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Abstract—Accurately monitoring the system’s operating point
is central to the reliable and economic operation of an autonomous
energy grid. Power system state estimation (PSSE) aims to obtain
complete voltage magnitude and angle information at each bus
given a number of system variables at selected buses and lines.
Power flow analysis amounts to solving a set of noise-free power
flow equations, and is cast as a special case of PSSE. Physical laws
dictate quadratic relationships between available quantities and
unknown voltages, rendering general instances of power flow and
PSSE nonconvex and NP-hard. Past approaches are largely based
on gradient-type iterative procedures or semidefinite relaxation
(SDR). Due to nonconvexity, the solution obtained via gradient-
type schemes depends on initialization, while SDR methods do
not perform as desired in challenging scenarios. This paper puts
forth novel feasible point pursuit (FPP)-based solvers for power flow
analysis and PSSE, which iteratively seek feasible solutions for a
nonconvex quadratically constrained quadratic programming re-
formulation of the weighted least-squares (WLS). Relative to the
prior art, the developed solvers offer superior numerical perfor-
mance at the cost of higher computational complexity. Further-
more, they converge to a stationary point of the WLS problem.
As a baseline for comparing different estimators, the Cramér-Rao
lower bound is derived for the fundamental PSSE problem in this
paper. Judicious numerical tests on several IEEE benchmark sys-
tems showcase markedly improved performance of our FPP-based
solvers for both power flow and PSSE tasks over popular WLS-
based Gauss–Newton iterations and SDR approaches.
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I. INTRODUCTION

R
ECOGNIZED as the greatest engineering achievement of

the twentieth century [1], the electric power grid is a com-

plex cyber-physical system comprising multiple subsystems,

each with a transmission infrastructure to deliver electricity from

power generators to distribution networks to customers. Accu-

rately monitoring the operational condition of a power grid is

crucial to various system control and optimization tasks, which

include unit commitment, optimal power flow (OPF), and eco-

nomic dispatch [2], [3]. To enable such an accurate monitoring,

a set of system variables are specified (and enforced) or mea-

sured at selected buses and lines for determining or estimating

the system’s operating point, namely complex voltages at all

buses of the grid. These two tasks correspond to the so-termed

power flow analysis and power system state estimation (PSSE),

respectively. Both are central to monitoring, control, and future

planning of electricity networks.

In power engineering, power flow analysis is a numerical

analysis of the normal steady-state flow of electric power over

the grid, that is crucial for planning future power system ex-

pansions (e.g., designing components such as generators, lines,

transformers, and capacitors), as well as in determining the best

operation of the existing systems [4]. The goal of power flow

analysis is to obtain complete voltage magnitude and angle infor-

mation at each bus for specified or enforced load and generator

active power and voltage conditions [4]. Once this information

is available, other system variables including active and reactive

power flows as well as generator reactive power outputs can be

analytically obtained.

Power flow analysis amounts to solving a set of quadratic

equations given by the nonlinear AC power flow model obey-

ing Ohm’s and Kirchhoff’s laws. Solving power flow equations

for both transmission and distribution systems is known to be

NP-hard [5]. Due to the nonlinear nature, several numerical

solvers have been developed to obtain a solution that is within

an acceptable tolerance. Past solvers include the Gauss-Seidel

and Newton-Raphson iterative algorithms [4], a non-iterative

moment-based approach [6], and the semidefinite relaxation

(SDR) [7]. The Gauss-Seidel method is reported as the ear-

liest devised power flow solver [4]. On the other hand, the
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Newton-Raphson algorithm iteratively seeks improved approxi-

mations to the zeros of real-valued functions, featuring quadratic

convergence whenever the initial point lands within a small

neighborhood of the zeros [8]. As convergence of both algo-

rithms relies heavily on the initial point, they may diverge if the

initialization is not reliable [7]. With a carefully designed ob-

jective function and sufficiently small angle differences across

lines, the SDR approaches have been shown capable of recover-

ing the true power flow solution provided that the set of available

specifications includes all voltage magnitudes, and the active

power flows over a spanning tree of the network [7].

The task of PSSE can be described as estimating the volt-

age magnitudes and angles at all buses across the network from

a subset of supervisory control and data acquisition (SCADA)

measurements including active and reactive power injections

and flows (at both the sending and receiving ends), as well

as squared voltage magnitudes. Since its appearance in the

1970s [9], PSSE has become a prerequisite for supervisory

control, system planning, and economic dispatch [9]. Nonlin-

ear SCADA measurements however, render the PSSE problem

nonconvex and NP-hard in general [10].

PSSE solvers so far are largely based on Gauss-Newton it-

erations and SDR heuristics. The “workhorse” Gauss-Newton

method for nonconvex optimization has two limitations [11,

Sec. 1.5], i.e., sensitivity to the initial guess, and lack of con-

vergence guarantees. SDR-based approaches on the other hand

solve first for a matrix variable that can be computationally ex-

pensive [7], [10], [12]–[14]. SDR’s performance degrades when

the data-size is relatively small, or when the data do not include

all voltage magnitudes [7]. For PSSE of large-scale networks,

robust and distributed Gauss-Newton and SDR implementations

have been reported in [10], [14]–[17].

Solving power flow equations and the PSSE can be shown

equivalent to solving nonconvex QCQPs, which in its general

form is NP-hard [18]. Many heuristics have recently been put

forward [19]–[24]. A feasible point pursuit (FPP) algorithm de-

veloped in [20], which can be viewed as a special case of the gen-

eral convex-concave procedure in [22]–[24], was demonstrated

to enjoy improved numerical performance over the SDR-based

methods. The FPP heuristic has been employed for solving OPF

[25], where the resulting solver was empirically shown more

effective for multi-phase transmission networks than popular

SDR- and moment relaxation-based ones [25].

