
How would you like your packets delivered? An
SDN-enabled open platform for QoS routing

Chenfei Gao∗, Vahid Rajabian-Schwar†, Weiyi Zhang∗, Guoliang Xue‡, Jian Tang†,
∗ AT&T Labs Research, Bedminster, NJ, USA
† Syracuse University, Syracuse, NY, USA
‡ Arizona State University, Tempe, AZ, USA

Abstract—Traditional Internet routing is simple, scalable and
robust, but cannot provide perfect QoS support due to the
current completely distributed hop-by-hop routing architecture.
Software defined networking (SDN) opens up the door to traffic
engineering innovation and makes possible QoS routing with a
broader picture of overall network resources. We further argue
that SDN can provide more opportunity for the network users to
make their own routing selections with network programmability.
In this paper, we propose OpenMCR, a general framework for
network users to make their own choice of routing given various
requirements. OpenMCR provides routing subject to several
additive QoS constraints, which is NP-hard when the number
of constraints is two or more. By composing various necessary
conditions with different path extension schemes, our platform
can customize routing solutions for each network user based
on their own requirements. Through experiments in an SDN
emulated environment, we evaluate multiple aspects of OpenMCR,
demonstrate its effectiveness compared with several baselines and
validate our theoretical analysis.

Index Terms—Traffic engineering, Software defined WAN,
Multi-constrained QoS routing, Optimization framework, Efficient
algorithms

I. INTRODUCTION

The Internet design is based on end-to-end arguments [20]
where network support is minimized and end hosts are respon-
sible for most communication tasks. Such a design allows a
unified best-effort service at the network layer for any type of
data. Therefore, link-state routing protocols (e.g., OSPF and IS-
IS) are widely used because they are scalable, robust, and based
on simple abstractions. This type of architecture fits perfectly to
data transmission where the primary requirement is reliability.
Unfortunately, traditional routing schemes are relatively inflex-
ible, since they direct all traffic over shortest paths. For many
applications, which have stringent QoS requirements, cannot
be guaranteed in the best-effort Internet. To provide Quality of
Service (QoS), IETF has explored several QoS architectures,
but none has been truly successful and globally implemented.
This is because QoS architectures such as IntServ [3] and
Diffserv [2] are built on top of the current Internet’s completely
distributed hop-by-hop routing architecture, lacking a broader
picture of overall network resources. Even though MPLS [19]
provides a partial solution via its ultra-fast switching capability,
it lacks real-time reconfigurability and adaptivity. Network

This research was supported by NSF under grants #1421685, #1704092 and
#1443966.

operators need flexible intra-domain routing to perform fine-
grained Traffic Engineering (TE), provision backup paths, and
steer traffic through middle-boxes. To do so, they cannot
rely on distributed routing protocols which mandate all traffic
to flow along the shortest paths. Instead, they typically use
dedicated TE mechanisms, prominently MPLS RSVP-TE [1],
[6]. Unfortunately, these mechanisms come with their own set
of limitations [16]. Among others, the lack of coordination
between routers can lead to a long convergence time. They
also introduce control-plane and data-plane over-head due to
signaling and encapsulation, respectively.

Software Defined Networking (SDN) offers fine-grained con-
trol over routing, at the expense of controller overhead, failover
latency, and deployment challenges. SDN brings much more
flexibility to network routing, along with improved performance
and agility. With SDN, network operators can design routing
applications to shape traffic from a central controller that
reconfigures network switches in real-time. This could include
prioritizing or even blocking different packets when necessary
and allowing administrators to base routing decisions on ex-
ternal systems and events, such as a maintenance window. It
would be much more efficient than current static configurations
and would let network operators easily reroute network traffic
to make networks run optimally.

Benefits for Enterprise Customers: Most SDN stud-
ies/implementations focus on benefits for the network
providers, such as Opex (better network design) and Capex
(cheaper commodity hardware) savings. At its core, most
people view SDN as a tool that enables network providers to
reconfigure networks on the fly to adapt to different subscriber
usage patterns or application needs. SDN puts control into the
hands of network engineers and administrators by letting them
respond to changing business requirements in real-time. But
for the enterprise customers of network providers, what are the
benefits from SDN? Little research has been done to investigate
this question. In this paper, we argue that, to the network users,
some level of control of on-the-fly changes can be provided.
Essentially, in a SDN network, control is directly programmable
and gives administrators more functionality than ever before.
Programmability offers the addition or expansion of features,
as well as the ability to change flows dynamically and even
pass management up to higher-level orchestration tools. A
great example is QoS control, which allows unique flows to
be programmed for different data types. Management of the
network flows can be designed on a case-by-case basis, while978-1-5386-2542-2/18/$31.00 c©2018 IEEE

gxue1
Highlight

still running on the same physical topology. Separate customers
(internal or external) can be defined with separate routing based
on need, budget or otherwise. In this work, we propose a gen-
eral routing platform that takes advantage of SDN technology
and enables users to find customized routing strategies based
on their preferred time/budget/reliability requirements. Users
can select one or more QoS criteria, such as delay, jitter, cost,
etc., and their own bound for these constraints. Based on the
user QoS inputs, OpenMCR will compose a customized routing
solution for each routing request. To the best of our knowledge,
this is one of the first studies that investigates how to use SDN
to benefit network users, not just network operators. We provide
a customized platform, OpenMCR, for multiconstrained QoS
routing, which gives users the flexibility to choose their own
routing based on time/budget/precision and other concerns.

II. MULTI-CONSTRAINED QOS ROUTING

In this work, we consider the case that Enterprise customers
need network connections with dynamic requests and on the
fly solutions. For example, each customer must have various
QoS requirements, such as budget, connection delay, jitter, and
others. How to provide satisfiable network connection to each
customer considering multiple QoS requirements at the same
time? We formulate such practice as the following problem:

Definition 1 (Multi-Constrained Path (MCP) problem). Consider
a network G(V,E). Each link (u,v) ∈ E is associated with K
additive weights ωi(u,v) ≥ 0, (i = 1,. . . ,K). Given K constraints
Wi, (i = 1,. . . ,K), the problem is to find a path P from source
node s to destination node d such that:

Di(P) =
∑

(u,v)∈P

ωi(u, v) ≤Wi i= 1, 2, . . . ,K. (2.1)

A path which satisfies the above condition is a feasible path.
MCP is known to be NP-hard. There are extensive studies on
finding approximated solutions [15], [22], [23]. While each
solution has its own merit, the realization of these solutions are
not practically feasible with the traditional distributed Internet
architecture. More importantly, none of the previous work can
provide a universal solution for various MCR requests. For
example, an Enterprise customer could need one connection
which is more delay tolerant with cheaper cost, but at the same,
may need another connection for a delay and jitter sensitive
service. How to provide solutions that adapt to dynamic cus-
tomer requests? Most previous research could not answer this
question. In this work, we propose a general framework that can
be tailored to all types of customers. Moreover, our platform
can actually be compatible with most existing approaches.

