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Abstract—In this paper, a novel two-scale stochastic control
framework is put forth for smart-grid powered coordinated
multi-point (CoMP) systems. Taking into account renewable
energy sources (RES), dynamic pricing, two-way energy trading
facilities and imperfect energy storage devices, the energy man-
agement task is formulated as an infinite-horizon optimization
problem minimizing the time-averaged energy transaction cost,
subject to the users’ quality of service (QoS) requirements.
Leveraging the Lyapunov optimization approach and the s-
tochastic subgradient method, a two-scale online control (TS-OC)
approach is developed to make online control decisions at two
timescales. It is analytically established that the TS-OC is capable
of yielding a feasible and asymptotically near-optimal solution.

Keywords: Two-scale control, battery degeneration, CoMP
systems, smart grids, Lyapunov optimization.

I. INTRODUCTION

With ever increasing demand for energy-efficient transmis-
sions, coordinated multi-point processing (CoMP) has been
proposed as a promising paradigm for efficient inter-cell inter-
ference management in heterogeneous networks (HetNets). In
CoMP systems, base stations (BSs) are partitioned into cluster-
s, where BSs per cluster perform coordinated beamforming to
serve the users [1]. As the number of BSs in HetNets increases,
their electricity consumption constitutes a considerable portion
of the operational expenditure of cellular networks, and the
global carbon footprint [2]. In this context, energy-efficient
communication solutions are advocated for their economic and
ecological merits [1]-[3]. While BSs considered therein are
persistently powered by conventional generators, the current
grid infrastructure is on the verge of a major paradigm shift,
migrating from the aging grid to a “smart” one.

A few recent works have considered the smart-grid pow-
ered CoMP transmissions [4]-[7]. Assuming that the energy
harvested from renewable energy sources (RES) is accurately
available a priori, [4] and [5] considered the energy-efficient
resource allocation for RES-powered CoMP downlinks. Build-
ing on realistic models, our last work dealt with robust energy
management and transmit-beamforming designs for CoMP
downlinks [6]. Leveraging novel stochastic optimization tools,
we further developed an efficient approach to obtain a feasible
and asymptotically optimal online control scheme for smart-
grid powered CoMP systems [7].
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A salient assumption in [4]-[7] is that all involved resource
allocation tasks are performed in a single timescale. How-
ever, RES and wireless channel dynamics typically evolve
over different timescales in practice. Extending the traditional
Lyapunov optimization approach, [8] introduced a two-scale
control algorithm that makes distributed routing and server
management decisions to reduce power cost for large-scale
data centers. Based on a similar approach, [9] developed an
efficient MultiGreen algorithm for data centers with RES,
which allows cloud service providers to make online energy
purchase decisions at two timescales for minimum cost.

In the present paper, we develop a two-scale online control
(TS-OC) approach for smart-grid powered CoMP systems
considering RES, dynamic pricing, two-way energy trading
facilities and imperfect energy storage devices. Suppose that
the RES harvesting occurs at the BSs over a slow timescale
relative to the coherence time of wireless channels. The
proposed scheme performs an ahead-of-time energy planning
upon RES arrivals, while deciding real-time energy balancing
and transmit-beamforming schedules per channel coherence
time slot. Generalizing the Lyapunov optimization techniques
in [8]-[10], we propose a synergetic framework to design
and analyze such a two-scale dynamic management scheme to
minimize the long-term time-averaged energy transaction cost
of the CoMP transmissions, without knowing the distributions
of the underlying randomness. Using only historical data, a
novel stochastic subgradient approach is proposed to solve the
energy planning (sub-)problem, which enjoys a provable near-
optimality and faster convergence compared to the empirical-
pdf based approach in [8,9]. Rigorous analysis is presented to
justify the feasibility and quantify the optimality gap for the
proposed two-scale online control algorithm.

The rest of the paper is organized as follows. The system
models are described in Section II. The proposed dynamic
resource management scheme is developed in Section III.
Analysis of the algorithm performance is the subject of Section
IV. Numerical tests are provided in Section V, followed by
conclusions in Section VI.

