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Abstract—In this paper, a novel two-scale stochastic control
framework is put forth for smart-grid powered coordinated
multi-point (CoMP) systems. Taking into account renewable
energy sources (RES), dynamic pricing, two-way energy trading
facilities and imperfect energy storage devices, the energy man-
agement task is formulated as an infinite-horizon optimization
problem minimizing the time-averaged energy transaction cost,
subject to the users’ quality of service (QoS) requirements.
Leveraging the Lyapunov optimization approach and the s-
tochastic subgradient method, a two-scale online control (TS-OC)
approach is developed to make online control decisions at two
timescales. It is analytically established that the TS-OC is capable
of yielding a feasible and asymptotically near-optimal solution.

Keywords: Two-scale control, battery degeneration, CoMP
systems, smart grids, Lyapunov optimization.

I. INTRODUCTION

With ever increasing demand for energy-efficient transmis-

sions, coordinated multi-point processing (CoMP) has been

proposed as a promising paradigm for efficient inter-cell inter-

ference management in heterogeneous networks (HetNets). In

CoMP systems, base stations (BSs) are partitioned into cluster-

s, where BSs per cluster perform coordinated beamforming to

serve the users [1]. As the number of BSs in HetNets increases,

their electricity consumption constitutes a considerable portion

of the operational expenditure of cellular networks, and the

global carbon footprint [2]. In this context, energy-efficient

communication solutions are advocated for their economic and

ecological merits [1]–[3]. While BSs considered therein are

persistently powered by conventional generators, the current

grid infrastructure is on the verge of a major paradigm shift,

migrating from the aging grid to a “smart” one.
A few recent works have considered the smart-grid pow-

ered CoMP transmissions [4]–[7]. Assuming that the energy

harvested from renewable energy sources (RES) is accurately

available a priori, [4] and [5] considered the energy-efficient

resource allocation for RES-powered CoMP downlinks. Build-

ing on realistic models, our last work dealt with robust energy

management and transmit-beamforming designs for CoMP

downlinks [6]. Leveraging novel stochastic optimization tools,

we further developed an efficient approach to obtain a feasible

and asymptotically optimal online control scheme for smart-

grid powered CoMP systems [7].

Work in this paper was supported by the China Recruitment Program
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in University, the Innovation Program of Shanghai Municipal Education
Commission; and US NSF 1509005, 1508993, 1423316, 1442686, 1202135.

A salient assumption in [4]–[7] is that all involved resource

allocation tasks are performed in a single timescale. How-

ever, RES and wireless channel dynamics typically evolve

over different timescales in practice. Extending the traditional

Lyapunov optimization approach, [8] introduced a two-scale

control algorithm that makes distributed routing and server

management decisions to reduce power cost for large-scale

data centers. Based on a similar approach, [9] developed an

efficient MultiGreen algorithm for data centers with RES,

which allows cloud service providers to make online energy

purchase decisions at two timescales for minimum cost.

In the present paper, we develop a two-scale online control

(TS-OC) approach for smart-grid powered CoMP systems

considering RES, dynamic pricing, two-way energy trading

facilities and imperfect energy storage devices. Suppose that

the RES harvesting occurs at the BSs over a slow timescale

relative to the coherence time of wireless channels. The

proposed scheme performs an ahead-of-time energy planning

upon RES arrivals, while deciding real-time energy balancing

and transmit-beamforming schedules per channel coherence

time slot. Generalizing the Lyapunov optimization techniques

in [8]–[10], we propose a synergetic framework to design

and analyze such a two-scale dynamic management scheme to

minimize the long-term time-averaged energy transaction cost

of the CoMP transmissions, without knowing the distributions

of the underlying randomness. Using only historical data, a

novel stochastic subgradient approach is proposed to solve the

energy planning (sub-)problem, which enjoys a provable near-

optimality and faster convergence compared to the empirical-

pdf based approach in [8,9]. Rigorous analysis is presented to

justify the feasibility and quantify the optimality gap for the

proposed two-scale online control algorithm.