III. OPENMCR ARCHITECTURE

The architecture of OpenMCR is illustrated in Fig.1. The
reasons we call it open are (1) SDN applications are built
at northbound interfaces (e.g. GUI) which allow customers to
dynamically specify routing requests (instead of static SLAs).
(2) Customers have the ability to use MCP specifications
(SDN application) to customize routing requests, with specific
constraints, objective and other service level agreements (SLAs)

Fig. 1: OpenMCR architecture

(e.g. optimality, maximum running time, specified routing al-
gorithm) in a dynamic way. (3) OpenFlow is the underlying
protocol to manipulate forwarding behavior at each switch for
every traffic flow.

The inputs are parsed and handed over to the routing engine,
the key component of OpenMCR. The role of the routing engine
is to compute a feasible/optimal path for each request based
upon all routing requirements. The result, whether or not a
feasible path is found, is fed back to the SDN application
to notify the client. For each request, if a feasible path is
found, the feasible path is translated to low level OpenFlow
entries that are installed at each corresponding switch along
the path in the network by the SDN control platform (e.g.
Floodlight , OpenDaylight). Meanwhile, a network statistics
collector provides real time network status information (e.g.
available link bandwidth, link delay, jitter) to the routing engine
for real time decision making. A closed loop is formed in
OpenMCR, involving the routing engine, SDN control platform
and network statistics collector. In the following section, we
discuss the design of OpenMCR in detail with focus on the
routing engine. In Sec.V, we unveil an implementation of
OpenMCR and expand on the details of the MCP specification,
OpenFlow compiler and network statistics collector. We present
a performance evaluation of OpenMCR in Sec.VI, and follow it
with a discussion on related work in Sec.VII and a conclusion
in Sec.VIII.

IV. OPENMCR DETAILED DESIGN

In this section, we discuss the details of OpenMCR, par-
ticularly the routing engine, which is the key component of
OpenMCR. There are two major factors which can affect
the routing engine design: the time to find a solution, and
the quality of the solution. The challenge here is how to
dynamically find a solution to the customized MCP based upon
real time network state adapting to the deciding factors.The
theory behind the OpenMCR is:
• Use effective and efficient necessary condition checks,

which will be described in Section IV-A, to reduce the
solution space, and consequently improve the efficiency.
In fact, most of the previous work, such as [13], [22],
can be categorized as sort of necessary condition check.
Based on the requirement for the running time or solution
quality, various algorithms can be applied. So the platform

is generic in the ways that it can accommodate various
algorithms regarding to dynamic requirements.

• Then pick a good candidate from the solution space which
is reduced in the previous step, which will be described
in Section IV-C. Many related work, such as [14], can
be used as the algorithm to find a better candidate. Given
the reduced search space, these solutions, though could be
complicated by its nature, can be efficient for this purpose.

A. Necessary Condition Check

Assuming that we are looking for a feasible path from source
node s to destination node d, and we already have a subpath
from s to node u, denoted by Ps→u, and now we need to choose
the next hop. For any neighbor node A of u, there is a path
s→ A: Ps→u∪(u,A) with path weight ci w.r.t. link weight ωi.
Now if from node A, we can find a path p to d which satisfies:

Di(p) =
∑
e∈p

ωi(e) ≤Wi − ci, i = 1, 2, . . . ,K(∗)

then we know there is a feasible path through node A. On
the other hand, if any constraint i in (*) is violated for all
paths from A, then we can claim that no feasible path through
node A exists given the chosen path Ps→u. We say A is a
unqualified node, and exclude it from the search space of the
solution, referred as solution space in the rest of the chapter.

In the rest of the paper, we will use u to represent the current
node, A the being checked neighbor node, and W ′i (=Wi− ci)
to represent the modified ith weight constraint.

Definition 2 (necessary condition). A necessary condition is
one or a set of testing conditions which can be used to decide
the qualification of a node A. It must have the property that if
a node A does not pass the necessary condition check, we can
claim that A must be an unqualified node.

In the following, we will introduce few necessary conditions,
and then show how to evaluate their effectiveness.

1) Variant Path ∞-norm Function: Holder’s q-vector norm
[7], which is listed in below,

Dq(p) = (

K∑
i=1

[
Di(p)

Wi
]q)

1
q

when q → ∞, the q-norm (called ∞-norm) function will be
satisfied if and only if there is a feasible path for the MCP
problem from A to d.

Di(p)
Wi
≤ 1, i = 1, 2, . . . ,K

However, we do not have any polynomial time solution for
checking the ∞-norm function. Therefore, we use a variant
of ∞-norm function to be the necessary condition. Define
D(spi) =

∑
e∈spi ωi(e), where spi is a shortest path from

A to d w.r.t. link weight ωi. We want to check the following
conditions:

D(spi)

W ′i
≤ 1, i = 1, 2, . . . ,K (4.1)

Corollary 1. If node A cannot satisfy some condition in (4.1),
then A must be excluded from the solution space. 1 2

1Due to page limit, please refer to our technical report [25] for the proofs
of all the Corollaries.

2) Edge 1-norm Function: Similar to the path q-norm func-
tion, we define the edge q-norm as:

(
K∑
i

(
ωi(e)

Wi
)q)

1
q

and use it as the new edge weight metric, we have ωn1n(e) =∑K
i=1

ωi(e)
W ′

i
. Given popt is the shortest path w.r.t. edge vector

ωn1n, the necessary condition is

Dn1n(p
opt) =

∑
e∈popt

ωn1n(e) =
∑
e∈popt

K∑
i=1

ωi(e)

W ′i
≤ K (4.2)

Corollary 2. If A does not satisfy the necessary condition (4.2),
A must be be excluded from the solution space. 2

3) Weighted Edge 1-norm Function: We propose another
new edge weight metric as ωw1n(e) =

∑K
i=1 ωi(e). Assume

popt is the shortest path w.r.t. edge vector ωw1n, the necessary
condition is

Dw1n(p
opt) =

∑
e∈popt

ωw1n(e) ≤
K∑
i=1

W ′i (4.3)

Corollary 3. If at node A, the condition (4.3) cannot be
satisfied, A must be excluded from the solution space. 2

4) Edge ∞-norm Function: We give another modified edge
weight function

ωmax(e) = max{ωi(e)
W ′

i
, i = 1, 2, . . . ,K}

Corollary 4. If for the shortest path popt from A to d, w.r.t.
edge weight ωmax(e), Dmax(p

opt) =
∑
e∈popt ωmax(e) > K,

then we can claim that A cannot be in the solution space. 2

5) Guarantee Algorithm Check: Polynomial time approxi-
mations (PTAS) for MCP have been proposed in [5], [15], [22].
These PTAS share the following property:
Given a small real number ε, and weight constraints W1,W2,
. . . ,WK , PTAS can guarantee to find a feasible path p if there
exists a path q such that:

D1(q) ≤W1, Di(q) ≤ (1− ε) ·Wi, i = 2, . . . ,K.

