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Blind Radio Tomography

Daniel Romero

Abstract—From the attenuation measurements collected by a
network of spatially distributed sensors, radio tomography con-
structs spatial loss fields (SLFs) that quantify absorption of ra-
diofrequency waves at each location. These SLFs can be used for
interference prediction in (possibly cognitive) wireless communica-
tion networks, for environmental monitoring or intrusion detection
in surveillance applications, for through-the-wall imaging, for sur-
vivor localization after earthquakes or fires, etc. The cornerstone
of radio tomography is to model attenuation as the bidimensional
integral of the SLF of interest scaled by a weight function. Unfor-
tunately, existing approaches (i) rely on heuristic assumptions to
select the weight function and (ii) are limited to imaging changes
in the propagation medium or they require a separate calibration
step with measurements in free space. The first major contribu-
tion in this paper addresses (i) by means of a blind radio tomo-
graphic approach that learns the SLF together with the aforemen-
tioned weight function from the attenuation measurements. This
challenging problem is tackled by capitalizing on contemporary
kernel-based learning tools together with various forms of regu-
larization that leverage prior knowledge. The second contribution
addresses (ii) by means of a novel calibration technique capable of
imaging static structures without separate calibration steps. Nu-
merical tests with real and synthetic measurements validate the
efficacy of the proposed algorithms.

Index Terms—Radio tomography, tomographic
channel-gain cartography, kernel-based learning.

imaging,

1. INTRODUCTION

OMOGRAPHIC imaging enjoys extensive popularity and
widespread usage in natural sciences, notably in medical
imaging [1]. The principles underpinning tomographic methods
have been carried over to construct spatial loss fields (SLFs),
which are maps quantifying the attenuation experienced by elec-
tromagnetic waves in radio frequency bands at every spatial
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position [2]. To this end, pairs of collaborating sensors deployed
across the area of interest estimate the attenuation introduced
by the channel between them. Different from traditional tech-
niques, radio tomography relies on incoherent measurements,
meaning that no phase information is available. This simplifi-
cation saves the costs incurred by the accurate synchronization
necessary to acquire phase differences among waveforms re-
ceived at different sensors.

SLFs are instrumental in a number of problems, including
radio tomographic imaging [3], channel-gain cartography [4],
and device-free passive localization [2], [5], [6]. Specifically,
the absorption mapped by SLFs allows one to discern objects in
space, thus enabling radio tomographic imaging. The latter is of
interest in environmental monitoring for surveillance or intru-
sion detection [7]. Relative to existing alternatives using camera
sensors, radio tomographic imaging features lower hardware
costs and benefits from the ability of radio frequency waves to
penetrate physical structures such as trees or buildings. The lat-
ter characteristic also renders radio tomography appealing for
through-the-wall imaging [8], [9], which finds multiple mili-
tary and civilian applications including security and responding
to emergency situations. For example, these techniques may
enable the police or emergency services to locate persons in
burning buildings, survivors in rescue operations, or kidnap-
pers in hostage situations. Similarly, SLFs are also useful in
channel-gain cartography, where the goal is to predict the chan-
nel attenuation for links between arbitrary pairs of locations
where no sensors are deployed [4]. Channel-gain maps obtained
from SLFs solve the classical problem of predicting the inter-
ference inflicted to receivers that never transmit, as necessary
in cognitive radio and for unlicensed access to television broad-
casting systems [10]-[13], where the non-collaborative nature
of primary users precludes any direct form of channel estimation
between secondary transmitters and primary receivers. Further
applications of these channel-gain maps include network plan-
ning or interference management in cellular networks.

The fundamental principle underlying radio tomography is
that closely located radio links exhibit similar shadowing due
to the presence of common obstructions. This correlation is re-
lated to the geometry of the propagation environment by the
model in [14], [15], which prescribes that the attenuation due to
shadowing is proportional to the line integral of a bidimensional
SLF. Inspired by this model, [2], [3], [16] proposed various tech-
niques for radio tomographic imaging. Since these techniques
avoid calibration issues by estimating the difference between
the SLF at consecutive time instants instead of the SLF itself,
they reveal the location of changes in the propagation medium
but are unable to image static structures. Similarly, [9] builds
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on the arguments in [17] to replace the SLF with an indicator
function of the voxels that contain objects in motion and there-
fore also suffers from this limitation. In contrast, the scheme
in [7] estimates the SLF directly and therefore can image static
structures, but involves a separate calibration stage where these
structures are absent.

