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Abstract—Increasing threats of global warming and climate
changes call for an energy-efficient and suostainable design of
future wireless communication systems. To this end, a novel
two-scale stochastic control framework is put forth for smart-
grid powered coordinated multi-point (CoMP) systems. Taking
into account remewable energy sources, dynamic pricing, two-
way energy irading facilities, and imperfect energy storage
devices, the energy management task is formulated as an infinite-
horizon optimization problem minimizing the time-averaged
energy transaction cost, subject to the users’ quality of service
requirements. Leveraging the Lyapunov optimization approach
as well as the stochastic subgradient method, a two-scale online
control (TS-0OC) approach is developed for the resultant smart-
grid powered CoMP systems. Using only historical data, the
proposed TS-0C makes online control decisions at two timescales,
and features a provably feasible and asymptotically near-optimal
solution. Numerical tests further corrohorate the theoretical
analysis, and demonstrate the merits of the proposed approach.

Index Terms—Two-scale control, ahead-of-time market, real-
time market, battery degeneration, CoMP systems, smart grids,
Lyapunov optimization.
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I. INTRODUCTION

NTERFERENCE is a major obstacle in wireless com-

munication systems due to their broadcast nature, and
becomes more severe in nexi-generation spectrum- and energy-
constrained cellular networks with smaller cells and more
flexible frequency reuse [1]. With ever increasing demand
for energy-efficient ransmissions, coordinated multi-point pro-
cessing (CoMP) has been proposed as a promising paradigm
for efficient inter-cell interference manapement in heteroge-
neous networks (HetNets) [2]. In CoMP systems, base sta-
tions (BSs) are partitioned into clusters, where BSs per cluster
perform coordinated beamforming to serve the users [3]-{3].
As the number of BSs in HetNets increases, their electric-
ity consumption constitutes a major part of their operational
expenditure, and contributes a considerable portion to the
global carbon footprint [6]. Fortunately, emerging charac-
teristics of smart grids offer ample opportunities to achieve
both energy-efficient and environmentally-friendly communi-
cation solutions. Such characteristics include high penetra-
tion of renewable energy sources (RES), two-way energy
irading, and dynamic pricing based demand-side manage-
ment (DSM) [9]-{11]. In this context, energy-efficient “green”
communication solutions have been proposed for their eco-
nomic and ecological merits [3]-{6]. Driven by the need of
sustainable “green communications,” manufacturers and net-
work operators such as Ericsson, Huawei, Vodafone and China
Mobile have started developing “green” BSs that can be jointly
supplied by the persistent power sources from the main electric
grid as well as from harvested renewable enerpy sources (e.g.,
solar and wind) [7], [8]. It is expected that renewable pow-
ered BSs will be widely deployed to support future-peneration
cellular systems.

A few recenl works have considered the smari-prid pow-
ered CoMP transmissions [12]-{15]. Assuming thal the
energy harvested from RES is accurately available a priori
through, e.g., forecasting, [12] and [13] considered the energy-
efficient resource allocation for RES-powered CoMP down-
links. Building on realistic models, our recent work dealt with
robust energy management and transmit-beamforming designs
that minimize the worsi-case energy transaction cost for the
CoMP downlink with RES and DSM [14]. Leveraging novel
stochastic optimization tools [16]-{18], we further developed
an efficient approach to obtain a feasible and asymptotically
optimal online control scheme for smart-grid powered CoMP
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systems, without knowing the distributions of involved random
variables [15].

A salient assumption in [12]-{15] is that all involved
resource allocation tasks are performed in a single lime scale.
However, RES and wireless channel dynamics typically evolve
over different time scales in practice.Development of iwo-scale
control schemes is then well motivated for CoMP systems
with RES. In related contexts, a few stochastic optimization
based two-scale control schemes were recently proposed and
analyzed in [19]-{22]. Extending the traditional Lyapunov
optimization approach [16}-H19] introduced a two-scale con-
trol algorithm that makes distributed routing and server man-
agemenl decisions to reduce power cosl for large-scale data
centers. Based on a similar approach, [20] developed a so-
called MultiGreen algorithm for data centers, which allows
cloud service providers to make enerpy lransactions al two
lime scales for minimum operational cost. As far as wireless
communications are concerned, [21] performed joint precoder
assignmenl, user association, and channel resource scheduling
for HetNets with non-ideal backhauol; while [22] introduced
a two-limescale approach for network selection and subchan-
nel allocation for integrated cellular and Wi-Fi networks with
an emphasis on using predictive future information. Note that
however, neither [21] nor [22] considers the diversity of energy
prices in fast/slow-limescale energy markets, and the energy
leakage effects in the enerpy management lask.

In the presenl paper, we develop a two-scale online con-
trol {(TS-OC) approach for smart-grid powered CoMP systems
considering RES, dynamic pricing, two-way energy trading
facilities and imperfect energy storage devices. Suppose that
the RES harvesting occurs at the BSs over a slow timescale rel-
ative o the coherence time of wireless channels. The proposed
scheme performs an ahead-of-time (e.g., 15-minute ahead, or,
hour-ahead) energy planning upon RES arrivals, while decid-
ing real-lime energy balancing and transmit-beamforming
schedules per channel coherence time slot. Specifically, the
TS-0C determines the amount of energy to trade {purchase
or sell) with the ahead-of-time wholesale market based on
RES peneration, as the basic energy supply for all the time
slots within a RES harvesting interval. On the other hand, it
decides the amount of energy to trade with the real-lime mar-
kel, energy charging to {or discharging from) the batteries. as
well as the coordinated transmit-beamformers (o guarantee the
users’ quality of service ((JoS) per time slot. Generalizing the
Lyapunov optimization techniques in [19]-{23], we propose a
synergetic framework Lo design and analyze such a two-scale
dynamic management scheme to minimize the long-term time-
averaged enerpy transaction cost of the CoMP transmissions,
without knowing the distributions of the random channel, RES,
and energy price processes. The main contributions of our
work are summarized as follows.

« Leveraging the ahead-of-time and real-time electric-
ity markets, and building on our peneralized sysiem
models in [14] and [15], a novel two-scale optimiza-
tion framework is developed to facilitate the dynamic
resource management for smart-grid powered CoMP
systems with RES and channel dynamics at different time
scales.

« While [15], [19]. and [20] do not account for battery
degeneration (energy leakage), we integrate the modified
Lyapunov optimization technique into the two-scale

stochastic optimization approach to leverage the diversity
of energy prices along with the energy leakage effects on
the dynamic energy management lask.

« Using only past channel and energy-price realizations,
a novel stochastic subgradient approach is developed 1o
solve the ahead-of-time energy planning (sub-jproblem,
which is suitable for a general family of continu-
ous distributions, and avoids constructing the histogram
estimate which is computationally cumbersome, espe-
cially for high-dimensional vector of random optimization
variables.

« Rigorous analysis is presented to justify the feasibility
and quantify the optimality gap for the proposed iwo-
scale online control algorithm.

