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Abstract—Owing to their low-complexity iterations, Frank-
Wolfe (FW) solvers are well suited for various large-scale learning
tasks. When block-separable constraints are present, randomized
block FW (RB-FW) has been shown to further reduce complexity
by updating only a fraction of coordinate blocks per iteration. To
circumvent the limitations of existing methods, the present work
develops step sizes for RB-FW that enable a flexible selection of
the number of blocks to update per iteration while ensuring con-
vergence and feasibility of the iterates. To this end, convergence
rates of RB-FW are established through computational bounds
on a primal sub-optimality measure and on the duality gap. The
novel bounds extend the existing convergence analysis, which only
applies to a step-size sequence that does not generally lead to fea-
sible iterates. Furthermore, two classes of step-size sequences that
guarantee feasibility of the iterates are also proposed to enhance
flexibility in choosing decay rates. The novel convergence results
are markedly broadened to encompass also nonconvex objectives,
and further assert that RB-FW with exact line-search reaches a
stationary point at rate O(1/+/t). Performance of RB-FW with
different step sizes and number of blocks is demonstrated in two
applications, namely charging of electrical vehicles and structural
support vector machines. Extensive simulated tests demonstrate
the impressive performance improvement of RB-FW relative to
existing randomized single-block FW methods.

Index Terms—Conditional gradient descent, nonconvex opti-
mization, block coordinate, parallel optimization.

I. INTRODUCTION

The Frank-Wolfe (FW) algorithm [1], also known as condi-
tional gradient descent [2], has well-documented merits as a
first-order solver especially for smooth constrained optimiza-
tion tasks over convex compact sets. FW has recently received
revived interest due to its simplicity and versatility in handling
structured constraint sets in various signal processing and
machine learning applications [3]. This growing popularity is
due to its per-iteration simplicity that only entails minimizing
a linear function over the feasible set, whereas competing first-
order alternatives, such as projected gradient descent [4] and
their accelerated versions [5], involve minimizing a quadratic

Manuscript received December 26, 2016; revised May 27, 2017; accepted
September 4, 2017. Paper no. T-SP-21600-2016. Work in this paper was
supported in part by NSF grants 1423316, 1442686, 1508993, and 1509040.

L. Zhang, G. Wang, and G. B. Giannakis are with the Digital Technology
Center and the Department of Electrical and Computer Engineering at
the University of Minnesota, Minneapolis, MN 55455, USA. D. Romero
is with the Department of Information and Communication Technology,
University of Agder, Grimstad 4879, Norway. G. Wang is also with the State
Key Laboratory of Intelligent Control and Decision of Complex Systems,
Beijing Institute of Technology, Beijing 100081, P. R. China. E-mails:
{zhan3523, gangwang, georgios } @umn.edu, daniel.romero@uia.no.

Color versions of one or more of the figures is this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier XXXXXX

function over the feasible set per iteration. Typically, solving
a constrained linear optimization is considerably easier than
finding the aforementioned projections per iteration. This is
critical in diverse large-scale learning tasks, including matrix
completion [6], multi-class classification [7], image recon-
struction [7], structural support vector machines (SVMs) [8],
particle filtering [9], and scheduling electric vehicle (EV)
charging [10].

Despite the simplicity, FW can become prohibitively ex-
pensive when dealing with high-dimensional data. For this
reason, randomized single-block FW has been advocated for
solving large-scale convex constrained programs [8], where
only a randomly selected block of variables is updated per
iteration. At the price of obtaining the duality gap, convergence
of randomized single-block FW has been improved [11].
Furthermore, randomized multiple-block FW was devised by
updating multiple blocks per iteration in parallel [12]. Unfor-
tunately, feasibility of the resulting iterates is in general not
guaranteed by the original parallel randomized block (RB)-
FW [12]. Moreover, all results on randomized FW focus on
convex objectives, and convergence of RB-FW for nonconvex
programs remained hitherto an open problem.

The present paper is the first to introduce a broad class of
step sizes for RB-FW that offer: (i) guaranteed convergence
and feasibility of the iterates along with (ii) flexibility to select
a step-size sequence whose decay rate is attuned to the prob-
lem at hand. RB-FW with this rich class of step sizes subsumes
the classical FW as well as the randomized single-block FW
solvers as special cases. We further broaden the scope of RB-
FW by allowing for nonconvex smooth objective functions.
Specifically, we establish that RB-FW with typical step sizes
attains a stationary point at rate O(1/logt), whereas line-
search-based step sizes enjoys an improved rate of O(1/+/%).
Remarkably, the latter coincides with the rate afforded by the
classical FW for nonconvex problems [13]. Finally, simulated
tests on optimal coordination of EV charging and structural
SVMs corroborate the merits of RB-FW with our novel step
sizes relative to the single-block FW.

The remainder of this paper is organized as follows. Sec-
tion II outlines the FW and RB-FW algorithms. Section III
describes two novel families of step sizes for RB-FW, and
establishes their feasibility and convergence. Section IV de-
rives the RB-FW convergence rates for non-convex programs,
whereas Section V highlights the implications of the results in
Section III to the classical FW. Section VI shows the merits of
RB-FW in two application settings, whereas Section VII tests
the RB-FW performance numerically. Finally, Section VIII
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Algorithm 1 Frank-Wolfe [1]

Algorithm 2 Randomized Block Frank-Wolfe

1: Initialize t =0, x° € X

2: while stopping_criterion not met do

3 Compute s’ = argmingex s' Vf(x!)
4 Update x'*t1 = (1 — y)xt + st

5 t+t+1

6: end while

concludes the paper.

Regarding common notation, lower- (upper-) case boldface
letters represent column vectors (matrices). Sets are denoted
by calligraphic letters, |B| stands for the cardinality of set
B, and N\ B := {z € N : z ¢ B} denotes set difference.
Symbol " is reserved for transposition of vectors and matrices,
whereas 0 and 1 denote the all-zero and all-one vectors
of suitable dimensions, respectively. Operator [x] gives the
smallest integer greater than or equal to z, and log(z) returns
the natural logarithm of x.