On the other hand, existing radio tomography approaches
approximate the aforementioned line integral by a discretized
version of the bidimensional integral of the SLF scaled by a
function that quantifies the impact of the absorption at each
spatial point on the shadowing attenuation of each link. In [2],
[31, [9], [16], such a weight function is the indicator of an
ellipse with foci at the transmitter and receiver positions and can
be used to account for attenuation introduced by obstructions
inside the first Fresnel ellipsoid. Building upon these works, [7]
proposes a more sophisticated weight function that assigns a
higher weight to obstructions that lie close to the straight path
between transmitter and receiver. However, since the choice
of these weight functions relies on heuristic arguments, one
expects that the performance of radio tomographic methods can
be improved upon adopting weight functions that capture the
actual propagation phenomena more accurately.

A different body of literature applies radio tomography for
channel-gain cartography. Remarkably, [18] applies the radio
tomographic model in [15] to motivate a linear time-evolution
model for channel-gain cartography. A more explicit applica-
tion of radio tomography is reported in [19], where the weight
function is constant on its elliptic support.

To sum up, all tomography works so far adopt a heuristically
selected weight function. In contrast, the main contribution of
this paper comprises three blind estimators that simultaneously
learn the weight function and the SLF from the sensor mea-
surements, therefore suppressing the need for heuristic consid-
erations. The learned weight function reveals insightful infor-
mation about propagation in the medium of interest and opens
the door to validating models such as those in [17] and [7]. As
noted in [3], the non-blind radio tomography problem, where the
weight function is given and only the SLF has to be estimated,
is intrinsically ill-posed. Hence, the blind problem addressed
here is “doubly” challenging, since besides the SLF one has to
estimate the weight function. To cope with these difficulties, the
weight function is estimated here through kernel-based learning,
a framework that is extensively popular due to its simplicity,
universality, and because it leads to computationally efficient
algorithms [20], [21]. On the other hand, the SLF is estimated
using three alternative regularization criteria.

The second contribution is a novel calibration technique that
simultaneously estimates the antenna gains and path loss ex-
ponent together with the SLF and weight function. Different
from existing alternatives, the proposed method can image static
structures and does not need a separate calibration stage where
obstacles are removed from the propagation medium. There-
fore, the present work constitutes a significant step forward in
most applications involving tomographic imaging, channel-gain
cartography, and device-free localization.

The rest of the paper is organized as follows. Section II re-
views the radio tomography model, states the problem, and
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defines the calibrated and uncalibrated scenarios. The novel
blind algorithm is then derived for the calibrated scenario
in Section III, and extended to the uncalibrated scenario in
Section IV. Numerical tests with synthetic as well as real mea-
surements are provided in Section V. Finally, Section VI sum-
marizes the main conclusions.

Notation: Sets are represented with calligraphic letters,
whereas bold uppercase (lowercase) letters denote matrices
(column vectors). I represents the 7' x 7' identity matrix
and 3, € RT its t-th column. Oy is the 7 x T all-zero
matrix. Superscript (-)7 stands for transposition, ® for the
Kronecker product, and || -|| for the Euclidean norm. The
vectorization of an M x N matrix X := [x1,...,Xy] is given
by vec(X) = [x{,...,xy]".

II. BACKGROUND AND PROBLEM STATEMENT

This section introduces the radio tomographic model and for-
mulates both the non-blind and blind radio tomography prob-
lems. Although the exposition builds on the framework in [7],
the proposed approaches readily carry over to the frameworks
in [2], [3], [16] and in [9] just by replacing the SLF here with
the difference of consecutive SLFs or with an indicator function
of voxels containing moving objects.