We call these algorithms guarantee algorithms, and have the
following necessary checking corollary.

Corollary 5. With modified weight constraints{W1,
1

1−ε ·W
′
i ,

i = 2, . . . ,K}, if a guarantee algorithm cannot find a feasible
solution from A to d, then we claim that A must be excluded
from solution space. 2

B. The Comparison of Necessary Conditions

Previous section only presented few necessary conditions.
Many more necessary conditions can be applied for MCP, and
it is not practical to implement and use all of them at once. Our
design assumes that time and quality are two deciding factor
for selecting right necessary conditions. So it is desirable to use
most efficient and effective ones. The question then is how to
judge which necessary conditions are more effective or efficient
than others? In this section, we develop schemes to evaluate
the necessary conditions in order to provide more effective and
efficient necessary condition checks.

1) Exact Comparison Between Necessary Conditions:

Definition 3 (domination relation). For any two necessary
conditions, R1 and R2, we say R1 is dominated by R2 if either
of the following cases is satisfied:

1) R2 finds the same unqualified nodes set as R1, but has
less running time than R1 has.

2) The set of unqualified nodes found by R1 is a subset of
the set of unqualified nodes found by R2.

Case 1 is defined from the implementation perspective, while
case 2 is defined from algorithmic perspective. Based on the
definition of domination relation, we can easily claim that [22]
dominates [5] and [23] because it has faster running time than
the other two. In the rest of this section, we want to provide
more evaluations for the presented necessary conditions.

Theorem 1. Edge ∞-norm function is dominated by edge 1-
norm function.

PROOF: We use pM to denote the shortest path w.r.t the edge
weight ωmax, pS to denote the shortest path w.r.t. ωn1n. If
weighted ∞-norm function can exclude some node A, we have
Dmax(pM) > K. Moreover, because pM is the shortest path
with ωmax, we know that Dmax(pS) ≥ Dmax(pM) > K.

Meanwhile, we have Dn1n(pS) =
∑
e∈pS

∑K
i=1

ωi(e)
W ′

i
. Re-

sulted from the fact that∑K
i=1

ωi(e)
W ′

i
> max{ωi(e)

W ′
i
, ∀i ∈ {1, 2, . . . ,K}} = ωmax(e),

we can find that

Dn1n(pS) =
∑
e∈pS

K∑
i=1

ωi(e)

W ′i
>

∑
e∈pS

ωmax(e) = Dmax(pS) > K

On the other hand, we cannot find such proof for the reverse
direction. Therefore, weighted ∞-norm function is dominated
by 1-norm function. 2

It worth noting that edge 1-norm function always dominates
edge q-norm function (q ≥ 1). Thus, we will pick edge 1-norm
function over the edge q-norm function for the necessary
condition check.

2) The Expectation of Necessary Condition: Some nec-
essary conditions do not have an exact domination relation
between each other. For example, the edge 1-norm function
and the weighted edge 1-norm function. When all Wi, i =
1, 2, . . . ,K are same, these two functions are exactly same.
In this section, we study the case that Wi, i = 1, 2, . . . ,K are
not all same.

For those conditions, we introduce the following definition
and propose another evaluation scheme.

Definition 4 (expectation of necessary condition). The size of
the set of total possible paths which can be excluded by a
necessary condition is the expectation of a necessary condition.

Let us use Fig. 2 for explanation. When K=2, for any path
p that would be excluded by the 1-norm function condition,
it has

∑
e∈p(

ω1(e)
W1

+ ω2(e)
W2

) > K. If we use x to represent∑
e∈p

ω1(e)
W1

, and y to represent
∑
e∈p

ω2(e)
W2

. Then the 1-norm
function condition is presented as x

W1
+ y

W2
≤ 2. In Fig. 2(a),

the line represents x
W1

+ y
W2

= 2. For any path p that does
not pass the 1-norm check, it corresponds to a point which is
above the line (Dn1n(p) > 2). All the paths that are excluded
by 1-norm function compose the blue shaded region above the
line, which is called edge 1-norm excluded space. While the
area under the line is the edge 1-norm solution space.

Similarly, the weighted 1-norm function condition corre-
sponds to x + y ≤ W1 +W2 in Fig. 2(b). From the figures,
it is worth noting that 1-norm function and weighted 1-norm
function are not dominated by each other because the two
corresponding excluded regions are overlapped. Then if and
how we can pick between these necessary checks?

Theorem 2. For K ≥ 2, the expectation of 1-norm function is
better than the expectation of weighted 1-norm function.

PROOF: To evaluate the expectations of edge 1-norm function
and weighted edge 1-norm function, we need to compare the
sizes of 1-norm excluded space and weighted 1-norm excluded
space. The larger size of the region represents the better
expectation of the condition.

We use Ro and Rw to denote the solution space of edge 1-
norm function and edge weighted 1-norm function, respectively.

In Figs. 2(c) and 2(d), when K=3, we use x to
denote

∑
e∈p ω1(e), y to represent

∑
e∈p ω2(e), and z to denote∑

e∈p ω3(e). Then for 1-norm function, its solution space, Ro,
is represented by:

x

W1
+

y

W2
+

z

W3
≤ 3, x ≥ 0, y ≥ 0, z ≥ 0

which is the area under the plane in Fig. 2(c). Similarly, the
solution space for weighted 1-norm function, Rw, is:

x+ y + x ≤W1 +W2 +W3, x ≥ 0, y ≥ 0, z ≥ 0

which is the space under the plane in Fig. 2(d).
V (Ro) (the volume of Ro) = 1

6
·(3W1)·(3W2)·(3W3). V (Rw)

(the volume of Rw) = 1
6
·(W1+W2+W3)

3. It is evident that Ro
has smaller solution space, and hence has a better expectation
when K=3.

When K > 3, in a K-dimensional space, the solution space
of 1-norm function can be formulated as:

X1

W1
+ . . .+

XK
WK

≤ K,Xi ≥ 0, i = 1, 2, . . . ,K

corresponding to the space between the origin and a
(K-1)-simplex. Its volume, which is the size of the solution

space, is 1
K!
·


A11 A11 . . . A1K

A21 A22 . . . A2K

...
...