II. SYSTEM MODELS

Consider a cluster-based CoMP downlink setup, where a
set Z :={1,...,I} of distributed BSs (e.g., macro/micro/pico
BSs) is selected to serve a set £ := {1,..., K} of mobile



users, as in e.g., [6,7]. Each BS is equipped with M > 1 trans-
mit antennas, whereas each user has a single receive antenna.
Powered by a smart microgrid, each BS is equipped with one
or more energy harvesting devices (solar panels and/or wind
turbines), and can perform two-way energy trading with the
main grid. In addition, the BSs have batteries so that they can
store part of the harvested energy for later use.

As the RES and wireless channel dynamics emerge typically
at different timescales in practice, we propose a two-scale
control mechanism. Specifically, time is divided in slots of
length smaller than the coherence time of the wireless chan-
nels; meanwhile, we define the (virtual) “coarse-grained” time
intervals in accordance with the slow RES harvesting scale,
with each interval consisting of 7" time slots.

A. Ahead-of-Time Energy Planning

At the beginning of each “coarse-grained” interval (¢t = nT,
n=1,2,...), let A;[n] denote the RES amount collected per
BSieZ and a™ := [A1,,...,A4;[n]]". With a™ available, an
energy planner at the central unity decides the energy amounts
E;[n], ¥i, to be used in the next T slots per BS 4. Given the
requested energy F;[n] and the harvested energy A;[n], the
shortage energy [F;[n]— A;[n]]T is purchased from the grid for
BS ¢ with the ahead-of-time (i.e., long-term) price agf t); or, the
surplus energy [A;[n] — E;[n]]™ is sold to the grid with price
B for profit, where [a]" := max{a,0} and ol > o,
The transaction cost with BS ¢ for such an energy planning is
therefore given by

GU(Ei[n]):=alV [Ei[n]-Ailn]] 81" [Ai[n}-E

i[n]]* i) " (D

B. CoMP Downlink Transmissions

Per slot ¢, let hy, € CM denote the vector channel from
BS i to user k, Vi € Z, Vk € K; let hy ¢ := [hY; ;,.... b7, )
collect the channel vectors from all BSs to user k, and
H,; :=[hy...., hg,]. With linear transmit beamforming per-
formed across BSs, the vector signal transmitted to user k is:
qi(t) = wi(t)sk(t), Vk, where sy () denotes the information-
bearing scalar symbol with unit-energy, and wy(t) € CM!
denotes the beamforming vector across the BSs serving user
k. The received vector at slot t for user k is therefore
yi(t) = hfT i (t) + 3, 4 b () + (1), where b q(t)
is the desired signal of user k, >, th)tql(t) is the inter-
user interference from the same cluster, and ny(t) denotes
additive noise, which is assumed a circularly symmetric com-
plex Gaussian (CSCG) random variable with zero mean and
variance 0.

The signal-to-interference-plus-noise ratio (SINR) at user k
can be expressed as

byl wi (t)]*
Y0l wi(B)?) + o

The transmit power at each BS ¢ clearly is given by
Poi(t) = Y e Wi (t)Bywy(t), where the matrix B; :=

SINR, ({wy(t)}) = @)

50,1, selects the cor-

dlag(O, ) ERJ\IIXJMI

,1,0,...,0
——
(i—-1)M M (I—i)M
responding rows out of {wy(t)}rexc to form the i-th BS’s
transmit-beamforming vector of size M x 1.
To guarantee QoS per slot user k, it is required that the
central controller selects a set of {wy(t)} satisfying [cf. (2)]

SINR,({wg(t)}) = vk, Vk 3)
where v denotes the target SINR value per user k.