The rest of the paper is organized as follows. The system

models are described in Section II. The proposed dynamic

resource management scheme is developed in Section III.

Analysis of the algorithm performance is the subject of Section

IV. Numerical tests are provided in Section V, followed by

conclusions in Section VI.

II. SYSTEM MODELS

Consider a cluster-based CoMP downlink setup, where a

set I := {1, . . . , I} of distributed BSs (e.g., macro/micro/pico

BSs) is selected to serve a set K := {1, . . . ,K} of mobile



users, as in e.g., [6,7]. Each BS is equipped with M ≥ 1 trans-

mit antennas, whereas each user has a single receive antenna.

Powered by a smart microgrid, each BS is equipped with one

or more energy harvesting devices (solar panels and/or wind

turbines), and can perform two-way energy trading with the

main grid. In addition, the BSs have batteries so that they can

store part of the harvested energy for later use.

As the RES and wireless channel dynamics emerge typically

at different timescales in practice, we propose a two-scale

control mechanism. Specifically, time is divided in slots of

length smaller than the coherence time of the wireless chan-

nels; meanwhile, we define the (virtual) “coarse-grained” time

intervals in accordance with the slow RES harvesting scale,

with each interval consisting of T time slots.

A. Ahead-of-Time Energy Planning

At the beginning of each “coarse-grained” interval (t = nT ,

n = 1, 2, . . .), let Ai[n] denote the RES amount collected per

BS i ∈ I , and an := [A1,n, . . . , Ai[n]]
′. With an available, an

energy planner at the central unity decides the energy amounts

Ei[n], ∀i, to be used in the next T slots per BS i. Given the

requested energy Ei[n] and the harvested energy Ai[n], the

shortage energy [Ei[n]−Ai[n]]
+ is purchased from the grid for

BS i with the ahead-of-time (i.e., long-term) price α
(lt)
n ; or, the

surplus energy [Ai[n]−Ei[n]]
+ is sold to the grid with price

β
(lt)
n for profit, where [a]+ := max{a, 0} and α

(lt)
n > β

(lt)
n .

The transaction cost with BS i for such an energy planning is

therefore given by

G(lt)(Ei[n]) :=α(lt)
n [Ei[n]−Ai[n]]

+−β(lt)
n [Ai[n]−Ei[n]]

+. (1)

B. CoMP Downlink Transmissions

Per slot t, let hik,t ∈ C
M denote the vector channel from

BS i to user k, ∀i ∈ I, ∀k ∈ K; let hk,t := [h′
1k,t, . . . ,h

′
Ik,t]

′

collect the channel vectors from all BSs to user k, and

Ht := [h1,t. . . . ,hK,t]. With linear transmit beamforming per-

formed across BSs, the vector signal transmitted to user k is:

qk(t) = wk(t)sk(t), ∀k, where sk(t) denotes the information-

bearing scalar symbol with unit-energy, and wk(t) ∈ C
MI

denotes the beamforming vector across the BSs serving user

k. The received vector at slot t for user k is therefore

yk(t) = hH
k,tqk(t)+

∑
l �=k h

H
k,tql(t)+nk(t), where hH

k,tqk(t)

is the desired signal of user k,
∑

l �=k h
H
k,tql(t) is the inter-

user interference from the same cluster, and nk(t) denotes

additive noise, which is assumed a circularly symmetric com-

plex Gaussian (CSCG) random variable with zero mean and

variance σ2
k.

The signal-to-interference-plus-noise ratio (SINR) at user k
can be expressed as

SINRk({wk(t)}) =
|hH

k,twk(t)|2∑
l �=k(|hH

k,twl(t)|2) + σ2
k

. (2)

The transmit power at each BS i clearly is given by

Px,i(t) =
∑

k∈K wH
k (t)Biwk(t), where the matrix Bi :=

diag
(
0, . . . , 0︸ ︷︷ ︸
(i−1)M

, 1, . . . , 1︸ ︷︷ ︸
M

, 0, . . . , 0︸ ︷︷ ︸
(I−i)M

) ∈ R
MI×MI selects the cor-

responding rows out of {wk(t)}k∈K to form the i-th BS’s

transmit-beamforming vector of size M × 1.