Consider a bidimensional geographical area indexed by the
closed and convex set A C R2. After averaging out the effects
of small-scale fading, the power gain between a transmiter lo-
cated at x € A and a receiver located at x’ € A is given in dB
units by

9(x,x") = grx(x) + grx(X')
—Y010logg |[x = x'[]a — s(x,x") (1)

where grx (x) (resp. grx(x')) is the combined gain of the power
amplifier (low-noise amplifier) and transmit (receive) antenna,
assumed omnidirectional for simplicity, of the sensor at x €
A (x' € A); v is the pathloss exponent, and s(x,x’) is the
attenuation due to shadow fading. All other constant factors have
been absorbed into grx(x) and grx(x’). The radio tomographic
model in [7], which generalizes that in [14] and [15], prescribes
that

S(X,x’):/Aw(x,x',i)f(i)df( 2)

where f: A — R, isthe SLFand w: A x Ax A — R, is
the weight function. Whereas f(X) represents the absorption
at location X € A, the weight w(x, x’, X) quantifies the impact
of the absorption at X on the attenuation between x and x’.
Typically, function w confers a greater weight w(x,x’,X) to
those locations x lying closer to the line segment between x and
x’ and its selection is described later in this section.

Equation (2) models how the nature and spatial distribution of
obstructions in the propagation medium affect the attenuation
between each pair of locations. Its relevance is twofold: first,
as mentioned in Section I, f represents absorption across space
and therefore it can be used for imaging; see Section V for
examples. Second, if both w and f are known, the gain between
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any two points x and x’ can be recovered through (1) and (2),
which enables channel-gain cartography.

The goal of radio tomography is to estimate f. To this end, NV
sensors at locations {x1,...,xy} C A collaboratively obtain
channel-gain measurements. Specifically, at time ¢t = 1,...,7,
sensors n(t) and n’(t) measure g(x, (¢), X,/(+)) €.g. through pi-
lot sequences, where n(t),n'(t) € {1,..., N} Vt. These mea-
surements can be expressed as §; = g(x71(t> Xpi(t)) T €, t =
1,...,T, where ¢, stands for measurement error. It is instruc-
tive to consider first that {orx (%) N1, {grx (%) }_ 1, and o
are known. In such a calibrated scenario, it follows from (1)
that {g; }1_, contain the same information as {3;}!_,, where

gt = gTX(Xn(t)) + gRX(Xn’(t))

—Y0101logyq |[%n(1) — Xnry |2 — Gt

= 5(Xp (), Xp(1)) — €& (3)

Thus, the fusion center may use {3;}/_, rather than {g; }/_,.
Section IV will deal with the uncalibrated scenario, where
{orx(xu)IV_1, {grx (%)}, or 7y are unknown.

So far, works on radio tomography have focused on the non-
blind problem, where one estimates f given w as well as the
measurements and radio locations { (X, (;), X,(1), 5) }{—,. The
rest of this section describes the selection of w for this problem
and formulates its blind counterpart.

The radio tomographic model originally proposed in [14,
eq. (4)] and [15, eq. (9)] is expressed in terms of a line integral as

s(x, x") 4)

1 X o e
_\Ax—ﬂbL dise

and can be viewed as a special case of (2) upon setting

w(x,x',X) =

where § stands for the Dirac delta. Informally, w in (5) is a func-
tion assigning a weight 1/4/]|x — x’||2 to the point X if it lies on
the line segment between x and x’, and zero otherwise. There-
fore, this model only accounts for the attenuation introduced by
obstacles obstructing the line of sight.

However, objects that do not obstruct the line of sight can
still introduce attenuation if they lie close to it. The approach
in [3] and [16] captures this effect by assigning the weight

1/4/]|x — x’||2 to all locations x lying within an ellipse with
foci at x and x’ through the function

0 iffx — %[ + % - X[
> x = X[l + /2. ©)

1/{/|lx —x'||2 otherwise

where A > 0 is selected by the user. The weight function in (6)
is referred to as normalized ellipse function in [7], where \ is
set to the carrier wavelength so that w(x, x’, %) for fixed x and
x’ becomes the indicator of the first Fresnel zone, defined by
(R R : [x— K] + Ik —x||> < x — x/[l2 + A/2}.
Despite capturing propagation effects more accurately than
(5), function (6) still assigns the same weight across all x within
the first Fresnel zone, regardless of the distance from x to the

w(x,x',x) =
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direct path. Since the attenuation introduced by an obstacle
is expected to be a decreasing function of this distance, [7]
proposes the following inverse area elliptical function'

w(x,x',x) = @)

if[x = x[l2 + [[x = X[l > [[x = X[l + A/2,
4

7Gs (3,3, %), [1x = X1} + (3 (x, %', %)

