (received from Alice) to Cp.

THEOREM 5.1. Algorithm 4 computes the {1-(¢, €)-heavy-hitters
(0 <€ < ¢ < 1)of AB, where A, B € Z™", with probability 0.9 and

using é(@n) bits of communication and O(1) rounds.

8-10*plogn
62

10*logn _

(g)z.ﬂ -
5) s
erwise § = 1, and then C# = C, in which case the proof is only
simpler.

We will assume that ||Cl|; > , since oth-

Correctness. We define two events.

&g: Forall pairs (i,), if C; j > % [ICll, then ij /B approximates
C;,j within a factor of 1 + @.

&;: For all pairs (i.)), if C ; < § [IClly, then €. /5 < § |Cll;.

The correctness of Theorem 5.1 holds if both & and &7 hold. To
see this, first consider those pairs (i, j) for which C; j < % [ICll;- By
&7 we have

¢

€
ciy<cli<p-Liclh <p-¢-3)cl

Thus pair (i, j) will not be output in Step 5 of Algorithm 4.

Session: Algorithms, Privacy and Workflows

We next consider those pairs (i, j) with C; j > % IICll;- By &¢

we have that Clﬁj € 'ff'e’,ﬁ(l +i5 £)C;,j|. Now we consider two
cases.
(1) IfCi,j > ¢||C||;, then
, €
c; = &=Ly,
BCi,
> LDy,
49
ICll; e
> 220 —ﬁ Il
4¢
> p(¢-3)lCl;
Thus pair (i, j) will be output.
(2) If Ci,j < (¢ =€) |ICl|;, then
clsacly < oo
< P (1 + —¢) (¢ -elCll;
< plo=3)lci.

Thus pair (i, j) will not be output.
In the following we show that both &¢ and &7 hold with proba-
bility 1 — 1/n*.
For &g, for a fixed pair (i, j), by sampling we have

¢
E[C]1=f-Cij = - IClls.
By a Chernoff bound we have
B B € B
PrHCl.’j—E[Ci’j]” > o ncl)
[
< 2.0.°Gg SV BEICIH /3
< 1/n1°.

By a union bound over the at most n? (i, j) pairs, we have that with
probability 1 — 1/n%, Ciﬁ j /P approximates C; j within a factor of
(1+ ﬁ) for all pairs (i, j).

For &7, consider a fixed pair (i,). If C; j < % ICl|;, then E[Clﬁj] <
B- 2 |ICll,. By a Chernoff bound we have that cfj <28- 2|l
with probability 1 — 1/n%. Thus the probability that &7 holds is at
least 1 — 1/n* by a union bound over all (i, j) pairs.
Complexities. Step 1 can be done using O(n) bits (Remark 2).
By a Chernoff bound, it holds with probability 1 — 1/a!° that
”Cﬂ”l <2B|C|l; =0 (g logn). Consequently we have Cﬁ| o <

”C'B”1 = O(% log n). By Lemma 2.5 we have that with probability

1 — 1/n' Alice and Bob can recover all non-zero entries of CPin

Step 4 using é(@n) bits of communication and 2 rounds. The
communication in Step 5 is bounded by O(1/€). We thus can bound

the total communication by é(?¢n).

393

PODS’18, June 10-15, 2018, Houston, TX, USA

Finally, it is easy to see that the algorithm terminates in O(1)
rounds.

The above analysis can be straightforwardly extended to £)-
norms for all constants p € (0, 2] simply by replacing the sampling
probability 8 by P at Line 2, and replacing ||C||; and matrix entries
M;, ; by ||C||§ and \Mi,j|p respectively at Lines 1, 2 and 5. At Line 1

one can use Algorithm 1 to estimate ||C||§ up to a factor of (1 + @),

which costs é(%n) bits of communication by Theorem 3.1, and is
the bottleneck here.

COROLLARY 5.2. For two matrices A, B € Z™ ", there is an algo-
rithm that computes the {p-(¢, €)-heavy-hitters (0 < e < ¢ < 1,p €
(0, 2]) of AB with probability 0.9 using é(%n) bits of communication
and O(1) rounds.

5.2 Binary Matrices

In this section we show that we can do better for binary matrices
by employing the idea we use for {eo-norm estimation. Again Alice
holds A € {0,1}™ "™ and Bob holds B € {0,1}"*", and let C = AB.
Due to the similarity of the approach compared with the £e-norm
case (Section 4.1), we do not repeat some of the details.

We first assume that ||AB||§ > 100¢ log n/e?, and will consider
the other case later. The algorithm is as follows.

