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ABSTRACT

In this paper we study skyline queries in the distributed computa-
tional model, where we have s remote sites and a central coordina-
tor; each site holds a piece of data, and the coordinator wants to
compute the skyline of the union of the s datasets. The computation
is in terms of rounds, and the goal is to minimize both the total
communication cost and the round cost.

We first give an algorithm with a small communication cost but
potentially a large round cost; we show information-theoretically
that the communication cost is optimal even if we allow an infinite
number of communication rounds. We next give algorithms with
smooth communication-round tradeoffs. We also show a strong
lower bound for the communication cost if we can only use one
round of communication. Finally, we demonstrate the superiority of
our algorithms over existing ones by an extensive set of experiments
on both synthetic and real world datasets.

1 INTRODUCTION

Skyline computation, also known as the maximal vector problem,
is a useful database query for multi-criteria decision making. If
we view data objects as points in the d-dimensional Euclidean
space, then the skyline is defined to be the subset of points that
cannot be dominated by others. Formally, given two distinct points
x = (x1,x2,...,xg)and y = (y1,y2, - . ., yq), We say y dominates x,
denoted by y > x, if y; > x; forevery i =1,2,...,dand y; > x;
for at least one i € {1,2,...,d}. For a set of distinct points S, the
skyline of S is defined to be

sk(S) = {u € S| no other v € Ss.t. v > u}.

The skyline problem was first studied in computational geometry
in the mid-1970’s [14], and was later introduced into databases as
a query operator [3]. Most work on skyline computation in the
literature was conducted in the RAM (single machine) model [9,
13, 14, 16]. In recent years, due to the large size of the datasets and
the popularity of the map-reduce type of computation, a number of
parallel skyline algorithms have been proposed [1, 17, 18, 20, 24, 26].
A common feature of those parallel algorithms is that they use the
divide-and-conquer approach: They first partition the whole point
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set into a number of subsets, and then assign each subset to a
machine for a local processing; finally the local results are merged
to form the global skyline. The art of the algorithm design in this
line of work lies in how to choose the partition mechanism.

In this paper we consider the skyline computation on distributed
data, which is different from parallel computation in that the data
is inherently distributed in different locations, and we cannot afford
to repartition the whole dataset since data repartition is communi-
cation prohibited over networks, and may also cause local storage
issues which the query node cannot control.

Consider a global hotel search engine, where each hotel is rep-
resented as a point in the 2-dimensional Euclidean space with the
x-coordinate standing for the price and the y-coordinate standing
for the rate of the location. A user naturally wants to find a hotel
with the best location and the best price, although in reality hotels
in good locations typically have higher prices. Thus a good search
engine should recommend the user with a list of candidates such
that no other hotel has both cheaper price and better location. This
list is exactly the skyline of the point set. Given a query, the search
engine needs to contact servers/providers in different locations
worldwide. The total bits of communication between the query
node and servers and the communication rounds typically domi-
nate the engine’s response time, since sending messages through
network is much slower than local computation, and the initial-
ization of a new communication round takes quite some system
overhead.

In this paper we study the skyline problem in the coordinator
model which captures the type of distributed computation men-
tioned above. In this model we have s remote sites each holding a
set of points S; in the Euclidean space, and a central coordinator
which acts as the query node. We assume there is a two-way com-
munication channel between each site and the coordinator. The
computation is in terms of rounds: at the beginning of each round
the coordinator sends a message to some of the sites, and then each
of the contacted site sends a response back to the coordinator. The
goal is to compute sk(S) while minimizing the total communication
cost and the number of rounds of the computation. See Figure 1 for
a visualization of the model.

Optimizing the communication cost in the skyline computation
on distributed data has been studied previously [5, 18, 19, 27]. A
notable difference between our work and the previous ones is that
in our algorithms we allow to take a round budget as an input (to al-
low a tradeoff between round cost and communication cost), while
all the existing algorithms use fixed numbers of rounds. Moreover,
different from previous heuristics we also provide rigorous theoret-
ical analysis on the communication cost given a round budget for
the 2-dimensional Euclidean space.
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Figure 1: The Coordinator Model

We have made the following contributions. Let n be the total
number of points, k be the number of skyline points (i.e., the out-
put size), s be the number of sites, and d be the dimension of the
Euclidean space.

(1) We have proposed an algorithm that achieves O(ks) words
of communication and at most k rounds. We complement
this upper bound by proving a lower bound stating that the
communication cost is in fact optimal for d = O(1), even if
we allow an infinite number of communication rounds.
We have shown that if we want to finish the computation
in one round then the communication cost has to be Q(n).
We have proposed an algorithm that gives smooth tradeoffs
between the communication cost and the round cost.

We have implemented our algorithms and relevant ones
in the literature, and run them on both synthetic and real-
world datasets. Our experiments have demonstrated the
superiority of our algorithms over the existing ones in
various aspects.