C. Real-Time Energy Balancing

For the i-th BS, the total energy consumption P, ;(t) per
slot ¢ includes the transmission-related power P, ;(¢), and a
constant power P, > 0 due to other components such as data
processor, and circuits [5]. We further suppose that P, ;(t) is
bounded by P;"**. Namely,

=P, +ZW’€

ke

Biw(t) < P, Vi. (4

Per slot ¢, the BS 7 is allowed to perform real-time energy
trading with the main grid to balance its supply with demand.
Let P;(t) denote the real-time energy amount that is purchased
from (P;(t) > 0) or sold to (P;(t) < 0) the grid by BS i. Let
al™ and B (™ > BI"™) denote the real-time energy
purchase and selling prices, respectively. Then the real-time
energy transaction cost for BS i is

GUO(P(t) = of [P (1))

D. Energy Storage with Degeneration

For the battery of the i-th BS, let C;(0) denote the initial
amount of stored energy, and C;(¢) its state of charge (SoC) at
the beginning of time slot ¢. The battery capacity is assumed
bounded by C™i" and C™**, With P, ;(¢) denoting the energy
delivered to or drawn from the battery at slot ¢, the stored
energy then obeys the dynamic equation

Cl(t-l-l) = nCl(t)—i—Pb,z(t), Cmin S Cz(t) S Cmax7 Vi (6)

R 10 L&)

where 7 € (0, 1] denotes the storage efficiency.
The amount of power (dis)charged is assumed bounded by

PMn < Py (1) < PR Vi (7)

With n, := | £] and consideration of P, ;(t), we have the
following demand-and-supply balance equation per slot ¢:

P, +Z wh ( Ei[n,]

B Wk )—‘er’i(t) = T
ke

5(t), Vi. (8)

III. DYNAMIC RESOURCE MANAGEMENT SCHEME

Note that the smart-grid powered CoMP downlink to be
controlled is a stochastic system. The goal is to design an
online resource management scheme that chooses the ahead-
of-time energy-trading amounts { F;[n],Vi} at every t = nT,
as well as the real-time energy-trading amounts {P;(t),Vi},
battery (dis)charging amounts {P,;(t),Vi}, and the CoMP
beamforming vectors {wy (), Yk} per slot ¢, so as to minimize



the expected total energy transaction cost, without knowing the
distributions of the underlying random processes.

According to (1) and (5), define the energy transaction cost
for BS 4 per slot ¢ as:

2,(1) == ZGO (Eilu]) + GO, O

Let X := {E;[n],Vi,n; Pi(t), Pyi(t), Ci(t), Vi, t; wi(t), Vk, t}.

The problem of interest is to find

Z D B{®:(

t=0 el

(3),(4), (6), (7), (8), Vt.

A. Two-Scale Online Control Algorithm

O°P! .= min lim ——
X

S. t.

Problem (10) is a stochastic optimization task. We next
generalize and integrate the Lyapunov optimization techniques
in [8,10] to develop a TS-OC algorithm. To start, we assume
the following two relatively mild conditions for the system:

Pgnax 2 (1 _ n)cmin (11)

1—nT .
cmax _ gmin > p (PIIlaLX P, (12)

Condition (11) simply implies that the energy leakage of
the battery can be compensated by the charging. Condition
(12) requires that the allowable SoC range is large enough to
accommodate the largest possible charging/discharging over T’
time slots of each coarse-grained interval.

Our algorithm depends on two parameters, namely a “queue
perturbation” parameter I', and a weight parameter V. Define
a = max{a"”, vt} and B := min{B"",Vt}. Derived from
the feasibility requirement of the proposed algorithm, any pair
(I", V) that satisfies the following conditions can be used:

Fmin S r S I—xmax7 0<V S Vrnax (13)
where
Fmin _ 1 (1 B 777- prax Onlax) Vﬁ (14)
(max (G R 8
max 11— 77 min min ~
r = min —( Pt — M) — Va (15)
r=1...T (n™" 1—n
Cmax_c«nnn_ 1-n7 pmax __ pmin
VMaX.—= min —1 S i) . (16)
r=1,..,T n™(a— )

We now present the proposed TS-OC algorithm:

o Initialization: Select I' and V, and introduce a virtual
queue Q;(t) := Ci(t) + T, Vi.

