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Spatiotemporal Modeling and Prediction in Cellular
Networks: A Big Data Enabled Deep Learning
Approach

Jing Wang, Jian Tang, Zhiyuan Xu, Yanzhi Wang, Guoliang Xue, Xing Zhang and Dejun Yang

Abstract—In this paper, we propose to leverage the emerg-
ing deep learning techniques for spatiotemporal modeling and
prediction in cellular networks, based on big system data. First,
we perform a preliminary analysis for a big dataset from China
Mobile, and use traffic load as an example to show non-zero
temporal autocorrelation and non-zero spatial correlation among
neighboring Base Stations (BSs), which motivate us to discover
both temporal and spatial dependencies in our study. Then we
present a hybrid deep learning model for spatiotemporal predic-
tion, which includes a novel autoencoder-based deep model for
spatial modeling and Long Short-Term Memory units (LSTMs)
for temporal modeling. The autoencoder-based model consists of
a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs
(LSAEs), which can offer good representations for input data,
reduced model size, and support for parallel and application-
aware training. Moreover, we present a new algorithm for
training the proposed spatial model. We conducted extensive
experiments to evaluate the performance of the proposed model
using the China Mobile dataset. The results show that the
proposed deep model significantly improves prediction accuracy
compared to two commonly used baseline methods, ARIMA and
SVR. We also present some results to justify effectiveness of the
autoencoder-based spatial model.

Index Items: Cellular Network; Big Data; Spatiotemporal Mod-
eling, Deep Learning; Autoencoder; Recurrent Neural Network

I. INTRODUCTION

There is no doubt that we are living in the big data
era [5]. Big data can refer to two different things in the
context of wireless networks. First, last decade has seen an
exponential growth on mobile devices and Internet of Things
(IoT) globally. Beyond communication, these devices have
been playing a key role in many aspects of people’s daily
life, including computing, entertainment, sensing, etc. As a
result, these activities have generated enormous mobile data
for wireless networks, which we can call big user data. In
addition, wireless networks have become more and more ad-
vanced and complicated, which are generating a large amount
of runtime system statistics (such as traffic load, resource
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usages, etc) every second. For example, In [8], Ding et al.
showed the volume of spectrum state data could be in the
order of zettabytes (ZBs, 1 ZB = 10%! Bytes) in a 100 * 100
km? area, during one week, on a spectrum ranging from from
0 to 5 GHz. We can call such data big system data.

Tremendous research efforts (e.g., [28], [29]) have been
made to develop algorithms and protocols for wireless net-
works to utilize their resources efficiently and effectively.
However, most of them aimed at optimizing resource allo-
cation, assuming that some key factors (such as traffic load,
spectrum usages, computing resource usages, etc) are given as
input. Limited work has been done to model and predict the
pattern of these key factors, which are highly time and location
varying. Instead of treating big system data as an unwanted
burden, we should leverage them as a great opportunity for
better understanding user demands and system capabilities
such that we can optimize resource allocation to better serve
mobile users.

Wireless system data are basically time series data. Quite
a few models and methods [6] have been proposed for time
series analysis. AutoRegression Integrated Moving Average
(ARIMA) and Support Vector Regression (SVR) are two most
widely used methods, which have been applied to wireless
networks. For example, ARIMA has been used in [26], [38]
to predict the future traffic load. However, the limitation of
ARIMA lies in their natural tendency to concentrate on the
mean values of the past series data, which makes it unable
to capture the rapid variational process underlying traffic
load [17]. SVR model is also limited for the reason that the
users need to determine some key parameters for the model,
and it lacks a structured way for determining best values for
these parameters [17]. More importantly, these methods use
only historical data of the target for prediction without taking
into account spatial dependency (i.e., neighboring BSs), which,
however, is very important in a wireless network.

In this paper, we propose a novel deep learning approach for
spatiotemporal modeling and prediction in cellular networks,
using big system data. Deep learning is a multi-layer repre-
sentation learning method [34], which aims to automatically
discover a simple but proper representation for the given raw
data. Each layer is a non-linear module that transforms the
representation of the previous layer into a more compact
representation. Deep learning has been shown to dramatically
improve the state-of-art on many application domains, in-
cluding image/video processing, natural language processing,
etc [34]. It is particularly suitable to infer information from
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large datasets and requires very little domain knowledge and
engineering by hand. This work aims to show how deep
learning can be utilized to model time series data collected
from a cellular network and make accurate prediction.