Building on our precursors [20], [26] and inspired by the

inherent nonconvex challenge, the objective of this work is to

develop power flow and PSSE solvers capable of attaining or ap-

proximating the global optimum at manageable computational

complexity. Starting with the WLS formulation, both power flow

and PSSE tasks are reformulated as nonconvex QCQPs, which

are tackled by FPP. We show that every KKT point of the result-

ing QCQP is a stationary point of the WLS problem, and further

that our FPP-based solvers converge to a stationary point of the

WLS. As a baseline for comparing different SE approaches, the

Cramér-Rao lower bound (CRLB) is for the first time derived for

the fundamental PSSE problem assuming additive white Gaus-

sian noise (AWGN). This is achieved by means of Wirtinger’s

calculus for functional analysis over complex domains. Finally,

numerical experiments using several IEEE benchmark systems

corroborate the superior performance of FPP-based solvers over

existing methods for both power flow and PSSE tasks.

Regarding notation, matrices (vectors) are denoted by upper-

(lower-) case boldface letters, and (·), (·)T , and (·)H stand for

complex conjugate, transpose, and conjugate-transpose, respec-

tively. Calligraphic letters are reserved for sets, e.g., N . Symbol

�{·} (�{·}) takes the real (imaginary) part of a complex-valued

object, and diag(x) is a diagonal matrix holding in order entries

of x on its diagonal.

II. SYSTEM MODELING AND PROBLEM STATEMENT

An electric transmission network having N nodes (buses) and

E edges (lines) can be represented by a graph G := {N , E},

whose nodes N := {1, 2, . . . , N} correspond to buses, and

whose edges E := {(m,n)} ⊆ N ×N correspond to transmis-

sion lines. For every bus n ∈ N , let Vn := |Vn |e
jθn be the nodal

complex voltage, whose magnitude and phase are given by |Vn |
and θn , respectively; likewise for the complex current injection

In := |In |e
jφn . Let also Sn := Pn + jQn be the correspond-

ing complex power injection, in which Pn and Qn are the ac-

tive and reactive power injection, respectively. For every line

(m,n) ∈ E , let Imn denote the complex current flowing from

bus m to n, and Sf
mn := P f

mn + jQf
mn the complex power flow

from bus m to n seen at the sending end, where P f
mn and Qf

mn

are the active and reactive power flow, respectively; and likewise

for the receiving-end (active and reactive) power flow P t
mn and

Qt
mn .

The AC power flow model dictates that system variables {Pn},

{Qn}, {P f
mn}, {Qf

mn}, {P T
mn}, {QT

mn}, and {|Vn |2} are

quadratic functions of the state vector v. Clearly, this holds true

for the squared voltage magnitude understood as |Vn |
2 = VnV n .

To specify the relationship between power quantities and v, in-

troduce Y ∈ C
N ×N to represent the bus admittance matrix,

which is in general symmetric. Ohm’s law in conjunction with

Kirchhoff’s law reads as

i = Y v. (1)

It is worth mentioning that Y is sparse, thus enabling efficient

computations in large-size power networks, and its (m,n)-th
entry is given by

Ymn :=

⎧

⎪

⎨

⎪

⎩

−ymn , (m,n) ∈ E

yg
nn +

∑

k∈Nn
ynk , m = n

0, otherwise

(2)

where ymn denotes the admittance of line (m,n) ∈ E , yg
nn the

admittance to the ground at bus n ∈ N , and Nn the set of

neighboring buses directly connected to bus n. For m �= n, let

ys
mn be the shunt admittance at bus m associated with line

(m,n). Recall from Ohm’s and Kirchhoff’s laws that the current

flowing from bus m to n can be expressed as

Imn = ys
mnVm + ymn (Vm − Vn ) (3)

whereby the reverse-direction current Inm can be given sym-

metrically. Due to ys
mn �= 0 in general, it holds Imn �= −Inm .
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The AC model also asserts Pn + jQn = VnIn , ∀n ∈ N . Ap-

pealing again to (1) leads to the next matrix-vector form

p + jq = diag(v)i = diag(v)Y v (4)

where both active and reactive power injections are quadratically

related to v. Likewise, the sending-end active and reactive power

flow over line (m,n) ∈ E can be written as

P f
mn + jQf

mn = Vm Imn

= (ys
mn + ys

mn ) Vm V m − ymnVm V n (5)

where the second equality is obtained by substituting Imn in

(3) into the first. Hence, P f
mn and Qf

mn can also be express-

ible as quadratic functions of v. By symmetry, this quadratic

relationship also holds for P t
mn and Qt

mn .

To perform either power flow analysis or PSSE, a total of

L system variables are specified or measured by the system

operator. The nonlinear AC networks have available the next

seven types of quantities: |Vn |
2 , Pn , Qn , P f

mn , Qf
mn , P t

mn ,

and Qt
mn . If NV , NP , NQ , Ef

P (Ef
Q ), and E t

P (E t
Q ) denote the

selected sets of buses/lines over which actual quantities of

the corresponding type are available, the elaborated quadratic

relationships prompt us to define the L × 1 data vector z :=
[

{|Vn |
2}n∈NV

, {Pn}n∈NP
, {Qn}n∈NQ

, {P f
mn}(m, n)∈Ef

P
,

{Qf
mn}(m,n)∈Ef

Q
, {P t

mn}(m,n)∈E t
P
, {Qt

mn}(m,n)∈E t
Q

]T
∈ R

L ,

whose entries can be succinctly given by

z� = vHH�v, 1 ≤ � ≤ L (6)

where {H�}
L
�=1 are some coefficient matrices to be specified.

For this purpose, let
{

en ∈ R
N

}N

n=1
be the canonical basis of

R
N , and introduce also the admittance-dependent matrices

Y n := eneT
n Y , ∀n ∈ N ,

Y f
mn := (ymn + ymn )em eT

m − ymnem eT
n , ∀(m,n) ∈ E ,

Y T
mn := (ynm + ynm )em eT

m − ynm em eT
n , ∀(m,n) ∈ E .