II. PRELIMINARIES

The classical FW algorithm [1] aims at solving the follow-
ing generic constrained optimization problem

. |
ml){lel%blze f(x) (D
subject to xe€ X

where f(x) is convex and differentiable, while the feasible
set X is convex and compact. A number of problems in
signal processing and machine learning, e.g., ridge regression
or basis pursuit [14], can be expressed in this form. Listed as
Algorithm 1, FW is initialized with a feasible x°. Given iterate
x!, it then solves the following so-termed “linear oracle”

b T ¢
§° := argmin s Vf(x") (2)

and uses a convex combination of s’ with x* to obtain

X = (1= y)x" 4 s’ 3)
where the step size v; € (0,1] is typically selected as [3]
2
=—. 4
Mt P 4

Alternatively, v, can be chosen via line search, which picks
x'*T1 as the best point on the line segment between x’ and s':

7 = arg min f ((1=y)x' +7s'). (5)

In either case, Algorithm 1 converges at rate O(1/t) [3].
When d is large, updating all d entries of x at each ¢ is
computationally challenging. Randomized FW alleviates this
difficulty by updating only a subset of the d entries [8], [12].
Splitting x into Nj, blocks {x,}*  with respective feasible
sets {Xn}fmvil assumed convex and compact, (1) becomes
minimize f(x) (6)
subject to x; € X3, ..., XN, € XN,
where xT = [x],xg,---
(6) boils down to (1).

,xJ,]- Note that if N, = 1, then

1: Initialize t =0, x° € X
2: while stopping_criterion not met do
3: Randomly pick B; C N, such that |B;| = B

4: Compute s!, = arg n;in s, Vx, f(x'), Vn € B,
SnEX,
5: Update
o (= V)X, + sy, Vn € By
n 2” V’ﬂ S Nb \ Bt

6: t+—t+1
7: end while

The decomposition X = X; x ... x X, entails no loss
of generality since any X can be expressed in this form by
setting N, = 1. It also emerges naturally in a number of
applications, including the dual of structural SVMs [8], trace-
norm regularized tensor completion [15], EV charging [10],
the dual of group fused Lasso [16], and structured sub-modular
minimization [17]. Thanks to the separable structure of X, the
linear oracle in (2) decouples across N, blocks as

st = argsnéi)r(l (8, Vi, fF(x1)), n=1,2,....,N, (7)
where Vy, f(x") comprises the partial derivatives of f(x) with
respect to the entries of x,,.

Instead of solving the NV, problems in (7), RB-FW reduces
complexity by solving just B of them, where B € {1,..., Ny}
is a pre-selected constant. Let A, := {1,..., Ny} be the
index set of all blocks, and let 13; be chosen at iteration ¢
uniformly at random among all subsets of A/, with B elements.
The RB-FW solver of (6) is summarized as Algorithm 2. To
save computation time, step 4 of Algorithm 2 can be run in
parallel [12] as illustrated in Fig. 1. In this case, B can be
selected according to the number of physical processor cores
in the control center.

The only step-size sequence for RB-FW available in the
literature is [12]

2a
a?t+2/Ny’

where « := B/Nj is the fraction of updated blocks. For a = 1
and N, # 1, note that (8) is different from (4); hence, FW
is not generally a special case of the parallel RB-FW in [12].
Interestingly, Sec. III will introduce a family of RB-FW step
sizes that subsumes the one in (4) as a special case.

As far as convergence of FW solvers, two quantities play
instrumental roles. The first one is the curvature constant,
which for a differentiable f(x) over X is defined as [18], [3]

- t=0,1,... (8)

Crim s 1Y) = )~ (v —x VG

y:i=(1—v)x+~s
©))
CYy is the least upper bound of a scaled difference between
f(y) and its linear approximation around x. Throughout, C
is assumed bounded. This property is closely related to the
L-Lipschitz continuity of V f(x) over X, which is defined as

IL>0: ||[Vf(x)=Vf(s)| < L|x—s|, ¥x, se X. (10)



[ Control center ]

[ Control center ]

Fig. 1. Parallel implementation for Algorithm 2 at iteration ¢ > 0. Left: The
control center sends gradient Vx,, f(x!) to processor n € B. Right: The
updated {s5"'}, ¢, are sent to the control center.

If (10) holds, it is easy to check that [3, Appendix D]

Cy < LD% (11)

where Dy := supy ¢y |[x — s|| is the diameter of X' that
is finite for X compact. Equation (11) evidences that C is
bounded whenever V f(x) is L-Lipschitz continuous over X'.

When it comes to RB-FW, the set curvature for an index
set B C N, is commonly used instead of the constant C'y [12]

2
CFi= s S(FE)-FX)= Y (vnxns Vi, f(X))
~€[0,1] Y
xEX nenB
{sn€Xnltnen
(12)
where
| A=v)xn+78p, neB
Yn = Xn, ne N, \ B
andy' :=[y/,... 7y]—\r,b]. The expected set curvature for the

uniformly randomly selected B can thus be expressed as
B N\ L
B ._ By _ [V E

{B: BCN,|B|=B}
with (7)== NI/ (BN, — B)!). It is easy to verify that
CJ’? < Cf by observing from (9) and (12) that C’Jl? < Cy,
VB C N;. Note however that C_'JJ? = C’}lf = Cy, when B = N,
The second quantity of interest is the so-termed duality gap

g(x) = sup (x —s)"Vf(x),
seX

c?  (13)

xeX (14)
whose name stems from Fenchel duality; see [8, Appendix
D], [3, Section 2]. Clearly, for the constrained problem (1),
x is a stationary point if and only if g(x) = 0. In addition,
it holds that g(x) > 0, Vx € X, since (x —s) Vf(x) =0
for s = x. Thus, g(x) quantifies the distance of x from a
stationary point of f(x) [13].

III. FEASIBILITY-ENSURING STEP SIZES FOR RB-FW

To motivate the need for novel step sizes, this section starts
by showing that v; in (8) does not guarantee feasibility of the
iterates {x'}. It then introduces two families of feasibility-
ensuring step size sequences, and proves that the iterates they
generate are convergent for convex objectives. Moreover, these
families are shown to offer a gamut of decay rates, thereby
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allowing for a flexible selection of the most suitable step size
for a given problem.

With e.g., Ny = 10% and o = 2 x 1073, the step size
in (8 will be ¢4 > 1, Vi < 500. As a result, step 5 of
Algorithm 2 can generate infeasible iterates x?, which render
RB-FW unstable since the gradient of the objective at the
resulting x’ may not be even defined. For example, consider
applying Algorithm 2 with N, = 100, B = 10 and step size
as in (8) to solve the smooth and convex program

100
minimize E z? —logx,
{I }100
nfin=1 n=1

subject to 2 <z, <3,

5)

n=1,...,100.

Initializing with {2} = 3},en;, it is easy to verify that
{s} = 2}ep, and {22 = —11/3},,¢,, implying that f(x?)
and V f(x?) do not exist. Thus, the parallel RB-FW algorithm
in [12], whose step size is given by (8), can not solve (15).