The rest of the paper is organized as follows. The system
models are described in Section 1. The proposed dynamic
resource management scheme is developed in Section IIL
Performance analysis is the subject of Section I'V. Numerical
lests are provided in Section V, followed by concluding
remarks in Section VL

Notation: Boldface lower (upper) case lelters represent
vectors (matrices); C¥ and RV*M stand for spaces of
N x | complex veclors and N x M real matrices, respec-
tively; () denotes transpose, and (-)¥ conjugate transpose;
diag{ay, ..., ay) denoles a diagonal matrix with diagonal ele-
ments 4y, ..., dy; |-| the magnitude of a complex scalar; and
E denotes expectation.

I. S¥sTEM MODELS

Consider a cluster-based CoMP downlink setup, where a
set T :={1,...,[]) of distributed BSs (e.g., macro/micro/pico
BSs) is selected to serve a set K2 == {1, ..., K} of mobile users,
as in [14] and [15]. Each BS is equipped with M = 1 irans-
mit antennas, whereas each user has a single receive antenna.
Suppose that through the smart-grid infrastructure conven-
tional power generation is available, but each BS can also
harvest RES (through, e.g., solar panels and/or wind turbines),
and il has an enerpy storage device (i.e., battery) to save the
harvested energy. Relying on a two-way energy trading facility,
the BS can also buy energy from or sell energy to the main prid
al dynamically changing market prices. For the CoMP cluster,
there is a low-latency backhaul network connecting the set of
BSs to a central controller [4], which coordinates energy trad-
ing as well as cooperative communication. This central entity
can collect both communication data (transmit messages, chan-
nel state information) from each BS through the cellular
backhaul links, as well as the energy information (energy
purchasefselling prices, energy queue sizes) via smarl meters
installed at BSs, and the grid-deployed communication/control
links connecting them.!

As the RES and wireless channel dynamics emerge typically
al different time scales in practice, we propose a two-scale
control mechanism. As shown in Fig. 1, time is divided
in slots of length smaller than the coherence time of the

! Perfect channel state information will be assumed hereafier, but the pris-
posed formulation can readily account for the channel estimation emmors to
robustify the beamforming design; (see [14], [153]). In addition, gencraliza-
tions are possible to incorporate imperfect energy quese information based on
the Lyapunov optimization framework in [20]. Although their detsiled study
falls out of the present paper’s scope, such imperfections are nol expected to
substantially affect the effectivencss of the proposed scheme.
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Fig. I. A smart gnd powered CoMP system. Two BSs with local renewable
encrgy harvesting and storage devices implement two-way energy trading with
the main grid.

wireless channels. For convenience, the slot duration is nor-
malized (o unity; thus, the terms “energy™ and “power” can be
used interchangeably. On the other hand, we define the (vir-
tual) “coarse-grained” time intervals in accordance with the
slow RES harvesting scale, with each coarse-grained interval
consisting of T time slots.

A. Ahead-of-Time Energy Planning

Al the beginning of each “coarse-grained”™ interval, namely
attime t=nT, n=1,2,..., lel A;, denote the RES amount
collected per BS i e T, and A, = [A1q, ... . Aral. With A,
available, an energy planner al the central unity decides the
energy amounts Ej[n], ¥i, to be used in the next T slots per
BS i. With a two-way energy trading facility, the BSs then
either purchase energy from the main grid according to their
shortage, or sell their surplus energy to the grid at a fair price
in order to reduce operational costs. Specifically, following the
decision, BS i contributes its RES amount A; ,, to the main grid
and requests the grid to supply an average energy amount of
EilnlyT perslot t=nT,... . (n+ 1T — 1.

RES is assumed harvested for free after deployment. Given
the requested energy E;[n] and the harvested energy A;,, the
shortage energy that is purchased {rom the prid for BS i is
clearly [E;[n] — 4; .17 or, the surplus energy that is sold to
the grid is [A; ,—E;[n]]", where [a]" := max{a, 0}. Depending
on the difference (E;[n]—A; ). the BS i either buys electricity
from the grid with the ahead-of-time (i.e., long-term) price e,
or sells electricity to the grid with price A for profit (the latter
leads to a negative cost). Notwithstanding, we shall always sel
al' = B to avoid meaningless buy-and-sell activities of the
BSs for profit. The transaction cost with BS i for such an
energy planning is therefore given by

G“(Ef[ﬂ]} — C!'LI[Ej{ﬂ] zog Ai,ﬂ:]-'- =t ‘H::[A‘.'ﬂ — Ej[ﬂ]]+- {]:'

For conciseness, we concatenate into a single random vector
all the random variables evolving at this slow timescale; i.e.,
£ = (o, A1, A, V).

IEEE TRANSACTIONS ON SMART GRID, VOL. 9, NO. 3, MAY 2018

B. CoMP Dewnlink Transmissions

Per slot ¢, let h , € CM denote the vector channel from BS
itouserk, Vi e I, Yk € K: let by = [h}, ..... 0} ]
collect the channel vectors from all BSs to user k. and
H; :==[hy,...., hg]. With linear transmit beamforming per-
formed across BSs, the vector signal transmitted to user k is:
qi(f) = wi(hsg(1), Yk, where 5;(f) denotes the information-
bearing scalar symbol with unit-energy, and wi(t) € CY
denotes the beamforming vector across the BSs serving user .
The received vector at slot ¢ for user & is therefore

Yelt) = b e + 3 " b qi() + me(t)
I#k

where hif qi(t) is the desired signal of user k, ¥k hf qi()
is the inter-user interference from the same cluster, and ng(f)
denotes additive noise, which may also include the down-
link interference from other BSs outside user £'s cluster. It is
assumed that ag (1) is a circularly symmetric complex Gaussian
(CSCG) random variable with zero mean and variance r:rf.
The signal-to-interference-plus-noise ratio (SINR) at user &

can be expressed as

)

2

1wt
SINRi({wi(0)}) = T . (3)
EI;HUEIE:W!{” ) =+ ﬂf
The transmit power at each BS i clearly is given by
4}

Peit) = 3 wi ()Biwk(t)
kekl
where the matrix

B,-:diag(ﬂ,...,ﬂ,i,...,l,u,....
e ———— ——

ﬂ) = RMIxHI
(i— 116 M

—iiM

selects the corresponding rows out of {Wi(f}}-p to form the
i-th BS's transmit-beamforming vector of size M x 1.

To guarantee QoS per slot user k, it is required that the
central controller selects a sel of w(f) satisfying [see (3)]

SINRi({wi (D) = . VK (3)

where y; denotes the target SINR value per user k.