For |Vn |
2 = VnV n = vHeneT

n v, it is clear that the correspond-

ing Hn in (6) is

HV ,n := eneT
n 	 0, ∀n ∈ N (7)

which are rank-1. By taking separately the real and imaginary

parts of (4) and (5), we obtain the {H�} associated with the

active and reactive power injections for all buses n ∈ N

HP,n :=
1

2

(

Y n + Y H
n

)

, HQ,n :=
j

2

(

Y n − Y H
n

)

(8)

and with sending-end and receiving-end active and reactive

power flow at all lines (m,n) ∈ E

H
f
P,mn :=

1

2

(

Y f
mn +

(

Y f
mn

)H
)

(9a)

H
f
Q,mn :=

j

2

(

Y f
mn −

(

Y f
mn

)H
)

(9b)

H t
P,mn :=

1

2

(

Y T
mn +

(

Y T
mn

)H
)

(9c)

H t
Q,mn :=

j

2

(

Y t
mn −

(

Y T
mn

)H
)

. (9d)

It is worth stressing that all {H�} in (8) and (9) are sparse,

low-rank, and Hermitian, but they are non-definite in general.

The power flow and PSSE problems are formulated in order

next.

A. Power Flow Analysis

Power flow analysis deals with specified power quanti-

ties, which are enforced for optimally operating an electric

power grid. Specifically, given L perfectly known specifications

{z�}L
�=1 and valid network parameters {H�}L

�=1 as in (6), the

goal of power flow analysis is to decide the state vector v ∈ C
N

that satisfies all specifications, namely,

find v ∈ C
N (10a)

subject to vHH�v = z� , 1 ≤ � ≤ L. (10b)

Recall that each bus in a power system is classified as a PQ,

PV, or slack (reference) bus based on the constraints imposed

per bus. PQ buses, which often correspond to loads, specify and

enforce only active and reactive power injection Pn and Qn on

bus n. On the other hand, the PV buses, which are typically

associated with generators, enforce active power injection Pn

and voltage magnitude |Vn |. For the slack bus, its voltage phase

is fixed at θn = 0, by convention. With θn = 0, the power flow

problem in (10) is equivalent to solving for 2N − 1 real-valued

unknowns from L quadratic equations. The classical power flow

problem considers the particular case where the L = 2N − 1
specifications are enforced only at the PV, PQ, and slack buses

as opposed to a combination of buses and lines.

B. Power System State Estimation

PSSE on the other hand deals with noisy observations ac-

quired by the SCADA system adhering to

z� = vHH�v + η� , 1 ≤ � ≤ L (11)

where η� accounts for the zero-mean distributed measurement

error with known variance σ2
� , henceforth assumed independent

across meters. The goal of PSSE is, given SCADA measure-

ments {z� ∈ R}L
�=1 and also parameters {H�}

L
�=1 , estimate the

state vector v ∈ C
N .
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Adopting the WLS criterion, the SE task can be cast as that

of solving the following nonlinear LS problem

v̂ := arg min
v∈CN

L
∑

�=1

w�

(

z� − vHH�v
)2

(12)

where entries of the weight vector w := [w1 · · · wL ]T are often

taken as w� := 1/σ2
� for known σ2

� values. The WLS estimate v̂

coincides with the maximum likelihood one when the error vec-

tor η := [η1 · · · ηL ]T obeys the multivariate Gaussian distribu-

tion N (0,diag(σ2)) with σ2 := [σ2
1 · · · σ2

L ]T . Unfortunately,

due to the quadratic terms {vHH�v} inside the squares, the

WLS SE problem is nonconvex. Minimizing nonconvex objec-

tives, which typically exhibit many stationary points, is NP-hard

in general [18]. Hence, solving the problem in (12) is indeed

challenging.

PSSE approaches so far can be grouped as convex and non-

convex ones. The latter includes the “workhorse” Gauss-Newton

method, which is also typically employed in practice: Upon lin-

earizing the error function in the LS cost around a given estimate,

the minimizer of the norm of the resulting linearized approx-

imation is used to initialize the next iteration [11, Sec. 1.5].

Minimizing nonconvex functions, Gauss-Newton iterations can

be problematic due to: i) its sensitivity to the initial point; and, ii)

lack of convergence guarantee to even a stationary point [11].

Convex approaches via SDR [7], [10] express all data {z�}
as linear functions of the outer-product V := vvH ∈ C

N ×N .

Problem (12) is then convexified by dropping the nonconvex

constraint rank(V ) = 1. SDR-based methods seldom yield so-

lutions of rank-1 in the noisy case. Further eigen-decomposition

or randomization procedures are required to recover the estima-

tor v̂ from the SDR solution V̂ . Performance of SDR solutions

degrades when the data size is small, or when the set of mea-

surements does not include the voltage magnitude at all buses,

as will be demonstrated by our numerical results in Section V.

III. FEASIBLE POINT PURSUIT BASED SOLVERS

In this section, the FPP-based power flow and PSSE solvers

will be developed based on procedures distinct from existing it-

erative optimization and SDR-based SE approaches. To this end,

some basics of FPP are first reviewed. For nonconvex QCQPs,

FPP iteratively solves a series of convexified QCQPs obtained

with successive convex inner-restrictions of the original non-

convex feasibility set, and with additive slacks to approximate

the feasible solutions of the original nonconvex QCQP [20].