In a nutshell, existing step sizes do not guarantee feasibility
of RB-FW iterates. Besides, the decay rates of existing step
sizes can not be attuned to a given problem. To fill this gap,
convergence analysis of RB-FW will be pursued first for a rich
class of step sizes.

A. Convergence of RB-FW for convex programs

For randomized FW, convergence analysis typically focuses
on f(x') and the g(x') in (14) [8], [12]. Let x* denote
one globally optimal solution of (6), and define the primal
sub-optimality of point x' as h(x') := f(x!) — f(x*). The
next lemma, which quantifies the improvement of h(x') per
iteration, will be handy in the ensuing convergence analysis.

Lemma 1. If {x'},—¢ 1, . is generated by Algorithm 2 with an
arbitrary predefined step-size sequence {7Vt }i—o.1.... satisfying
v € [0, 1] Vt, then it holds that

E [h(x")] < E [h(x)] — ank [g(x)] +120F/2 (16)
for t >0, where the expectation is taken over {B.}._.

A detailed proof can be found in [8], [12]; see also part A
of the Appendix for an outline. Note that Lemma 1 can be
applied regardless of whether f(x) is convex or not.

Aiming to upper bound E [h(x!)], we will consider that

{’Yt}t:o,l,,,. satisfy

0<yn<1, Vt>0 (17a)
1-— 1
S < = >0 (17b)
Vit1 Vi

It can be easily seen that (17b) is equivalent to

Vet1 = % <\/042%:2 +4— oryt>

which implies that (17b) limits how rapidly {v:}:=0,1,.. can
decrease. Condition (17) is very general and subsumes existing
step sizes as special cases. For example, if B = N;, Algo-
rithm 2 boils down to Algorithm 1, for which (4) is typically
adopted [3]. For v; as in (4), it is clear that (17a) is satisfied,
whereas (17b) follows from (¢+1)(t+3) < (t+2)2. Another



example arises if B = 1, in which case Algorithm 2 reduces
to Algorithm 4 in [8]. The sequence

2N
42N,
which was proposed in [8] for Algorithm 2, clearly satisfies
(17a), and also (17b) since it holds that (t+1+2N,)2—2(t+1+
2Np) < (t42Nyp). The step size (8) also satisfies (17b) since
(@®t+a?+2/Np)? =202 (a?t+a? +2/Np) < (@®t+2/Np)?,
but fails to satisfy (17a), which ensures feasible iterates.
However, upon observing that +; in (8) satisfies 7, < 1 for
t >t := (2BN, — 2N,)/B2, one deduces that the shifted
sequence

Ve (18)

2

Yy 1= ;= 19
Tt Ve+i ol +2 (19)

does satisfy (17a), and therefore constitutes a feasible al-
ternative to (8). Furthermore, it also satisfies (17b) because
(at +2+a)(at+2 —a) < (at +2)%

To proceed with convergence rate analysis for a broad class
of step sizes, an upper bound on E [h(x!)] for step sizes
satisfying (17) will be developed.

Theorem 1 (Primal convergence). If f(x) is convex and
{Vt}t=01,... satisfies (17), the iterates of Algorithm 2 satisfy
1—av , tCB

E[h(x)] < —3 Wah(®) + At 21 Q)
0

Proof. Since f(x) is differentiable, convexity of f(x) implies
that

Fx') = f(x) < (x' =x") TV f(x")
where x* denotes any solution to (6). Combining (14) and (21)
yields

21

9(x') > f(x') = f(x") = h(x") > 0. (22)
Thus, E[g(x?)] > E[h(x!)] and (16) can be rewritten as
E[h(x"*)] < (1 - an)E [p(x")] +7/CF /2. (23)

Dividing both sides of (23) by 7 gives rise to

1 1—am 0}3
—E [h(x"T)] £ ——E [n(x")] + - 4
Vi i
Utilizing successively (17b) and (24) yields
1 1_
—E[h(x"™)] < —E[h(x")] + -CF
v [A(x")] o [h(x)] + 5C
1=ama L (xt )] + Les + Len
T 277 T2
l1-a t+1
<< R0 + —-Cf @
20
where the last inequality uses E[h(x°)] = h(x"). Therefore,
1-—- t+1 =
B [hx1)] < —70020(x") + o220
0
which establishes (20). O

Theorem 1 generalizes existing results on the convergence
of Algorithm 2, which apply only for specific step sizes
either assume B = 1 [8] or B = N, [3]. Thus, Theorem 1
sheds light on step size design for arbitrary B by providing
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computational guarantees for Algorithm 2 with any step-size
sequence satisfying (17).

Another quantity of interest to characterize the convergence
of Algorithm 2 is g(x'), which can be used to assess how
close is x! from being a solution [8], [12] since g(x?!) >
h(x'); cf. (22). However, since finding upper bounds on g(x!)
is difficult [8], [13], [12], bounds on the minimal expected
duality gap until iteration ¢, defined as [8], [12]

= in E[g(x* 26
gei=  muin [9(x")] (26)
are pursued next.

Theorem 2 (Primal-dual convergence). Let {v;}i=01,.. sat-

isfy (17) and vi11 < v, Yt > 0. If f(x) is convex
and {x'}—1 2. . is generated by Algorithm 2, then for all
K € {1,...,t} it holds that

E [h(x®)]
Talt—-K+ 1)y
Proof. Lemma 1 asserts that

ayE[g(x")] <E [A(x")] = E [p(x"T)] +47CF /2. (28)
From g; < E[g(x")] and (28), it follows that

t t
age Yy <a Y mE[g(x")]
k=K k=K

CPk

S 27)

t

k=K k=K
B
=E [h(x®)] — E [h(x"*)] + 2f >
k=K
K C_1fB 2
<E [n(x")] + 7(t - K+ 1)vk (29)

where the last inequality follows from E[h(x!*1)] > 0 and
Ye+1 < 7y But since v, > 7y, Vk < t, one arrives at

t

D o= (= K+1)y. (30)
k=K

Finally, (27) follows after combining (29) with (30), and divid-

ing both sides of the resulting inequality by a(t—K+1)y;. O

Theorem 2 characterizes the primal-dual convergence of
RB-FW for any non-increasing step size satisfying (17). Plug-
ging (20) into (27) and fixing the step-size sequence yields an
upper bound on g, that can be minimized with respect to K
to obtain the convergence rate of g;. This approach will be
pursued in Section III-B.

B. Proposed step sizes

This section develops two classes of step sizes obeying (17)
for arbitrary values of B. Theorems 1 and 2 will then be
invoked to derive the resulting convergence rates. To start with,
consider the following general family of diminishing step-size
sequences for fixed ¢ € (0, ] and decay rate p € (0.5, 1]:

2

Tt 3D
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As will be seen, this family includes, as special cases, the step
sizes in (4), (18), and (19).