e Energy planning: Per interval 7 = nT, with ¢,

{a", ol t), ,87(1“)} available, determine the energy amounts
{E¥[n],Vi} by solving

T+T—-1
min Z { {G(lt) Z E{G")(P, ))}}
< T+T 1
+ Z Qi(T)E{ Py, (t )}}
s. t. (3),(4),(7),8), Vt=7,...,7+T -1 (17)

where  expectations are taken over &, =
{a{"™ B{") H,}. Then the BSs trade energy with
the main grid to supply an average amount E}[n]/T per
slott=7,..., 7+ 7T — 1.

o Energy balancing and beamforming schedule:
At every slot ¢ € [nT,(n + 1)T — 1], with
Ei[n] = Ef[n| determined and &, available, decide
{Pz* (t)v Pb*z(t)vvza W;;(t),Vk} by SOlVing

min Z{ G(Tt) 5(t)) + Qi(nT') Py 4 (t )}
€L
(3),(4),(7),(8).

S. t.
The BSs perform real-time energy trading with the main
grid based on { P} (t),Vi}, and coordinated beamforming
based on {w(t),Vk}.

o Queue updates: Per slot ¢, charge (or discharge) the
battery based on {Fj,(t)}, so that the stored energy
follows C;(t + 1) = nC;(t) + Py ,(t), Vi; and update
the virtual queues Q;(t), Vi, accordingly.

(18)

Next, we develop efficient solvers of (17) and (18) to obtain
the TS-OC algorithm.

B. Real-Time Energy Balancing and Beamforming

It is easy to argue that the objective (18) is con-
vex. Indeed, with ayt) > Bt”), the transaction cost
with P;(t) can be alternatively written as G (P;(t)) =
max{agv't)Pi(t), Bgrt)Pi(t)}, which is clearly convex [11];
and so is the objective in (18).

By proper rearrangement, the SINR constraints in (3) can
be rewritten to convex second-order cone (SOC) constraints

[12]; that is,

S bl (1)]2 + 07 < }Re{hk Jwi(t)},

14k (19)
Im{hk,t'wk(t)} =0, Vk.
We can then rewrite the problem (18) as
min Z{VGW(PC + > Wil ()Bswi(t) + Pou(t) — %)
€T keK
+Q¢(ntT)Pb,i(t)}} s. t. (4),(7),(19). (20)

As G(")(.) is convex and increasing, it is easy to see that
GUD (P, + Y, Wi (t)Biw (1) + Pyi(t) — 22 s jointly
convex in (P, ;(t), {wg(t)}) [11, Sec. 3.2.4]. It then readily
follows that (20) is a convex optimization problem, which can
be solved by general interior-point solvers.

C. Ahead-of-Time Energy Planning

To solve (17), here we propose a stochastic gradient ap-
proach. Suppose that &, is i.i.d. across time slots. For sta-
tionary &,, we can remove the index ¢ from all optimiza-



tion variables, and rewrite (17) as (with short-hand notation

Qi[n] := Qs(nT))

min Z{VG ) (E;[n))+TE [ G(M)(Pi(ft))—f—Qi[n]Pb,i(ét)”

1€L
1
3 @; (&) + of < —Re(hflwy (&),
Im{hw, (&)} =0, VE,VE, (21a)
Pmm < Pyi(&) < B, Vi VE, (21b)
Pty wil(€) Biwk(ft) < Plex v, Ve, (21c)
ke
Pe+ Z ng(gt)Biwk(ét) + Ppi(&;)
kel
E; .
_ T[”} (€,), Vi, VE,. 21d)

Since the energy planning problem (17) only determines the
optimal ahead-of-time energy purchase E[n], we can then
eliminate the variable P; and write (21) as an unconstrained
optimization problem with respect to the variable E}[n],
namely

min

VG (22)
{(E; [nl} ZEI[ (

Ein)) + TG ({Ei[n]})]

where we define

GO Bln]}) =mind E{VECO(Eifn], Prs(€), {wi(€)))

i€T

+QilnlPi(€)} st Qla), 21b), 2lo) (23)

with the compact notation
VD (B, Pyg, {Awi}) = GV (Pet > Wi Biwg+ Py i—
keK

It can been observed that (22) is generally a nonsmooth
and unconstrained convex problem with respect to {E;[n]},
which can be solved using the stochastic subgradient iteration
described next.