where 3 >0 is selected by the user and (3(x,x/,X):=
max!/2 (32, (|x = X[}z + % — ¥'[l2)2 — [x — x/[3). Similar
to (6), if x is out of the first Fresnel zone, then (7) prescribes
a zero weight. Otherwise, if x lies inside a smaller ellipse with
foci at x and x’ and minor axis length (3, then w(x, x’, X) equals
the reciprocal of the area of that ellipse. Finally, if X lies out-
side of the smaller ellipse but inside the first Fresnel zone, then
w(x,x’,X) equals the reciprocal of the area of the smallest el-
lipse containing X and having x and x’ as foci. Although w in (7)
is intuitively more accurate than its predecessors, the rationale
behind its selection is heuristic and may not accurately capture
real propagation phenomena. This idea is reinforced by noting
that (7), as well as (6), is discontinuous on the boundary of the
first Fresnel zone.

To bypass this need for heuristically selecting w, the goal of
this paper is to learn w from the data {(x;,(;), x,,l,/(t),éf,)}tT:l.
However, since f is generally unknown, the blind radio to-
mography problem involves learning w and f given just the
measurements { (X, (¢), X,/(+), 8 ) H1 -

III. BLIND RADIO TOMOGRAPHY ESTIMATORS

otherwise

As explained in Section II, existing radio tomography
schemes estimate f from the measurements {(Xn(t)uxn’(t)7
5)}_, after setting w based on heuristic arguments. In
contrast, the present section proposes three estimators that
obtain both f and w from {(x, (), Xu/(¢), )}, . To this end,
Sections III-A, III-B, and III-C formulate the estimation prob-
lem as a generic optimization program that can accommodate
different forms of prior information through regularization.
Subsequently, Section III-D proposes three solvers for different
regularizers and Section III-E introduces a computationally
efficient approximation for large measurement records.

A. Blind Radio Tomography as a Function Estimation Problem

In the radio tomography literature, the integral in (2) is
approximated as

(x,x', %) f(X) )

T Mh

where {X;}F | is a grid of points in A and c is a constant
that can be set to unity without loss of generality by absorbing
any scaling factor in f. It can be recognized from (8) that the
shadowing value s(x, x") depends on f only through its values

IThe disagreement between (7) and [7, eq. (19)] owes to typographical errors
in [7] and to the fact that the problem [7, eq. (20)] is solved here in closed form.
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at the grid points. Thus, it suffices to estimate the L entries
of the real-valued vector f := [f(X1),..., f(Xz)]' rather than
the function f(x) for all x. On the other hand, finding w is
more challenging since s(x,x’) may be evaluated at arbitrary
real-valued coordinate pairs (x,x’) and, therefore, w(x,x’, X)
needs to be known for all x,x’ € A. Therefore, estimating w
does not boil down to a vector estimation problem; instead, w
must be estimated as a function on A* C RS,

Intuitively, the number of measurements required to estimate
w with a target accuracy depends on the size of its domain, in
this case A3, Conversely, for a given number of measurements,
one expects that the larger the domain of w is, the lower the
quality of its estimate will be. For this reason, the rest of this
section presents two techniques to reduce the aforementioned
problem of estimating a function on .4 into the problem of
estimating a function on a smaller domain by exploiting the
known structure of w. It is worth noting that, despite enhancing
estimation performance, these techniques are not necessary for
the methods in this paper, which can handle in principle any
weight function defined on A°%.

The first technique relies on the assumption that w de-
pends on {x,x’,x} only through ¢; (x,x’) := ||x — X/||2 and
2 (x,%/,X) 1= ||x — X||2 + ||%X — %x/||2, which respectively de-
note the length of the line of sight from x to x” and path going
through the intermediate point x. In other words, such a weight
function can be expressed as’> w(x,x’, %) = w(p(x,x/,%)),
where ¢(x, X', %) := [¢1(x,X), d2(x,x’,%X)]". Besides being
intuitively reasonable, this assumption is satisfied by all weight
functions in the literature; cf. Section II. For example, the weight
function in (6) satisfies w(x, x’,X) = w(¢(x,x’, %)) for

o, if g > 1 + \/2
w(¢) = { 1/v/¢1  otherwise ®)

with ¢ := [¢1, ¢»]". Similarly, the weight function in (7) can
be expressed as w(x, x',X) = w(¢p(x,x’,x)) for