To guarantee QoS per slot user k, it is required that the

central controller selects a set of {wk(t)} satisfying [cf. (2)]

SINRk({wk(t)}) ≥ γk, ∀k (3)

where γk denotes the target SINR value per user k.

C. Real-Time Energy Balancing

For the i-th BS, the total energy consumption Pg,i(t) per

slot t includes the transmission-related power Px,i(t), and a

constant power Pc > 0 due to other components such as data

processor, and circuits [5]. We further suppose that Pg,i(t) is

bounded by Pmax
g . Namely,

Pg,i(t) = Pc +
∑
k∈K

wH
k (t)Biwk(t) ≤ Pmax

g , ∀i. (4)

Per slot t, the BS i is allowed to perform real-time energy

trading with the main grid to balance its supply with demand.

Let Pi(t) denote the real-time energy amount that is purchased

from (Pi(t) > 0) or sold to (Pi(t) < 0) the grid by BS i. Let

α
(rt)
t and β

(rt)
t (α

(rt)
t > β

(rt)
t ) denote the real-time energy

purchase and selling prices, respectively. Then the real-time

energy transaction cost for BS i is

G(rt)(Pi(t)) := α
(rt)
t [Pi(t)]

+ − β
(rt)
t [−Pi(t)]

+. (5)

D. Energy Storage with Degeneration

For the battery of the i-th BS, let Ci(0) denote the initial

amount of stored energy, and Ci(t) its state of charge (SoC) at

the beginning of time slot t. The battery capacity is assumed

bounded by Cmin and Cmax. With Pb,i(t) denoting the energy

delivered to or drawn from the battery at slot t, the stored

energy then obeys the dynamic equation

Ci(t+1) = ηCi(t)+Pb,i(t), C
min ≤ Ci(t) ≤ Cmax, ∀i (6)

where η ∈ (0, 1] denotes the storage efficiency.

The amount of power (dis)charged is assumed bounded by

Pmin
b ≤ Pb,i(t) ≤ Pmax

b , ∀i. (7)

With nt := � t
T � and consideration of Pb,i(t), we have the

following demand-and-supply balance equation per slot t:

Pc+
∑
k∈K

wH
k (t)Biwk(t)+Pb,i(t) =

Ei[nt]

T
+Pi(t), ∀i. (8)

III. DYNAMIC RESOURCE MANAGEMENT SCHEME

Note that the smart-grid powered CoMP downlink to be

controlled is a stochastic system. The goal is to design an

online resource management scheme that chooses the ahead-

of-time energy-trading amounts {Ei[n], ∀i} at every t = nT ,

as well as the real-time energy-trading amounts {Pi(t), ∀i},

battery (dis)charging amounts {Pb,i(t), ∀i}, and the CoMP

beamforming vectors {wk(t), ∀k} per slot t, so as to minimize



the expected total energy transaction cost, without knowing the

distributions of the underlying random processes.
According to (1) and (5), define the energy transaction cost

for BS i per slot t as:

Φi(t) :=
1

T
G(lt)(Ei[nt]) +G(rt)(Pi(t)). (9)

Let X := {Ei[n], ∀i, n;Pi(t), Pb,i(t), Ci(t), ∀i, t;wk(t), ∀k, t}.

The problem of interest is to find

Φopt :=min
X

lim
N→∞

1

NT

NT−1∑
t=0

∑
i∈I

E{Φi(t)}

s. t. (3), (4), (6), (7), (8), ∀t.
(10)

A. Two-Scale Online Control Algorithm
Problem (10) is a stochastic optimization task. We next

generalize and integrate the Lyapunov optimization techniques

in [8,10] to develop a TS-OC algorithm. To start, we assume

the following two relatively mild conditions for the system:

Pmax
b ≥ (1− η)Cmin (11)

Cmax − Cmin ≥ 1− ηT

1− η
(Pmax

b − Pmin
b ). (12)

Condition (11) simply implies that the energy leakage of

the battery can be compensated by the charging. Condition

(12) requires that the allowable SoC range is large enough to

accommodate the largest possible charging/discharging over T
time slots of each coarse-grained interval.