C. Real-Time Energy Balancing

For the i-th BS, the total energy consumption P, ;{f) per slot
i includes the transmission-related power Py ;{f), and the rest
that is due to other components such as air conditioning, data
processor, and circuits, which can be generally modeled as a
constant power, P, > 0 [13]. We further suppose that P, ;(1)
is bounded by Pg™*. Namely,

Peilt) = Po+ ) Wil (DBjwi(t) < PE™,  Vi.
k=i

Per slot 1, the energy supply available from the ahead-of-
time planning may nol exactly meet the actnal demand at
BS i. Hence, the BS i is also allowed to perform real-time
energy trading with the main prid to balance its supply with
demand. Let P;{1) denote the real-lime energy amount that is

(6)
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Fig. 2. Houdy prce trend for day-shead and real-time electricity markets
duning Oct. 01-07, 2015 [24].

purchased from (Pi(f) = 0) or sold to (Pi(f) < 0) the grid by
BS i Let o' and B (o' > B') denote the real-time energy
purchase and selling prices, respectively. Then the real-time
energy transaction cost for BS i is

G (Pi(D) = o] [PAO]T — BM—Pi(]T. (7

Fig. 2 depicts the day-ahead and real-time energy prices in the
Pennsylvania-Jersey-Maryland (PIM) wholesale market [24].
In practice, Lhe average purchase price in the real-lime market
tends to be no lower than that in the day-ahead market; that is,
Efef'} = Efe!}; similarly, we have E{g"} < E{BY). Again,
we use a random vector £ = (e, AT, H,, V1) to collect all
random variables evolving at the fast timescale.

D. Energy Storage With Degeneration

As enerpy consumption will become a major concern of
the future larpe-scale cellular networks, uninterrupled power
supply type storage units can be installed at the BSs o pre-
venl power outages, and provide opportunities to optimize the
BSs' electricity bills. Different from the ideal battery models
in [12]{15], and [20], we consider here a practical battery
with degeneration (i.e., energy leakage over time even in the
absence of discharging) as in [23].

For the battery of the i-th BS, let Ci(0) denote the inilial
amount of stored energy, and Ci(f) its state of charge (So0C)
at the beginning of time slot {. The battery is assumed to have
a finite capacity O™, Furthermore, for reliability purposes,
it might be required to ensure thal a minimum energy level
™" is maintained at all times. Let Py ;(f) denote the energy
delivered Lo or drawn from the battery at slot ¢, which amounts
to either charging (Pp () = ) or discharging (Pp;(f) = 0).
The stored energy then obeys the dynamic equation

Cit + 1) = nCilt) + Pp i), C™ < Ci(t) < €™, Vi  (B)

where 5 < (0, 1] denotes the storage efficiency (e.g., n =0.9
means that 10% of the stored energy will be “leaked” over a
slot, even in the absence of discharging).

The amount of power (disjcharped is also assumed
bounded by

PP < Pypi(t) < PP™, Vi (9

where PM0 = () and P™* = 0 are introduced by physical
constraints.

With n; = | ] and consideration of P} ;(t), we have the
following demand-and-supply balance equation per slot &
Eiln;]
Pe+ ) Wil (OBiwi(l) + Py (1) = = d
kel

+ Py, Vi. (1)

I11. DynamiCc RESOURCE MANAGEMENT SCHEME

MNote that the harvested RES amounts (A, ¥a), the ahead-
of-time prices {a, B, Vn), the real-time prices o7, A1, Vt},
and the wireless channel matrices {H,, ¥f} are all random.
The smart-grid powered CoMP downlink to be controlled
is a stochastic system. The goal is to design an online
resource management scheme that chooses the ahead-of-time
energy-trading amounts |[E;[n], ¥i} at every t = nT, as well
as the real-time enerpy-trading amounts [P;(f), Vi}, battery
(dis)charging amounts (P (1), ¥i}, and the CoMP beamform-
ing vectors {wg(t), ¥k} per slot f, s0 as to minimize the
expected total energy transaction cost, without knowing the
distributions of the aforementioned random processes.

According to (1) and (7)., define the energy (ransaction cost
for BS i per slot f as:

(11)

Let X = {Eiln]. Vi, n; Pi(t), Pp (1), Gil1), Vi, £; we (D), VK, 1).
The problem of interest is 1o find

1
di(t) = ?G"{Ef[m]} + G (Pit)).

ANT—1
. 1
&P =min lim — " ) E(&i(1)
X N-soo NT ror Mo

subject to (5), (6). (8), (9), (10), ¥t  (12)

where the expectations of &;(f) are taken over all sources
of randomness. Nole that here the constraints (5), (6), (8),
(9), and (10) are implicitly required to hold for every
realization of the underlying random states Ef' and I,-'I',ﬁ.

A. Two-Scale Online Control Alporithm

Equation (12) is a stochastic optimization task. We next
generalize and integrate the Lyapunov optimization techniques
in [19]{23] to develop a TS-OC algorithm, which will be
proven feasible, and asymptotically near-optimal for (12). To
start, assume the following two relatively mild conditions for
the system parameters:

PP = (1 — g™ (13)
Cmas _ omin '_""T(P"“I—P““’") (14)
= l_n ] b -

Condition ( 13) simply implies that the energy leakape of the
battery can be compensated by the charging. Condition (14}
requires that the allowable SoC range is large enough Lo
accommodate the largest possible charging/discharging over
T time slots of each coarse-prained interval. This then makes
the system “controllable™ by our two-scale mechanism.

Our algorithm depends on two parameters, namely a “gueue
perturbation™ parameter [', and a weight parameter V. Define
& = max{a®, Vf} and B := min{B,", Vr}. Derived from the
feasibility requirement of the proposed algorithm (see the
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proof of Proposition | in the sequel), any pair (", V) that
satisfies the following conditions can be used:

M« =™, eV < ym= (15)

where
[min u[i(‘_"“rpbmu_cW)—v,a] (16)
=TI\ 1—q =
cor e i Bl N .
N [—(—PE“'—C"“)—V«I (17
=1..T gt 1 —n
ax i 1I—g* ax in
DR o e =1 ik )
=l T nr(&_E

(18)

MNote that the interval for V in (15) is well defined under
condition (14), and the interval for I' is valid when V < V™%,
We now present the proposed TS-OC algorithm:
« Initialization: Select I and V. and introduce a virtual
queue Qi(0) == C;(0) + T, Vi.
+ Ahead-of-time energy planning: Per interval ©r = aT,
observe a realization E::‘ and determine the energy
amounts {E7[a], ¥i} by solving

4+T—1
Z[V[G“c.&.-[nn + 3 IE{G“{P;-(I}}]}
ieL

min
(& [nl) s
T+T—1
+ ) Qi{T}E{PM(ﬂI'}
I=t
s.L (5, (6), (9, (10), Vi=t,...,t+T—1

(19)

where expeclations are taken over £]. Then the BSs
trade energy with the main prid based on {Ef[n], ¥i}. and
request the grid to supply an average amount Ef[a]/T per
sloti==,....t+T—1.