First, we perform a preliminary analysis for a big dataset
from the largest wireless carrier in China, China Mobile, and
use traffic load as an example to show non-zero temporal
autocorrelation and non-zero spatial correlation among neigh-
boring Base Stations (BSs), which motivate us to discover
both temporal and spatial dependencies in our study. We then
present a hybrid deep learning model for time series prediction,
which includes a novel autoencoder-based deep model for spa-
tial modeling and Long Short-Term Memory units (LSTMs)
for temporal modeling. The autoencoder-based model con-
sists of a Global Stacked AutoEncoder (GSAE) and multiple
Local SAEs (LSAEs), which can offer good representations
for input data, reduced model size, and support for parallel
and application-aware training. Moreover, we present a new
algorithm for training this autoencoder-based spatial model. In
addition, we conducted extensive experiments to evaluate the
performance of the proposed model using the China Mobile
dataset. The results show that our model significantly improves
prediction accuracy compared to two commonly used baseline
methods, ARIMA and SVR. We also show some results to
justify effectiveness of the autoencoder-based spatial model.
To the best of our knowledge, we are the first to leverage
the emerging deep learning techniques for spatiotemporal
modeling and prediction in wireless networks by developing
a new hybrid deep model, and showing its effectiveness and
superiority with real data from a major wireless carrier.

II. PRELIMINARY DATA ANALYSIS

In this section, we first describe the dataset used for analysis
and evaluation, and then we perform a preliminary analysis for
the data, which motivates our design.

A. Dataset
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Fig. 1. Locations of BSs in our dataset

The dataset consists of data collected from a large LTE
network of China Mobile at Suzhou, a major city located in
the southeastern part of China. The data was collected from
2,844 BSs, roughly covering an area of 6, 500 km?. Locations
of all the BSs are shown in the map given by Fig. 1. Here,
our analysis is performed based on the downlink and uplink
traffic load. However, the proposed model (Section III) can
be applied to other features. The dataset includes average
traffic load of each BS in every hour during the period
from 00:00 05/01/2015 to 23:00 09/30/2015. To facilitate data
analysis, we divide the target area into a grid, with each
cell covering a square of 500 x 500 m?2. Then every BS can
be mapped into a cell in the grid. If a cell includes more
than one BS, then its traffic load is the aggregated load.
Note that unlike traditional cellular networks, current dense
small cell networks do not have a hexagon-based layout. A
tuple (m,n) is used to uniquely identify each cell. We denote
D = {dmn},¥m,n,t, which is the downlink/uplink traffic
load of cell (m,n) at timeslot ¢. Since uplink and downlink
can be considered separately, without abusing the notation,
we use this to denote both of them. In addition, we denote
dm,n = {dm,n,t}7Vt-

For each cell (m,n), we normalize the data into the range
[0,1]. We adopt the fanh estimator method, a robust and
efficient method for normalizing time series data [14], which
calculates the normalized values as follows:

. 0.01(dp,.p, — dypom
dy. = 0.5(tanh( (A, n)

)+ 1), (1)

s

od
where d,, ,, and o4, , are the average and standard deviation
of d,, , respectively.

B. Data Analysis

In our preliminary analysis, we try to explore data depen-
dency in both the temporal and spatial domains. d,,, can
be treated as a collection of a random process samples at
cell (m,n). So we can examine data dependency in terms of
temporal autocorrelation and spatial correlation in the temporal
and spatial domains respectively. We summarize our main
findings in the following:

Observation 1: Dataset D exhibits non-zero autocorrelation
in the temporal domain.