Our algorithm depends on two parameters, namely a “queue

perturbation” parameter Γ, and a weight parameter V . Define

ᾱ := max{α(rt)
t , ∀t} and β := min{β(rt)

t , ∀t}. Derived from

the feasibility requirement of the proposed algorithm, any pair

(Γ, V ) that satisfies the following conditions can be used:

Γmin ≤ Γ ≤ Γmax, 0 < V ≤ V max (13)

where

Γmin := max
τ=1,...,T

{
1

ητ
(
1− ητ

1− η
Pmax
b − Cmax)− V β

}
(14)

Γmax := min
τ=1,...,T

{
1

ητ
(
1− ητ

1− η
Pmin
b − Cmin)− V ᾱ

}
(15)

V max:= min
τ=1,...,T

{
Cmax−Cmin− 1−ητ

1−η (Pmax
b −Pmin

b )

ητ (ᾱ− β)

}
. (16)

We now present the proposed TS-OC algorithm:

• Initialization: Select Γ and V , and introduce a virtual

queue Qi(t) := Ci(t) + Γ, ∀i.
• Energy planning: Per interval τ = nT , with ζn :=

{an, α
(lt)
n , β

(lt)
n } available, determine the energy amounts

{E∗
i [n], ∀i} by solving

min
∑
i∈I

{
V
[
G(lt)(Ei[n]) +

τ+T−1∑
t=τ

E{G(rt)(Pi(t))}
]

+

τ+T−1∑
t=τ

Qi(τ)E{Pb,i(t)}
}

s. t. (3), (4), (7), (8), ∀t = τ, . . . , τ + T − 1 (17)

where expectations are taken over ξt :=

{α(rt)
t , β

(rt)
t ,Ht}. Then the BSs trade energy with

the main grid to supply an average amount E∗
i [n]/T per

slot t = τ, . . . , τ + T − 1.

• Energy balancing and beamforming schedule:

At every slot t ∈ [nT, (n + 1)T − 1], with

Ei[n] = E∗
i [n] determined and ξt available, decide

{P ∗
i (t), P

∗
b,i(t), ∀i;w∗

k(t), ∀k} by solving

min
∑
i∈I

{
V G(rt)(Pi(t)) +Qi(nT )Pb,i(t)

}
s. t. (3), (4), (7), (8).

(18)

The BSs perform real-time energy trading with the main

grid based on {P ∗
i (t), ∀i}, and coordinated beamforming

based on {w∗
k(t), ∀k}.

• Queue updates: Per slot t, charge (or discharge) the

battery based on {P ∗
b,i(t)}, so that the stored energy

follows Ci(t + 1) = ηCi(t) + P ∗
b,i(t), ∀i; and update

the virtual queues Qi(t), ∀i, accordingly.

Next, we develop efficient solvers of (17) and (18) to obtain

the TS-OC algorithm.

B. Real-Time Energy Balancing and Beamforming

It is easy to argue that the objective (18) is con-

vex. Indeed, with α
(rt)
t > β

(rt)
t , the transaction cost

with Pi(t) can be alternatively written as G(rt)(Pi(t)) =

max{α(rt)
t Pi(t), β

(rt)
t Pi(t)}, which is clearly convex [11];

and so is the objective in (18).

By proper rearrangement, the SINR constraints in (3) can

be rewritten to convex second-order cone (SOC) constraints

[12]; that is,√∑
l �=k

|hH
k,twl(t)|2 + σ2

k ≤ 1√
γk

Re{hH
k,twk(t)},

Im{hH
k,twk(t)} = 0, ∀k.