+ Energy balancing and beamforming schedule: At every
slot t € [aT,(n + 1)T — 1], observe a realization £},
and decide {P}(1), PL.{t}_. i, wi(f), Yk} by solving the
following problem given Ej[n] = E}[n]

1 i ” D [VGH(Pi1) + Qu(aT)Pyi(1) )
Py D i) T

5. L (5), (6). (9), (10). (200

The BSs perform real-lime enerpy trading with the main
grid based on {P(t), ¥i}, and coordinated beamforming
based on {wi(1), Vk}.

+ Quene updates: Per slot 1, charge (or discharge) the

battery based on {P} (f)}, so that the stored energy
Ci(t + 1) = nC;(t) + P{ (1), Vi; and update the virtual
quenes ;1) = Ci) + T, Vi.

Remark I: Note that we use queue sizes Q;(r) instead of
(1) in problems (19) and (20); see also [19], [20]. Recall
that the main design principle in Lyapunov optimization is
to choose control actions that minimize 3, 3, E[Vd(n) +
(1P i(1)]. For the ahead-of-time enerpy planning, this
requires a-priori knowledge of the future queue backlops O;(t)
over slois [t+1,..., r+T—1] at time r = nT. It is impractical
to assume that this information is available. For this reason, we

IEEE TRANSACTIONS ON SMART GRID, VOL. 9, NO. 3, MAY 2018

simply approximate future queue backlog values as the current
value at v = T, ie, Qi) = OQi(r). Vi=1+1,. ... t+T—1,
in (19). To ensure that the real-time energy balancing and
beamforming schedule solves the same problem as the ahead-
of-time energy planning, we also use Q;(nT) in (20) although
the real-time battery state of charge (3;(f) is available at slot 1.
Rigorous analysis shows thal the performance penalty incurred
by such an approximation does not affect the asymptotic opti-
mality of the proposed stochastic control scheme. On the other
hand, using ;(f) in real-time energy balancing can be also
supgested in practice. While our feasibility analysis affords
such a modification, deriving the optimality gap is lefi for
future research.

Next, we develop efficient solvers of (19) and (20) to obtain
the TS-OC algorithm.

B. Real-Time Energy Balancing and Beamforming

It is easy to arpue that the objective (20) is convex.
Indeed, with o' = 7', the transaction cost with P;(f) can
be alternatively writien as

G™(Pi(1)) = max|a]'Pi(1), f{'Pi(1)} (21)

which is clearly convex [25]; and so is the objective in (20).

The SINR constraints in (5) can be actually rewritten into
a convex form. Observe that an arbitrary phase rotation can
be added to the beamforming veclors we(1) without affecting
the SINRs. Hence, we can choose a phase so that hg,wt{r}
is real and nonnepative. Then by proper rearrangement, the
SINR constraints become convex second-order cone (SOC)
constraints [27]; that is,

1
B win)|* + a2 < —Re[h" wiity).
\/El Fwin[" +of < W (e wi(n |
Im{hy wi(t)) =0, Vk.

We can then rewrite the problem (20) as

: E?
min ) "IVG" (Pc + 3w OBiwk () + Py i(t) — #)
i=T kel

+ Qi(mT)Pp (1) | }

a 1
5 L Iﬁ;‘f w,m}‘+a§ < —Re{ﬁf wi (D)},
J; I Jﬂ I

Im{h wi()} =0, Vk
PP < Py i(ty < PP™, Vi

Pe+ ) wi (DBawi() < PP, Vi.
kel

(22)

As G™(-) is convex and increasing, it is easy to see that
G P+ Y Wi (1)Biwi () + Py i(t) — E; [n,]/T) is jointly con-
vex in (P (1), {we()]) [25, Sec. 3.2.4]. It then readily follows
that (22) is a convex optimization problem. which can be
solved via off-the-shelf solvers.

C. Ahead-of-Time Energy Planning

To solve (19), the probability distribution function (pdf)
of the random state £ must be known across slots 1 =
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al....,(n+1)T—1. However, this pdf is seldom available in
practice. Suppose that £}' is independent and identically dis-
tributed (i.i.d.) over time slots, and takes values from a finite
state space. It was proposed in [19] to obtain an empirical
pdf of £} from past realizations over a large window compris-
ing L intervals. This estimate becomes accurate as L grows
sufficiently large; then it can be used to evaluate the expecta-
tions in {19). Based on such an empirical pdf, an approximate
solution for (19) could be obtained.

Different from [19], here we propose a stochastic pradient
approach to solve (19). Suppose that £ is ii.d. across time
slots (but not necessarily with a finite support). For stationary
&', we can remove the index ¢ from all optimization variables,
and rewrite (19) as (with short-hand notation (y[n] == Qy(nT))

min Y| VG (ElnD) + TE[VG" (Pi(&)) + QilmPs.i(€1)] ]
iel

1
5.t IﬁHw{.E”]|2+af < —Re|h{wi(£])].
J 2l JE

Im{hw, (1)} =0, V& & (23a)
Pyt < Py i(E7) < PP, Vi, &} (23b)
Po+ ) wi (E71)Biwk(§]) < PP™, Vi, &} (23c)
kel
Pe+ ) wi (&7)Biw(&]) + Poaif&])
k=il
=B pe), vigr (23d)

Note that this form explicitly indicates the dependence of the
decision variables {P;, Py ;, Wi} on the realization of .Ej'.
Since the energy planning problem (19) only determines
the optimal ahead-of-lime energy purchase Ef[a], we can
then eliminate the variable P; and write (23) as an uncomn-
strained optimization problem with respect io the variable
Ef[n], namely
min 3" [VGU(Eln]) + TC(Edn1D |
| Eiln]] T

(24)

where we define

min
P Priwi )

G (Eidn])) = { 3 BV (Edn], Poa(£),
el

[wele?)]) + QilnIPs i(£7))

s. L. (23a), (23b), (23c) (25)
with the compact notation W™E, Py;, (Wi} =
G'Pe + YW Bwi + Ppi — %) Since

[V (E{nl, P, (D), (Wi (D)) + QlnIPy &1 is jointly
convex in (E;, Py {wil) [see {22)], then the minimization
over (Pp;, {wi}) is within a convex sei; thus, (23a)}-(23c)
is still convex with respect to Ejln] [25, Sec. 3.2.5]. In
addition, due 1o al,',' ~ A we can alternatively write
G™(Ei[n]) = max{a(Eiln]—A;n), BHEi[n] —Aia)), which is
in the family of convex functions. Hence, (24} is generally a
nonsmooth and unconstrained convex problem with respect io
{E;ln]}), which can be solved using the stochastic subgradient
iteration described next.
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The subgradient of G"(E;[n]) can be first written as

it if Eilnl > Ajn

L5 if Eiln] < A
any x € [BY. o], if Eiln] = A
With {Pii{gfj,wffﬁf}] denoting the optimal solution
for the problem in (25), the partial subgradient of
GY{E[n]}) with respect to Efn] is »G({Eiln]l) =
VE(3W™(Eiln], Py (£]), (Wi (E[)])), where

AWT(Eifn, Py (67). {wE(5D)))

AG" (Edn]) =

gt E;
£, if # = A
) e E;ln]
= _TL" ) f _T o ﬂ
XE [_—fL_T‘], else

with A = P, + ¥, wE (6 BwE(E]) + PE (67).