Lemma 2. If {;}1=0.1,... is given by (31), it satisfies (17b).
Proof. See part B of the Appendix. O

Upon noticing that 0 < v < 1 and 41 < 7y for
{Vt}t=01,.. in (31), the convergence rate of RB-FW can be
derived by appealing to Theorems 1 and 2 as follows.

Corollary 1. For convex f(x), the iterates {x'}i—12 . of
Algorithm 2 with step size (31) satisfy

4(1 - a)h(x°)

2th?
[q(t — 1)p + 2

E [h(x")] < (32)

et =1+ 2]

(2p+1)27 T (gtr +2) (t+1)CF +2(1 — a)h(x?)

gt = aq?(2p)2 ’ $2p+1

(33)
Proof. See part C of the Appendix. O

Corollary 1 subsumes existing convergence results as special
cases. Indeed, when B = N,, one has that B, = N, V¢,
which implies that C7 = Cy, and Algorithm 2 reduces to
the traditional FW solver. By selecting ¢ = 1 and p = 1, the
classical step size in (4) is retrieved. From Corollary 1, the
resulting computational bounds are

< 20y

2tCy

M) < t+1)2 = t+2

(34)

and

21C; (t+1)(t+2)

4 £ '
The resulting convergence rate of h(x') coincides with the
one in [3, Theorem 1]. As for g;, the bound in (35) is of the
same order as that in [3, Theorem 2].

In addition, with B = 1, ¢ = 1/N,, and p = 1, the step
size (18) proposed in [8] is recovered. From Corollary 1, the
primal computational bound is

gt < (33)

4(NZ — Ny)h(x° 2tN2C'}
E[h(xt)] < ( b b) (X ) b~ f
(t—1+2Ny)? (t—1+2N)?
(t—1+2Nb)2 t+ 4N, — 2
where the last inequality follows from
t < t+2N, —1

t4+2Ny —1 ~ t+4N, —2°
Meanwhile, g; is bounded by

_ 2TNy(t + 2]y)

EERN) [ 4 )N+ 20— D))

(37
Notably, the bound in (36) is tighter than the one reported
in [8, Theorem 2], while the bound on g; in (37) is of the
same order as that in [8, Theorem 2].
Finally, note that Corollary 1 also characterizes convergence
for the step size 4; in (19), since 7, is recovered from (31)
upon setting ¢ = « and p = 1.

gt

The decreasing rates of the bounds in Theorems 1 and 2
are determined by the decay rates of the step size sequence.
The faster v, diminishes, the more rapidly the upper bound in
Theorem 1 vanishes. However, the sequence in (31) decreases
at most as fast as 2/(at + 2). To improve the bound in
Theorem 1, a more rapidly vanishing sequence is proposed
next. Specifically, consider the sequence

vty + 4y — anf

2 )

Yo =1, and y;41 = vt > 0.] (38)

It is then possible to establish the following.

is chosen as

in (38), it then holds that
1

< < >
atr1 =S gy V20 (399)
Ye+1 < v, VE>0. (39b)
Proof. See part D of the Appendix. O

The upper bound in (39a) confirms that the step size in (38)
vanishes at least as fast as —25. To check whether (38)
meets (17), note that (17a) follows from (39a), whereas (38)
implies that (17b) holds with equality. Because (38) satisfies
(17) and (39b), the following computational bounds for (38)
can be derived by plugging (39a) into Theorems 1 and 2.

Corollary 2. For convex f(x), the iterates {x'}i—12. . of
Algorithm 2 with step size as in (38), satisfy

4(1 = a)h(x) 2AC7
E [h(x")] < 40
[(X)]*(at+2—a)2 (at+2 —«)? (40)
and
27(at + 1 -
gt < % (t+1DCF +2(1—a)h(x")]. @1
Proof. See part E of the Appendix. O

To recap, this section put forth two families of step sizes
for Algorithm 2 with arbitrary B, namely (31) and (38).
Corollaries 1 and 2 establish convergence of Algorithm 2 for
these step sizes, which also guarantee feasibility of the iterates
since they satisfy (17a). When {v;}/=01,.. is given by (31)
with ¢ = o and p = 1 or when it is defined as in (38), the
convergence rates of Algorithm 2 are in the order of O (1/t),
thus matching those of the traditional FW algorithm.

Remark 1. The step size of RB-FW can also be chosen through
line search, which prescribes

¢ = arg Or<nir<11 (1 =v)x"++8") (42)
SYS
with 8¢ = [8},....8%, '] and

Let {x"}+—0,1,... be the iterates generated by Algorithm 2 with
v¢ given by (42). By (16) and (42), it holds that

E [h(x""1)] < E [M(X")] — anE [9(X")] +7CF /2. (43)



for any predefined step-size sequence {~; € [0,1]} [8], [12].
Particularly, (43) holds for {v; :=2/(at + 2)}1=0,1,.... It can
then be shown that {X'};—¢ 1, . satisfy for ¢t > 1

4(1 — a)h(xY)
(at +2 — a)?

2AC7
(at +2 — a)?

E [h(x")] <

and

o 27(at +2) (t+1)C7 +2(1 — a)h(x°)

gt = 403 ) t3

where G 1= mingeo,1,..4} E [g()'(k)} The proof follows the
steps of the one for Corollary 1. The convergence rate of line-
search-based Algorithm 2 therefore remains in the order of
O(1/t). Note however that extra computational cost is incurred
for finding ~; via (42).

Remark 2. At this point, it is worth discussing the choice of the
step size leading to the fastest convergence in a given problem.
Even though the bounds in this section suggest that the more
rapid decrease of the step sizes, the quicker decrease of h(x?),
this is not always the case in practice. This is because step
sizes with large decay rates become small after the first few
iterations, and small step sizes lead to slow changes in h(x").
Conversely, small decay rates tend to yield rapidly decreasing
h(x!) in the first few iterations since the step sizes remain
relatively large. Hence, it is difficult to provide universal
guidelines since rapidly or slowly diminishing step sizes may
be preferred depending on the specific optimization problem
at hand. For example, if optimal solutions lie in the interior
of the feasible set, rapidly diminishing step sizes can help
reduce oscillations around optimal solutions, thus improving
the overall convergence rates. On the other hand, if f(x) is
monotone on &', the solution lies on the boundary, which
means that no oscillatory behavior is produced and hence,
slowly diminishing step sizes will be preferable.