(19)

We can then rewrite the problem (18) as

min
∑
i∈I

{
V G(rt)(Pc +

∑
k∈K

wH
k (t)Biwk(t) + Pb,i(t)− E∗

i [nt]

T
)

+Qi(ntT )Pb,i(t)}
}

s. t. (4), (7), (19). (20)

As G(rt)(·) is convex and increasing, it is easy to see that

G(rt)(Pc +
∑

k w
H
k (t)Biwk(t) + Pb,i(t) − E∗

i [nt]
T ) is jointly

convex in (Pb,i(t), {wk(t)}) [11, Sec. 3.2.4]. It then readily

follows that (20) is a convex optimization problem, which can

be solved by general interior-point solvers.

C. Ahead-of-Time Energy Planning

To solve (17), here we propose a stochastic gradient ap-

proach. Suppose that ξt is i.i.d. across time slots. For sta-

tionary ξt, we can remove the index t from all optimiza-



tion variables, and rewrite (17) as (with short-hand notation

Qi[n] := Qi(nT ))

min
∑
i∈I

{
V G(lt)(Ei[n])+TE

[
V G(rt)(Pi(ξt))+Qi[n]Pb,i(ξt)

]}

s. t.

√∑
l �=k

|hH
k wl(ξt)|2 + σ2

k ≤ 1√
γk

Re{hH
k wk(ξt)},

Im{hH
k wk(ξt)} = 0, ∀k, ∀ξt (21a)

Pmin
b ≤ Pb,i(ξt) ≤ Pmax

b , ∀i, ∀ξt (21b)

Pc +
∑
k∈K

wH
k (ξt)Biwk(ξt) ≤ Pmax

g , ∀i, ∀ξt (21c)

Pc +
∑
k∈K

wH
k (ξt)Biwk(ξt) + Pb,i(ξt)

=
Ei[n]

T
+ Pi(ξt), ∀i, ∀ξt. (21d)

Since the energy planning problem (17) only determines the

optimal ahead-of-time energy purchase E∗
i [n], we can then

eliminate the variable Pi and write (21) as an unconstrained

optimization problem with respect to the variable E∗
i [n],

namely

min
{E∗

i [n]}

∑
i∈I

[V G(lt)(Ei[n]) + TḠ(rt)({Ei[n]})] (22)

where we define

Ḡ(rt)({Ei[n]}) :=min
∑
i∈I

E

{
VΨ(rt)(Ei[n], Pb,i(ξt), {wk(ξt)})

+Qi[n]Pb,i(ξt)
}

s. t. (21a), (21b), (21c) (23)

with the compact notation

Ψ(rt)(Ei, Pb,i, {wk}) := G(rt)(Pc+
∑
k∈K

wH
k Biwk+Pb,i−Ei

T
).

It can been observed that (22) is generally a nonsmooth

and unconstrained convex problem with respect to {Ei[n]},

which can be solved using the stochastic subgradient iteration

described next.

The subgradient of G(lt)(Ei[n]) can be first written as

∂G(lt)(Ei[n]) =

⎧⎪⎨
⎪⎩
α
(lt)
n , if Ei[n] > Ai[n]

β
(lt)
n , if Ei[n] < Ai[n]

any x ∈ [β
(lt)
n , α

(lt)
n ], if Ei[n] = Ai[n].

With {PE
b,i(ξt),w

E
k (ξt)} denoting the optimal solution

for the problem in (23), the partial subgradient of

Ḡ(rt)({Ei[n]}) with respect to Ei[n] is ∂iḠ
(rt)({Ei[n]}) =

V E{∂Ψ(rt)(Ei[n], P
E
b,i(ξt), {wE

k (ξt)})}, where

∂Ψ(rt)(Ei[n], P
E
b,i(ξt), {wE

k (ξt)}) =

⎧⎪⎪⎨
⎪⎪⎩

−β
(rt)
t

T , if
Ei[n]
T > Δ

−α
(rt)
t

T , if
Ei[n]
T < Δ

x ∈ [
−α

(rt)
t

T ,
−β

(rt)
t

T ], else

with Δ := Pc +
∑

k w
E
k

H
(ξt)Biw

E
k (ξt) + PE

b,i(ξt).