@

~

4)

1.1 Related Work

Skyline computation has been studied extensively in various set-
tings, including web information systems [2], peer-to-peer system([6,
8, 10, 21, 22, 24-26], mobile ad-hoc network [12, 23] and distributed
systems [5, 18, 19, 27]. There is a vast literature on skyline com-
putation and its variants, and we refer readers to [7] and [11] for
excellent surveys. Most of the existing works consider specific
network communication topology and are thus different from us,
except FDS [27], AGiDS [18], PaDSkyline [5], SkyPlan [19] which
we will describe below.

PaDSkyline and SkyPlan were proposed for the clique commu-
nication topology where each site can directly communicate with
every other site. Both of them use the minimum bounding rectangu-
lar (MBR) to summarize data at each site. In PaDSkyline, the query
node collects MBRs from all sites and partitions them into incom-
parable groups, such that points at a site can only be dominated by
points at other sites in the same group. For each group, a specific
query plan is determined and represented as a tree structure. The
query is then forwarded from the root to the leaves of the tree, and
each site sends points to be used for filtering to the next site in the
plan. Finally the remaining points in each site are collected by the
root, and the skyline points among them are sent back to the query
node. SkyPlan is similar to PaDSkyline, where each site also sends
its MBR to the query node as a summarization of data. SkyPlan
improves the selection of query plan in PaDSkyline by building the
SD-graph, where each node corresponds to a site and each directed
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edge is assigned with a weight to represent the dominance rela-
tionship between sites. A query plan is computed based on the
graph to maximize a quality function, which is the sum of weights
of all edges in a plan. We note that the tree-based computation is
inherent sequential and will incur a lot of communication rounds
if implemented in our coordinator model.

FDS [27] and AGiDS [18] are designed for the coordinator model,
and will be used as competitors in our experiments. We will describe
them in details in Section 4. Both FDS and AGiDS cannot take a
round budget as input; FDS may use many rounds, while AGiDS is
a fixed round (2-round) algorithm. We will see in our experiments
that our algorithms outperform both FDS and AGiDS.

2 ALGORITHMS

In this section we give a set of algorithms for skyline computation
on distributed data. The first algorithm has a small communication
cost, but needs a number of communication rounds that is propor-
tional to the size of the skyline. In Section 3.1 we will show that
the communication cost of this algorithm is in fact optimal! even if
we allow an infinite number of communication rounds.

We note that there is a simple algorithm for computing the
skyline points in the coordinator model in one round: Each site
computes the skyline of its local data points and sends it to the
coordinator, and then the coordinator computes the global skyline
by merging these local skylines. Unfortunately this algorithm has
communication cost Q(n); in other words, in the worse case almost
all points in all sites need to be sent to the coordinator. We enclose
a proof for this statement in Section 3.2.

We next try to explore if more rounds can help to reduce the
communication cost, and propose algorithms with tradeoffs on
communication cost and rounds.

For convenience, let [n] denote {1,2,...,n}.

2.1 Optimal Communication Cost

We described our algorithm in Algorithm 1. Let us explain it in
words. At the beginning, each site computes its local skyline points
since only these points can possibly be the global skyline points.
The rest of the algorithm works as follows. At each round, the
coordinator tries to find the point with the largest first coordinate
in the remaining points held by all sites. This is done by asking all
sites to report the local maximums of their remaining points (Line 3-
5). Next, the coordinator computes a new global skyline point from
the received local maximums, and then sends the new global skyline
point to all sites for another local pruning step (Line 7-9).

We now show the correctness of Algorithm 1 and analyze its
costs. First, it is clear that the point with the largest first coordinate
must be on the skyline. After the pruning, the points with the largest
first coordinate in the remaining points must also be on the skyline
since they cannot be dominated by the other remaining points as
well as the previous skyline points. The correctness follows by
induction.

The algorithm will terminate after k rounds since there are k
skyline points. The running time at each site consists of two parts:
the computation of the local skylines and the prunings. The compu-
tation of local skyline at the Site i needs O(n; logd_2 n; +n;logn;)

Up to a logarithmic factor which counts the number of bits used to represent a point.
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Algorithm 1 Optimal(Sy, ..., Ss)

Algorithm 2 Tradeoff-2D(S1, . .., Ss, )

Input: S; (i € [s]): the point set held by Site i
Output: the global skyline
1: Site i computes its local skyline points and discards the other
points in S;
2: while 3i € [s] s.. S; # 0 do
3: for each is.t. S; # 0 do

4: Site i sends the point with the largest first coordinate
to the coordinator

5 end for

6: The coordinator picks the point with the maximum first

coordinate among the points received from all sites, and sends
the new global skyline point to each site
7: for eachis.t. S; # 0 do
8 Site i prunes S; by the new global skyline point received
from the coordinator
9: end for
10: end while

time [14], where n; = |S;| is the number of points at the Site i and
d > 2 is the dimension of dataset. The time used for pruning is
O(dkk;) at the Site i where k; is the number of points in the local
skyline of Site i. At the coordinator, for each round we only need
to compute the maximums over at most s points. Thus the total
running time is bounded by O(ks).