The sample AutoCorrelation Function (sample ACF) [6] is
a widely used method for discovering data dependency in the
temporal domain, which describes the dependency between the
values of a sample process as a function of time lag h. The
definition of the sample ACF at cell (m,n) can be given as
follows (for the sake of readability, we omit the notations of
m, n in this definition):

T

i (diy(n) — d)(de — d)

1
p(h) = ==

T <h<T; (2

T
L=
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Fig. 2. Temporal autocorelation

where T and d are the total count and mean value of data
in the temporal dimension, respectively. The autocorrelation
value lies in the range [—1, 1]. p(h) = 1 indicates total positive
autocorrelation between data with a time lag of h; while
p(h) = —1 means total negative autocorrelation. Note that
p(h) = 0 denotes no autocorrelation.

Fig. 2 shows a sample ACF at time lag h = 0, 1, - - - , 200 for
both downlink and uplink data. We can see that when the time
lag equals one or multiple of 24 (hours), the autocorrelation is
relatively high. This shows that the traffic load at a cell follows
a clear daily pattern. For example, the traffic load peak and
off-peak hours are similar on each day. Therefore, dataset D
exhibits non-zero autocorrelation in the temporal domain.

Observation 2: Dataset D reveals non-zero correlation in
the spatial domain.

We examine the data correlation in the spatial domain by
calculating a widely used metric [7] for a pair of cells (m, n)
and (m/,n’):

cov(dy pny A )

p= ) 3)
0d,,,,%d

m,n m/ n!

where couv(-) is the covariance operator, and o is the stan-
dard deviation. Similarly, this correlation coefficient ranges in
[—1,1] as well.

TABLE I
SPATIAL CORRELATION

Cell 1 | Cell2 | Cell 3 | Cell4 | Cell 5 | Cell 6 | Cell 7
Cell 1 | 1.000 | 0.167 | 0.435 | 0.130 | 0.040 | 0.341 | 0.307
Cell 2 | 0.396 | 1.000 | 0.338 | 0.129 | 0.084 | 0.310 | 0.222
Cell 3 | 0.345 | 0.541 | 1.000 | 0.159 | 0.162 | 0.697 | 0.536
Cell 4 | 0.437 | 0.439 | 0.458 | 1.000 | 0.104 | 0.131 | 0.114
Cell 5 | 0.360 | 0.471 | 0.492 | 0.508 | 1.000 | 0.163 | 0.080
Cell 6 | 0.286 | 0.491 | 0.550 | 0.432 | 0.535 | 1.000 | 0.603
Cell 7 | 0.284 | 0.506 | 0.526 | 0.459 | 0.535 | 0.577 | 1.000

We examine the correlation among cells for both downlink
and uplink data, and present the results among 7 closely

located cells in Table I. Each cell is subsequently located
on the east side of the previous one. Note that the upper
triangular part of Table I shows the correlation for uplink data,
while the lower triangular part is for downlink data. We can
clearly observe none-zero correlation among these cells from
the table. Actually, more than 50% of the correlation values are
greater than 0.300. In addition, we can see that the correlation
values among cells vary a lot. For instance, downlink data in
Cell 1 and Cell 2 have a correlation value of 0.396; while Cell
5 and Cell 6 have a correlation value of 0.535, even though
Cell 2 and Cell 6 are of the same spatial relationship to Cell 1
and Cell 5, respectively. This property indicates that the spatial
correlation is highly location-dependent.

III. SPATIOTEMPORAL MODELING AND PREDICTION
A. Overview

As mentioned above, simple temporal modeling that uses
only historical data of the target may not work well here due
to strong spatial correlation observed from the data. Motivated
by the observations described above, we design a novel hybrid
deep learning model to perform spatiotemporal modeling and
prediction for each cell (m, n), which leverages historical data
collected from both the target cell and its neighboring cells
surrounding it. The proposed model consists of three major
components: Local Stacked AutoEncoders (LSAEs), a Global
Stacked AutoEncoder (GSAE) and Long Short-Term Memory
units (LSTMs). As illustrated by Fig. 3, the proposed model
works as follows:

GSAE
[ LsaE S [ LsT™
. (3, 3) (3, 3)
\
[ LsAE LST™
g YD) I 1 0.8
[ LsaE Y LSTM
"1 (16, 14) 2 (16, 14)

Fig. 3. The proposed deep learning model
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1) Data of the cell of interest (marked red) and its neigh-
boring cells form a data patch (marked blue), which can
include values of one or multiple features of interest (such
as downlink/uplink traffic load). The GSAE takes such a data
patch as input, producing an encoded representation (called
global representation). Note that there is only one GSAE,
which is applied to all patches.