The subgradient of G('Y)(E;[n]) can be first written as
(1t)

ay ’, if Ein] > Ain]
oG (Ei[n]) = { 87, if Ei[n] < A;[n]
any z € [, oY), if E;[n] = A;ln).

Wwith {Pf(&,), wi (€,)} denoting the optimal solution
for the problem in (23), the partial subgradient of
G ({E;[n]}) with respect to E;[n] is 9;G") ({E;[n]}) =

VE{aW( i), PE(€,), {WE(€,)})}, where
7;”, if E
oW (Eln], PE,(€,) AwE (€)}) = =2 if £ M <A
T € [7_067?‘), B;t)],else

with A = P, +kak (ét) zwkE(gt)—’—Plfz(Et)

E;
T)

Defining ¢;(E;) := VOGU(E;) + To,GUY({E;}), a
standard subgradient descent iteration can be employed to find
the optimal E[n] for (22), as (j denotes iteration index)

Bl = (B[] - n Vg B W), Vi 4
where {10} is the sequence of stepsizes.

Implementing (24) essentially requires performing (high-
dimensional) integration over the unknown multivariate dis-
tribution function of &, present in g; through G("*) in (23). To
circumvent this impasse, a stochastic subgradient approach is
devised based on the past realizations {£_,7=0,1,...,nT—
1}. Per iteration j, we randomly draw a realization & from
past realizations, and run the following iteration

BP0 = [EP ] - pD g (D), Vi (@5)
where g;(E [n]) := V(0GW(EY [n])) + Tow) (EDn],
P& AWE (€,)})) with {PF(€,), w(€,)} obtained by

solving a convex problem (23) with E;[n] = E(] )[ ].

IV. PERFORMANCE ANALYSIS

In this section, we show that the TS-OC can yield a feasible
and asymptotically (near-)optimal solution for problem (10).

A. Feasibility Guarantee

Note that the constraints in (6) are ignored in problems (17)
and (18). Yet, we will show that by selecting a pair (I', V) in
(13), we can guarantee that C™» < C;(t) < O™, Vi, t;
meaning, the online control policy produced by the TS-OC is
feasible.

To this end, we first show the following lemma.

Lemma I: If & := max{atrt),Vt} and 8 := min{ﬁgm),w},
the battery (dis)charging amounts B, (t) obtained from the
TS-OC algorithm satisfy: i) Py,;(t) = B, if C; (ntT)
—VB =T and ii) Pj,(t) = Pnlax if C;(n:T) < =Va-—

Lemma 1 reveals partial characterlstlcs of the dynamic TS-
OC policy. Specifically, the battery must be fully discharged
(Pyi(t) = Piny when the energy queue (i.e., battery SoC) is
large enough, and fully charged (P}, (t) = P™®) when the
energy queue is small enough. 7

Based on the structure in Lemma 1, we can thus establish
the following result.

Proposition 1: Under the conditions (11)—(12), the TS-OC
algorithm with any pair (', V') specified in (13) guarantees
Cmin < Ch(t) < C™Max| it

B. Asymptotic Optimality

Define C; = ﬁ i\g)_lE{Ci(t)} and B,; =

s SNTTVE{ P (1)) Since Pyi(t) € [P, PP and
Ci(t+1) = nC;(t) + Pp,i(t), it holds that

B 1 NT—-1 B
Poi= 7 X BG4 1) = Ci0) = (1= )G €0

The proofs for all lemmas and propositions are omitted due to limited
space, and can be found in the extended journal version [13].