. . .
...

AK1 AK2 . . . AKK


Because it is a diagonal matrix, the value is 1

K!
· (K ·

W1) · · · (K ·WK).
Similarly, in K-dimensional space, the solution space of

weighted edge 1-norm function also composes of the origin
and a (K-1)-simplex,

X1 + . . .+XK ≤W1 + . . .+WK , Xi ≥ 0, i = 1, 2, . . . ,K

The size of the solution space is 1
K!
· (W1 +W2 + . . .+WK)K .

Because (W1 ·W2 ·. . .·WK)
1
K < W1+W2+...+WK

K
(when Wi are

not all same), we can claim that the solution space of 1-norm is

Y

X
A

B
(0, 2W2)

(2W1,0)

(a) 1-norm function (K=2)

Y

X

C

D

(0,W1+W2)

(W1+W2,0)

(b) Weighted 1-norm (K=2)
X

Y

Z

3W1

3W2

3W3

(c) 1-norm function (K=3)
X

Y

Z

W1 +W2 +W3

W1 +W2 +W3

W1 +W2 +W3

(d) Weighted 1-norm (K=3)

Fig. 2: Expectation of necessary condition

smaller. Therefore, we find that for K ≥ 2, the expectation of
edge 1-norm function is better than the expectation of weighted
edge 1-norm function. And we should expect better overall
performance from using edge 1-norm as the necessary condition
check. 2

3) The Comparison between FAST and Edge 1-norm Func-
tion: According to our guaranteed algorithm check, we can
find that the solution space of FAST algorithm [22] is

X1 ≤W1, Xi ≤
1

1− ε ·Wi, i = 2, 3, . . . ,K

So its solution space volume is (1
1−ε)

K−1 ·
∏K
i=1Wi. Com-

pared to the solution space volume of edge 1-norm function
KK

K!

∏K
i=1Wi, if (1

1−ε)
K−1 < KK

K!
, then FAST algorithm can

achieve better expectation. According to the Stirling’s Ap-
proximation, we have K! = KKe−K

√
2πK, then we find that

generally even with ε = 0.6, FAST can have better expectation.

C. Path Extension Scheme

Necessary condition checks help to vastly reduce the solution
space, but we still have to pick the next hop to extend the path
towards to the destination. In fact, most of the MCP algorithms
can be used for evaluating and selecting next hops. In this
section, we introduce three different path extension schemes
to meet various routing requirements. For each scheme, Open-
MCR stores multiple paths in a heap. The number of paths
stored in heap is limited, denoted as Q, which is set it to 100
in our experiments. During the process, we maintain the heap
by removing the path with the least number of hops if the limit
Q is reached.

At each iteration, path extension schemes check each next
hop candidate stored in heap with sufficient condition checks,
and then determine one with the most potential as the next hop.
Next, we discuss each of the schemes in more details.
• Random Pick We treat all of the possible next hop candidates
equally and randomly pick up one of them. Thus, the sufficient
condition here is to assign equal potential to every next hop
candidate.
• Further Look

In this scheme, for each candidate node A in the solution
space, we further check its own solution space. In other words,
assuming A is chosen, we check how many qualified next hop
nodes A has. Our surmise is that the more qualified next hops
A has, the more likely it can provide a path to the destination.

Therefore, in this scheme, we select the candidate node
which has the most qualified children in the heap to be the
next hop.

• Greedy Optimal We propose a new metric path length here
to evaluate the quality of path. Let p be any path in G, we
define path length of p, denoted by l(p), as:

l(p) = max
1≤k≤K

ωk(p)

Wk
(4.4)

Naturally, path length reflects how close the path is to
each additive constraint bound. Thus, considering all additive
constraints, we can compare and determine that, one path is
better than another if it has a lower path length. Naturally, lower
path length presents more flexibility for the path to extend.
Hence, we pick the candidate node which has the lowest path
length to be the next hop.

Algorithm 1: General Framework for MCP
Input : G, s, d, Alg, Obj, t, ε, W =< Wi >, Ω =< ωi >,

B =< bj >
Output: ps→d

1 <necessary condition, sufficient condition, path extension
scheme, algorithm>:= SLA Analyzer (G, Alg, Obj, t, ε);

2 if algorithm 6= null then
3 ps→d := algorithm (G, s, d, Obj, ε, W, Ω, B);
4 return ps→d;

5 if necessary condition = null then
6 return SLA may not be satisfied in the worst case;

7 Q := ps→s;
8 while π[d] = null and Q 6= ∅ do
9 for each path ps→q ∈ Q do

10 if any bj ∈ B cannot be satisfied on ps→q then
11 Q := Q/ps→q;
12 Continue;

13 if q = d then
14 return ps→q;

15 Let Hq be the set of all adjacent nodes to q except π[q];
16 for each node u ∈ Hq do
17 Check qualification of u by necessary condition;
18 if u is unqualified or u is marked grey then
19 Hq := Hq/u;

20 else
21 Check the potential of u by sufficient condition;

22 if Hq = ∅ then
23 Remove ps→q from Q;

24 Extend a path ps→q ∈ Q to ps→q→u according to selected
path extension scheme;

25 Mark u grey; Q := Q ∪ ps→q→u; π[u] := q;

26 return No feasible path found;

D. MCP Framework

One key observation is that all existing solutions to the
MCP problem either use specific necessary condition check
or provide a sufficient condition scheme or both. In fact, if we
look from a broader view, most of the previous solutions can be
applied either as the necessary condition check or as the path
extension scheme or both. In that sense, we want to connect
the previous seemingly unrelated solutions, combine them and
present as a general framework for the MCP problem.