THEOREM 2.1. There exists an algorithm for computing the skyline
on n points in the d-dimensional Euclidean space in the coordinator
model with s sites that uses O(ks) communication and k rounds, where
k is the output size, that is, the number of points in the skyline. The
total running time at the Site i is O(n; logd_2 n; + n;logn; + dkk;)
where n; and k; are the number of points and the size of the local
skyline at the Site i respectively, and that at the coordinator is O(ks).

2.2 Communication-Round Tradeoff for d = 2

In the previous section we have shown an algorithm with the op-
timal communication cost but using up to k rounds. On the other
hand, there is a naive one-round algorithm but in the worst case it
needs Q(n) words of communication. The natural questions is:

Can we obtain a communication-round tradeoff to
bridge the two extremes?

We try to address this question by proposing an algorithm that
allows the users to choose the number of the communication rounds
in the computation. In this section we first show such a tradeoff
result for 2-dimensional Euclidean space.

THEOREM 2.2. There exists an algorithm for computing the skyline
on n points in the 2-dimensional Euclidean space in the coordinator
model with s sites that uses r (> 3) rounds and C = sk(n/s)l/rr/z]
communication, where k is the output size, that is, the number of
points in the skyline. The total running time at the Site i is O(C/s +
n;logn;) where n; is the number of points at the Site i, and the total
running time at the coordinator is O(C).

We define the ¢-quantile of a set S to be an element a such that
at most ¢ |S| elements of S are smaller than a and at most (1 - ¢) |S|
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Input: S; (i € [s]): the point set held by Site i; r: user-chosen
round budget
Output: the global skyline
1: Site i computes its local skyline points and discards the other
points in §;
20— 1;t < [r/2]
3. while (( <t —1)A (Ji € [s]s.t. S; # 0) do
4 Let A¢ be a parameter whose value is given in the analy-
sis (Equation (5)). All sites and the coordinator jointly com-
pute (1/4¢,1/(2A¢))-quantiles according to the x-coordinates
of points in J;¢[5) Si > the quantile points naturally partition
the Euclidean plane to A, vertical strips
5: for eachis.t. S; # 0 do

6: Site i, for each non-empty strip, sends the point with
the largest y-coordinate to the coordinator
7: end for

8: The coordinator, for each strip, finds the point with the
largest y-coordinate among points received from sites; let Yy
denote the set of these points among all strips

9: The coordinator computes new skyline points from Y, and

sends them to each site

for eachis.t.S; # 0 do
Site i prunes S; by new global skyline points received
from the coordinator
end for
C—{+1

: end while

: Vi € [s], Site i sends S; to the coordinator

: The coordinator updates the global skyline using the new points

received from sites

elements of S are greater than a. If an e-approximation is allowed
(denoted by (¢, €)-quantile), then we can return any ¢’-quantile of
S such that ¢ — e < ¢’ < ¢.

We call the first coordinate of a point in the 2-dimensional Eu-
clidean space the x-coordinate, and the second the y-coordinate.
Let t = [r/2]. We describe our tradeoff algorithm in Algorithm 2.
The algorithm again starts with a local skyline computation at
each site. Similar to Algorithm 1, the rest of the tradeoff algo-
rithm still proceeds in rounds. The main difference is that at each
round, the parties (sites and the coordinator) first jointly compute
(1/A,1/(22))-quantiles to partition the Euclidean plane to a set of
at most A vertical strips, and then instead of computing the point
with the global maximum x-coordinate, the coordinator computes
for each non-empty strip the point with the maximum y-coordinate
by collecting information from the sites (Line 5-8); after that the
parties use these points to compute new skyline points and prune
each strip. We call the combination of computing the quantiles and
maximum y-coordinates, and finding new skyline points and per-
forming local pruning, one step of the computation. The algorithm
runs for (¢t — 1) steps, and after that the sites simply send all the
remaining points to the coordinator.

We now show the correctness of Algorithm 2, and analyze its
costs. The high level intuition on the round efficiency of Algorithm 2
is that at each round, the point with the maximum y-coordinate
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in each strip will either contribute to the global skyline or help
to prune all the points in that strip. Compared with Algorithm 1,
one can think that we are trying to prune the whole data set in
parallel, that is, in each strip of the plane. This will reduce the round
complexity at the cost of mildly increasing the total communication
cost.

Correctness. The correctness of Algorithm 2 is straightforward:
our skyline computation does not prune any point that is not dom-
inated by others. Indeed, up to the (¢t — 1)-th step (or, (2t — 2)-th
round), what Algorithm 2 does can be summarized as “sites send
candidate global skyline points — the coordinator computes new
global skyline points from these candidates — sites use new skyline
points to prune their local datasets”. At the (2t — 1)-th round, sites
just send all the remaining unpruned points to the coordinator so
that we will not miss any skyline points.

Communication cost. We count the communication cost in two
parts. The first part is the communication needed at the first (¢ — 1)
steps, and the second part is the total number of remaining points at
all sites after the (¢ —1)-th step, which will be sent to the coordinator
all at once at the final round.