2) After being encoded by the GSAE, each patch will be fed
to the corresponding LSAE to generate another representation
(called local representation). The global representation and
local representation will then be concatenated () to represent
each patch.

3) The concatenated representations will then be passed to
LSTMs for prediction.
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For spatial modeling, we choose autoencoder [3] as a
starting point in our design because it has been shown to
be a simple and effective model for providing a good rep-
resentation of input data with much smaller size. We come
up with a new hybrid structure based on autoencoders by
introducing GSAE and LSAE, whose benefits are explained
in Section III-B. However, existing training methods do not
work for the proposed hybrid model. Hence, we also present
a new training algorithm in Section III-B. Note that one way
to select neighboring cells for a target cell is to choose all
those surrounding it and falling into a square box as shown in
Fig. 3. However, the proposed model is not restricted to this
method. This can be determined according to actual networks
and applications.

In addition, we choose an RNN, particularly LSTM, for
temporal modeling and prediction because gated RNNs (such
as LSTM), use gates to control how to update hidden states
and specify how much past information should be let through,
which have been shown to be effective on modeling long-term
dependencies [11].

TABLE I
MAJOR NOTATIONS

Notation Description
(m,n) Index of cell and the corresponding data patch
tand T’ Index and total number of data points
in the temporal domain
¢ and [ Index and total number of GSAE layers
7 and J Index and total number of LSAE layers
W, and W7 | Weights of encoder and decoder in layer 7 of GSAE
le and ij Weights of encoder and decoder in layer j of LSAE
by, and by Biases of encoder and decoder in layer 7 of GSAE
blj and b;j Biases of encoder and decoder in layer 5 of LSAE
h,, and hlj Hidden units in GSAE and LSAE

B. Spatial Modeling

Here, we describe the proposed model for spatial modeling,
which is a combination of a GSAE and multiple LSAEs.

An autoencoder is a model (usually a one-hidden-layer neu-
ral network) trained to reconstruct its input, which can be used
to obtain a different representation (i.e., hidden layer) of the
input with a much smaller size [4], [20]. The process to obtain
a different representation is referred to as encoding, while the
process to reconstruct its input is referred to decoding. In our
implementation, we adopt the denoising autoencoder, which
is an extension of a classic autoencoder [32]. It was designed
to make the learned representation robust by reconstructing
partially corrupted input. Autoencoders can be stacked to
form a deep network [32]. Stacked autoencoders have been
shown to be able to effectively extract further non-linear
representation [3], [32].

A global representation (i.e., hidden layer of an autoen-
coder) can be obtained, given the data patch of a cell and
a trained GSAE. However, as discussed above, there exists
location-dependent spatial correlation for a data patch. There-
fore, it is necessary to obtain a better representation with
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less reconstruction loss. To achieve this goal, we propose to
use an LSAE together with the trained GSAE to capture the
local location-dependent spatial correlation and yield a better
representation.

Data Patch
(m, n)

Fig. 4. The proposed autoencoder-based spatial model

An example of the LSAE for cell (m,n) with the GSAE
is given in Fig. 4. Note that superscript (*) indicates they are
trained variables. So W¢  are trained weights of layer ¢ of
GSAE. For the sake of readability, notations for bias variables
by, bl , b*i and b’ *_ are omitted in both figures. Note that for
elther GSAE or LSAEs the layer number can be 1, resulting
in a single-layered autoencoder.

Given a trained GSAE, we use an LSAE to further reduce
the reconstruction loss of a data patch. The layer 1 weights
of the LSAE can be trained to reduce reconstruction loss of
layer 1 in the GSAE. Then higher layers of the LSAE are
trained to learn a different representation of the lower layers.
Finally, the highest representation of the GSAE concatenated
by the highest representation of the LSAE generates a better
representation of a local data patch.