Defining g;(E;) = VAG"(E;)+T3,G™({E;}). a standard sub-
gradient descent iteration can be employed to find the optimal
E}[n] for (24), as

E Ot = [E0In) — w0z (EO )|, Vi @)

where j denotes iteration index, and {7} is the sequence of
stepsizes.

Implementing (26) essentially requires performing (high-
dimensional) integration over the unknown multivariate
distribution function of £ present in g; through G"
in (25). To circumvent this impasse, a stochastic subgra-
dient approach is devised based on the past realizations
{£8.t =0.1,...,nT — 1}. Per iteration j, we randomly draw
a realization £7 from past realizations, and run the following
iteration

EFOin] = [EPIn - w0 EF’Inl)]+~ vi @

where gi(EVn) = VEGYE [n]) + Taw(E”[n],
PEED). (WEED)) with (PE (6, wE(ET)) obtained by
solving a convex problem (25) with E;fn] = E:ﬂ'[ﬂ].

As g;(EP[n]) is indeed an unbiased random realization of
B(ED[n]) = E{g;(E”[n])) [28], if we adopt a sequence of
non-summable diminishing stepsizes satisfying lim; .o u¥ =
0 and 32, p% = oo, the iteration (27) asymptotically
converges to the optimal {E][n], Vi} as j — oo [29].

Compared with [19], the proposed stochastic subgradient
method is particularly tailored for our setting, which does
not require the random vector £f' to have discrete and finite
supporl. In addition, as the former essentially belongs 1o the
class of statistical learning based approaches [30], the pro-
posed stochastic method avoids constructing a histogram for
learning the underlying multivariate distribution and requires a
considerably smaller number of samples to obtain an accurate
estimate of E7[nl.

Remark 2: The computational complexity of the pro-
posed algorithm is fairly low. Specifically, for solving the
real-time energy balancing and beamforming problem (22)
per slot 1, the off-the-shelf interior-point solver incurs a
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worst-case complexity O(FP°K*7) to obtain the decisions
(P (1), Vi wi(r), ¥k} [26]; for solving the ahead-of-time
energy planning problem (23) every T slots, the stochastic
subgradient approach needs (l/e?) iterations to obtain an
e-optimal solution, while the per iteration complexity is in the
order of O(?3K33). And updating E¥[n] in (27) requires
only linear complexity CHT).

IV. PERFORMANCE ANALYSIS

In this section, we show that the TS-0OC can yield a feasible
and asymptotically (near-joptimal solution for problem (12},

A. Feasibility Guarantee

Note that in problems (19) and (20), {Ci(1)} are removed
from the sei of optimization variables and the constraints
in (8) are ignored. While the battery dynamics Gi(f + 1) =
nCit) + Pp;(t) are accounted for by the TS-OC algorithm
{in the step of “Queve updates™), it is not clear whether the
resultant C;(f)  [C™", C™], Wi, 1. Yet, we will show that
by selecting a pair (", V) in (15), we can puarantee thai
€™ < Ci(f) = C™>*, Vi, ; meaning, the online control pol-
icy produced by the TS-OC is a feasible one for the original
problem (12), under the conditions (13}-14).

To this end, we first show the following lemma.

Lemma 1: If @ = max{e]", ¥f} and ,E = min{A", ¥t}. the
battery (dis)charging amounts P§ ;(f) obtained from the TS-OC
algorithm satisfy: 1) P} () = P”“” if Ci{n,T) = —Vﬁ r;
and ii) Py () = PP, lf C{n,T} = —Va—T.

Proof: In TS- GC we determine P} (1) by solving (20).
From the equivalent problem (22), we can see that the determi-
nation of P; .(f) is decoupled across BSs, and it depends on the
first derwauve of G™(-). By (21), the maximum possible gra-
dient for G"(-) is V. It then follows that if Va+Q;(n,T) < 0,
we must have P} ,(f) = Pg"™". Similarly, if V8 + Qi(n;T) = 0,
we must have P} (f) = PP, Given that Qi(1) = Ci(t) + T,
the lemma follows readily. |

Lemma | reveals partial characteristics of the dynamic TS-
OC policy. Specifically. when the energy queuve (i.e., battery
S0C) is large ennugh the battery must be discharged as much
as possible; that is, P} (1) = P”“" On the other hand, when
the energy queue is sma]l enuugh. the battery must be charged
as much as possible; ie, P} () = F”““ Alternatively, such
results can be justified by I‘J'sc aounum:c interpretation of the
virtual queves. Specifically, —E‘U- can be viewed as the instan-
taneous discharging price. Hic) high prices —&0 > @, the
TS-0C dictates full charge. Conversely, the battery units can
afford full discharge if the price is low.

Based on the structure in Lemma |, we can thus establish
the following resulL

Proposition 1: Under the conditions (13}-(14), the TS-0C
algorithm with any pair ([, V) specified in (15) puarantees
O™t = Cy(f) = C™=, Vi, Vi.

Proaf: See Appendix A. |

Remark 3: Note that Proposition | is a sample path result;
meaning, the bounded energy queues Ci(f)  [C™", C™],
Wi, hold per time slot under arbifrary, even non-stationary,
{Amaf,', ,BL‘, o', A'. H;} processes. In other words, under the
mild conditions (13)-{14). the proposed TS-OC with proper
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selection of (", V) always yields a feasible control policy
for (12).

B. Asymptotic Optimality

To facilitate the analysis, we assume that the random
processes {.i;'“] and {£'} are both ud over qiuw and fast
umescales respectively. Define C; == mr E,_ﬂ, E{Ci{t)} and
Pyi = g Y M5 ' E{Py (). Since Py (1) € [PM", Pmex] and
Cilt + 1) = nCi(t) + Pp (1), it holds that

NT-1

_ 1 y
Ppj= 1 ; E(GHt+ 1) —nCGl=(1-mCi.  (28)

As Ci(t) € [C™n, C™**], V¢, (28) then implies
(1 —q)C™ < Ppy < (1 —)C™, Vi (29)

Consider now the following problem
i m j'.rlimm— Z ZEM i}
t=0 el

s. L (5), (6), (9), (100, ¥t (29). (30}

Note that the constraints in (8), ¥i, are replaced by (29); ie.,
the queue dynamics that need to be performed per realiza-
lion per slot are replaced by a time-averaged constraint per
BS i. The problem (30} is thus a relaxed version of (12) [23].
Specifically, any feasible solution of (12), satisfying (8), V1,
also satisfies (29) in (30), due to the boundedness of Py (1)
and C;(r). It then follows that &7 < pP!,

Variables {C;(f)} are removed from (30), and other opti-
mization variables are “decoupled™ across time slots due Lo
the removal of constraints (8). This problem has an easy-
to-characterize stalionary optimal control policy as formally
stated in the next lemma.