Step 1: Alice and Bob first estimate L, = ||C|| p within a factor of
2, denoted by L;,.

Step 2: Alice samples each column of A with probability f =

min m, = A’B.
Alice and Bob then exchange the indices of sets containing j for
each surviving item j € [n] as Step 7-12 in Algorithm 2, obtaining
C4 and Cg for which C’ = C4 + Cp.

Step 3: Alice and Bob try to verify for each non-zero entry in
C4 or Cp whether it is indeed a heavy hitter. Let S4, Sg consist of

all the entries (i, j) in Ca, Cp for which (CA)I;’j > ﬁpgzﬁ(Ll’D)P/ZO or
(CB)‘zj > PP(Ly,)P /20, respectively. Then for each entry (i, j) €
5S4 U Sp, Alice and Bob try to estimate C; ; within a (1 + €/(2¢))
factor by sampling O(1/(e/¢)?) coordinates of their correponding
row and column in A and B.

By Chernoff bounds, one has that after sampling we have with
probability (1 —1/n10) that (1) the number of sampled columns of A
(or, the number of surviving universe items) is bounded by O(8n),
and (2) C']l; = O(BLy).

The correctness proof is identical to that for the {o-norm esti-
mation algorithms in Section 4.1. We next turn to analyzing the
communication cost.

The first step costs O(n) bits of communication by Theorem 3.1.
For the second step, reusing the notation uj, v; for each universe
item j in Algorithm 2, we analyze two cases:

1} for a = (10 log n)!/?, obtaining A’. Let C’

e If min{uj,v;} < 4/L1/n, then since there are at most O(pn)
surviving universe items, the total communication is upper

bounded by
1)
Lp

o5 =0(

Session: Algorithms, Privacy and Workflows

e If min{uj,v;} > +/Li/n, then since ||C’||; = O(BL1), the
total communication is upper bounded by

~ L ~ L
o[Lh)-6 (ﬂ . E) .

vLi/n giir Lp
It is easy to see that the third step costs (j(((j')/e)2 -1/¢) = (j((j)/ez)
bits of communication since there can be at most O(1/¢) entries
whose p-th powers are at least P $L” z /20. Summing up, the total

communication is bounded by O(Z) where

L VL ¢

z = pr Ly €?
1
2 VL
< n+%+ ri; %
S PV e
1
$ n'r
< n+§+¢1/p (VL1 £ L)

< z(+%) (%z%)

In the case that ||AB||§ < 100¢ log n/e?, we can just omit the
subsampling in Step 2 of the algorithm. A similar analysis gives a

communication cost of O(n + @ + %) =0(n+ %)

THEOREM 5.3. There is an algorithm that computes the {p-(¢, €)-
heavy-hitters (0 < € < ¢ < 1,p € (0,2]) of AB, where A,B €
{0, 1}™" with probability 0.9 and using O(n + g) bits of commu-

nication and O(1) rounds.

6 CONCLUDING REMARKS

In this paper we studied a set of basic statistical estimation problems
of matrix products in the distributed model, including the t’p -norms,
distinct elements, {o-sampling and heavy hitters. These problems
have a number of applications in database joins.

We would like to mention again that our algorithms for square
matrices can be straightforwardly modified to handle rectangular
matrices where A € 3™*" (m > n) and B € "™ We briefly list
here how our main upper bounds look like on rectangular matrices.
All the algorithms remain the same (we of course have to change
some occurrences of n to m in several places).

e The communication cost for (1 + €)-approximating £, (p €
[0,2]) with 3 = Z remains O(n/e).

e The communication cost for (2 + €)-approximating £ with
> = {0, 1} becomes O(m!-%), and that for K-approximating
oo with = = {0, 1} becomes O(m!->/x)

e The communication cost for {,-(¢, €)-heavy-hitters with
3. = Z remains O(%n), and that for £,-(¢, €)-heavy-hitters
with ® = {0, 1} remains O(n + %).

REFERENCES

[1] A. Abboud and A. Rubinstein. Distributed PCP theorems for hardness of approx-
imation in P. CoRR, abs/1706.06407, 2017.

394

(17]
(18]

[19

[20]
[21]
[22]
(23]

[24]

PODS’18, June 10-15, 2018, Houston, TX, USA

F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a map-reduce envi-
ronment. IEEE Trans. Knowl. Data Eng., 23(9):1282-1298, 2011.
T.D. Ahle, R. Pagh, I. P. Razenshteyn, and F. Silvestri. On the complexity of inner

K]roduct similarity join. In PODS, pa%es 151-164, 2016.
. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the

frequency moments. . Comput. Syst. Sci., 58(1):137-147, 1999.