We first analyze the cost of computing quantiles at each step.
We can compute (€, €/2)-quantiles using the following folklore
algorithm: Site i (for all i € [s]) sends the coordinator the exact
€/2-quantiles Q; of its local point set S;. Using {Q1, ..., Qs}, the
coordinator can answer quantile queries as follows: Given a query
rank f, it returns the largest v satisfying

p- Zie[s] rank;(v) > 0,

where rank;(v) = n;j(v) - (¢/2 - |Si|), and n;(v) is the number of
€/2-quantiles in Q; that is smaller than v. It is easy to see that
0 < f—v<e€/2Ye[s ISil- The following lemma summarizes the
communication cost of this algorithm.

LEmMMA 2.3. There is an algorithm that computes (e, € /2)-quantiles
in the coordinator model with s sites using one round and O(s/€)
communication.

Thus the communication used for quantile computation can be
bounded by O(sA,) at step €. The rest communication at each
step includes sending local maximums at all strips and new skyline
points, which can be bounded by O(sA) as well. To sum up the total
communication in the first part is bounded by O(s X p¢[;-1] A¢)-

The rest of the analysis is devoted to the second part, that is, to
bound the number of the remaining points after the (¢ — 1)-th step.

We first assume that the output size k is known, and A1, = A for
all ¢ € [t — 1] will be chosen as a function of k (see Equation (4)).
We will then show how to remove this assumption.

Let Yy € [1,1] denote the number of new skyline points we
find at the ¢-th step. Observe that in each strip, if the point with
the largest y-coordinate is not a skyline point, then the rest of the
points in that strip cannot be skyline points and thus are pruned.
After the first step, there are at most Y7 strips having point and
each strip has at most 2n/A points, so there are at most

Y1 - 2n/A =2nY1/A

points left. After the second step, there are at most Y, strips having
point and each strip has at most 2(2nY;/1)/A points, so there are at
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most
Yy - 2(2nY1/A) /A = 4nY; Yy /A2 (Y1 + Y, <k)
points left. After the (¢ — 1)-th step, there are at most

27 [] Y /AH S ovesk|
te[t-1] te[t-1]
2k i1

"((t—m) @

points left, where from (1) to (2) we have used the AM-GM inequal-
ity and the equality holds when all Y, = k/(t —1) (( =1,...,t—1).
We thus have at most n(2k/((t — 1)1))*~! points left at sites after
(t — 1)-th step, and the sites will send all of them in the final (i.e.,
(2t — 1)-th) round. Adding two parts together, the total communi-
cation cost is bounded by

ok \t1
O(sA(t—1))+n (—(t — 1)/1) . (3)
When )
2k (n@-1)\"*
A—m'( 25k ) ’ )

Expression (3) simplifies to be O(skt=D/t (n /)1,

Dealing with unknown k. We now show how to deal with the
case that we do not know k at the beginning. A simple idea is to
guess k as powers of 2 (i.e., 1,2,4,8,...), and for each guess, we
run our algorithm, and report error if ), Y, > k at some point,
in which case we double the value of k and rerun the algorithm.
The correctness of the algorithm still holds. The round complexity,
however, may blow up by a factor of log k in the worst case. We
will show that there is a way to preserve the round complexity even
when we do not know k at the beginning.

The new idea is to guess k progressively, based on the number
of new skyline points found in the previous step. More precisely,
we set the guess of k at the ¢-th step (£ > 2) to be

ke=Yeq-(t-1),
and we set k1 =t — 1 to begin with. Now at the {-th step we use

_ (n(t— 1))1“

_ 2ky
¢ 2s

T -1

©)

strips for the pruning. Note that (5) is very similar to (4), where we
have replaced the first k in (4) by k¢ and removed the second k in

4).

Similar to (2), after (¢ — 1)-th step, there are at most
27 [ ] /a0
te[t-1]

points left, and consequently the total communication cost is bounded
by
s Z Ap+251n ]_[ (Yo /M)

Ce[t-1] Ce[t-1]
We now bound the two terms in (6) separately. We first have

_ 1/t
s Z A (n(t 1))

Ce[t-1] 2s

(6)

2s Dee[r-11 ke
(t-1)
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mt-1) 1))1” @)

< 2sk- (
2s

where we have used the inequality

Z kp=@t-1)]1+ Z Yo | < (t-1k.

le[t-1] Le[t-2]

For the second term, we have

YiYo---Yiq (n(t - l))t/(t_l)

27 [] We/d) = n
reli-1] Y1y .- Yo 2s
~ 25 (n(t-1))\"*
ask (n(t - 1)\ @
(t-1) 2s '

By (7) and (8), the total cost is bounded by
O(sk(n/s)/t) = 0 (sk(,, /S)I/rr/zw) ,
as claimed.