IV. RB-FW FOR NONCONVEX PROGRAMS

The objective function of (6) is nonconvex in certain ap-
plications, such as constrained multilinear decomposition [19]
and power system state estimation [20], [21]. Yet, convergence
of RB-FW has never been investigated for this case. The rest of
this section fills this gap by analyzing the convergence rate of
RB-FW in problems involving a nonconvex objective. Similar
to Sec. III, computational bounds are first derived for a wide
class of step sizes, and are subsequently tailored for ~; as
in (31), and also for the exact line search.

Recall that Section II introduced ¢g(x) as a non-stationarity
measure of point x with respect to f(x). In the sequel, RB-FW
with be analyzed in terms of upper bounds on g; [cf. (26)].

Theorem 3. If {7 }1=0,1,... satisfy 0 <~y < 1V, it holds for
the iterates {x'}i—o.1,... of Algorithm 2 that

A t
C}B > k=0 713
2a ZZ:O Yk 7

h 0
gt < )

< — t>0.
@ Zk:o Yk

(44)
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Proof. Using 0 < g; < E[g(x")] and (28), we deduce that

t t
age y <oy uEg(x")]
k=0 k=0

<3 (BRG] — BRG] ) +(CF/2) 3007
k=0 k=0
—E [h(x")] — E [h(x"*)] + (CF/2) >4
k=0

<h(x") +(CF/2) Y i
k=0

where the last inequality follows from E [A(x*1)] > 0.
Dividing both sides by « ZZ:O vk leads to (44). O

Clearly, Theorem 3 affirms that lim;_, ., g: = 0 if the step-
size sequence {;}i=o,1,.. satisfies

¢ ¢

. . . 2 o

iy Yoo e i 3 = 5
k=0 k=0

for some finite S > 0. In other words, if {7;},=0,1,... is not

summable and {y7}:—o1,... is summable, then either x; is a

stationary point for some ¢, or, a subsequence of {x;}:=01,...

(45a)

converges to a stationary point.
For any given step size, the convergence rates of RB-FW can
be derived through (44). To start with, consider {;}1—0.1,...
in (31) with ¢ = a, p = 1; that is, vz = 2/(at + 2), and
note that

t t

2 2 2 t+42

Yz w50
— ok +2 2—0 QT + 2 @ 2

: 4 t 4 4/ 1 1
PP L A
pars (ak +2)2 o1 (ax +2)2 a\2—a at+2

(45b)

By substituting (45) into Theorem 3, it follows that Algo-
rithm 2 attains a stationary point of a nonconvex program at
rate O(1/logt).

This rather slow rate can be substantially improved upon
adopting exact line search for RB-FW.
Theorem 4. If {7:}1—0.1,.. is chosen as in (42), it holds for
the iterates {x'}i—o1,... of Algorithm 2 that

max {Qh(xo), C_'j?}
aVt+1 ’

IN

t>0. (46)

gt

Proof. The right-hand side of (16) is minimized for

Ak = arg m[(i)nl} E [h(x")] — ayE [g(x")] + 726’}3/2
v€10,

=min {1,aE [g(xk)]/éf}.

Thus, if E [g(x*)] > C_'}B/a, then 45, = 1 and (16) becomes

E [h(xk"'l)} <E [h(xk)] —aE [g(xk)} + C_’}B/Q
<E[h(x")] — aE [g(x")] /2

(47)

(48)

).
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where the second inequality follows from CB < aoF |g(x }
Similarly, if E [g(x")] < C’}B/a then 45, = aE g (Xk)]/Cf
and (16) becomes

E [h(x**1)] < E [h(x*)] — o®E [g(x*)]* /205,
Combining both cases, (48) and (49) establish that
o?E? [g(x

207

(50

When 7, is given by (42) with t = k, h(x**1) is not greater
than when ; = 4. Therefore, (50) still holds in the former
case. Thus, for {74 }r=01,.. asin (42), it follows that

min { o [g(xk)]

(49)

E [h(x*™")] < E [A(x*)] —min { o [Z(Xk)] :

o?E [g(x*
207

2
(51)
Summing (51) from k& = 0 to ¢ yields

(t+ 1)min{a2‘qt,

0429? 0y t+1
_ <h(x")—E [h(x )] . (52)

B
20!
Therefore,
< ma 2h(x") ZC}Bh(XO) (53)
X )
= a(t+1) avi+i

Since t+1 > v/t + T and |/2C7h(x%) < max{2h(x"),C7},
(46) holds. 0

Theorem 4 generalizes the recent result in [13], which only
applies to the classical FW method. The improved bound
in (46) is attained at the price of performing exact line search,
which requires the solution to a potentially nonconvex univari-
ate optimization subproblem (42). It is worth mentioning that
an optimal solution to this subproblem can be readily found
in a number of cases. For example, if f((1 — )x’ + ys!) is
quadratic in v, then 7, can be readily found by evaluating this
function at three points.

All in all, the main contribution here is convergence rate
analysis of RB-FW for minimizing (6) with nonconvex f(x).
Interestingly, when RB-FW relies on step sizes obtained using
line search, a stationary point is reached with rate O(1/v/%).

V. GENERALIZED STEP SIZES FOR FW

The availability of satisfactory step sizes for FW is rather
limited. Indeed, besides line search, convergence rate of FW
has only been established for v, = +2 [3], and vy = -sl-1 [22].
This limits the user’s control on convergence of FW iterates;
cf. Remark 2. To alleviate this limitation, this section examines
the usage of step sizes in (31) and (38) in the classical FW
solver, namely Algorithm 1. Since the latter can be viewed
as a special case of Algorithm 2 with B = NN}, Corollaries 1
and 2 can be leveraged to derive the convergence rates of FW
for convex programs with the novel step sizes. Specifically,
the ensuing computational bounds hold.

Corollary 3. If f(x) is convex and the step size sequence
{"t}t=0,1,... is chosen as in (31) with o = 1, ¢ € (0,1]

k)]}_

.)}2 } <E [h(Xk)] _F [h(xk+1)] _

and p € (0.5,1], then the successive iterates {x'}i—12, . of
Algorithm 1 satisfy for t > 1

2C
(xt) < — 2 F 54
S P Y

and
(2p +1)**  (qt? +2) (t + 1)C
(20)% N

Proof. This is a special case of Corollary 1 for o = 1. O

(55)

gt =

Corollary 4. If f(x) is convex and the step-size sequence

{Vi}t=01,.. is chosen as in (38) with o« = 1, then the
successive iterates {x'};—1 o, . of Algorithm I satisfy fort > 1
2C
h(x') < 221 56
o) < 73 (56)
and
270y (1 2 1
Pl Y (LR 57
gs— <t+t2+t3> (57)
Proof. Corollary 4 follows directly from Corollary 2. O

Corollaries 3 and 4 establish convergence rates in terms of
both h(x') and g, for the classical FW method with step sizes
of different decay rates. For a given problem, the most suitable
step size can be selected following the guidelines in Remark 2.
Interestingly, comparing Corollaries 3 and 4 with Corollaries 1
and 2 reveals that the initial optimality gap h(x") no longer
affects the bounds for FW.