Algorithm 2: SLA Analyzer
Input : G, Alg, Obj, t, ε
Output: <necessary condition, sufficient condition, path

extension scheme, algorithm>
1 if Obj 6= null then
2 <sufficient condition, path extension scheme>:= Greedy

Optimal;
3 if ε 6= null then
4 <necessary condition>:= FAST;

5 else
6 Select one <necessary condition> from VarPath∞-norm

> Edge1-Norm while ensuring framework worst case
running time T ≤ t;

7 if no necessary condition is selected then
8 return <null, null, null, null>;

9 else
10 if ε 6= null then
11 <necessary condition>:= FAST;
12 Select one <sufficient condition, path extension

scheme> from FurtherLook > GreedyOptimal >
RandomPick while ensuring T ≤ t;

13 if no sufficient condition is selected then
14 return <null, null, null, null>;

15 else
16 Select one <necessary condition> from VarPath∞-norm

> Edge1-Norm and one <sufficient condition, path
extension scheme> from FurtherLook > GreedyOptimal
> RandomPick while ensuring T ≤ t;

17 if no sufficient condition is selected then
18 return <null, null, null, null>;

19 return <necessary condition, sufficient condition, path extension
scheme, null>;

Users can pick and choose different algorithms and compose
their own solution adapting to various demands with different
running time or quality. For example, if users need a fast
solution, [13] and [8] can be combined as a solution. If
customers want to spend more time to improve the possibility
of finding a solution, they can select [22], [23] and [14] to
form a solution. By choosing different necessary condition
checks and path extension schemes, we can implement different
solutions to specified MCP while satisfying SLA requirements.
The engineering problem for building such a platform is how to
select the appropriate necessary condition and path extension
scheme to best serve each request. A specific set of SLA
requirements along with MCP constraints and an objective
function is mapped to each request. Thus, we need an SLA

analyzer to process such information and help decision making
in terms of the encoded logic. The output of SLA analyzer is a
tuple of selected necessary condition, sufficient condition, path
extension scheme, and possibly specific algorithm. Note that
sufficient condition is mapped to path extension scheme. The
procedure of our framework for MCP is listed in Algorithm
1. It invokes a subroutine of SLA analyzer which is listed in
Algorithm 2.

It is worth noting that though we use encoded logic in the
algorithm, users of OpenMCR are not restricted to it and can
customize decision making logic for SLA Analyzer.

Given a necessary condition and path extension scheme,
OpenMCR selects the next hop with the most potential in
iterations to extend paths currently stored in a heap until a
destination node has been reached (line 8-25 of Alg.1). Then
the path will be returned as a solution (line 13-14 of Alg.1).

V. OPENMCR IMPLEMENTATION

We implement a proof-of-concept version of OpenMCR on
a linux machine using Mininet and Floodlight. All OpenMCR
related functionalities are implemented in Python. Detailed
architecture is shown in Fig.3.

Fig. 3: OpenMCR Implementation

We developed a program to establish the network topology in
Mininet, collect runtime state of links periodically (e.g. every
5 seconds), install flow entries along the path and generate real
traffic flows according to the flow requirements using multiple
threads. Additionally, we developed an optimizer program to
implement the routing engine of OpenMCR. Our routing engine
consists of 3 classic algorithms, 5 necessary conditions, 3 path
extension schemes and the logic to select the combination of
necessary condition and path extension scheme described in
Algorithm 2.

We start 3 separate processes for Floodlight, Mininet pro-
gram and optimizer program respectively. At the northbound
interface, MCP requirements can be specified by invoking our
OpenMCR APIs. A snippet of such APIs is shown in Fig.4.

Fig. 4: A snippet of OpenMCR north-bound APIs

Runtime link statistics are measured and collected every 5
seconds by invoking another set of Floodlight REST APIs (i.e.
topology, switch-stats, device, port stats) and sending probes
(e.g. ping, iperf). Such runtime states are sent to the optimizer
by invoking its API (i.e. setLinkState). Any found routing
solution is sent to an OpenFlow compiler that maintains switch
port to topology link mappings and IP addresses of each node.
So the path solution can be efficiently translated into flow
entries in each switch along the path. Floodlight REST APIs
of static flow pusher are invoked for entry installation. After
successful installation of flow entries, the optimizer sends a
signal to the traffic generator we developed (using the Linux
iperf tool for Mininet). Real traffic flows will be generated
according to flow requirements (e.g. bandwidth, lifetime, source
and destination).

VI. EVALUATION

In this section, we evaluate the effectiveness of OpenMCR
with multiple experiments. Each of them focuses on one
property of OpenMCR. Table I below lists all the experiments
conducted and summarizes their purpose.

Expr. Description
1, 2 illustrate the dynamic routing feature
3,4 compare various necessary conditions
5,6 validate the satisfaction of user requirements
7,8 demonstrate the flexibility of framework
9 show the compatibility with arbitrary topology

TABLE I: Summary of experiments

We implement the routing engine of OpenMCR using Net-
workX [27] and emulate OpenFlow based traffic transmission
and network environment in Mininet [26], an SDN flavored
network emulator widely used in SDN related research. All the
experiments are run on a 2.6GHz Intel Core i7 Linux machine
with 16GB of memory.

A. Environment setup

In this section we discuss the link capacity and delay settings
used across our experiments in Mininet. We conduct most
of experiments (i.e. expr 3 − 8) using the public CORONET
CONUS topology [24]. Since link delay in WAN transmission
is dominated by propagation delay, we convert the physical
distance to propagation delay and emulate it as the link delay
in Mininet. We assign each link a capacity in the range of
[10, 20]Mbps. We make this choice due to the fact that Mininet
supports at most an aggregated 10Gbps shared among all links,
our topology has 99 links, and we require 75 control-plane links
to connect from an edge switch to each host. For experiments
1 and 2, we consider a simpler topology that facilitates the
illustration by extracting 9 nodes and 9 links interconnected
from CONUS topology to demonstrate the dynamic routing
feature. Particularly for emulating this 9 nodes topology, we
increase each link capacity to [30, 40]Mbps and retain their
delays.

B. Dynamic routing

We aim to illustrate the dynamic routing feature of Open-
MCR in this section. Initially, we select 20 random pairs of

San

Antonio

El Paso

Abilene

Oklahoma

City

Dallas

Houston
Austin

Fig. 5: Default route

San

Antonio

El Paso

Abilene

Oklahoma

City

Dallas

Houston
Austin

Fig. 6: Route changed due to link saturation

source and target nodes and generate a routing request for
each of them with a bandwidth requirement in the range of
[3, 5]Mbps and a lifetime of 10mins to cover the length of
the experiment. We deploy the initial state on the CORONET
network using paths computed by OpenMCR. We consider
bandwidth requirements as non-additive constraints, delay and
hop as additive constraints in experiment 1 and 2 below. We
mark real time measured link weights (e.g. bandwidth, delay)
on each link in Fig.5-Fig.7. OpenMCR computes the path based
on real time measurements of link weights. Next, we inject
another flow with bandwidth requirement of 10Mbps, delay
bound of 10ms and hop bound of 5 from Abilene to Houston.
The default route computed by OpenMCR is marked red in
Fig.5.