0, if g2 > ¢1 +A/2
w(¢) := ¢ min {Q(¢17¢2)7 Q (¢17 \/W) } 10
otherwise

where Q(¢1, o) 1= 4/(mp2+/d3 — ¢?). Thus, it is reasonable

to seek an estimate of w among the class of functions satisfying
this assumption, thereby reducing the problem of estimating a
function of 6 variables to that of estimating a function of only 2.
More formally, the sought w(¢) will be defined for ¢ € By :=
{peR?: 0< ¢ <D, ¢y < <2D} CR?, where D :=
SUDy wiea ||X — X||2 is the diameter of A and the condition
d1 < ¢y follows from the triangle inequality. Since 5y C R2,
this re-parameterization of w is expected to significantly reduce
the number of measurements needed to attain a target estimation
accuracy.

The second technique to reduce the size of the domain of w
relies on the fact that this function is expected to take significant

2 Although the symbol w is used to represent both functions w(x, x’, %) and
w(¢), there is no ambiguity since the former function takes 6 scalar arguments
whereas the latter takes 2.
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values only on a small region of the space, the rest being close
to zero. For example, one may assume along the lines of (9) and
(10) that w(x, x’, X) only takes non-zero values within a certain
ellipsoid with foci at x and x’, such as the Fresnel ellipsoid.
In terms of the re-parameterization in the previous paragraph,
such an ellipsoid can be expressed as the set of x such that
2(x,%x', %) < ¢1(x,x') + A/2, implying that one may confine
the support of w to the reduced set B := {¢p € R? : 0 < ¢ <
D, ¢1 < ¢2 <2D, ¢y < ¢1 + \/2} C By. Besides this ellip-
soid, the user can select further regions B or ellipsoids. Although
w is expected to take small values off the Fresnel ellipsoid, these
values may be estimated by selecting a larger domain set, even
B = B,. However, this operation comes with a caveat: as ex-
pected, the larger B, the larger the number of measurements
required to maintain the estimation performance. Therefore, the
size of this region must be increased only if a sufficiently large
number of measurements is given.

The two techniques introduced in this section are applied next
to simplify (8). To this end, apply the re-parameterization pre-
scribed by the first technique to obtain the shadowing attenuation
of the ¢-th measurement from (8), which yields

L
5(Xp (1), Xnr1)) Zw(¢(Xn(t),Xn/(t),fiz))f(iz) (1)

I=1
after absorbing cin f. The second technique, which confines the
support of w to BB, allows a reduction in the number of summands
in (11) by disregarding those with ¢(x,, (4), X,'(+), X1) ¢ B since
they result in w (¢ (x,, (1), X,/(1), %)) = 0. For the ¢-th measure-
ment, define

L= {l 1<I< L, ¢(Xn(t)7x71’(t)7il) € B}

= {7:,571,...,1},,[/1} (12)

as the set comprising the indices of the L; grid points X;
for which @(x,, (1), X,/(1),X;) is in B. With this notation, (11)
becomes

Ly
S(Xn(t)axn’(t)) = Zw((ﬁt,l)f(iiu) (13)
=1

where d)t,l = ¢(X7l(t)7xn,(t>7)~(ifj ), l= 1, cee ,Lt.

In short, expression (13), which was obtained through the
re-parameterization and support confinement techniques in this
section, will prove decisive to lower the computational complex-
ity and improve the estimation performance of the estimators
proposed in the rest of the paper.

B. Function Estimation via Kernel-Based Learning

Before formulating the blind radio tomography problem, this
section reviews kernel-based learning, which is one of the most
prominent frameworks for non-linear function estimation due to
its simplicity, good performance, low computational complex-
ity, and universality, in the sense that any continuous function
vanishing at infinity can be learned with arbitrary accuracy un-
der general conditions; see e.g. [21].

Kernel-based methods seek function estimates within large
classes of functions termed reproducing kernel Hilbert spaces
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(RKHSs) and defined as
H = {w(¢) = Zam((ﬁ,(ﬁi) a; ER; P, 0, € BVZ}.
i=1

In this expression, x : B x B — R denotes a reproducing Ker-
nel, which is a function satisfying two properties [20]: (i) it is
symmetric, meaning that (@1, ¢s) = k(¢a, P1), Vb1, P2 €
BB; and (ii) it is positive definite, meaning that:

oI
Zzo‘iai%(@,(ﬁi/) >0,

i=114d'=1
VI >0,{a;}_, CcR, {¢;}_, CcB.