VI. APPLICATIONS

Two applications where RB-FW exhibits significant compu-
tational advantages over existing alternatives will be delineated
in this section.

A. Coordination of EV charging

The convex setup of optimal schedules for EV charging
in [23] is briefly reviewed next. Suppose that a load aggregator
coordinates the charging of N EVs over the T consecutive
time slots 7 := {1,...,T} of length A,. Let 7,, C T denote
the time slots in which vehicle n is connected to the power
grid, and let p,(7) be the charging rate of EV n at time 7
to be scheduled by the load aggregator. If p,, is the charging
rate limitation imposed by the battery of vehicle n, then p,,(7)
should lie in the interval [0, p,,(7)] with

7€ Tp,

otherwise.

Pn(7) = { g’"

The charging profile for vehicle n, denoted by p,| :=

[Pn(1), -+, pn(T)], should therefore belong to the convex and
compact set
Py = {pn : A‘rp;Ll—]- = Rn> 0< pn(T) < pn(T)a VT € T}

where R, represents the total energy needed by EV n.



Given {R,}N_,, {p.}N_;, and {T,}Y_,, the problem

solved by the aggregator is to find the charging profiles
minimizing its electricity cost [23]; that is,
p* € argmin f(p) (58)
P
subject to pn € Pp, VR eN

where p’ = [p{,---,py] and N := {1,...,N}. With
{D(7)}L_, denoting additional known loads, the total cost

f(p) is . N
2
1) =3 (D) + > palm)
n=1

T=1

(59)

Note that f(p) is convex but not strongly convex in p. The fea-
sible set for (58) is the Cartesian product P := Py X ... X Py,
which is convex and compact. Thus, problem (58) is convex
and of the form (6).

Assuming that the aggregator can only afford updating the
charging profiles of B out of the N vehicles in parallel
due to a limited number of processors, the ensuing B linear
subproblems arise when solving (58) via Algorithm 2:

st € arg min (s,,c'), neB,
s, €EP.

n n

(60)

where |B;| = B and ¢’ := Vj,_ f(p'). The latter does not
depend on n since the gradient V, f(p?) is identical across
the IV vehicles. Its 7-th entry is given by

N
(r) =2(D(r) + Y _pi(7)). 61)

The subproblem (60) can be solved in closed form [24]. To
find a solution, sort the entries of ct in non-decreasing order
by finding {7/} such that ¢*(f) < (7)) < ... < ct(rh).
Subsequently, one needs to find the index 7! > 1 for which

71
> Pa(r)) < Ry and Y pu(rl) > R, (62)
i=1 i=1
Finally, the entries of the minimizer st are found as
on(Th), i=1,...,7t -1
t 7t . _
Sn(Tit) = Rn _Zjllpn(’r;)v 1 :Té
0, i=7t+1,...,T.
(63)

The computational advantage of RB-FW for solving (58)
stems from the fact that the solution to the subproblems (60)
can be obtained efficiently via (63) upon receiving the c;
entry order, whereas competing alternatives require projections
onto {Py, }nep, per iteration [10]. Our RB-FW-based charging
scheme is summarized in Algorithm 3.

B. Structural SVMs

The term structured prediction comprises a family of ma-
chine learning problems, where the output to the predictors
have variable sizes [25]. An example is the optical character
recognition (OCR) task, where one is given a vector z € R
containing the P-pixel image of an M -letter word. The goal
is to produce a vector y € {1,...,26}™, whose m-th entry

IEEE TRANSACTIONS ON SIGNAL PROCESSING (TO APPEAR)

Algorithm 3 EV charging coordination solver
Input: {R,}3_y, {Pu}ny, {Tn}nZy, and B

1: Initialize {p®} and ¢t = 0

2: while stopping_criterion not met do

3:  Randomly pick B; C N such that |B;| = B

4 Evaluate c? via (61) and broadcast c’ entry order
5: Calculate {s! },ep, via (62) and (63)
6: Update {p’Tt},en via
i1 _ J L=y)p, +ysh.  YneB
" P Vn € N\ B;

7: t+—t+1
8: end while

indicates which of the 26 letters of the alphabet corresponds to
the m-th character in that word. This problem is challenging
because the output y may take 26 values, and also the same
predictor must work for different values of M.

Structural SVMs have been widely adopted to carry out the
aforementioned structured prediction tasks [26], [27]. Upon
defining the application-dependent feature map ¢ [27] that
encodes the relevant information for the input-output pair
(z,y) in the d-dimensional vector ¢(z,y), a vector w is
learned so that (w, ¢(z,y)) when seen as a function of y
is maximized at the correct y for a given input z. Given N
training pairs {(2z,,y»)}2_;, w is learned by solving

A 1
minimize §HWH2+N;£” (64a)

(W, Pn(¥)) = Ln(y) —&n
Vy € V,, Vne N

where N := {1,...,N}, ¥, (¥) := ¢(Zn,yn) — ¢(2n, ),
L., (y) is the incurred loss by predicting y instead of the given
label y,,, {¢,}2, are slack variables, ) is a nonnegative con-
stant, and )/, is the set of all possible outputs for input z,,.
In the OCR example, )V, = {1,...,26}M=  where M, is the
number of characters of the n-th word.

Problem (64) is difficult since the number of constraints
explodes with |V, |. If 8,(y) is the Lagrange dual variable
associated with (64b), vector 3, is formed with entries

{Bn(¥)}5ey, . and vector B has entries {3, }nen,. the dual
of (64) is [8]

subject to (64b)

A

o . . _ 2 _ T

minimize  f(B) := J||AB|" ~b' B (65)
p20

subject to 178, =1, YneN

where m = > |V,|, A € R¥™ is formed with columns
{55 ¥n(y) € RY y € Yn,n € N}, and vector b € R™ has
entries {%Ln(y)}yeyn,nej\f-

A randomized single-block FW is adopted by [8], to solve
(65). Extending this approach to B > 1 yields Algorithm 4.
To avoid storing the high-dimensional vector 3!, auxiliary
variables w! := A@B!, t = 0,1,... are introduced. It can
be shown that iterates {W'};—o 1. . converge to the global
minimizer of (64); see [8] for additional details.
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Algorithm 4 Structural SVMs solver
Input: {(z,,yn)}p -1, {Vn}n=1, and B
1: Initialize 3°, 0 = 5? =...= €9Vb =0,and t=0
2: Calculate w' = w) = ... =w} = Ag’
3: while stopping_criterion not met do
4: Randomly pick B; C A such that |B;| = B
5 for n € B; do
6: Compute

yii=argmax L,(y) — (W' 9, (y))
YEYVn
Update Wit! = (1 — ) W', + 24, (y7)
Update ¢4 = (1 — )04 + Lo (y3)
: Update wit! = w! + wit! — w!,
10: Update (11 = ¢t + ¢t+1 — gt
11: end for
12: t—t+1
13: end while

VII. SIMULATED TESTS

This section demonstrates the efficacy of the novel step
sizes, and our parallel RB-FW solvers, in the context of the
large-scale applications of Sec. VI.