The proposed hybrid (global + local) model leads to the
following benefits:

o Better Representation: Different cells share some com-
mon characteristics, which are captured by the GSAE.
However, as discussed above, each cell also has its spe-
cific location-dependent characteristics, which are cap-
tured by the corresponding LSAE. Hence, compared to
the GSAE-only model, the proposed hybrid model can
provide a better presentation for the given data, which
has been validated by results presented later.

o Reduced Model Size: An SAE with H; hidden units in
layer 7 has ZZI 1 Hi—1xH; weight Variables (where Hy is
the input dataset size), and (Ho + Zz 1 ' 2H, + H) bias
variables. The number of variables will get very large,
when the dataset size is big. A large model is usually
difficult to train. With the proposed hybrid structure, we
have one global, and multiple local SAEs, which both
have moderate sizes. Training such models is much easier
and faster.

e Support for Parallel Training: Given a trained GSAE,
training LSAESs is independent of each other. Therefore,
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they can be trained in parallel.

o Support for Application-aware Training: LSAEs can be
trained according to the needs of applications. For some
applications, we may not be interested in all the cells in
the cellular network. If so, we can only train those LSAEs
corresponding to cells of interest.

Training the hybrid model in Fig. 4 is not straightforward.
A well-known work [32] introduced a greedy layer-wise algo-
rithm for effectively training SAE. GSAE can be trained using
this algorithm. However, the next step is to train an LSAE with
a trained GSAE, for which the existing algorithm [32] cannot
be directly applied.

Data Patch
(m, n)

LSAE
for (m, n)

_______________________________

Data Patch
(m, n)

Fig. 5. The unrolled GSAE and LSAE

For training and fine-tuning, we need to unroll the GSAE
and LSAE, which are shown in Fig. 5. Next, we formally
define the encoding function ¢, (-) and decoding function
qi, () for each layer i of an LSAE.

P, (Xy;) =Y, =6(Wy, Xy, +by,)
S(Wi (W Xy, + bzl,) +b =1
a, (Yy,) = + W, Y, +by),
6(Wi, Y1, +by ), otherwise.

Here, 0(+) is the activation function (we used the sigmoid
function in our implementation). X, is the input of layer j,
which will be encoded. Y, is the encoded result of layer
7, which can be decoded for reconstruction. However, Yl
can also be encoded by upper layer to obtain a more abstract
representation. That is to say, X;, ., =Y. W, W;j, bl].
and b;j are the weights for encoding, weights for decoding,
bias for encoding and bias for decoding, respectively, in the
LSAE. W;l, W; b;l and b;l are the trained weights
for encoding, trained weights for decoding, trained bias for
encoding and trained bias for decoding, respectively, in the
GSAE. Note that ¢, (-) establishes the connection between
the GSAE and LSAE.
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Algorithm 1: Training the LSAE with J layers for cell
(m,n)

Input : Dataset D, the trained GSAE with weights
W; . bias by , b;*.
. * * i ‘
Output: Wy, by , by’
1 Xl1 = @;
2 forall ¢ do
3 L Xy, =Xy, Upatch(dmnt);

4 b;l =0;
5 Wi, =0, Vi,
6 Wlmblrabgl =

arg mianl,bzl,bfl L(le,qh(ph(ill)));
7 Xl2 = pll(Xll)’ Jji=2
8 while layer 7 < J do

Wl]' 3 bl]' 3 b;J =
arg minwlj b, by L(le 4l (Plj (le })E

w | X =p5(X))s
1 ji=7+1
12 unroll the GSAE and LSAE as in Fig. 5;
13 W?;,bzk],b;’; = arg minwlj ’blj7b;j L(XZUX/),

vie{l,2,..,J}
14 return W7, by, bi*;

We use tied weights [32] for the GSAE and LSAE: the
weight matrix in a decoding function is the transpose of the
weight matrix in the encoding function, i.e. W’
Wi = W{. Note that if W;, = 0 and b =
proposed model degenerates into a GSAE, because in this
case, qi, (Y1,) = 6(Wyi (W} Xy, +bj )+bl ) is actually the
reconstructed result of the GSAE. We can initialize W;; =0
and bj = 0 as the starting point for training an LSAE. We
formally present the LSAE training algorithm as Algorithm 1,
which consists of two phases: pre-training and fine-tuning.