Defining ḡi(Ei) := V ∂G(lt)(Ei) + T∂iḠ
(rt)({Ei}), a

standard subgradient descent iteration can be employed to find

the optimal E∗
i [n] for (22), as (j denotes iteration index)

E
(j+1)
i [n] = [E

(j)
i [n]− μ(j)ḡi(E

(j)
i [n])]+, ∀i (24)

where {μ(j)} is the sequence of stepsizes.

Implementing (24) essentially requires performing (high-

dimensional) integration over the unknown multivariate dis-

tribution function of ξt present in ḡi through Ḡ(rt) in (23). To

circumvent this impasse, a stochastic subgradient approach is

devised based on the past realizations {ξτ , τ = 0, 1, . . . , nT −
1}. Per iteration j, we randomly draw a realization ξτ from

past realizations, and run the following iteration

E
(j+1)
i [n] = [E

(j)
i [n]− μ(j)gi(E

(j)
i [n])]+, ∀i (25)

where gi(E
(j)
i [n]) := V (∂G(lt)(E

(j)
i [n]) + T∂Ψ(rt)(E

(j)
i [n],

PE
b,i(ξτ ), {wE

k (ξτ )})) with {PE
b,i(ξτ ),w

E
k (ξτ )} obtained by

solving a convex problem (23) with Ei[n] = E
(j)
i [n].

IV. PERFORMANCE ANALYSIS

In this section, we show that the TS-OC can yield a feasible

and asymptotically (near-)optimal solution for problem (10).

A. Feasibility Guarantee

Note that the constraints in (6) are ignored in problems (17)

and (18). Yet, we will show that by selecting a pair (Γ, V ) in

(13), we can guarantee that Cmin ≤ Ci(t) ≤ Cmax, ∀i, t;
meaning, the online control policy produced by the TS-OC is

feasible.

To this end, we first show the following lemma.

Lemma 1: If ᾱ := max{α(rt)
t , ∀t} and β := min{β(rt)

t , ∀t},

the battery (dis)charging amounts P ∗
b,i(t) obtained from the

TS-OC algorithm satisfy: i) P ∗
b,i(t) = Pmin

b , if Ci(ntT ) >
−V β − Γ; and ii) P ∗

b,i(t) = Pmax
b , if Ci(ntT ) < −V ᾱ− Γ.

Lemma 1 reveals partial characteristics of the dynamic TS-

OC policy. Specifically, the battery must be fully discharged

(P ∗
b,i(t) = Pmin

b ) when the energy queue (i.e., battery SoC) is

large enough, and fully charged (P ∗
b,i(t) = Pmax

b ) when the

energy queue is small enough.

Based on the structure in Lemma 1, we can thus establish

the following result.

Proposition 1: Under the conditions (11)–(12), the TS-OC

algorithm with any pair (Γ, V ) specified in (13) guarantees

Cmin ≤ Ci(t) ≤ Cmax, ∀i, t.
B. Asymptotic Optimality

Define C̄i := 1
NT

∑NT−1
t=0 E{Ci(t)} and P̄b,i :=

1
NT

∑NT−1
t=0 E{Pb,i(t)}. Since Pb,i(t) ∈ [Pmin

b , Pmax
b ] and

Ci(t+ 1) = ηCi(t) + Pb,i(t), it holds that

P̄b,i =
1

NT

NT−1∑
t=0

E{Ci(t+ 1)− ηCi(t)} = (1− η)C̄i. (26)

The proofs for all lemmas and propositions are omitted due to limited
space, and can be found in the extended journal version [13].



As Ci(t) ∈ [Cmin, Cmax], ∀t, (26) then implies

(1− η)Cmin ≤ P̄b,i ≤ (1− η)Cmax, ∀i. (27)

Consider now the following problem

Φ̃opt :=min
X

lim
N→∞

1

NT

NT−1∑
t=0

∑
i∈I

E{Φi(t)}

s. t. (3), (4), (7), (8), (27), ∀t.
(28)

Note that the constraints in (6), ∀t, are replaced by (27).

The problem (28) is thus a relaxed version of (10) [10].

Specifically, any feasible solution of (10) also satisfies (28);

that is, Φ̃opt ≤ Φopt.