Lemma 2: If E},‘ and E[‘ are iid., there exisis a stationary
control policy P™ that is a pure (possibly randomized) func-
tion of the current (.5‘1 £, while satisfying (5), (6), (9), (10,
and providing the fulfuwmg puaraniees per i

E1D. 't-f""'m} — §or
il
(1—pC™" <E{PY¥m)) < (1 —mC™, Vi (31

where P”‘" {f) denotes the decided (dis)charging amount,
&7 (1) Ihe resultant transaction cost by policy P*¥, and
expectations are taken over the randomization of (£, s L ET) and
{possibly) P,

Proof: The proof argument is similar to that in [31, Th. 4.5];
hence, it is omitted for brevity. |

Lemma 2 in fact holds for many non-i.i.d. scenarios as well.
Generalizations to other stationary processes, or even o non-
stationary processes, can be found in [31] and [32].

It is worth noting that (31} not only assures that the station-
ary control policy P achieves the optimal cost for (30), but
also puarantees that the resultant expected transaction cost per
slot 1 is equal to the optimal time-averaged cost (due to the
stationarity of &, , £' and P*'). This plays a critical role in
establishing the following result.
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Proposition 2: Suppose that conditions (13}~(15) hold. If
f,‘ and £} are i.id. across time, then the time-averaged cost
under the proposed TS-OC algorithm satisfies

ik 3 * My +M:+M;
Jim = 3 S E[ef0) < o7 2T
=0 iel
where the constants?
IT(1 —»n)
M=o 00 32
R [ (32)
T —n) — (1 —77)]
= M (33)
2 T=m(i=77) B
Mz =1(1 —n)Mc (34)

with Mg and M- given by
2 g
My = max[[ri — )0+ [ =T +P’;“"]‘]
Me = max[(l" -{—C“ﬁ“)zf(l" +C'““}2|;

&7 (f) denotes the resultant cost with the TS-OC, and & is
the optimal value of (12) under any feasible control algorithm,
including the one knowing all future realizations.

Proaf: See Appendix B. |

Remark 4: Proposition 2 asserts that the proposed TS-0C
algorithm ends up with a time-averaged cosl having opti-
mality gap smaller than w. The novel TS-OC can
also be viewed as a modified version of a classic queue-
length based stochastic optimization scheme, where queue
lengths play the role of “stochastic” Laprange multipliers with
a dual-subgradient solver to the regularized dual problem by
subtracting an fs;-norm of Lagrange multipliers. Intuitively,
the pap M,/V is inherited from the underlying stochas-
tic subgradient method. The gap M>/V is introduced by
the inaccurate gueue lengths in use (since we use (;(nT),
instead of Oy, for all + = aT,....(n + 1T — 1), while
the gap M:/V is incorred by the presence of the £; rep-
ularizer in the dual function (a. k. a. the price of battery
imperfections).

C. Main Theorem

Based on Propositions | and 2, it is now possible to arrive
at our main resulL

Theorem 1: Suppose thal conditions (13}-15) hold and
(8% ™) are i.id. over slots. Then the proposed TS-OC
yields a feasible dynamic control scheme for (12), which is
asymptotically near-optimal in the sense that

1 NT'—1 M
apt . * t
=0 jeT

where M = M, + M; + M;, as specified in Proposition 2.

The asymptotic behavior of the proposed dynamic approach
is more complicated than that of existing alternatives due 1o
the nature of multi-scale scheduling and battery imperfections.
Interesting comments on the minimum optimality gap with the
TS-0C are now in order.

7 . [T 2 T(l—mi—(1—q" T_1
Note that limg_, | 'F:'iq_ =T, and limg_.| —';—'E—L—F—l“_q}“_q Y

1) When 5 = | (perfect battery), the optimality gap
between the TS-OC and the offline optimal scheduling
reduces o

M M| +M2 IT ' in 2 a3

vy-o v —ﬁm“[(f’?)r@?ﬂ] l
The typical tradeoff from the stochastic network opti-
mization holds in this case [31]: an O(V) baitery size
is necessary, when an @(1/V) close-to-optimal cost is
achieved. Clearly, the minimum optimality gap is given
by M/V™™* which vanishes as V™ — oc. By (18),
such an asymptotic optimality can be achieved when we
have very small price difference (¢ — £), or very large
battery capacities C™2*, -

2) When 5 € (0, 1), the constants M, M> and Mz are in
fact functions of ", whereas the minimum and maximum
values of [" also depend on V [see (16)—-(17}]. thus the
typical tradeoff in the case 1) is no longer correci. For a
given V™= the minimum optimality gap, G™"(V™%),
can be obtained by solving the following problem:

min M _ M) | MT)  Ms(D)
wnV ¥ v Vv

. 5 L (15).
(35)

For V = 0, we know that the quadratic-over-linear func-

: 1—q)T+PrEp e .
fions [0 T g O00HR T o jointly convex

in V and I" [25]. As a poini-wise maximum of these
two convex functions, “—%D is also convex [25]. Then
E‘{;ﬂ and 20 40 clearly convex by (32)-(33); and
likewise for —JéD- Since the objective is convex and
the constraints in (15) are linear, problem (35} is a con-
vex program which can be efficiently solved by peneral
interior-point methods. Note that G™"(V™*) no longer
monotonically decreases with respect to V™ (or O™,
see also [23]. This makes sense intuitively because for
a large batiery capacity, the impact of using inaccurate
queue lengths (battery SoC) and the dissipation loss due
to battery imperfections will also be enlarped. The small-
est possible optimality gap can be numerically computed
by one dimensional search over G™(V™*) with respect
o Vmex,

V. NUMERICAL TESTS

In this section, simulated tesis are presented lo evaluate our
proposed TS-OC algorithm, and justify the analytical claims
in Section IV.

A. Experiment Setup

The considered CoMP network includes I = 2 BSs each
with M = 2 transmit antennas, and K = 3 mobile users. The
system bandwidth is 1 MHz, and each element in channel
vectors Ry, Vi, k. f, is a zero-mean complex-Gaussian ran-
dom variable with unit variance. Each coarse-grained interval
consists of T = 5 time slots. The limits of Pg; Pp; and
;. as well as the values of the initial SoC Ci((0) and P. are
listed in Table I. The battery storage efficiency is n = 0.95.
The ahead-of-time and real-time energy purchase prices uff,‘
and o' are generated from folded normal distributions, with
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TABLE 1
PARAMETER VALUES. ALL UNITS AREKWH
10 50 -2 2 [i] B0 [i]

Efe} = 1.15 and E{a™} = 2.3. The selling prices are
set as B = 0.9 x o and B = 0.3 x . The harvested
energy A;j, is also generated from a folded normal distri-
bution. Finally, the Lyapunov control parameter V is chosen
as V = V™=* The proposed TS-OC algorithm is compared
with three baseline schemes to benchmark its performance.
ALG 1 is a one-scale scheme without ahead-of-time energy
planning; ALG 2 performs two-scale online control without
leveraging the renewable energy or enerpy storage devices;
and the offline benchmark is an ideal scheme with a-priori
knowledge of future channel states, energy prices and RES
arrival realizations.