In this algorithm, patch(d,,,.) gives input data corre-
sponding to Cell (m, n) and its neighboring cells (surrounding
Cell (m,n)) at timeslot ¢. X; is the corrupted version of X;.
Lines 1-3 generate the input data for the first layer in the
LSAE. As discussed above, Line 4 initializes b;l = 0 and
line 5 initializes the weights W, = 0. Line 6 pre-trains the
first layer with a partially corrupted input. The reconstruction
loss is defined to be the cross entropy as in [3], [20]:

Z) = leog(z) +( 4)

In our implementation, we applied the commonly-used
Stochastic Gradient Descent (SGD) [19] algorithm to mini-
mize the reconstruction loss. Other methods, such as RMSProp
and AdaGrad [19], can also be applied here to train the model.
Line 7 generates the input X;, for the second layer with
uncorrupted X;,. Lines 8—11 show the pre-training process
for layer 2 up to layer J. After layer j is pre-trained, the
input X;,,, for (j + 1)-th layer can be obtained from X,
= py,(Xy;). Note that the uncorrupted input X, is fed to the

1—ax)log(l — 2).
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encoder. After all the layers have been pre-trained, we unroll
the trained GSAE and LSAE as shown in Fig. 5 for fine-
tuning (Line 13), where all weight matrices and bias variables
are updated. X’ is the reconstructed input.

An LSAE cannot be trained without the GSAE because the
decoding function of LSAE relies on the trained GSAE. The
first layer of the LSAE is pre-trained and fine-tuned differently
from other (upper) layers, which takes the trained layer 1 of
GSAE as input. Given the pre-trained and fine-tuned layer
1, layers 2 to J of the LSAE are pre-trained and fine-tuned
independently from the GSAE. Note that, given a trained
GSAE, all LSAEs can be trained in parallel. In addition,
it is not required to have the same structure for the GSAE
and LSAE: GSAE and LSAEs can have different numbers of
layers; and the number of hidden units in each layer can also
be set differently. Moreover, the structures of LSAEs do not
have to be the same.

C. Temporal Modeling and Prediction

As mentioned above, we propose to use an RNN for tempo-
ral modeling and prediction, which takes the representations
learned from the hybrid spatial model as input.

An RNN is a generalization of the feed forward neural net-
work for modeling sequence (time series) data [22]. However,
a well-known problem with standard RNNs is that it can be
difficult to model long-term dependencies [16]. Long Short-
Term Memory (LSTM) was proposed in [15], which is known
to be able to capture long-term temporal dependencies [11],
[12]. LSTM incorporates gates, which allow the model to learn
how to forget previous hidden states and how to update the
current states. A diagram of the LSTM unit from [36] is shown
in Fig. 6, which is a slight simplification of [13].

! !
Input Output
Gate Gate )
it
Gt

input Xt

N

Output
@2 @ @bl
Input
Modulation Ct1 Modulatlon
recurrent Gate Gate
ht1 Forget

Gate

Fig. 6. LSTM unit [36]

iy = o(Waix; + Wiihy_1 + by)

f, = oc(Wapxi + Wyshe_y + by)
0y = 0(Wyoxs + Wiohi—1 +b,)
gt = ¢(Waexy + Wichy 1 + b.)

= oc 1 +iiOg
h; = 0; ® ¢(cy)

The LSTM unit consists of a single memory cell c;, an input
and output modulation gate (g; and h;) and three gates (input
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iz, output o; and forget f;). o(-) is the sigmoid function; and
¢(x) is the hyperbolic tangent function ¢(z) = 20(2x) — 1.
® and & denote the dot product and sum of two vectors,
respectively. The W' terms denote the weight matrices. For
example, Wy is the hidden-forget weight matrix; while the
b terms are the biases.

The memory cell combines the previous cell states, current
input and previous output, to update hidden states. The forget
gate determines if the information should forgotten or remem-
bered. The output gate learns how the memory cell should
affect the hidden states.