Experiment 1: Before injecting the flow from Abilene to
Houston, we inject a big flow from Dallas to Houston in order
to saturate the link. From Fig.6, we can see the available
bandwidth on the link Dallas→Houston is only 2.5Mbps. The
remaining available bandwidth is not enough to carry the
flow Abilience→Houston. Thus, OpenMCR returns a differ-
ent path Abilene→El Paso→San Antonio→Austin→Houston,
which has been marked red in Fig.6. It has been demonstrated
that OpenMCR will provide dynamic routing solutions based
on real time network state.

Experiment 2: This is designed to illustrate the impact of
link failure to routing path. With NetworkX we are able to
maintain the real time and state based on runtime measure-
ment. To emulate the link failure, we either remove the link
Abilene→Dallas in real time topology or set the bandwidth to
0 and delay to∞ for that link. We choose the latter option for il-
lustration purpose. From Fig.7 we can see, OpenMCR provides
an alternative path to route the flow given link Abilene→Dallas

San

Antonio

El Paso

Abilene

Oklahoma

City

Dallas

Houston
Austin

Fig. 7: Route changed due to link failure

500 1000
250

300

350

400

450

500

550

600

650

700

750

800

of requests

Ac
om

mo
da

ted
 R

eq
ue

sts

VarPathInfNorm

Edge1Norm

EdgeInfNorm

WeightedEdge1Norm

MinWeight

FAST

Fig. 8: Different NCs with RandomPickup

is disconnected. Once again, this demonstrates dynamic routing
with OpenMCR.

C. Comparison of necessary conditions

We aim to compare the performance of various necessary
conditions and validate theoretical analysis in Sec.IV-B. We
conduct two experiments below. In each of the experiments,
we randomly generate 500 and 1000 requests with common
delay bound of 25ms and hop bound of 8. A request being
accommodated means that OpenMCR has returned a feasible
path that satisfies all the constraints for that request. The
more accommodated requests are returned, the more effective
the selected necessary condition is. Thus, we investigate the
number of accommodated requests to validate the effectiveness
of each different necessary condition. Note that we set ε = 0.5
for the FAST necessary condition.

Experiment 3: We select Random Pickup as the path ex-
tension scheme in this experiment and combine it with each
necessary condition. We run 500 and 1000 random source-target
requests for each necessary condition and show the results
in Fig.8. We can observe that, for both cases, FAST as the
necessary condition leads to the most accommodated requests.
Second is Variant Path∞-Norm. Edge 1-Norm returned slightly
fewer accommodated requests than Variant Path ∞-Norm.
Minimum-weight performs worse than both Edge 1-Norm and
Variant Path ∞-Norm. Edge 1-Norm outperforms Edge ∞-
Norm. Weighted Edge 1-Norm is not as good as Edge 1-
Norm. All these observations support the theoretical analysis
in Sec.IV-B.

Experiment 4: We replicate experiment 3 but select Greedy
Optimal as our path extension scheme. The results from this
experiment are shown in Fig.9. Most observations are the same.
But it is worth noting that for some necessary conditions
(e.g. Edge 1-Norm, Edge ∞-Norm, Weighted Edge 1-Norm
and Minimum Weight), Greedy Optimal does not perform
as well as Random Pickup. The reason is that in each path
extension iteration only the optimal node is greedily selected.
Thus with a weak necessary condition, a greedy optimal node
that is unqualified is more likely to be selected. With the best
necessary conditions (e.g. FAST, Variant Path ∞-Norm), all
three path extension schemes work consistently well.

D. SLA satisfaction

In this section, we aim to demonstrate that paths provided
by OpenMCR can satisfy SLA requirements/constraints.

Experiment 5: We consider 5 DMCP routing requests from
unique source to target nodes. Each of the requests has a

500 1000
250

300

350

400

450

500

550

600

650

700

750

800

of requests

Ac
om

mo
da

ted
 R

eq
ue

sts

VarPathInfNorm

Edge1Norm

EdgeInfNorm

WeightedEdge1Norm

MinWeight

FAST

Fig. 9: Different NCs with GreedyOptimal
random bandwidth requirement in the range of [3, 5]Mbps,
delay constraint with bound of 15ms, hop constraint with
bound of 10 and cost constraint with bound of 500. For each
request we expect to have one feasible path returned that might
differ from different routing algorithms/schemes. We randomly
generate the cost of each link in the range of [30, 50]. This cost
can be used to reflect the preference (e.g. location, temporal) of
WAN provider to use that link for routing during particular time
periods. In this experiment, we compare OpenMCR with some
existing DMCP algorithms (e.g. Randomized, FAST DMCP).
We specify the running time requirement of each flow request
to drive OpenMCR to select Variant Path ∞-Norm as the
necessary condition and Greedy Optimal as the path extension
scheme. For DMCP, path length is minimized by Greedy
Optimal. We set ε = 0.5 for FAST DMCP.

The results are listed in Table.II. Column 3, 5, 7 list the delay,
hop and cost of the paths returned by OpenMCR, respectively.
The last three columns show the path lengths (defined in
Sec.IV-C) of the paths returned by OpenMCR, Randomized
and FAST DMCP, respectively. The actual delay values are
real time measured in Mininet by transferring real traffic flows.
We inject these 5 flows one by one. The lifetime of each flow
is long enough to cover the experiment.

We can see from Table.II that all the paths are feasible, which
means SLA requirements (i.e. delay, hop, cost) are all satisfied.
In addition, OpenMCR outperforms DMCP baselines such as
Randomized and FAST DMCP in terms of path length. In other
words, path length value of the path returned by OpenMCR is
no greater than that from existing baselines. Our results prove
the effectiveness of OpenMCR for DMCP in this experiment.

Experiment 6: We use the same settings of flow requests as
in experiment 6. The difference here is we try to solve OMCP
by minimizing the path delay. Thus, we compare OpenMCR
with A*Prune. The results are listed in Table.III. We can
observe that the optimal paths returned by OpenMCR and
A*Prune are the same since delay values are almost identical.
The slight deviation is due to error of real time measurement.
Comparing the results of Table.II and Table.III, we see that
the paths returned by OpenMCR might be different in terms
of different SLAs even though the source and target are the
same. Take the request Chicago→Houston in experiment 6 as
an example. The path with minimized path length from Chicago
to Houston has a 13.3ms delay (row 4, column 3). However,
the path Chicago→Houston in this experiment has only a
7.68ms delay (row 4, column 7). It has been demonstrated
that OpenMCR is designed to dynamically find feasible/optimal
paths based upon the actual SLAs of a request.