B. Numerical Results

Fig. 3 shows the running-averape transaction costs of the
proposed algorithm, ALGs 1-2, as well as the offline bench-
mark. It is seen that within 500 time slots, the proposed
approach converges the closest lo the lower bound, while
ALGs 1-2 incur about 719 and 31% larger costs than the pro-
posed one. However, note that the optimal offline counterpart
cannot work in practice due to the lack of future. In addition,
the optimality gap can be redoced as the battery efficiency n
approaches 1. Among online schemes, the TS-OC algorithm
intelligently takes advantage of the ahead-of-time energy plan-
ning, and the renewable energy and batieries, to hedge against
future potential high enerpy cost, while ALGs 1-2 have Lo pur-
chase much more expensive energy from the real-lime energy
markel and result in a higher transaction cosi.

The theoretical optimality-gap [see (35)] between the TS-
OC and the offline optimal scheduling is depicted in Fig. 4
under different battery capacities C™*. As analyzed afier
Theorem |, the optimality-gap M/V for 5 = 1 diminishes
as C™=* (or V™*) grows; whereas the gaps for 5 = 0.9 and
n = 0.95 are no longer monotonically decreasing. Specifically,
both of them first decrease and then increase, reaching the
lowesl points (where the oplimality gaps are minimized) at
™ — 40 kWh and C™* = 55 kWh, respectively. As
expected, the pap for the worst storape efficiency n = 09
remains the larpest across the entlire spectrum of battery
capacity.

In Fig. 5, the average transaction cost of the TS-OC is com-
pared under different battery efficiencies n = 09,095, 1.
Clearly, the average costs monotonically decrease as O™
grows. The BSs wilh imperfect batteries (n = 0.9,0.95)
require larger budgets for energy purchase than the ones with
perfect batteries (n = 1), thus compensating for the battery
degeneration losses. In particular, when C™* = 120 kWh, the
costs for p = 0.9 and n = 0.95 are 41.8% and 33.8% larger
than that of the perfect battery case, respectively.

The evolutions of battery SoC C,(f) with different storage
efficiencies 5 are compared in Fig. 6. Clearly, all the three lines
fluctuate within the feasible region; i.e., C™® < Cy(1) < O™,
Among the three cases, the battery with n = | maintains the
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Fig. 3. Companson of average transaction cost.
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Fig. 4. Optimality-gap versus battery capacity C™8%,

highest energy level, followed by those with n = 0.95 and
n = (L.9. Intuitively speaking, keeping a high enerpy level in
an imperfect batiery results in much higher energy dissipation
losses. As a result, the TS5-OC algorithm tends o maintain
a low energy level in such cases (e.g., around 30 kWh for

= 0.9) to reduce average energy loss, and (dis)charge the
battery less frequently.

The previous remarks are further substantiated by Fig. 7.
where the instantaneous discharging price, or, the “stochastic™
Lagrange multiplier —EE-E:‘- is compared with the running-
average purchase and selling prices af' '= (1/)) Y. _, o and
B = (1/H YL _, B I is interesting to observe thal with a
perfect battery (p = 1), the instantaneous discharging price
—-94}51 is hovering between the average purchase and selling
prices, which features a f.rgleghmm {dis)charging operation. For
n==0950or g =09, — v: is relatively high compared Lo
the average purchase and selling prices, which discourages fre-
quent (disjcharping; see also Fig. 6. Note that the evolution
of —248 can be further linked to the standard results from
sensitivity analysis, which implies that the subdifferential of
the objective limy_. oo % Z::n_] ¥ E{d;(t)} with respect to
Py ;(t) (the convex hull of average purchase and selling prices)
coincides with the negative of the optimal dual variable corre-
sponding to (28) [25]. Building upon this claim, the asymptotic
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Fig. 7. The evolution of —Q(r}/V and nmning-sverage of encrey prices,

oplimality can be easily verified for n = | since the “stochas-
tic” Laprange multiplier —Q-I}E converges to a neighborhood
of the oplimal dual variable; and a large optimality gap is also
as expected for the imperfect batteries 5 = | due to the dis-
tance between —EJT,[’—’ and the average purchase and selling
prices.
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Fig 9. TS-0OC based schedule of the optimal energy planning E‘;Eﬂ].

Taking a deeper look, the battery SoC Cy(nT) and the
real-time battery (dis)charging Py, ,(f) are jointly depicted in
Fig. 8 to reveal the (dis)charging characteristics stated in
Lemma 1. It can be observed that the TS-OC dictates the
full discharge P} ,(f) = P™" in the incoming 5 ﬁne—grajned
slots t  [20,24] when Cy(rT) = —VB —T al n = 4,
while the battery is fully charped P} (T} = PI™ when
CiimTy =« —Va—Tatn=12735, 6 E In add:tmn when
CiimTye[—Va—T, V,E Matn=2,17, P*ﬂif]' must be
obtained by solving (22) numerically.

Fig. 9 shows the optimal energy planning Ej[n] over a 100-
slot period, along with the fuctuating ahead-of-time energy
purchase prices &, for the resultant online policy. One obser-
vation is that the ahead-of-time cm.rg}r purchase E7[n] highly
depends on the long-term price «!'. Specifically, thc proposed
SEhEITIE tends to request more energy for future T slots when

" is lower (e. g n =10, 13, 17). and tends to purchase less
encrgjr when e, is higher (e.g., n =2, 11).

VI. CONCLUSION

A two-scale dynamic resource allocation task was con-
sidered for RES-integrated CoMP (transmissions. Taking
into account the vanability of channels, RES and ahead-
of-lime/real-time electricity prices, as well as battery
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imperfections, a stochastic optimization problem was formu-
lated to minimize the long-term average energy lransaction
cosL subject to the QoS requirements. Capitalizing on the
Lyapunov optimization technique and the stochastic subgra-
dient iteration, a two-scale online algorithm was developed
to make control decisions ‘on-the-fly” It was analytically
established that the novel approach yields feasible and asymp-
totically near-optimal resource schedules without knowing any
statistics of the underlying stochastic processes. Simulated
tests confirmed the merits of the proposed approach and high-
lighted the effect of battery imperfections on the proposed
online scheme. This novel two-scale optimization framework
opens up some interesting research directions, which include
incorporating the power network constraints and/or transmis-
sion losses in the formulation, pursuing a fastl convergent
approach by learning from historical system statistics, and
reducing the battery size leveraping the so-called predictive
scheduling.