R. R. Amossen, A. Campagna, and R. Pagh. Better size estimation for sparse
matrix products. Algorithmica, 69(3):741-757, 2014.

M. Balcan, Y. Liang, L. Song, D. P. Woodruff, and B. Xie. Communication efficient
distributed kernel principal component analysis. In KDD, pages 725-734, 2016.
Z.Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. J. Comput. Syst. Sci.,
68(4):702-732, 2004.

Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting
distinct elements in a data stream. In RANDOM, pages 1-10, 2002.

P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel query
processing. In PODS, pages 273-284, 2013.

P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In PODS,
pages 212-223, 2014.

C. Boutsidis, D. P. Woodruff, and P. Zhong. Optimal principal component analysis
in distributed and streaming models. In STOC, pages 236-249, 2016.

E. Cohen. Structure prediction and computation of sparse matrix products. 7.
Comb. Optim., 2(4):307-332, 1998.

E. Cohen and D. D. Lewis. Approximating matrix multiplication for pattern
recognition tasks. J. Algorithms, 30(2):211-252, 1999.

P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182-209, 1985.

G. Frahling, P. Indyk, and C. Sohler. Sampling in dynamic data streams and
applications. Int. J. Comput. Geometry Appl., 18(1/2):3-28, 2008.

D. V. Gucht, R. Williams, D. P. Woodruff, and Q. Zhang. The communication
complexity of distributed set-joins with applications to matrix multiplication. In
PODS, pages 199-212, 2015.

X. Hu, Y. Tao, and K. Yi. Output-optimal parallel algorithms for similarity joins.
In PODS, pages 79-90, 2017.

Z. Huang, B. Radunovic, M. Vojnovic, and Q. Zhang. Communication complexity
of approximate matching in distributed graphs. In STACS, pages 460-473, 2015.
P. Indyk. Stable distributions, pseudorandom generators, embeddings and data
stream computation. In FOCS, pages 189-197, 2000.

H. Jowhari, M. Saglam, and G. Tardos. Tight bounds for Ip samplers, finding
duplicates in streams, and related problems. In PODS, pages 49-58, 2011.

D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for the distinct
elements problem. In PODS, pages 41-52, 2010.

R. Kannan, S. Vempala, and D. P. Woodruff. Principal component analysis and
higher correlations for distributed data. In COLT, pages 1040-1057, 2014.

B. Ketsman and D. Suciu. A worst-case optimal multi-round algorithm for parallel
computation of conjunctive queries. In PODS, pages 417-428, 2017.

D. Kossmann. The state of the art in distributed query processing. ACM Comput.
Surv., 32(4):422-469, 2000.

P. Koutris, P. Beame, and D. Suciu. Worst-case optimal algorithms for parallel
query processing. In ICDT, pages 8:1-8:18, 2016.

P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In PODS,
pages 223-234, 2011.

Y. Liang, M. Balcan, V. Kanchanapally, and D. P. Woodruff. Improved distributed
principal component analysis. In NIPS, pages 3113-3121, 2014.

A. McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9-20,
2014.

P. Mishra and M. H. Eich. Join processing in relational databases. ACM Comput.
Surv, 24(1):63-113, 1992.

M. Monemizadeh and D. P. Woodruff. 1-pass relative-error lp-sampling with
applications. In SODA, pages 1143-1160, 2010.

S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and
Trends in Theoretical Computer Science, 1(2), 2005.

R. Pagh. Compressed matrix multiplication. TOCT, 5(3), 2013.

M. E. Saks and X. Sun. Space lower bounds for distance approximation in the
data stream model. In STOC, pages 360-369, 2002.

D. P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1-157, 2014.

D. P. Woodruff and Q. Zhang. An optimal lower bound for distinct elements in
the message passing model. In SODA, pages 718-733, 2014.

D. P. Woodruff and P. Zhong. Distributed low rank approximation of implicit
functions of a matrix. In ICDE, pages 847-858, 2016.

	Abstract
	1 Introduction
	1.1 Motivation and Applications
	1.2 Our Results
	1.3 Related Work

	2 Preliminaries
	3 (1+)-Approximation of p (p [0, 2])
	3.1 0-Sampling

	4 (2+)-Approximation of
	4.1 Upper Bounds for Binary Matrices
	4.2 Lower Bounds for Binary Matrices
	4.3 General Matrices

	5 Approximate Heavy Hitters
	5.1 General Matrices
	5.2 Binary Matrices

	6 Concluding Remarks
	References