As C;i(t) € [C™in C™ax] ¢, (26) then implies

(1—n)C™n < By < (1—n)C™>, Vi.  (27)
Consider now the following problem
NT—1
PPt .— min lim —
e v NT ; ZEZI {®; (28)

st (3),(4),(7),(8),(27), V.

Note that the constraints in (6), V¢, are replaced by (27).
The problem (28) is thus a relaxed version of (10) [10].
Specifically, any feasible solution of (10) also satisfies (28);
that is, ®°P* < Pt

As the variables are “decoupled” across time slots, this
problem has an easy-to-characterize stationary optimal control
policy as formally stated in the next lemma.

Lemma 2: If ¢,, and &, are i.i.d., there exists a stationary
control policy P*$'%! that is a pure (possibly randomized)
function of the current (¢,,,, §,), while satisfying (3), (4), (7),
(8), and providing the following guarantees per ¢:

E(Y @5 (1)}

i€L
( )Cmm < E{ stat( )} S (1 o n)cmax, Vi

where Pt (t) denotes the decided (dis)charging amount,
®stat(t) the resultant transaction cost by policy PS¢,
Lemma 2 plays a critical role in establishing the following
result.
Proposition 2: Suppose that conditions (11)—(13) hold. If

_ é)opt
(29)

¢,, and &, are i.i.d. across time, then the time-averaged cost
under the proposed TS-OC algorithm satisfies
NT-1
. 1 My + My + M
i <ot T2 L T2 LT
Jn p 3 Sm(ei) <o+ M
t=0 i€
where the constants M; = %MB, My =
WMB and M; = I(1 — n)M¢, with Mp :=
max{[(1 — n)[' + PP"]2 [(1 — n)I + PP*]?} and M¢c =

max{ (T 4+ C™®)2 (T + C’ma")2}; 7 (t) denotes the resultant
cost with the TS-OC, and ®°P! is the optimal value of
(10) under any feasible control algorithm, including the one
knowing all future realizations.

Proposition 2 asserts that the proposed TS-OC algorithm
yields a time-averaged cost with optimality gap smaller than
(My + My + Ms) /V. Intuitively, the gap M;/V is inherited
from the underlying stochastic subgradient method. The gap
M5 /V is introduced by the inaccurate queue lengths in use
(since we replace Q;(t) by Q;(nT)) (since we use Q;(nT),
instead of Q;(t), for all t =nT,...,(n+1)T — 1), while the
gap Ms3/V is incurred by the battery imperfections.

C. Main Theorem

Based on Propositions 1-2, we are ready to arrive at our
main result.

Theorem 1: Suppose that conditions (11)—(13) hold and
(¢,,; &) are i.i.d. over slots. Then the proposed TS-OC yields

TABLE I
PARAMETER VALUES. THE UNITS ARE KW OR KWH.
P, pmax Pl;'mn Pl;'nax (C'min (C'max C; (0)
g
10 50 -2 2 0 80 0
180 T T T T
= Proposed Algorithm
160 . ——ALG 1
- ALG 2

Average Cost
2 »
8 B8

@
S

100 150 200 250 300 350 400 450
Time Slot

0 50

Fig. 1. Comparison of average transaction cost.

a feasible dynamic control scheme for (10), which is asymp-
totically near-optimal in the sense that

NT—-1

opt :
&7 < lim i 2 2 e

} < (I)opt

where M := M, + Ms + Ms, as specified in Proposition 2.

Interesting comments on the minimum optimality gap with
the TS-OC are now in order.