A frequent choice of reproducing kernel is the so-called Gaus-
sian radial basis function

Lo g1 "

2
202

K(¢, @) = exp (

where 02 > 0 is a user-selected parameter. Being a Hilbert
space, H is endowed with an inner product and, conse-
quently, a norm. Specifically, the norm of a function w(¢) =
o, aik(¢, ¢i) € H canbe obtained through the reproducing
kernel as

|w|3, = Z Z k(@i Pir)

i=11i'=1

5)

and is used in kernel-based learning as a proxy for smoothness
of w. Different from other function norms such as the well-
known |[w]3 := [ |w(¢)|*d¢p, the RKHS norm does not require
(potentially multidimensional) integration. This constitutes a
major benefit of adopting the RKHS framework.

Nonparametric kernel-based estimates are commonly sought
as the minimizers of judiciously selected regularization criteria.
For the present problem, this paper proposes jointly estimating
w and }' as the minimizers of

1T Li 2
wﬂmwTZGPZM%mm»

(P1) min
=1 =1

+ pw w3 + pgo(F).

Here, the inner summation in the first term is the approxima-
tion (13) to s(xX;,(4), Xn/(4)). Therefore, the first term in (P1)
penalizes estimates w and f predicting shadowing values that
differ from those observed, i.e. {3;}7_,. The second term limits
overfitting by promoting smooth estimates for w, where the no-
tion of smoothness is captured by the RKHS norm in (15). The
convex regularizer p(f), for which different choices will be in-
vestigated in Section III-D, promotes a certain known structure
on f. Finally, the regularization parameters p,, > Oand yy > 0
balance the trade-off between data fitting, smoothness of w, and
compliance of f with prior knowledge. These parameters can
be selected by cross-validation; see e.g. [22, Sec. 1.3]. How-
ever, in practice, the extra computation time entailed by this
approach is bypassed by fixing these parameters to values that
exhibit acceptable performance in a broad collection of typical
scenarios.
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To sum up, this section formulated the blind radio tomography
problem as the function estimation problem in (P1). The rest of
the paper will deal with solving (P1).

C. Kernel-Based Estimate via the Representer Theorem

A solution to (P1) cannot be found in its present form by
numerical means since it involves a search over the infinite
dimensional space H. To circumvent this issue, this section
reformulates (P1) as an optimization problem in finitely many
scalar variables.

To this end, one can invoke the representer theorem [20],
[23], which establishes that the minimizer of (P1) with respect
to w admits the expansion

T L

W(p) = Z Z o 1K5(@, Py )

t=11=1

(16)

for some {a;;};;. In other words, although H contains all
functions of the form w(¢) = "7 a;k(¢, ¢;) for arbitrary
{¢:}?2, C Band {e;}?°, C R, one can confine the search for
an estimate to those functions of the form (16).

Clearly, after applying the representer theorem, finding the
optimum w amounts to finding the optimum {a; ; },; in (16). As
detailed below, these coefficients follow upon substituting (16)
into (P1). To this end, let

’{((ﬁt,la(ﬁt’,l) H((ﬁt,la(ﬁt’,L,/)

Kt,f,’ = (17)

"f(¢t,L,,¢t/,1) K(¢t,L,a¢t’,Lt/)
and let K; := [K;1,...,Ki 7] € RL %L where I := Zthl

L;. With this notation and w as in (16), the inner summation in
(P1) becomes

L L, T Ly
w(d)t,l)f(iit,l) = Z Z Zf(f(it,l)ﬁ(d)f,,h ¢t’,l’)at’,l'

=1 =1 t'=11'=1
=T/ K« (18)
where @ :=[011,Q192,...,00.0,,021,.--, aT«,LT]T € R*
and W, € {0,1}*L is a matrix whose entries (I,i; ),
I!=1,...,L;, are set to one and the rest are set to zero.
Matrix W; selects the entries of f:=[f(X1),...,f(X5)]"
with indices in £y, that is W, f = [f(X;, ,),..., f(Xi, )]

Likewise, from (15) and (16), the norm in the second term of
(P1) equals

T Ly Lfr

[l = > Y k(e dpi)ars = o Ka (19)

tt'=11=11=1

where K := [K],... K}|" € RExL,
Therefore, from (18) and (19), (P1) can be rewritten as

(P2)

L
min 75— r @ FO¥ Kal; + pwa Ka+ pgpp(f)
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where 3:=[3;,...,57]" and W :=diag{¥y,..
{0’ ].}i xLT .