APPENDIX
A. Proaof of Proposition 1
The proof proceeds by induction. First, set G(0) =
[C™r ™= Wi, and suppose that this holds for all Ci(aT)
at slot aT. We will show the bounds hold for Ci(f). ¥t =
nl+1,....(n+ )T, as well as in subsequent instances.
By Cilt + 1) = nGi(t) + P3 (1), we have

i—1
Gty =1 TCnTy + Y [n Py o),
T=nT

Wi=nT+1,....(n+ 1T. (36)

Mote that by the definitions of ™" and '™ in (16)-(17),
we have O™ = _Va —I' = —VA —T < C™* We then
consider the following three cases. ~
cl) If Ci(nT) € [C™", —Va —T'), then Lemma 1 implies that

Pty = PP®, Vi =nT,...,(n+ 1)T — 1. From (36),

we have, Vi =nT +1, ..., (n+ 1T,
) Cir) = o'~ €0 4 L prmex > Cin, due to the
condition (13);

i) Gy = " (—Va - T) + —LP’““ <
(Vg —T) + S pee < ™ due 1o
B <@ I'> ™" and the definition of I'™® in (16).
¢2) If CiinT) € [ — Va —T.—VB — T, then P} (1) €
[Pmin, pmax] We have, Vi =nT + 1,..., (n+ 1T,
) Cil) = 7'""(~Va —T)+ 157 pmin > Cwin, dye
to ' = I'=* and the definition of '™* in (17},
i) Cilf) < p' T (~VB —T) + LT pmon < cmax, g
with cl-ii); and
c3) If GinTy e (VB —T', C™**], it follows from Lemma |
that P} (t) = PP, Vt =nT, ..., (n+ 1)T — 1. We have,
Vi=nT+1,...,(n4+1)T
i) Gith = o"(-Vg —T) + L% pmin >
n' =T (—Va— FJ+—1LP"““}C‘”‘“ duf:tnﬁl <a
and c2-i);
i) Gy < n~TCm 4 L pmin < 0™ dye 1o
n <1, and PP < Q.
Cases c1}—c3) together prove the proposition.
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B. Proof of Proposition 2
The evolution of ;(f) in the TS-OC is given by 3;{i+1) =
Citt+1)+T = nG(D+P; (+T = nQu(t)+(1—mT'+P} (1).
Hence, we have
[0t + DI = [nQ:(y + (1 — T + P5 ]
= 7 1Q:OF + QD [(1 — T + P, (0]
+ [ —m +P; 0]
< 7 1@O1 + 29Qu)[(1 — T + Py (1))

+ mnx{ [a—mr+ Pg‘“‘]zf

[a—nr+P=T|

where the last inequality holds due to (9).

With Q(n) = [(y(D), ..., @], consider the Lyapunov
function L{Q(1) = %EE[Q,-EI}]E. Using the short-hand
notation @[n] == @(nT), it readily follows that

Ar(Q[r]) = L(Q[n + 1) — L(Q[n])
{a+117—1

= _'(' =) . Zi@.{tn%—mﬂ
I=aT il
{m+1)T—1
+ Z Zi’i@i(f}[{l —r;}l"—|—P;J.(:}]}
i=naT T
IT (A+1)T—1
= EME—F Z
t=nT
x Y {n@[(1 — )T + P} 0]},
il

Since Qi(f + 1) = n@i(f) + (1 — T + P} (1) and PP <
Pt () < PP™, we have: Vi =nT, ..., (n+ bhr—1,

.r aT ql‘—n]’ in B
oinl+ [ —nr+ A=) < 0o
t—n]"
= T Qin] + 1_[“ ml + Pp].
This implies that ¥t =nT, ..., (n+ DT -1,

Q(D[(1 — T + P (0]
<~ Qidnl[(1 — T + P; (0] +

o I']"_"r
l—nq
x umx! [{1 -l +PE‘“]_1 [(1—mr +P‘§“]2I-

Consequently, it follows that

IT {1371 I'I(] i q!_n-:r}

Ar(Q[n]) = TMB-'_ E Z TMB
=T T
(m3-13T—1
+ 2 Yl eumla —nr
I=naT icL
7.0
IT In[Tl =y — (1 =47
= Ziad [T —n) — ( n}]MB

(1—mn*
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(n+1)T—1
+ 2 Y|THeama - pr
i=aT =T
Pa]}.
Taking expectations and adding Y "'V ¥ [yt-nT+

VE{®?()}] to both sides, we amive at (with short-hand

notation My, = LM + LU=l g,
4+ 13T—1
E(Ar@QInb+ Y n Y [VE[#i(n]]
t=nT =T
{m+13T—1
<Ma+ ) {n“””‘ > Qi1 — n}l“j|
t=nT ieT
(n+13T—1
2 I [n'_"”' Y E{vein + Qflan:_,-m]]
t=nT iel
(n+13T—1
=Ma+ ) [:3“"”' > Qilnl(1 - q}r]
t=nT i=T

L n1—n) erz}]:r_ [ZE[V*#?{I}'FQE[H]P;J(”]:I

“ T '?}T t=aT ieT
(m+13T—1
< Ma+ Z |:q=—nr+1 ZQ:‘IH]{I —W}F}
it=nT ieT
'il'“ o "il'r (n+13T—1
st tat
+ W E I:Z E{ V't",— (n+ QI'III]P;J (1) }:l
i=nT el
(a+1)T—1
=Ma+ ) [n""”' ZE[V@;’”{”}}
t=al ieT
(m4+1T—1
S 7 Z [n"”r"']Q:[ﬂ]“l —mq +P’;ff(f}:']

t=nT

T
<Ma+In(l —n")Mc + rj{:—:]'r’é”’“
where the two equalities hold since both } ,_; E{Vdi(t) +
Qiln}P; ;(} for the TS-OC and 3}, E(VE™(1) +
QilnlPy5 (1)} for P™ are in fact the same for slots ¢ =
al,....(n+ )T — 1, when &7 is iid. over slots; the sec-
ond inequality is because the TS-OC algorithm minimizes the
third term 3, E{V®;(1)+Q[n]Pp ;(1)]] among all policies sat-
isfying (5), (6), (9), and (10), including P™®; and the last
inequality is due to (31) and Qiln] & [C™" + T, O™ 4[]
under conditions (13)}-15) per Proposition 1.

Again, note that 3, [VE{®}(0)}] for the TS-OC is the same
for slots t = aT, ..., (n+ 1)T—1, when £} is i.i.d. over slots.
Summing over all n =1, 2, ..., we then have

N—1{nt1)T—1

Z E(Ar(QIaD) + Z Z i Z[mwm]
— E[L(QIN)I — L{QED]}

i LT

q}T =0 =T

1833

'?'[I - '?T} V&m]
i

< N| My +In(l —n")Mc +

7

which leads to

e Y. E Z]E{@;‘m]]

=0 LisT

= My +M:+M; (1 —n) L{QON
apt
Y n(—n7) NV
< 0Pt 4 My +M:4+M; (1—n) L{QOD
Vv q(] - qT] NV

and the proposition follows by taking the limit as N — oc.
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