As the variables are “decoupled” across time slots, this

problem has an easy-to-characterize stationary optimal control

policy as formally stated in the next lemma.

Lemma 2: If ζn and ξt are i.i.d., there exists a stationary

control policy Pstat that is a pure (possibly randomized)

function of the current (ζnt
, ξt), while satisfying (3), (4), (7),

(8), and providing the following guarantees per t:

E{
∑
i∈I

Φstat
i (t)} = Φ̃opt

(1− η)Cmin ≤ E{P stat
b,i (t)} ≤ (1− η)Cmax, ∀i

(29)

where P stat
b,i (t) denotes the decided (dis)charging amount,

Φstat
i (t) the resultant transaction cost by policy Pstat.

Lemma 2 plays a critical role in establishing the following

result.

Proposition 2: Suppose that conditions (11)–(13) hold. If

ζn and ξt are i.i.d. across time, then the time-averaged cost

under the proposed TS-OC algorithm satisfies

lim
N→∞

1

NT

NT−1∑
t=0

∑
i∈I

E{Φ∗
i (t)} ≤ Φopt +

M1 +M2 +M3

V

where the constants M1 := IT (1−η)
2η(1−ηT )

MB , M2 :=
I[T (1−η)−(1−ηT )]

(1−η)(1−ηT )
MB , and M3 := I(1− η)MC , with MB :=

max{[(1 − η)Γ + Pmin
b ]2, [(1 − η)Γ + Pmax

b ]2} and MC :=
max{(Γ+Cmin)2, (Γ+Cmax)2}; Φ∗

i (t) denotes the resultant

cost with the TS-OC, and Φopt is the optimal value of

(10) under any feasible control algorithm, including the one

knowing all future realizations.

Proposition 2 asserts that the proposed TS-OC algorithm

yields a time-averaged cost with optimality gap smaller than

(M1 +M2 +M3) /V . Intuitively, the gap M1/V is inherited

from the underlying stochastic subgradient method. The gap

M2/V is introduced by the inaccurate queue lengths in use

(since we replace Qi(t) by Qi(nT )) (since we use Qi(nT ),
instead of Qi(t), for all t = nT, . . . , (n+1)T − 1), while the

gap M3/V is incurred by the battery imperfections.

C. Main Theorem

Based on Propositions 1–2, we are ready to arrive at our

main result.

Theorem 1: Suppose that conditions (11)–(13) hold and

(ζn, ξt) are i.i.d. over slots. Then the proposed TS-OC yields

TABLE I
PARAMETER VALUES. THE UNITS ARE KW OR KWH.

Pc Pmax
g Pmin

b Pmax
b Cmin Cmax Ci(0)

10 50 -2 2 0 80 0

0 50 100 150 200 250 300 350 400 450
20

40

60

80

100

120

140

160

180

Time Slot

A
ve

ra
ge

 C
os

t

Proposed Algorithm
ALG 1
ALG 2

Fig. 1. Comparison of average transaction cost.

a feasible dynamic control scheme for (10), which is asymp-

totically near-optimal in the sense that

Φopt ≤ lim
N→∞

1

NT

NT−1∑
t=0

∑
i∈I

E{Φ∗
i (t)} ≤ Φopt +

M

V

where M := M1 +M2 +M3, as specified in Proposition 2.

Interesting comments on the minimum optimality gap with

the TS-OC are now in order.

1) When η = 1 (perfect battery), the optimality gap between

the TS-OC and the offline optimal scheduling reduces to

M/V = (M1 +M2)/V = IT
2V max{(Pmin

b )2, (Pmax
b )2}. The

asymptotic optimality can be achieved when we have very

small price difference (ᾱ−β), or very large battery capacities

Cmax, so that V max → ∞.

2) When η ∈ (0, 1), the constants M1, M2 and M3 are in

fact functions of Γ. For a given V max, the minimum optimality

gap, Gmin(V max), can be obtained by solving the following

problem:

min
(V,Γ)

M

V
=

M1(Γ)

V
+

M2(Γ)

V
+

M3(Γ)

V
, s. t. (13). (30)

Problem (30) can be easily proven convex [11], and can be

efficiently solved by general interior-point methods. Note that

Gmin(V max) no longer monotonically decreases with respect

to V max (or Cmax); see also [10]. The smallest possible opti-

mality gap can be numerically computed by one dimensional

search over Gmin(V max) with respect to V max.