To predict the future value d,, 41 for a cell (m,n), the
data patches corresponding to the past 1" timeslots are taken
as the input. They will be encoded by the GSAE and the
LSAE. For each timeslot ¢ < ¢/, the following three values
will be concatenated as a vector: d,y, ,, ;, and GSAE and LSAE
representations of patch(dy, ). In this way, we obtain a
temporal sequence of vectors, as shown in Fig. 7. Then the
LSTM unit processes this sequence as described above and
predict dp, p ¢/41-

t-3 t-2 -1 t'

B dmnt
I GSAE representation
[ LSAE representation

Fig. 7. Temporal modeling and prediction

IV. PERFORMANCE EVALUATION
A. Settings

We compared our approach with two widely used methods
for time series analysis. The first approach is ARIMA [18],
which is one of the most popular linear models for time series
forecasting and has been applied to wireless networks [33],
[38]. The second baseline approach is SVR, which is a variant
of Support Vector Machine (SVM) proposed for regression [9],
[27]. Tt has been also applied for time series analysis in
many applications [21], [23]. In the experiments, we used
the implementation of ARIMA and SVR in two libraries [19]
and [24], respectively. These two baselines were compared
with the proposed model in terms of three commonly used
performance metrics [10]: Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Log Loss (also known as binary
cross-entropy).

For neighboring cell selection in spatial modeling, we chose
to use data from all cells located within a 11 x 11 square box
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that is centered at the location of a target cell. That is to say,
we considered data from 120 neighboring cells for modeling
Cell (m,n).

We chose the commonly used sigmoid function as the
activation function in each layer of both the GSAE and LSAEs.
Regarding the corruption process in autoencoders, we adopted
a stochastic method proposed in [32]. In our implementation,
the corruption level was set to 0.1. The GSAE has two layers
(unrolled), and the lower layer has 20 hidden units, and second
layer has 2 hidden units. All the LSAEs has a single layer with
2 hidden units.

We randomly chose 15 cells for testing. For each cell
(m,n), we split the data into training set and test set. We
presented the corresponding results in the following.

B. Prediction Results

First, we present the experimental results to show the overall
prediction performance of the proposed model.

Fig. 8 shows a comparison between prediction results and
the actual values (from the dataset) for both downlink and
uplink traffic load at a randomly chosen cell. We can see that
the prediction results well match the trend of actual values.
Specifically, the MSE, MAE and Log Loss are 0.042, 0.165
and 0.583, respectively for downlink traffic load; while, they
become 0.031, 0.137, 0.556 respectively for uplink. Moreover,
prediction results are very close to the actual values around
the major transition points, when the traffic load falls below
or rises above 0.4.

Fig. 9 shows a comparison among ARIMA, SVR and the
proposed model for both downlink and uplink traffic load in
terms of MSE, MAE and Log Loss for one of the chosen
locations, while Fig. 10 presents the average errors over all the
chosen locations. From these two figures, we can see that the
proposed model consistently outperforms ARIMA and SVR in
terms of all the metrics. Specifically, in Fig. 10, the proposed
model offers about 30.8%, 20.5%, 33.1% less error than SVR
on average in terms of MSE, MAE and Log Loss, respectively.
Moreover, it leads to around 40.4%, 28.4%, 18.5% less error
than ARIMA on average in terms of MSE, MAE and Log
Loss, respectively. These results well justify effectiveness of
the emerging deep learning models on cellular network data
analysis and more importantly, the superiority of our design
that takes into account data dependencies in both the temporal
and spatial domains.

C. Spatial Modeling

In this subsection, we present the results to justify the ef-
fectiveness of the proposed hybrid model for spatial modeling
approach.

Data patches are encoded by both the GSAE and LSAEs.
The decoders can reconstruct them so that we can take an
in-depth look to make sure the encoded results are indeed
good representations of the original data. Fig. 11 (downlink)
and Fig. 12 (uplink) show the reconstructed results of data
patches corresponding to 9 cells. Each image corresponds to
a data patch; and each tiny block (i.e., pixel) in an image
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corresponds to a cell. Hence, each image has 11 x« 11 blocks.
Brightness of a pixel indicates how heavy the traffic load of
the corresponding cell is (the brighter, the heavier).

In both figures, the first rows are the original data patches
of the 9 randomly chosen cells; The second rows are the
corresponding patches reconstructed by the GSAE. The last
rows are data patches reconstructed by The proposed hybrid
model (GSAE+LSAE). Note that multiple LSAEs were trained
since the original data patches came from different cells.