Node A Node Z Delay Delay Bound Hop Hop Bound Cost Cost Bound OpenMCR Randomized FAST DMCP
Albany Detroit 3.6ms 15ms 6 10 233 500 0.60 1.00 0.60

Syracuse Wilmington 1.9ms 15ms 3 10 114 500 0.3 0.7 0.3
Baltimore Kansas City 6.5ms 15ms 5 10 217 500 0.50 1.00 0.80
Chicago Houston 13.3ms 15ms 7 10 284 500 0.88 0.96 0.88
Seattle San Francisco 4.5ms 15ms 4 10 167 500 0.40 0.95 0.82

TABLE II: Path length comparison of different DMCP solutions
Node A Node Z Hop Hop Bound Cost Cost Bound OpenMCR A*Prune
Albany Detroit 6 10 259 500 3.71ms 3.73ms

Syracuse Wilmington 3 10 114 500 2.97ms 3.10ms
Baltimore Kansas City 6 10 240 500 6.36ms 6.31ms
Chicago Houston 7 10 292 500 7.68ms 7.72ms
Seattle San Francisco 4 10 167 500 4.49ms 4.43ms

TABLE III: Delay comparison of different OMCP solutions with minimizing delay

E. Flexibility

In this section, we aim to show the flexibility of OpenMCR.
That is to say, based on different SLAs of each request, Open-
MCR can dynamically select the most appropriate necessary
condition and sufficient condition to assemble the framework
while ensuring SLAs are satisfied. SLAs consist of multiple
factors. Experiment 8 is designed to satisfy an SLA with a
specified epsilon value that reflects the tradeoff between the
running time and performance (i.e. the number of accommo-
dated requests). Experiment 9 is designed to meet the SLA with
specified worst case running time requirement.

Experiment 7: As discussed in Sec.IV-D, if a client specifies
an epsilon value, FAST will always be selected as necessary
condition. In this experiment, we select Further Look as path
extension scheme. We evaluate the tradeoff between actual av-
erage running time and the number of accommodated requests
among 500, 800 and 1000 random requests. We increase the
value of epsilon from 0.2 to 1.0 in increments of 0.2 and
also collect the results with high epsilon value of 5.0. We
compare OpenMCR with some baselines such as Randomized
and A*Prune. The results are shown in Fig.10(a) and Fig.10(b).
A trade-off can be observed that, although it takes less time
to find a path as epsilon is increased, fewer requests are
accommodated. That is to say, there will be more requests with
no feasible paths found. Additionally, it can be observed that
Randomized requires the least running time. A*Prune takes
less time than OpenMCR when epsilon is close to 0. With
respect to accommodated requests, OpenMCR has almost the
same performance as A*Prune, especially when epsilon is no
more than 1.0. It has been demonstrated that OpenMCR can
provide as good solutions as classic DMCP/OMCP algorithms
but it has more flexibility to support various SLAs.

Experiment 8: We consider the running time requirement of
a SLA in this experiment. When a client specifies their running
time requirement t, it means the path should be computed
and proactively installed in the network by t. We guarantee
that for any case, the running time should be no more than t.
Thus, we take worst case running time of path computation into
consideration. We generate 1000 random requests. Each request
has a bandwidth requirement in the range of [30, 50]Kbps,
a lifetime in the range of [30, 120]s, delay bound of 20ms
and jitter bound of 5ms. This experiment lasts for 10mins.
All the requests randomly arrive during that time period. We

collect the results of actual average running times and total
number of accommodated requests with respect to increased
running time requirements for OpenMCR and two baselines -
Randomized and A*Prune. The results are shown in Fig.11(a)
and Fig.11(b). From both figures, we can see that the results of
OpenMCR are a step function of running time requirement,
which implies that different combinations of necessary and
sufficient conditions are selected as running time requirement
t is increased from 2s to 182s with step of 18s. According
to our encoded logic, Edge1-Norm+GreedyOptimal is selected
for t = 2s. VariantPath∞-Norm+GreedyOptimal is selected
for t ∈ [20, 74]s. Edge1-Norm+FurtherLook is selected for
t ∈ [92, 146]s. VariantPath∞-Norm+FurtherLook is selected
for t ≥ 164s. From Fig.11(a) and Fig.11(b), we can also
see that randomized has the least running time but leads to
the worst performance. OpenMCR has less running time than
A*Prune and specially for t = 2s, A*Prune is infeasible since
its worst case running time exceeds 2s. In some cases where
t ∈ [20, 74]s, A*Prune outperforms OpenMCR while in the
other cases where t ≥ 92s, OpenMCR performs best. Thus,
it has been demonstrated that OpenMCR can provide as good
solutions as classic MCP algorithms or even better solutions and
moreover, OpenMCR has more flexibility to support various
SLAs.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

20

ε

A
c

tu
a

l
A

v
g

.
R

u
n

n
in

g
 T

im
e

 (
s

e
c

)

FAST+FurtherLook

Randomized

A*Prune

(a) Actual running time

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
300

350

400

450

500

550

600

650

700

750

ε

A
c

o
m

m
o

d
a

te
d

 R
e

q
u

e
s

ts

500−FAST+FurtherLook

500−A*Prune

800−FAST+FurtherLook

800−A*Prune

1000−FAST+FurtherLook

1000−A*Prune

(b) Accommodated requests

Fig. 10: ε customization

F. Generality of topology

Experiment 9: We also evaluate OpenMCR over varying
WAN topologies to validate our claim that OpenMCR can
support arbitrary topologies. Due to page limit, we don’t present
the results here. Please refer to our technical report [25] for
more details of this experiment.

2 20 38 56 74 92 110 128 146 164 182
0

2

4

6

8

10

12

Running Time Requirement (sec)

A
c

tu
a

l
A

v
g

.
R

u
n

n
in

g
 T

im
e

 (
s

e
c

)

OpenMCR

Randomized

A*Prune

(a) Actual running time

2 20 38 56 74 92 110 128 146 164 182
600

610

620

630

640

650

660

Running Time Requirement (sec)

A
c

c
o

m
m

o
d

a
te

d
 R

e
q

u
e

s
ts

OpenMCR

Randomized

A*Prune

(b) Accommodated requests

Fig. 11: Increasing running time requirement
VII. RELATED WORK

Traffic engineering in SD-WAN has been the target of
recent research [11], [12]. Google [12] deployed the first global
software defined WAN interconnecting their datacenters. In
[11], Hong et al., proposed a system SWAN to boost the
utilization of inter-datacenter networks. While pioneering works
in data centers well justify the benefits of SDN, such clean-
slate designs cannot be directly applied to Carrier/ISP networks
where unique requirements and properties create non-trivial
challenges.