Specifically, starting with an initial guess, FPP first decomposes

the quadratic terms in all nonconvex constraints into their con-

vex and nonconvex parts by means of eigen-decomposition,

which can be efficiently carried out offline; then it linearizes

the nonconvex parts around the current iterate to obtain a re-

stricted convex QCQP. Due to restriction of the feasibility set,

the convexified QCQP may be infeasible. To sustain feasibility,

a slack variable is introduced for each relaxed constraint, with a

convex penalty on the slack variables added to the cost function,

which can enforce sparing use of slacks to produce solutions of

minimal constraint violation. The minimizer of the regularized

convex QCQP subproblem is taken as the next iterate, which will

be used as the linearization point of the nonconvex components

at the next iteration. This successive convex approximation and

feasibility-restoring procedure is repeated until a certain stop-

ping criterion is met. Further details of FPP can be found in

[20], [25].

Note that the power flow problem (10) consists of quadratic

equality constraints, which are not in the standard QCQP form.

To apply FPP, equalities are relaxed to inequalities, while pe-

nalizing the slack variables s := {s� ≥ 0}L
�=1 , yielding

minimize
v∈CN , {s� }L

l = 1

f(s) =
L

∑

l=1

s2
� (13a)

subject to
∣

∣z� − vHH�v
∣

∣ ≤ s� , 1 ≤ � ≤ L (13b)

where other choices of the convex penalty function f(·) include

the (weighted) �1 or �∞ norm. Problem (13) is equivalent to the

original power flow formulation (10) when the latter is feasible.

To see this, assume that the set of power flow equations in (10b)

admits (possibly more than one) feasible solutions. Clearly at

the optimum of (13), the objective reduces to zero, the slack

variables {s�}
L
�=1 take zero values, and all equalities in (13b)

are achieved, thus yielding a feasible solution to the set of power

flow equations in (10).

Similarly, our PSSE formulation in (12) minimizes a quartic

polynomial of v. To use FPP, problem (12) is reformulated as

minimize
v∈CN , {s� }L

l = 1

f(s) =

L
∑

l=1

w�s
2
� (14a)

subject to
∣

∣z� − vHH�v
∣

∣ ≤ s� , 1 ≤ � ≤ L (14b)

where the slack variables s := {s� ≥ 0}L
�=1 in this case re-

late to the deviations between noisy measurements {z�}L
�=1

and the actual quantities {vHH�v}
L
�=1 . Problem (14) can

be similarly shown equivalent to (12). Other convex penalty

functions f(·) in (14a) can also be selected. In particular,

if the error vector follows the multivariate Laplace distribu-

tion, i.e., η ∼ Laplace(0, b) with b := [b1 · · · bL ]T collect-

ing all scaling parameters, minimizing the �1-based function

f(s) =
∑L

�=1 w�s� with w� = 1/b� in (14) produces the maxi-

mum likelihood estimate [3], [7].

Evidently, the reformulated power flow and PSSE problems

are of the same form [cf. (13) and (14)], except for a minor

difference in the cost functions. Setting unit weights w� = 1 in

(14) reduces problem (14) to (13). Without loss of generality, we

will hereafter focus on the PSSE formulation (14), and develop

the novel FPP solver. The power flow problem can be readily

handled with all weights being w� = 1.

In this direction, let us first convert problem (14) into a stan-

dard QCQP. Note that constraints (14b) can be replaced by two

sets of inequalities to arrive at

minimize
v∈CN , s∈RL

L
∑

l=1

w�s
2
� (15a)

subject to vHH�v ≤ z� + s� , 1 ≤ � ≤ L (15b)

vH (−H�) v ≤ −z� + s� , 1 ≤ � ≤ L. (15c)

It is shown in Proposition 3 of the Appendix that any KKT

point of (15) is also a stationary point of (12). Evidently, problem
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(15) is nonconvex even for (semi)definite coefficient matrices

{H�}L
�=1 . Next we demonstrate how to take advantage of FFP

to solve the problem at hand in detail.

As discussed in Section II, there are two types of {H�} ma-

trices, one corresponding to the squared voltage magnitude, and

the other to power quantities. Type-I {H�} are positive semidef-

inite [cf. (7)], while Type-II are non-definite [cf. (8) and (9)]. For

ease of exposition, let us introduce the FPP constraint convexi-

fication procedure using one nonconvex quadratic constraint in

(15). Along the lines of FPP, consider the term vHH�v in (15b)

for some H� in (8), which can be decomposed into its convex

and nonconvex components as

vHH
(+)
� v + vHH

(−)
� v ≤ z� + s� (16)

where H
(+)
� and H

(−)
� represent the positive semidefinite (con-

vex) and negative semidefinite (nonconvex) parts of H� in (16),

respectively. For the nonconvex source vHH
(−)
� v in (16), an

inner linear restriction will be derived next.

The following inequality holds for any y ∈ C
N due to the

negative semidefiniteness of H
(−)
�

(v − y)HH
(−)
� (v − y) ≤ 0. (17)

Upon expanding the left-hand-side and rearranging terms, one

arrives at

vHH
(−)
� v ≤ 2�

{

yHH
(−)
� v

}

− yHH
(−)
� y.

Key to the FPP algorithm is replacing the nonconvexity stem-

ming from H
(−)
� in (16) or (15b) by its inner linear approxima-

tion at some given point y to yield

vHH
(+)
� v + 2�

{

yHH
(−)
� v

}

≤ z� + yHH
(−)
� y + s� . (18)

The strategy in selecting the linearization point y will be dis-

cussed shortly. In the same fashion, the nonconvex quadratic

constraints in (15c) can be replaced by

vH
(

− H
(−)
�

)

v− 2�
{

yHH
(+)
� v

}

≤ −z� − yHH
(+)
� y + s� .

(19)

Heed that the flexibility introduced by the slacks {s�}L
�=1 al-

ways restores the feasibility of the relaxed constraints, which

contributes to improved performance of FPP over other convex-

ification approaches [20]. In the presence of noise, the minimum

values required for {s� ≥ 0}L
� to satisfy (18) and (19) depend

on the measurement error contained in {z�}
L
�=1 .