Running time. The time cost at each site involves three parts: the
computation of the local skyline, the computation of local quan-
tiles, and the point prunings. Computing local skyline again cost
O(n; log n;) where n; is the number of points at Site i. The cost
of point prunings can again be made linear in n; for the same
reason as that in Algorithm 1. Now we analyze the time cost of
computing the local quantiles. Since points are sorted after the
local skyline computation, computing (exact) local quantiles needs
O(A¢) time at the ¢-th step. Thus the total time is bounded by
Seefe-1)A¢ = Olk(n/s)'/") = O(k(n/5)!/ [T/2T).

The running time at the coordinator also consists of three parts:
the computation of approximate global quantiles at each step, the
computation of new skyline points from the first step to the (t — 1)-
th step, and the computation of skyline points (output) at the end.
The observation is that at each step, for each of the three tasks, the
running at the coordinator can be asymptotically bounded by the
number of points it receives from all sites in that step, and thus
the total running time at the coordinator is asymptotically upper
bounded by the total communication cost.

2.3 Communication-Round Tradeoff for All
Dimensions

In this section we consider general dimension d. We first note that
the approach in Section 2.2 does not work any more. For d = 2 we
can partition the space into strips according to the x-coordinate
(1-dimensional subspace) such that each strip has same amount
of points. As a result, once a strip is pruned, a certain number of
points are guaranteed to be pruned. However, for general d, we
can not find such a geometric partition for the (d — 1)-dimensional
subspace such that each part has the same amount of points.

We thus propose a simple algorithm which can be thought as
a modified version of Algorithm 1. The algorithm is described in
Algorithm 3. At each of the first » — 1 rounds, each site sends the
(at most) d points with the maximum coordinates at each of the
d dimensions. The coordinator then computes new skyline points
from the points received from all sites, and sends new skyline points
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Algorithm 3 Tradeoff-general(Si, So, . . ., Ss, 1)

Input: S; (i € [s]): the point set held by Site i; r: user-chosen
round budget
Output: the global skyline
1: Site i computes its local skyline points and discards the other
points in §;
l—1
: while (¢ <r—-1)A(Fi € [s]s.t.S; #0) do
for eachis.t. S; # 0 do
Site i sends the points with the maximum coordinate
in each dimension to the coordinator
6: end for
7 Among the points received from sites, the coordinator finds
the points with global maximum coordinates in each dimension,
adds them to the global skyline, and sends them to each site
8: for each is.t. S; # 0 do

G W N

9: Site i prunes S; by new global skyline points received
from the coordinator
10: end for
11: {—{C+1

12: end while

13: Vi € [s], Site i sends S; to the coordinator

14: The coordinator updates the global skyline using the new points
received from sites

to each site for a local pruning. Finally at the r-th round, each site
simply sends all the remaining unpruned points to the coordinator
for finalizing the global skyline.

Note that the main difference between Algorithm 3 and Algo-
rithm 1 is that in the first r — 1 rounds, in the former each site may
send up to d distinct points, while in the later each site only sends
at most one point. On the other hand, in the worst case in both
algorithms the coordinator only obtains one new skyline point.
Therefore in the worst case Algorithm 3 may waste a factor of d
in the communication cost. However, in practice, the worse case
rarely happens and computing skyline from all dimensions makes
the pruning faster.

Algorithm 3 also gives a communication-round tradeoff, and it
works for any dimension d > 2. The correctness of Algorithm 3 is
obvious: at the first » — 1 rounds, it does the same thing as Algo-
rithm 1 for each coordinate, and every pruned point is guaranteed
to be dominated by the global skyline. In the last round sites just
send all the remaining unpruned points to the coordinator. Regard-
ing the communication cost, in the worst case the sites need to
sent Q(n) points to the coordinator for small round budget r; more
precisely, the number of remaining points at sites could be Q(n)
after round r — 1. But we will show in Section 4 that in practice
Algorithm 3 is always communication efficient.

2.4 Discussions

In this section we propose some strategies to further improve the
communication costs of our algorithms.

Avoid sending duplicated points. We observe that in Algorithm 1
the same point may be sent to the coordinator multiple times: If a
point is not pruned at the current round, then it will still be a local
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Algorithm 4 Sorted-2D(Sy, . . ., Ss)

Input: S;: the point set held by Site i
Output: the global skyline
1: Site i computes its local skyline points and discards the other
points in S;
2: Site i sends the point with the largest y-coordinate, denoted by
yi, to the coordinator
3: The coordinator computes for Vi € [s], z; = max{yi+1, ..
and sends z; to Site i
4: Site i prunes S; using z;, and sends the rest points to the coor-
dinator
s: The coordinator updates the global skyline using the new points
received from sites

~,ys},

maximum of the site in the next round. To avoid communicating
duplicated points, the coordinator requests a new local maximum
point from a site only when the previous point is pruned by the
global skyline.