A. Coordination of EV charging

In the first experiment, 63 EVs with maximum charging
power p, = 3.45 kW Vn, were scheduled. The simulation
comprises 7' = 96 time slots ranging from 12:00 pm to
12:00 pm of the next day. The values of {7,}»_; and
{R,,}_, were set according to real travel data of the National
Household Travel Survey [28], [10]. The base load {D,}I_;
were obtained by averaging the 2014 residential load data from
Southern California Edison [29].

Convergence is assessed in terms of the relative error
e(pt) == (f(p?) — f(p*)) /f(p*), where px is obtained using
the off-the-shelf solver SeDuMi.

The following step-size sequences were compared.

2

S1) : = 66
(S » ol 12 (66)
\/ 2yt + Ay —and
(82): m:= 5 , Yo=1
2

S3): =
(83): =G5

2
S4) : = —
(4 =G5 19

2
S5) - = —
(83): = Grams 19

S2 is the sequence in (38), whereas S1 and S3-S5 are special
cases of (31). Sequences S1-S5 cover a wide range of decay
rates. S2 vanishes faster than S1 [cf. (39a)], whereas the decay
rates of S3-S5 are smaller than that of S1. Note that S1 boils
down to the step size in (18) when setting 5 = 1. For all

n=1,...,N, pY was initialized as
P (1), T=1,...,70 -1
0 _ . 0
pn(T) - Rn - Zj:l pn(])a T = n
0, r=70+1,...,T

Relative error

0 100 200 300 400 500 600 700 800 900
Iteration index t

Fig. 2. Convergence performance of Algorithm 3 with B = 1.

Relative error

0 100 200 300 400 500 600 700 800 900
Iteration index t

Fig. 3. Convergence performance of Algorithm 3 with B = 10.

where the index *79 > 1 was found as

'Fgfl 70
> Pu(r) <Ry and > pn(7°) > Ry
T=1 =1

The first experiment assumed that only one vehicle was
randomly selected to update its charging profile per iteration.
Algorithm 3 with B = 1 was run with the step sizes S1-S5 for
1,000 iterations. Fig. 2 depicts the evolution of €(p?) across the
iteration index ¢ for Algorithm 3 with step sizes S1-S5 when
B = 1. It is observed that the algorithm converges towards a
global minimum for all the tested step sizes. In this scenario,
the more slowly the step size diminishes, the faster the relative
error decreases. Since B = 1 and Algorithm 3 is a special
instance of Algorithm 2, Fig. 2 therefore highlights how
randomized single-block FW can benefit from the proposed
step sizes. Specifically, the proposed step sizes S3-S5 lead to
a much faster convergence than S1, which coincides with the
step size in (18) since B = 1.
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Fig. 4. Number of iterations to achieve e(p?) < 1075.

Empirical success rate

1 10 20 30 40 50 60 63
Number of blocks B

Fig. 5. Empirical success rate for S1-S5 with different values of B.

The second experiment tested Algorithm 3 with B = 10.
Fig. 3 further confirms that slowly diminishing step sizes lead
to fast convergence in the first few iterations. However, as
the iterates approach a minimum, the slowly diminishing step
sizes yield larger oscillations; see e.g. S5 in Fig. 3. This
phenomenon has already been described in Remark 2. Com-
paring Figs. 2 and 3 reveals that considerably less iterations
are required to achieve a target accuracy for larger B. For
example, about one fifth of iterations are now required for
Algorithm 3 with S5 to reach ¢(p) < 1075. Thus, if the ten
blocks can be processed in parallel, setting B = 10 roughly
reduces the computation time by a factor of five, which further
corroborates the merits of parallel RB-FW.

The next experiment highlights the impact of B on the
convergence of Algorithm 3. Five copies of Algorithm 3, each
one with a different step size S1-S5, are executed for 100
independent trials. The minimum value of ¢ such that at least
one of these copies satisfies ¢(p?) < 10~° is recorded. Fig. 4
represents the sample mean and standard derivation of this
minimum ¢ averaged over the 100 trials for different values
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Fig. 6. Progress of g(3t) for Algorithm 4 with B = 1.
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Fig. 7. Progress of g(3?) for Algorithm 4 with B = 2.

of B. It is observed that both mean and standard derivation
decrease for increasing B. If each iteration of Algorithm 3
is run in B cores in parallel, then the number of iterations
constitutes a proxy for runtime. Fig. 4 adopts this proxy to
showcase the benefit of adopting B > 1. Nonetheless, observe
that the influence of B on the number of iterations decreases
for large B. Fig. 5 depicts the fraction of trials that each copy
of Algorithm 3 is the first among the five copies in achieving
e(p?) < 107°. This figure reveals that slowly diminishing step
sizes are preferable for small values of B.

B. Structural SVMs

The structural SVMs experiment was conducted on a subset
of the OCR dataset [26], [30]. The feature mapping ¢(z,y),
loss function L, (y), and solution to the subproblems in
step 5 of Algorithm 4 were evaluated using the open source
code [31] released by the authors in [8]. The dimension of
&(z,y) is d = 4,028, and the number of training examples is
N = 6,251. To initialize each 3%, one of its entries chosen
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uniformly at random was set to one, whereas all the remaining
entries were set to zero. Algorithm 4 with A = 0.1 and step
sizes S1-S5 was run for six passes through all the training
examples. The duality gap g(3!) in (14) is depicted in Figs. 6
and 7 for B = 1 and B = 2, respectively. In both cases,
Algorithm 4 with S5 outperforms all other variants in the first
few iterations. Furthermore, it can be seen that the required
number of iterations to achieve a target accuracy almost halves
when increasing B from one to two.