The FPP method replaces all nonconvex constraints in (15b)

by their convex restriction (18), and those in (15c) by (19) to

derive a convexified QCQP regularized with slack variables to

ensure feasibility. Minimizing some convex penalty function of

the slacks {s�}
L
�=1 not only minimizes the fitting error between

{z�} and {vHH�v}, but also enforces sparing use of slacks and

promotes solutions of minimal constraint violation.

In a nutshell, the developed FPP-based PSSE solver can be

understood as follows. Starting with an initial point v0 (typ-

ically the flat voltage profile point, i.e., all-ones vector), our

FPP-based solver successively tackles a sequence of convex-

ified QCQPs with the linearization point being the current

iterate vk , which is the v-minimizer obtained by solving a

Algorithm 1: FPP-based Power Flow and PSSE Solvers.

Input: Data {(z� ,H�)}; weights {w� = 1} for power flow,

and {w� = 1/σ2
� } for PSSE; solution accuracy

ε > 0.

Initialization: set k = 0 and y = [1 · · · 1]T .

Repeat

{vk , sk} ← minimizer of problem (20)

y ← vk

k ← k + 1
until ‖vk − vk−1‖2 ≤ ε.

Output v̂ ← vk .

convexified QCQP at the previous iteration. Hence, assuming

available the v-minimizer vk at the (k + 1)-st iteration, our

FPP-based solver boils down to solving the following convexi-

fied QCQP subproblem

{vk+1 , sk+1} := arg min
v, s

L
∑

l=1

w�s
2
� (20a)

subject to

vHH
(+)
� v+ 2�

{

yHH
(−)
� v

}

≤ z� + yHH
(−)
� y+ s� (20b)

vHH
(−)
� v+ 2�

{

yHH
(+)
� v

}

≥ z� + yHH
(+)
� y− s� (20c)

∀� = 1, 2, . . . , L

where y := vk is the v-minimizer of (20) at the k-th iteration.

The QCQP in (20) is convex, which can be solved in polynomial

time using off-the-shelf solvers [27].

The FPP-based PSSE solver is summarized in Algorithm 1.

The following three properties of our FPP-based solver are worth

highlighting.

Remark 1 (Power flow analysis): Cast as a special instance

of PSSE, the power flow problem in (10) can be solved by our

developed FPP-based PSSE solver with unit weights w� = 1.

Remark 2 (Bad data removal): Besides the �2-norm in

(20a), other convex penalty functions can be used to fit dif-

ferent (noisy) data models. In particular, adopting the weighted

�1-norm (i.e., replacing s2
� with |s� |) yields the weighted least-

absolute-value estimator known for bad data cleansing [2], [28].

Remark 3 (Synchrophasors): Synchrophasors, if available,

can be easily incorporated into the developed PSSE formula-

tion (20). To see this, letting ζn = Φnv + εn collect the noisy

PMU data at bus n, hybrid estimation exploiting both nonlinear

SCADA measurements and linear PMU ones can be achieved

[29] with an additional data-fitting term for the PMU data in

(20a), namely,
∑

n∈P ‖ζn − Φnv‖2
2 , where P denotes the sub-

set of the PMU-instrumented buses.

In terms of computational complexity, Algorithm 1 involves

solving a convex QCQP of the form (20) per iteration, which

can be easily formulated as a second-order cone program. The

worst-case complexity is O((2N + 3L)3.5) [30], that is clearly

lower than O((2N + 2L)6.5) incurred by SDR [20]. Algorithm

1 usually takes a few iterations to converge. On the theoretical
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side, the next result establishes convergence of our developed

FPP-based solvers to a stationary point of the WLS formulation.

Proposition 1 (Global convergence of FPP-based solvers):

Let {vk}
∞
k=0 be any sequence generated by the FPP-based

solver in Algorithm 1. Then, all limit points of {vk}∞k=0 are

stationary points of the WLS problem in (12).

Proof: As elaborated in Section III, solving problem (15)

is equivalent to solving problem (12). The nonconvex QCQP

of complex-valued vector v ∈ C
N in (15) can be equiva-

lently posed as a QCQP of the expanded real-valued vector

u := [�(v)T �(v)T ]T ∈ R
2N , where the associated quadratic

matrices {H�} are given as

H� :=

[

�(H�) −�(H�)

�(H�) �(H�)

]

∈ R
2N ×2N , 1 ≤ � ≤ L.

Accordingly, each constraint in (15) can be re-expressed as the

difference between two convex functions. To see this, consider

e.g. constraint (15b), which can be rewritten as

(

uT H
(+)
� u − s�

)

−
(

uT (−H
(−)
� )u

)

≤ z� (21)

where H
(+)
� and H

(−)
� are the positive and negative semidef-

inite parts of H� , hence rendering terms uT H
(+)
� u − s� and

uT (−H
(−)
� )u both convex. Algorithm 1 is tantamount to an

application of the convex-concave procedure [22], [23] to the

reformulated QCQP in the real domain. Hence, the sequence

generated by Algorithm 1 converges to a stationary point of

(12) by invoking the results in [24, Th. 10]. �

IV. CRAMÉR-RAO BOUND FOR PSSE

According to standard results from estimation theory [31],

the variance of any unbiased estimator is lower bounded by

the Cramér-Rao lower bound (CRLB). Appreciating its key

role as a performance benchmark across different estimators,

this section establishes the CRLB for the fundamental PSSE

problem. The CRLB analysis of PSSE however, entails finding

derivatives (gradient and Hessian) of a real-valued function with

respect to multiple complex-valued variables. To address this

challenge, we call for advanced complex analysis tools based

on the so-termed Wirtinger derivative and Wirtinger’s calculus,

which are detailed in the Appendix. The following result pro-

vides a closed-form CRLB for any unbiased PSSE solver under

the AWGN model in (11), which can be directly used to assess

the performance of other PSSE solvers.