QoS routing has been extensively studied over decades for
both wireline and wireless networks [4], [5]. In [8], [15], ε-
optimal approximation algorithms were proposed. Other works
[13], [23] provide randomized or limited granularity heuristics.
[22] considered both decision version and optimization version
of the MCP problem with improved time complexity. However,
most research studies focus on a specific approach to get a
feasible or approximate solution. More importantly, these QoS
routing protocols cannot be dynamically implemented due to
the distributed nature of current Internet. Our work provides a
general framework on which most existing MCP schemes are
compatible and realize it in SDN.

Optimization framework As SDN grows popular for sim-
plifying network management, optimization upon SDN has at-
tracted researchers’ attention. Several optimization frameworks
have been proposed [9], [10], [17], [18], [21]. A general,
efficient framework SOL has been proposed in [10] for express-
ing and solving network optimizations. In [9], a centralized
optimizer DEFO is proposed along with a two-layer architec-
ture separating connectivity and optimization tasks. Authors
of [21] proposed a framework Merlin for managing resources
in SDN, specially for bandwidth allocations. [17] focuses on
traffic steering for middleboxes in SDN, while [18] proposes a
routing framework to strategically route traffic sub-populations
over fixed monitors. However, none of these frameworks are
compatible to solving multi-constrained routing problem.

VIII. CONCLUSION

In this paper we propose a general SDN routing platform,
OpenMCR, that can provide multiconstrained QoS routing
service to enterprise-level users. OpenMCR is backwards com-
patible with existing QoS routing approaches and it can also
strategically implement a feasible/optimal routing solution for
its users based upon their requirements. Via extensive exper-
iments in an SDN emulated environment, we demonstrate its
effectiveness compared to multiple baselines.

REFERENCES

[1] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209, Internet
Engineering Task Force, 2001.

[2] D. Black, Ed., P. Jones, Differentiated Services (Diffserv) and Real-Time
Communication, RFC 7657, Internet Engineering Task Force, November
2015.

[3] R. Braden, D. Clark, and S. Shenker, Integrated services in the internet
architecture: an overview, RFC 1633, Internet Engineering Task Force,
June 1994.

[4] Yu Cheng, C. Zhou, and W. Zhuang, Minimizing end-to-end delay:
a novel routing metric for multi-radio wireless mesh networks, IEEE
INFOCOM’2009.

[5] S. Chen and K. Nahrstedt, On Finding Multi-Constrained Paths, IEEE
ICC’98, Vol. 2, 1998, pp. 874-879.

[6] A. Farrel, J.-P. Vasseur, and J. Ash, A Path Computation Element (PCE)-
Based Architecture, RFC 4655, 2006.

[7] G. H. Golub, C. F. Van Loan, Matrix Computations, Oxford, U.K., North
Oxford Academic, 1983.

[8] R. Hassin, Approximation Schemes for the Restricted Shortest Path
Problem, Mathematics of Operations Research, Vol. 17, No.1, 1992,
pp. 36–42.

[9] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils, T.
Telkamp, and P. Francois. A declarative and expressive approach to
control forwarding paths in carrier-grade networks. ACM SIGCOMM,
2015.

[10] V. Heorhiadi, M. K. Reiter, and V. Sekar. Simplifying software-defined
network optimization using SOL. USENIX symposium on networked
systems design and implementation, 2016.

[11] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer. Achieving high utilization with software-driven WAN.
ACM SIGCOMM, pages 15-26, 2013.

[12] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hlzle, S. Stuart and A. Vahdat,
B4: Experience with a Globally-Deployed Software Defined WAN, ACM
SIGCOMM, 2013.

[13] T. Korkmaz, M. Krunz, A Randomized Algorithm for Finding a Path
Subject to Multiple QoS Constraints, Computer Networks, Vol. 36, No.23,
2001, pp. 251–268.

[14] G. Liu, K. G. Ramakrishnan, A∗Prune: An Algorithm for Finding K
shortest Paths Subject to Multiple Constraints, IEEE Infocom 2001, Vol. 2,
April 2001, pp. 743–749.

[15] D. Lorenz, D. Raz, A simple efficient approximation scheme for the
restricted shortest paths problem, Operations Research Letters, Vol. 28,
2001, pp. 213–219.

[16] A. Pathak, M. Zhang, Y. C. Hu, R. Mahajan, and D. A. Maltz, Latency
inflation with MPLS-based traffic engineering, Internet Measurement
Conference, 2011, pp. 463472.

[17] Z. Qazi, and C.-C Tu, L. Chiang, R. Miao, V. Sekar, M. Yu. SIMPLE-
fying Middlebox Policy Enforcement Using SDN. ACM SIGCOMM,
2013.

[18] S. Raza, G. Huang, C.-N. Chuah, S. Seetharaman, and J. P. Singh.
MeasuRouting: a framework for routing assisted traffic monitoring.
ACM/IEEE Transactions on Networking, 20(1):45-56, 2012.

[19] E. Rosen and Y. Rekhter, BGP/MPLS VPNs, RFC 2547, Internet Engi-
neering Task Force, 1999.

[20] J. H. Saltzer, D. P. Reed, and D. Clark, End-to-end arguments in system
design, ACM Transactions on Computer Systems, vol. 2, no. 4, Nov. 1984.

[21] R. Soule, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster. Merlin: A language for provisioning network resources.
ACM CoNEXT, 2014.

[22] G. Xue, W. Zhang, J. Tang, K. Thulasiraman, Plynomial Time Ap-
proximation Algorithms for Multi-Constrained QoS Routing, IEEE/ACM
Transactions on Networking, Vol. 16 (2008), pp. 656-669.

[23] X. Yuan, Heuristic Algorithms for Multiconstrained Quality-of-Service
Routing, IEEE/ACM Transactions on Networking, Vol. 10, No. 2, 2002,
pp. 244–256.

[24] CORONET CONUS Topology, http://www.monarchna.com/topology.html
[25] https://www.dropbox.com/s/krldlbyb7s90tph/OpenMCR-

TechReport.pdf?dl=0
[26] Mininet; http://mininet.org/
[27] NetworkX; https://networkx.github.io/