More efficient pruning. We notice that in many cases the coordina-
tor does not need to send all the global skyline points to sites. Con-
sider the following example in the 3-dimensional Euclidean space.
Let a = (0.6, 0.2,0.5) be the local maximum point in the first dimen-
sion at Site 1. Suppose that after the first few rounds, the global sky-
line becomes b = (0.9,0.1,0.1),¢ = (0.8,0.4,0.4),d = (0.7,0.6,0.6).
Since a is dominated by d, we should send the global skyline to Site
1 for the pruning. The observation is that we only need to send d
to Site 1 but not b and c, since d dominates b, ¢ in the second and
third dimensions.

Reducing the cost of quantile computation. In our experiments
we found that the quantile computation is relatively expensive
when the size of the skyline is small. In this case we just compute
quantiles once, and then use the same quantiles at each round.

2.5 A 2-round algorithm for sorted datasets

Finally we would like to mention that in the 2-dimensional Eu-
clidean space, if data points are partitioned to the s sites in a sorted
order with respect to one of the two coordinates, then we can do
much better.

THEOREM 2.4. For n points in the 2-dimensional Euclidean space
partitioned among the s sites in the coordinator model in the sorted
manner according to their x-coordinates or y-coordinates, there exists
an algorithm for computing the skyline that uses O(k + s) communi-
cation and 2 rounds, where k is the output size, that is, the number of
points in the skyline. The total running time at Site i is O(n; log n;)
where n; is the number of points at Site i, and that at the coordinator
is O(k + s).

Let us assume that points are sorted according to the x-coordinates.

The algorithm is described in Algorithm 4. Each site first does a
local pruning and computes its local skyline. In the first round,
Site i sends the coordinator the point which has the largest y-
coordinate, denoted by y;. In the second round, the coordinator for
each i € [s] computes the value z; which is the maximum value
among {yi+1,. - .,Ys}, and sends z; to Site i. Site i then prunes all
its local points with y-coordinate smaller than z;, and sends the
rest of its points to the coordinator.
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To show the correctness of this algorithm, the claim is that the
points in S; with y-coordinate larger than z;, denoted by P;, must on
the global skyline. Indeed, points in P; cannot be dominated by any
pointin Sq,. .., S;i—1 since all points in S; have x-coordinates larger
than those points in Sy, . .., Sj—1. On the other hand, points in P;
cannot be dominated by any point in S;j41, . . ., Ss since all points in
P; have y-coordinates larger than the those points in S;41, ..., Ss.

The communication of the algorithm includes sending y; and z;
(costs 2s) plus sending skyline points (costs k). The running time at
each site is dominated by the local skyline computation, and the
time cost at the coordinator is clearly O(k + s) (O(s) for the first
round and O(k) for the second round).

3 LOWER BOUNDS

In this section we provide two lower bound results to complement
our proposed algorithms.

3.1 Infinite Rounds

We prove a lower bound for the infinite-round case by a reduction
from a communication problem called s-DISJ. The lower bound
matches the upper bound by Algorithm 1 up to a logarithmic factor
which counts the number of bits used to represent a point in the
Euclidean plane.

In s-DISJ, each of the s sites gets an m-bit vector. Let X; =
(Xl.l, ..., X[") be the vector the the i-th site gets. We can view the
whole input as an s X m matrix X with X; (i € [s]) as rows. The
s-DIS]J problem is defined as follows:

1, if there exists a j € [m] s.t.
s-DISJ(X1, ..., Xs) = Viels].X] =1,
0, otherwise.

LEmMMA 3.1 ([4]). Any randomized algorithm for s-DISJ that suc-
ceeds with probability 0.51 has communication cost Q(sm). The lower
bound holds even when we allow an infinite number of communication
rounds.

The Reduction. Given the m-bit vector X; for s-DIS]J, the i-th site
first converts it to a 2m-bit vector X as follows: each 0 bit will
be converted to 01, and each 1 bit will be converted to 10. For
example, when m = 5 and X; = 10101, Xi’ should be 1001100110.
The next step is to convert X] to a staircase. This step is illustrated
in Figure 2 (a). We can “embed” the staircase into an m X m grid.
The staircase starts from the top-left point of the grid, and grows
in 2m steps. In the {-th step, if the £-th coordinate of X l’ is 0, then
the staircase grows one step horizontally rightwards; otherwise if
the {-th coordinate is 1, then the staircase grows one step vertically
downwards.

The observation is that if we create s staircases using Xl' R ¢
then the skyline of the union of these s staircases is closely related
to the value of s-DISJ(X1, ..., X;s): If s-DISJ(X3,...,Xs) = 0, then
the skyline will be in the form of the red curve in Figure 2 (b);
otherwise, the skyline will be different from the red curve (e.g., be
the blue curve in Figure 2 (b) if the 3rd coordinates of Xj, ..., Xs
are all 1). This is because for each column j € [m] in the grid, as
long as there is one i € [s] such that the j-th coordinate of X; is 0,
or the (2j — 1)-th and (2j)-th coordinates of X is 01, the skyline
within the j-th column of the grid will be like “7”; otherwise if for
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(@) (b)
Figure 2: (a)Translating vector X; = 1001100110 (m = 5) to a
staircase. (b) The solid red skyline corresponds to the case
that s-DISJ(X1, ..., Xs) = 0, and the dash blue skyline corre-
sponds to the case that s-DISJ(X3,...,Xs) = 1.

all i € [s] the j-th coordinate of X is 0, then the skyline within the
Jj-th column of the grid will be like “L”. The other direction also
holds, that is, if the skyline is in the form of the red curve, then

s-DISJ(X1, . .., Xs) = 0; otherwise, s-DISJ(X1, . .., X;s) = 1.