1) When 1 = 1 (perfect battery), the optimality gap between
the TS-OC and the ofﬂine optimal scheduling reduces to
M)V = (M + M)V = max{(Pgm“) , (Pmax)2} The
asymptotic optimality can be achieved when we have very
small price difference (& — 3), or very large battery capacities
C™2x 50 that V™8 — 0o,

2) When 7 € (0, 1), the constants M;, M and Mj are in
fact functions of I'. For a given V'™2*, the minimum optimality
gap, G™P(V/™aX) can be obtained by solving the following
problem:

M MT) | MT)  Ms(T)

(r{/urn) VS + v + v ,osot(
Problem (30) can be easily proven convex [11], and can be
efficiently solved by general interior-point methods. Note that
GMin(ymaxy no Jonger monotonically decreases with respect
to V™ (or C™#X); see also [10]. The smallest possible opti-
mality gap can be numerically computed by one dimensional
search over G™(V/™aX) with respect to V™2,

13). (30)

V. NUMERICAL TESTS

The proposed TS-OC was numerically tested on a CoMP
network consisting of I = 2 BSs each with M = 2 transmit
antennas, and K = 3 mobile users. Each coarse-grained
interval consists of T' = 5 time slots. The limits of P ;,
P, ; and C;, as well as the values of C;(0) and P, are listed
in Table I. The battery storage efficiency is n = 0.95. The
ahead-of-time and real-time energy purchase prices as«ft) and
ay) are generated from folded normal distributions, with
]E{a(lt)} = 1.15 and ]E{ayt)} = 2.3. The selling prices
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Fig. 2. (left): Optimality-gap versus battery capacity C™*; (center): Average transaction cost versus battery capacity C™*; (right): TS-OC based schedule
of the battery SoC C1(n+T") and battery (dis)charging actions Py, (), where P*** = 5 kWh and P*™ = —5 kWh.

are set as A = 0.9 x o' and 5t(rt) = 0.3 x agrt)-

The harvested energy A;[n] is also generated from a folded
normal distribution. Finally, the Lyapunov control parameter
V' is chosen as V = V™max,

Two baseline schemes are introduced to benchmark the
performance of our TS-OC. ALG 1 is a one-scale scheme
without ahead-of-time energy planning; and ALG 2 performs
two-scale online control without leveraging neither RES nor
energy storage devices. Fig. 1 compares the running-average
transaction costs of the proposed algorithm and ALGs 1-2.
Within 500 time slots, the proposed approach converges to
the lowest transaction cost, while ALGs 1-2 incur about 71.0%
and 30.6% larger costs. Intuitively, the TS-OC algorithm intel-
ligently takes advantage of the ahead-of-time energy planning,
and the renewable energy and batteries, to hedge against future
potential high energy cost.

The theoretical optimality-gaps [cf. (30)] and the average
transaction cost of the TS-OC are compared under different
battery efficiencies n = 0.9,0.95,1 in Figs. 2(a) and (b),
respectively. In Fig. 2(a), the optimality-gap for n = 1
diminishes as C™* grows as Theorem 1; whereas the gaps
for n = 0.9 and 0.95 first decrease and then increase, reaching
the lowest points at C™2* = 40 and 55 kWh, respectively. As
expected, the gap for 7 = 0.9 remains the largest across the
entire spectrum of battery capacity. In Fig. 2(b), clearly the
average costs monotonically decrease as C™** grows. The BSs
with imperfect batteries (n = 0.9, 0.95) require larger budgets
for energy purchase than the ones with perfect batteries
(n = 1), thus compensating for the battery degeneration losses.

Taking a deeper look, the battery SoC C;(n:T") and the
real-time battery (dis)charging P 1 (t) are jointly depicted in
Fig. 2(c) to reveal the (dis)charging characteristics stated in
Lemma 1. It can be observed that the TS-OC dictates the full
discharge P, (t) = M0 in the incoming 5 fine-grained slots
t € [20,24] when C(n,T) > =V —T at n = 4, while the
battery is fully charged P},(t) = P when Cy(n,T) <
—Va-Tatn=1,35,6,8.

VI. CONCLUSIONS

Two-scale dynamic resource allocation was developed for
smart-grid powered CoMP transmissions. A stochastic opti-
mization problem was formulated to minimize the long-term

average energy transaction cost. Capitalizing on the Lyapunov
optimization technique and the stochastic subgradient iteration,
a two-scale online algorithm was proposed to obtain a feasible
and asymptotically near-optimal solution ‘on the fly.’
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