V. NUMERICAL TESTS

The proposed TS-OC was numerically tested on a CoMP

network consisting of I = 2 BSs each with M = 2 transmit

antennas, and K = 3 mobile users. Each coarse-grained

interval consists of T = 5 time slots. The limits of Pg,i,

Pb,i and Ci, as well as the values of Ci(0) and Pc are listed

in Table I. The battery storage efficiency is η = 0.95. The

ahead-of-time and real-time energy purchase prices α
(lt)
n and

α
(rt)
t are generated from folded normal distributions, with

E{α(lt)
n } = 1.15 and E{α(rt)

t } = 2.3. The selling prices
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Fig. 2. (left): Optimality-gap versus battery capacity Cmax; (center): Average transaction cost versus battery capacity Cmax; (right): TS-OC based schedule
of the battery SoC C1(ntT ) and battery (dis)charging actions P ∗

b,1(t), where Pmax
b = 5 kWh and Pmin

b = −5 kWh.

are set as β
(lt)
n = 0.9 × α

(lt)
n and β

(rt)
t = 0.3 × α

(rt)
t .

The harvested energy Ai[n] is also generated from a folded

normal distribution. Finally, the Lyapunov control parameter

V is chosen as V = V max.

Two baseline schemes are introduced to benchmark the

performance of our TS-OC. ALG 1 is a one-scale scheme

without ahead-of-time energy planning; and ALG 2 performs

two-scale online control without leveraging neither RES nor

energy storage devices. Fig. 1 compares the running-average

transaction costs of the proposed algorithm and ALGs 1-2.

Within 500 time slots, the proposed approach converges to

the lowest transaction cost, while ALGs 1-2 incur about 71.0%

and 30.6% larger costs. Intuitively, the TS-OC algorithm intel-

ligently takes advantage of the ahead-of-time energy planning,

and the renewable energy and batteries, to hedge against future

potential high energy cost.

The theoretical optimality-gaps [cf. (30)] and the average

transaction cost of the TS-OC are compared under different

battery efficiencies η = 0.9, 0.95, 1 in Figs. 2(a) and (b),

respectively. In Fig. 2(a), the optimality-gap for η = 1
diminishes as Cmax grows as Theorem 1; whereas the gaps

for η = 0.9 and 0.95 first decrease and then increase, reaching

the lowest points at Cmax = 40 and 55 kWh, respectively. As

expected, the gap for η = 0.9 remains the largest across the

entire spectrum of battery capacity. In Fig. 2(b), clearly the

average costs monotonically decrease as Cmax grows. The BSs

with imperfect batteries (η = 0.9, 0.95) require larger budgets

for energy purchase than the ones with perfect batteries

(η = 1), thus compensating for the battery degeneration losses.

Taking a deeper look, the battery SoC C1(ntT ) and the

real-time battery (dis)charging P ∗
b,1(t) are jointly depicted in

Fig. 2(c) to reveal the (dis)charging characteristics stated in

Lemma 1. It can be observed that the TS-OC dictates the full

discharge P ∗
b,1(t) = Pmin

b in the incoming 5 fine-grained slots

t ∈ [20, 24] when C1(ntT ) > −V β − Γ at n = 4, while the

battery is fully charged P ∗
b,1(t) = Pmax

b when C1(ntT ) <
−V ᾱ− Γ at n = 1, 3, 5, 6, 8.

VI. CONCLUSIONS

Two-scale dynamic resource allocation was developed for

smart-grid powered CoMP transmissions. A stochastic opti-

mization problem was formulated to minimize the long-term

average energy transaction cost. Capitalizing on the Lyapunov

optimization technique and the stochastic subgradient iteration,

a two-scale online algorithm was proposed to obtain a feasible

and asymptotically near-optimal solution ‘on the fly.’
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