When the size of the skyline is k, we set m = k according to our
reduction, and obtain the following theorem.

THEOREM 3.2. Any randomized protocol for computing skyline
in the coordinator model that succeeds with probability 0.51 has
communication cost Q(sk) bits, where k is number of points in the
skyline. The lower bound holds even when we allow an infinite number
of communication rounds.

3.2 One Round

We now prove an Q(n) communication lower bound for the case
that the algorithm needs to finish in one round. This proofis simpler
than the infinite-round case — we only need two sites to participate
in the game. We assign Site 1 an m-bit vector u, which can be
converted to a staircase in the m x m grid just like the infinite-
round case, and assign Site 2 one bit v, which is translated to the
upper-right corner point of the grid if v = 1 and the lower-left
corner point of the grid if v = 0. We have the following simple
observation, which holds because if we change one bit of the vector
m from 0 to 1, we will change a “7” to “L” in the staircase, and thus
change the skyline; same for replacing a bit 1 to 0.

OBSERVATION 1. If the coordinator needs to compute the global
skyline, and v = 0, then it needs to learn the vector u exactly.

We immediately have the following lemma.

LEMMA 3.3. Any one round randomized algorithm for the coor-
dinator to learn u exactly with probability 0.51 has communication
cost Q(m).

Note that when v = 1, the skyline only consists of a single point
in the upper right corner. Therefore the output size k is not directly
related to the value m; we thus can set m = Q(n).

THEOREM 3.4. Any one round randomized algorithm for comput-
ing skyline in the coordinator model that succeeds with probability
0.51 has communication cost Q(n) bits, where n is the total number
of points held by all sites.
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4 EXPERIMENTS
4.1 The setup

In this section we present the experimental studies of our proposed
algorithms. We have implemented all algorithms in C++. All exper-
iments were conducted on a Dell PowerEdge T630 server with 2
Intel Xeon E5-2667 v4 3.2GHz CPU with 8 cores each, and 256GB
memory.

The Datasets and Partition. We generated three synthetic datasets
following the standard literature [3]: Anti-correlated (ANTI), Inde-
pendent (INDE), Correlated (CORR). As recommended in [27], in
order to simulate the distribution differences among sites, in each
site we distribute points within a bounding rectangle whose projec-
tion on the i-th dimension (i € [1,d]) is an interval [a;, f;], where
aj, fi are randomly chosen from [0, 1], adhering to the constraint
Bi—a; = 0.95. The parameters number of points in each site, number
of sites, and dimension used in our experiments are described in
the following table. We will use the parameters with bold font by
default.

Values
{20k, 40k, 60k, 80k, 100k}
{20, 40, 60, 80, 100}
{2,3,4,5}
Table 1: Parameters of synthetic datasets

Parameter

#Points in each site
#Sites
Dimension

We make use of the following real-world datasets in experiments
ford = 2,3.

e Household [15]: this dataset contains 2 million household
electric power consumption records gathered between De-
cember 2006 and November 2010. We choose voltage and
intensity as the two attributes for d = 2, and add global
active power as the third attribute for d = 3. The skyline
points represent those households that are recommended
to pay attention to the energy efficiency. We partition the
data collected in every two consecutive months to the same
site; we thus have 24 sites.

e Airline: this dataset contains 1.2 million airline on-time
performance records between 30 U.S. major cities in the
2016 fourth quarter.? We choose (minus) departure delay
time and (minus) arrival delay time as the two attributes
for d = 2, and add (minus) taxi out time (time between
a flight leaving the departure gate and taking off) as the
third attribute for d = 3. The skyline points are considered
to be on-time flights. We partition the flights departing
from the same city to the same site; we thus have 30 sites.

e Covertype [15]: this dataset contains 500 thousand natural
statistics from four wilderness areas located in the Roo-
sevelt National Forest of northern Colorado. We choose
elevation and slope as the two attributes for d = 2, and add
horizontal distance to hydrology as the third attribute for
d = 3. The skyline points represent areas that may have
interesting geological behaviors. We randomly partition
the data to 20 sites.

2 Available at http://www.transtats.bts.gov.
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Figure 3: Communication cost vs round in 2-dimension

Algorithms. We compare the following algorithms in our experi-
ments.

Naive: The single round algorithm: Each site computes
and sends its local skyline to the coordinator for a merge.
Optimal: Algorithm 1in Section 2.1. This algorithm achieves
the optimal communication cost.