Proposition 2: Consider estimating the unknown state vector

v ∈ C
N from noisy data {z�}

L
�=1 obeying the model in (11),

where the noise η� is assumed Gaussian distributed with mean

zero and variance σ2
� , and is also independent across meters.

Then the covariance matrix of any unbiased estimator v̂ obeys

Cov(v̂) 	 [F †(v,v)]1:N,1:N (22)

where the Fisher information matrix is given by

F (v,v) =
[∑L

�=1
1

σ 2
�
(H�v)(H�v)H

∑L
�=1

1
σ 2

�
(H�v)(H�v)H

∑L
�=1

1
σ 2

�
(H�v)(H�v)H

∑L
�=1

1
σ 2

�
(H�v)(H�v)H

]

. (23)

Furthermore, F has at least rank-1 deficiency even when all

possible SCADA measurements are available.

The proof of Proposition 2 is deferred to the Appendix. Even

though the Fisher information matrix (FIM) in (23) is rank de-

ficient, the pseudo-inverse of FIM qualifies itself as a valid yet

generally looser lower bound on the mean-square error (MSE)

of any unbiased estimator [32]. This lower bound is often at-

tainable in practice, and is predictive of optimal estimator per-

formance [32], as will be demonstrated by our numerical tests

in Section V. The derived CRLB in (22) will be employed to

benchmark and compare performance of different PSSE solvers

next.

V. SIMULATED TESTS

In the section, we compare the proposed FPP-based solvers

in Algorithm 1 with existing alternatives including the WLS

via Gauss-Newton iterations (GN-based), and the SDR-based

solver (SDR-based) [10], [14] for both power flow and PSSE

tasks on several IEEE benchmark systems [33]. Throughout, all

reported numerical results were obtained by averaging over 100

independent Monte Carlo realizations. The three PSSE solvers

from noisy measurements are compared in terms of the mean-

square error
∑100

i=1 ‖v̂i − v‖2
2 /100, where v̂i is the returned

estimate at the i-th realization, and v the actual voltage profile.

In the absence of noise, performance of the power flow solvers

is assessed through the empirical success rate over 100 trials. A

success is declared for a trial if the returned power flow solution

v̂ incurs a relative violation on the given set of L power flow

equations, given by
∑L

�=1(z� − v̂HH� v̂)2/
∑L

�=1 z2
� less than

10−3 . (The reason why ‖v − v̂‖2
2 is not used is due to existence

of possibly multiple solutions v satisfying the set of power flow

equations.)

Different system quantities and voltage profiles were gener-

ated via the MATLAB-based toolbox MATPOWER [34]. The

Gauss-Newton method was implemented using the SE function

‘doSE.m’ in MATPOWER, which was modified to terminate

either upon convergence, or, when the condition number of the

approximate linearization exceeds 105 flagging explosion of the

iterates [10]. The SDR- and FPP-based solvers were realized via

the optimization modeling package YALMIP [35], as well as the

interior-point solver SeDuMi [27]. Furthermore, the flat-voltage

profile point was used as the initial guess for the Gauss-Newton

and FPP approaches. In order to fix the phase ambiguity, the

phase generated at the reference bus is set to 0 in all tests. The

FPP solver stops either when a maximum number 100 of iter-

ations are reached, or when the objective value improvement

between two consecutive iterations becomes smaller 10−5 . All

experiments were conducted on an Intel CPU @ 3.4 GHz (32

GB RAM) computer.

To evaluate the performance of the FPP-based solver for

power flow analysis, the first experiment simulates noiseless

data corresponding to the classical power flow problem. That is,

a total of L = 2N − 1 system variables were specified at the PV,

PQ, and slack buses to solve for 2N − 1 real-valued unknowns

in v ∈ C
N with the reference bus’s phase fixed at 0. The actual

voltage magnitude of each bus was uniformly distributed over

[0.9, 1.1], and its angle over [−θ, θ] with θ = 0.1π and 0.3π.
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TABLE I
EMPIRICAL SUCCESS RATE ON IEEE TEST SYSTEMS WITH θ = 0.1π

TABLE II
EMPIRICAL SUCCESS RATE ON IEEE TEST SYSTEMS WITH θ = 0.3π

Empirical success rate results on several IEEE benchmark sys-

tems were reported in Tables I and II for θ = 0.1π and 0.3π,

respectively. Apparently, our developed FPP-based power flow

solver solves exactly the classical power flow problem in all

simulated tests, while the SDR-based one fails with high proba-

bility. The Gauss-Newton method performs well when the initial

point lies close to the actual solution due to small θ in Table I,

while it diverges frequently for large θ values in Table II.

The second experiment compares the MSE performance of

various approaches relative to the analytical Cramér-Rao bound

in (22) on the IEEE 14-bus test system [33]. The actual voltage

magnitude and angle of each bus were generated uniformly over

[0.9, 1.1], and [−0.4π, 0.4π], respectively. To demonstrate the

SE performance evolution of various approaches with respect to

the increasing number of measurements, we performed 5 tests

denoted by the x-axis values {1, 2, 3, 4, 5}. Recall that the

SCADA system can measure seven types of power quantities,

namely, {|Vk |2 , P f
mn , P t

mn , Qf
mn , Qt

mn , Pn , Qn} in (7)-(9).

The first test simulated the three algorithms using all mea-

surements of the first three types {|Vk |
2 , P f

mn , P t
mn}, whose

mean-square error performance averaged over 100 independent

realizations were given by the y-values at the x-axis value of

1 in Fig. 1. The second to the fifth tests were implemented

by including in order an additional type of measurements from

{Qf
mn , Qt

mn , Pn , Qn}, which correspond to the x-values of 2

to 5 in Fig. 1.