VIII. CONCLUDING SUMMARY

The RB-FW algorithm is especially suited to solve high-
dimensional constrained learning problems whose feasible set
is block separable. For convex programs, the present con-
tribution developed feasibility-ensuring step sizes that enable
parallel updates of provably convergent RB-FW iterates. The
novel step sizes admit various decay rates, leading to flexible
convergence rates of RB-FW. Convergence of RB-FW is also
established for constrained nonconvex problems. Numerical
tests using real-world datasets corroborated the speed-up ad-
vantage of parallel RB-FW with the proposed step sizes over
randomized single-block FW. In addition, single-block FW
with the developed slowly diminishing step sizes converges
markedly faster than that with existing step sizes.

APPENDIX

A. Proof of Lemma 1

Using (12) together with steps 4 and 5 of Algorithm 2, we
find

FET) < f) + D0 G = xE, Vi, f(xD) +27CF /2

neBy

= FO) 7 lsl — X, Vi, F) 7 CE 2
neBy

Subtracting f(x*) from both sides yields

BT < h(x) £ 3 sl — Xk, Vi, f(x)) + 22O 2.
neB;

Taking conditional expectation with respect to 3;, we arrive
for a given x! at

Ep, [h(xt+1)|xt]

<h(x) +a Y wulsh =, Vo, [(x) +77CF /2
neN,

(x') + am(s’ = ', VI(x)) +97CF /2

(x") — amg(x') +12CF /2

h
h

(67)

where the last equality follows from (14) and step 4 of
Algorithm 2. Since x' is determined by {B,}!_}, taking
expectations in (67) with respect to {BT}tT_:lo yields (16).

B. Proof of Lemma 2
Plugging (31) into the left-hand side of (17b) yields

L—ayp _ [qt+1)P +2—af® —a?
%:2+1 4
_lat+ 1P +2-af
- 4
t+1) — g+ 2
S[q(+) q+2]" 68)
4
where the last inequality follows from ¢ < o < 1. Consider
the auxiliary function p(x) := (x+¢)? —2” —¢, x>0 for
some constant ¢ > 1, and its first-order derivative
¢'(@) =plx+1)"" = paf~t, x>0
Since p < 1, it holds that ¢'(x) < 0, and thus,
o) <e(0)=c”—c<0, V>0
or,
(x4+c¢)f —c<azf, VYa>0. (69)

Multiplying both sides of (69) by ¢, and setting ¢ = 1 and
x =t gives rise to

0<q(t+1) —qg<gqt’, Vt>D0. (70)
Combining (68) and (70) yields
l—oy _ [g"+2° 1
’%52+1 - 4 ’71&2

which concludes the proof.

C. Proof of Corollary 1

Expression (32) follows directly by substituting (31) into
(20). To show (33), apply Theorem 2 to verify that

E A K CtB 2
Yt — K+ 1)y 24 ) )
(1- 070)7%(—111(7(0) KC’}BV%(A CJ?'V%(
Yt — K+ 1)y 2(t - K+ 1w 24
(1— )y _1h(x") Y CP(E+1)
= (t-K+1)y, 2y, (t — K +1)
Vi, (t+1DCF +2(1 - a)h(x°) n

for all K € {1,...,t}, where the second inequality stems
from (20) and the third one follows from vx < vx_1 and
Yo = 1. The next step is to bound the first quotient in the
right-hand side of (71). To this end, set ¢ = 2/qgand x = K—1
in (69) to deduce that

2 2
< .
K —1)P4+2 7 q(K—-1+2/q)°

Now set K = [u(t +2/q)], where y is an arbitrary constant.
Since K € {1,...,t}, pu needs to satisfy

VE-1 = (72)

0<p< (73)

t+2/q



Since

[u(t+2/q)1=1+2/q = p(t+2/q)—2+2/q = p(t+2/q) > 0

it follows from (72) that

2
TK-1 S
que(t+2/q)?
Therefore,
7%(71 < 4
t—K+1"¢2(t—K+1)p2rt+2/q)%
4

e P Y e ey

Minimizing the right-hand side with respect to p in the
interval (73) yields
Vi1 _ 42+ 1)t
<
E- KA1 2
2p t

for p = P sy
From (71), g; can be upper bounded as

(t+ 1)6’}9 +2(1 — a)h(x?)
ISR 2a7;
(2p+1)2 1 (gtr +2) (t+1)CF +2(1 — a)h(x?)
aq?(2p)F gzt '

where the second inequality follows from (75) and (31).

(75)

2
Y -1

D. Proof of Lemma 3

To prove (39a) by induction, it clearly holds for ¢ = 0, and
assume that it holds also for a fixed ¢ > 0. Then, one needs
to show that

1 2
— < < — .
at+ 1+« =M1 = at+2+«
To this end, define the auxiliary function

. o2z + 422 — ag?
pla) = YT ,

which is monotonically increasing since

(a?2? +2) — azva2a? + 4

o2x? +4

(76)

x>0

> 0.

¢ (x) =

Thus, by the induction hypothesis we have

. 1 N R 2
® (at—f— 1) Vg1 =9(v) <@ <at+2> . )

Note that

20 _(, a 2 at+2
at+2+a — at+ 2+ « T \at+2+a

or, equivalently,

2
1< 2c n at + 2
at+ 2+« at+ 2+«
2 2
« at + 2 o
= + — . (78)
at+2  at+2+a« (at +2)2
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This inequality implies that

R 2 1 402 2av
¥ = st o
at + 2 at+ 2\ (at +2) (at +2)
2
< — 79
T at+2+a (79)

Combining (79) with the second inequality in (77) proves the
second inequality in (76).

On the other hand, since (at +1+a)? > a(at+1+a) +
(at + 1)2, it holds that

a? 4> o? n 4o 4(at +1)2
(at +1)? T (at+1)?2  at+1l+a (at+14a)?
! 2(at +1) 2
= . 80
(at+1+at—|—l+a) (80)
Thus,

R 1 1 a? «a
? = s Hd—o——
at+1 2at+1)\ (at+1) 2(at+1)
1
> —
Tat+1+a
Combining (81) with the first inequality in (77) proves the first
inequality in (76), thus concluding the proof of (39a).
To prove (39b), one can also proceed by induction. First,
v < o since 7”‘2;“‘1’& < 1. Assuming v;_; < 7;, it follows
that v; < ;41 since ¢(x) is nondecreasing.

1)

E. Proof of Corollary 2

Inequality (40) readily follows from (20) and (39a). To
prove (41), note that (71) holds because of 7y = 1 and (39).
Meanwhile, by the second inequality in (39a), the step size
in (38) satisfies (75) for ¢ = « and p = 1, that is

Vi1 27
t—K+1~ a2’
Plugging (39a) together with (82) into (71), yields (41).

(82)
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