From these two figures, we can see that the reconstructed
results given by the GSAE is relatively “blurry” but somehow
still captures the patterns of the original data; while the final
reconstructed results given by the proposed hybrid model are
very close to the original data. These results confirm that the
proposed hybrid model does offer good representations for the
original data.

Now we show how LSAEs can help improve the prediction
performance. In this experiment, the number of hidden units
of our single-layered LSAEs, k, was changed from 0 to 4,
with 0 corresponding to the case without LSAEs. The second
layer of GSAE was then set to have (4 — k) hidden units. All
other settings remain the same. In this way, even though the
value of k is changed, the GSAE and a LSAE together had a
representation with a constant length of 4, which ensures a fair
comparison. Fig. 13 shows how the performance improvement
ratio changes with k, which is defined as follows:

M(0) — M(k)
M(0)

where M (k) denotes the prediction error (MSE, MAE or Log
Loss) corresponding to k& (M(0) then corresponds to the case
without LSAEs).

From Fig. 13, we can see that the prediction performance
improvement rises monotonically with k. Specifically, in terms
of MSE for downlink, the improvement ratio goes up from
1.96% to 5.54%, when n increases from 1 to 4. This obser-
vation validates our claim that learning local characteristics is
essential and learning more helps improve prediction perfor-
mance. However, the tradeoff is that more complicated local
models may lead to much longer training time. Determining

* 100%,
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the best configurations for the GSAE and LSAEs is task
dependent. It depends on the nature of input data, available
computing resources and the number of cells of interest.

V. RELATED WORK

Research efforts have been made for modeling and pre-
diction in communication networks. Specifically, time series
analysis methods have also been applied for predicting traffic
load. In [26], Shu et al. showed that seasonal ARIMA models
could be used to model and predict wireless traffic. In [38],
Zhou et al. proposed a network traffic prediction model,
which is a combination of linear time series ARIMA model
and non-linear GARCH model. Hong et al. applied SVR for
short-term traffic load forecasting, and proposed a simulated
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annealing algorithm and a genetic algorithm to optimize the
selection of SVR parameters in [17]. Spatial modeling and
estimation methods have been proposed for traffic load in
wireless networks [2], [31]. To predict the self-similar network
traffic with high burstiness, the authors of [35] proposed a new
hybrid method based on the combination of the covariation
orthogonal prediction and the artificial neural network. A
spatiotemporal compressive sensing framework was proposed
for modeling Internet traffic matrices in [37]. Moreover, a very
recent work [25] was focused on spatiotemporal analysis for
application usages in wireless networks.
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In addition, Akbar et al. proposed to model and predict
the spectrum occupancy of licensed radio bands with Hidden
Markov Models (HMMs) [1]. In [30], Tumulus et al. designed
two adaptive channel status predictor using a neural network
based on multilayer perceptron and the hidden Markov model.
A priori knowledge of the statistics of channel usage is not
required in the prediction schemes. Chen et al. presented a
detailed study [7] with first and second order statistics of
collected data, including channel occupancy/vacancy, channel
utilization and temporal, spectral and spatial correlation. A 2-
dimensional frequent pattern mining algorithm was developed
to predict channel availability based on past observations.

Unlike these works, we are the first to propose a deep learn-
ing model for spatiotemporal prediction in cellular networks.

VI. CONCLUSIONS

In this paper, we first performed a preliminary analysis
for a real dataset from China Mobile to show temporal
and spatial dependencies. Then we presented a hybrid deep
learning model for spatiotemporal prediction, which includes a
novel autoencoder-based deep model for spatial modeling and
LSTMs for temporal modeling. The autoencoder-based model
consists of a GSAE and multiple LSAEs, which can offer
better representations for input data (compared to the GSAE-
only model), reduced model size, and support for parallel
and application-aware training. Moreover, we presented a
new algorithm for training the proposed spatial model. The
experimental results show that, compared to ARIMA and SVR,
the proposed deep model significantly improves prediction
accuracy; and the autoencoder-based spatial model is effective
and efficient.
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