Tradeoff: Algorithm 2 in Section 2.2 for d = 2, and Al-
gorithm 3 in Section 2.3 for d > 2. This algorithm gives a
smooth communication-round tradeoff. We note that if the
round budget r is too large, then Tradeoff may terminate
before using up the round budget.

AGiDS: We use the AGiDS algorithm proposed in [18] as
a comparison. To make AGiDS fit in our model, we use
the following version of the original algorithm: At the
beginning, the coordinator and sites share the information
of a grid in which each cell represents a range in all axes
(equal width partition). In the first round (the planing
phase), sites send the information of non-empty cells to the
coordinator. In the second round (the execution phase), the
coordinator finds the cells that may contribute to global
skyline and sends the information to sites, and then sites
send points in these cells to the coordinator. Finally the
coordinator computes the skyline of received points as the
output. We choose the parameter number of cells to be 1024
in our experiments as recommended in [18].

FDS: We use the FDS algorithm proposed in [27] as a com-
parison. The original algorithm proceeds in iterations. To
make it fit in our model, we use three rounds for each it-
eration: In the first round (the voluntary phase), each site
sends the top k points with the largest scores (the sum of
all coordinate values) to the coordinator. In the second
round (the compulsory and computation phase), the coor-
dinator calculates the minimum score (denoted by Fj)
from received points and sends it to each site. Each site
then sends all its local points that have larger scores than

444

Fiin to the coordinator. The coordinator updates the global
skyline with points received in the first two rounds. In the
third round (the feedback phase), the coordinator calculates
and sends each site a feedback, which consists of points
that are guaranteed to dominate at least ¢ points in that
site. And then each site does a local pruning. x and ¢ are
two parameters in FDS; we choose the optimal values k = 1
and £ = 1 as reported in [27].

Measurements. We make the following two measurements in the
experiments: communication cost and time. We use the number of
data points transmitted between coordinator and sites to represent
communication cost. If an algorithm requires to send additional
information other than data points (such as the quantiles in Algo-
rithm 2; minimum score and ¢-NN distance of points in FDS), for
each number sent, we add 1/d to the communication cost. The
time is the total time usage from the moment that the coordinator
initializes a query to the end of the query, which is also referred as
response time or network delay in other literatures. We assume that
all sites have already computed the local skyline before the query
start, since the local skyline computing needs same amount of time

for all algorithms.

4.2 Results and Discussions

Figure 3 and Figure 4 show the communication and round costs of
the algorithms on the three synthetic datasets and three real-world
datasets for d = 2, 3.

Compared with Optimal, Tradeoff achieves the almost same
communication cost with a much smaller round cost. For d = 2,
we observed that by using five rounds, the communication cost of
Tradeoff is 10%-48% of that of Naive on synthetic datasets and
16%-37% on real-world datasets. For d = 3, we observed that by
using ten to twenty rounds, the communication cost of Tradeof f
is 15%-44% of that of Naive on synthetic datasets and 12%-46% on
real-world datasets. We observed that the advantage of Tradeoff
against Naive is larger on ANTI and INDE datasets.
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Figure 7: Communication cost vs data dimension

FDS falls short on both communication and round costs com-
pared with Tradeoff; sometimes its communication cost is even

The communication cost of AGiDS is much larger than Naive
in the most cases. One reason may be that the exchange of the
information of cells is communication expensive.
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worse than Naive. It is clear that using 3 rounds for an iteration
is not round efficient. Moreover, FDS exchanges a lot of additional
information such as minimum score and £-NN distance of points
which makes it communication inefficient. We note that these addi-
tional information were not counted as communication cost in the
experiments of [27], and this is why our results are a bit different
from the results in [27].

Figure 5, Figure 6 and Figure 7 show how the communication cost
changes with respect to the number of points at each site, number
of sites and dimension. For Tradeoff, we set the round budget to
ber =5whend = 2, and r = 20 when d > 2. We observed that
the communication costs of all algorithms increase when these
parameters increase. Tradeoff scales well with all the parameters
and outperforms FDS and AGiDS in all circumstances. We also
observed that the communication cost increases rapidly when the
dimension of the data increases; this is because the number of
skyline points increases significantly when the dimension increases.

Figure 8 shows the running time of the tested algorithms (exclud-
ing the cost of local skyline computation) for d = 2, 3. Generally
speaking the running time of all algorithms are similar.

In summary, Tradeoff achieves noticeable communication cost
reductions than AGiDS, FDS and Naive by using a small number of
rounds; its performance is very close to the theoretically optimal
algorithm Optimal in the communication cost but is much more
efficient in rounds. On the other hand, the performance of AGiDS
and FDS are clearly dominated by other algorithms. All algorithms
have similar time costs.

5 CONCLUSION

In this paper we propose a set of algorithms for computing skylines
on distributed data. We first give an algorithm that achieves the
optimal communication cost. We also propose two algorithms with
communication-round tradeoffs. We show experimentally that
our algorithms significantly outperform existing heuristics in the
communication cost and/or round cost.
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