Measurement noise was randomly and independently gener-

ated from Gaussian distribution having zero-mean and standard

deviation 0.1. The SDR estimator was recovered from the SDR

solution by picking the minimum-cost vector over the eigenvec-

tor and 5,000 zero-mean Gaussian randomizations with covari-

ance matrix being the SDR solution. The MSE as well as the

CRLB versus the types of measurements available are shown

in Fig. 1, corroborating the near-optimal performance relative

to the CRLB and robustness of our developed FPP-based PSSE

solver.

The last experiment on the IEEE 30-bus benchmark system

simulates a high signal-to-noise ratio and complete-data sce-

nario, where all voltage magnitude as well as all active power

flow at both sending- and receiving-ends were measured to

be advantageous to the SDR-based method [7]. Independent

zero-mean Gaussian noise was assumed to have standard de-

viations 0.05 for power measurements and 0.02 for voltage

Fig. 1. MSEs as well as CRLB versus types of measurements used on the
IEEE 14-bus test system using: i) Gauss-Newton based SE; ii) SDR-based SE;
and iii) FPP-based SE.

Fig. 2. Magnitude and angle estimation errors at each bus on the IEEE 30-bus
benchmark system using: i) Gauss-Newton based SE; ii) SDR-based SE; and
iii) FPP-based SE.

measurements. The actual voltage magnitude and angle of each

bus were generated uniformly at random over [0.9, 1.1], and

[−0.4π, 0.4π], respectively. Fig. 2 depicts the average magni-

tude and angle estimation errors of three PSSE schemes across

buses. The curves in Fig. 2 demonstrate the merits of the FPP-

based PSSE solver in this scenario. Regarding running time, the

Gauss-Newton scheme converges in 0.2 seconds typically, while

both the SDR-based and the FPP-based methods take about

10 seconds on average.

VI. CONCLUSIONS

Motivated by the inherent nonconvexity of the power flow

and PSSE tasks and leveraging recent advances in handling

nonconvex QCQPs, this work first reformulated power flow

and PSSE as a nonconvex QCQP. The resulting nonconvex

QCQP was subsequently solved by the FPP algorithm. The novel
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FPP-based solvers were shown to converge to a stationary

point of the WLS formulation. To fairly compare different

PSSE solvers from noisy data, the CRLB for PSSE assum-

ing an AWGN model was derived based on Wirtinger’s cal-

culus for functions over complex domains. Extensive numeri-

cal tests showed markedly improved performance of our FPP-

based solver for both power flow and PSSE tasks at the price

of increased runtime over competing Gauss-Newton- and SDR-

based alternatives on a variety of IEEE test systems.

Pertinent future research directions include developing dis-

tributed implementations for large-scale power networks by ex-

ploiting the natural low-rank and sparsity structure present in the

coefficient matrices {H�}. Another possibility consists of lever-

aging state-of-the-art approaches for tackling random quadratic

systems of equations to solve the power flow and PSSE prob-

lems [36]. Generalizing feasible point pursuit algorithms to

other nonconvex power grid control tasks such as stochastic

energy management, and distribution system-level power flow

and PSSE constitute meaningful directions for future research

as well.

APPENDIX

Proof of Proposition 2: For the AWGN model in (11) with

η ∼ N (0,diag(σ2)), the data likelihood can be written as

p(z;v) =
L

∏

�=1

1
√

2πσ2
�

exp

[

−

(

z� − vHH�v
)2

2σ2
�

]

and the negative log-likelihood f(v) = − ln p(z;v) is

f(v) =

L
∑

�=1

[

1

2σ2
�

(

z� − vHH�v
)2

+
1

2
ln

(

2πσ2
�

)

]

. (24)

The Fisher information matrix is defined as the Hessian of

the objective function f(v) ∈ R with respect to the variable

vector v ∈ C
N . So the task of deriving the Cramér-Rao bound

amounts to finding the Hessian of a real-valued function with

respect to a complex-valued vector. Recall from Wirtinger’s

calculus that f(v) can be equivalently rewritten as f(v,v) [37].

Upon introducing the conjugate coordinates [vT vT ]T ∈ C
2N ,

the so-called Wirtinger derivative is [37]

∂f

∂v
:=

∂f(v,v)

∂vT

∣

∣

∣

∣

v=constant

=

[

∂f

∂v1
· · ·

∂f

∂vN

]∣

∣

∣

∣

v=constant

∂f

∂v
:=

∂f(v,v)

∂vT

∣

∣

∣

∣

v=constant

=

[

∂f

∂v1
· · ·

∂f

∂vN

]∣

∣

∣

∣

v=constant

.

Our definitions here follow the convention in multivariate cal-

culus that derivatives are denoted by row vectors, and gradients

by column vectors. For brevity, let φ�(v,v) := z� − vT H�v.

Accordingly, the derivatives of f in (24) can be obtained as

∂f

∂v
=

L
∑

�=1

1

σ2
�

φ�(v,v)
∂φ�(v,v)

∂vT
(25a)

∂f

∂v
=

L
∑

�=1

1

σ2
�

φ�(v,v)
∂φ�(v,v)

∂vT
(25b)

where the partial derivatives of φ� can be found as

∂φ�(v,v)

∂vT
= −vT H� = −(H�v)H (26a)

∂φ�(v,v)

∂vT
= −vT HT

� = −(H�v)H. (26b)

In the conjugate coordinate system, the complex Hessian is

defined as

H := ∇2f =

[

Hvv Hvv

Hvv Hvv

]

(27)

whose blocks are given by

Hvv :=
∂

∂vT

(

∂f

∂v

)H

, Hvv :=
∂

∂vT

(

∂f

∂v

)H

Hvv :=
∂

∂vT

(

∂f

∂v

)H

, Hvv :=
∂

∂vT

(

∂f

∂v

)H

.

After substituting (25) and (26) into the last equations, and with

some tedious algebraic manipulations, the first block of H can

be obtained as

Hvv =
∂

∂vT

(

L
∑

�=1

−1

σ2
�

φ�(v,v)H�v

)

=

L
∑

�=1

1

σ2
�

(

H�v(H�v)H − φ�(v,v)H�

)

. (28)

The other blocks can be derived in a similar fashion. Upon

omitting algebraic details, the remaining three blocks can be

obtained as follows

Hvv =

L
∑

�=1

1

σ2
�

H�v(H�v)H (29)

Hvv =

L
∑

�=1

1

σ2
�

H�v(H�v)H (30)

Hvv =

L
∑

�=1

1

σ2
�

(

H�v(H�v)H − φ�(v,v)H�

)

. (31)

Evaluating the Hessian H in (27) [and its blocks in (28)-(31)]

at the true value of v, and taking the expectation with respect

to the noise vector η, it is easy to verify that E [φ�(v,v)] = 0.

Hence, the φ�-related terms disappear, so the FIM F := E[H] ∈
C

2N ×2N can be expressed as [38]

F =

[

∑L
�=1 H�v(H�v)H

/

σ2
�

∑L
�=1 H�v(H�v)H

/

σ2
�

∑L
�=1 H�v(H�v)H

/

σ2
�

∑L
�=1 H�v(H�v)H

/

σ2
�

]

=

L
∑

�=1

g�g
H
�

�
= GGH (32)

where G := [g1 · · · gL ] ∈ C
2N ×L is introduced to show the

rank-deficiency of F , whose �-th column is given as

g� :=

[

H�v/σ�

H�v/σ�

]

=

[

H�/σ� 0

0 H�/σ�

] [

v

v

]

. (33)
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To demonstrate the rank-1 deficiency of F , it suffices to find

a nonzero vector d ∈ C
2N such that Fd = 0. To this end, con-

sider the vector d :=
[

vT − vT
]T

�= 0. It is straightforward to

check that for all � = 1, 2, . . . , L

gH
� d =

[

vHH�/σ� vHH�/σ�

]

[

v

−v

]

= 0

therefore giving rise to Fd =
∑L

�=1 g�

(

gH
� d

)

= 0. That is,

for any nonzero v, there always exists a nonzero vector d =
[

vT − vT
]T

lying in the null space of F , hence verifying the

rank-1 deficiency of F . This concludes the proof.

Proposition 3: Any KKT point of problem (15) is a station-

ary point of problem (12).

Proof of Proposition 3: Assume without loss of generality

that w� = 1 for all 1 ≤ � ≤ L. It is clear that all stationary

points v∗ of (12) satisfy the first-order optimality condition [11,

Sec. 1.1], namely,

L
∑

�=1

[

(v∗)HH�v
∗ − z�

]

H�v
∗ = 0. (34)

Upon introducing λ := {λ� ≥ 0}L
�=1 and letting µ := {µ� ≥

0}L
�=1 denote the dual variables associated with constraints (15b)

and (15c), respectively, one can write the Lagrangian of (15) as

L(v, s;λ,µ) :=

L
∑

�=1

s2
� +

L
∑

�=1

λ�(v
HH�v − z� − s�)

+

L
∑

�=1

µ�(−vHH�v − s� + z�). (35)

Any pair of primal and dual optimal points (v∗, s∗, λ∗,µ∗) of

(15) obeys the KKT conditions [11, Sec. 5.1]

2s∗� − λ∗
� − µ∗

� = 0, 1 ≤ � ≤ L (36)

L
∑

�=1

λ∗
�H�v

∗ −
L

∑

�=1

µ∗
�H�v

∗
� = 0 (37)

λ∗
�((v

∗)HH�v
∗ − z� − s∗�) = 0, 1 ≤ � ≤ L (38)

µ∗
�((v

∗)HH�v
∗ − z� + s∗�) = 0, 1 ≤ � ≤ L (39)

λ∗
� ≥ 0, µ∗

� ≥ 0, 1 ≤ � ≤ L (40)

−s∗� ≤ (v∗)HH�v
∗ − z� ≤ s∗� , 1 ≤ � ≤ L. (41)

Consider first the trivial case, where s∗� = 0 for all 1 ≤ � ≤ L.

Using (41), all KKT points of the QCQP problem in (15) obey-

ing (v∗)HH�v
∗ − z� = 0 for all 1 ≤ � ≤ L, and thus satisfying

(34), are stationary points of the WLS problem of (12) too.

On the other hand, if there exists s∗� > 0 for certain � =
1, 2, . . . , L, collected in the set S ⊆ {1, 2, . . . , L}, then ex-

actly one of λ∗
� and µ∗

� is 0, which can be deduced by combining

conditions (36), (38), and (39). As such, assume again without

loss of generality that µ∗
� = 0 for all � ∈ S. Appealing to (36),

it holds that λ∗
� = 2s∗� > 0 for all � ∈ S, while all other λ�’s for

� /∈ S as well as all µ�’s for 1 ≤ � ≤ L are 0. Hence, by means

of (38), we have (v∗)HH�v
∗ − z� = s∗� for all � ∈ S, which in

conjunction with (38) yields
∑

�∈S

λ∗
�H�v

∗ =
∑

�∈S

2s∗�H�v
∗

=
∑

�∈S

2((v∗)HH�v
∗ − z�)H�v

∗ = 0

confirming
∑L

�=1((v
∗)HH�v

∗ − z�)H�v
∗ = 0, due to the fact

that (v∗)HH�v
∗ − z� = s� = 0 for all � /∈ S ⊆ {1, 2, . . . , L}.

Therefore, any KKT point of the QCQP problem (15) is a sta-

tionary point of the WLS problem (12) as well.
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