To sum up, this section reformulated (P1) as (P2). Upon solv-
ing (P2), which will be addressed in the rest of the paper, one
directly obtains an estimate of f at the grid points {%X;}~ ,
through f. To recover the estimate of w, one just needs to sub-

stitute the entries of the « solving (P2) into (16).

.,\IIT}E

D. Numerical Solvers for Three Regularizers

This section presents three solvers for (P2) with different
choices of p(f) that promote certain known structure in f.

Although (P2) is not jointly convex in cx and f, it is separately
convex in each of these vectors. This motivates an alternating
minimization approach where, at step [S1], one minimizes (P2)
with respect to « for fixed f and, at step [S2], one minimizes
(P2) with respect to f for fixed cc. More specifically, in [S1],
one obtains the (k + 1)-stiterate e[k + 1], k = 0,1,..., as

1
alk + 1] = argmin T”é — AlK]a|? + poa' Ko (20)
[e7
where A[k] := (Ir @ fT[k])® K € RT*L depends on the

k-th iterate f[k]. From the first-order optimality conditions of
(20), its minimizer can be found in closed form as

alk+1] = (AT[KAK +p, TK) "ATK]z. QD)
To obtain an update equation for [S2], note that
T
(Ir @ fH¥ Ka=Iro f) (Z“ ® ‘I':Kta>
t=1
T
=) (oo K/ ¥,)f (22)

t=1

where ¢, is the ¢-th column of I7. From (22), one can express
the minimizer of (P2) with respect to f as

Flk+1) = axgmin 15— Blk+ UFI? +ugp(f) 23

where Bk] := Y], (i; ® a " [k]K,] ®;) € RT*L. Different
from (20), no closed-form solution for (23) necessarily exists.
Sections III-D1, III-D2, and III-D3 will present three solvers for
(23) with three different choices of p(f).

Table I summarizes the alternating minimization solver pre-
sented in this section. To minimize memory requirements and
execution time, one should avoid explicit construction of ¥
by accounting for its sparsity in the operations involving this
matrix. For instance, one can obtain (I @ f'[k])® " in [S1]
by selecting the appropriate columns of Iy @ f'[k]. Regard-
ing computational complexity, [S1] requires O(fﬁ) operations
whereas the number of operations in [S2] is determined by the
selected regularizer.

1) Tikhonov Regularizer: Following [3], one can adopt the
Tikhonov regularizer p(f) = f'Qf to promote certain forms
of smoothness on f by suitably selecting Q. The simplest
approach, which can also be adopted in absence of prior in-
formation on f, is to set Q = I';. The resulting regularizer
p(F) = ||£]|3 promotes smoothness since it heavily penalizes
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TABLE I
PROPOSED BLIND RADIO TOMOGRAPHY ALGORITHM. NOTE THAT ¥ AND
{¥,}I_, NEED NOT BE EXPLICITLY CONSTRUCTED

Input: {(X,(1); Xnr (1), 36) 10 Bfs Bws K.
1: For every t = 1,...,T, obtain
Ly in (12).
Di1 = D(Xn(e)s Xns (1), Xy, )s L =1, L.
2: Form K as described in Sec. III-C.
3: Initialize f[0].
4: For k=0,1,..
[S1] o update
Compute Ak] = (I7 @ fT [k)) ¥ TK.
Obtain ok + 1] via (21).
[S2] f update
Compute B[k + 1] := X7 (i, @ a7 [k + 1]K] T).
Obtain f[k + 1] via subroutines in Tables II, III, or IV.
5: Set () = 31y S/ arulk + 1k(, by y)-

Return function w(x, x’,X) := w(¢p(x,x’,%)) and vector f[k].

. until convergence

TABLE I
SUBROUTINE TO UPDATE f WITH TIKHONOV REGULARIZATION

Input: B[k + 1], 5, ug, Q.
I flk+1] =
[BT[k+1]Blk+ 1]+ psTQ]"'BT [k + 1]5.
Return f[k + 1].

estimates where a small fraction of the entries of f contain
most of the energy ||f||3. As a more sophisticated alternative,
one may set Q to be the inverse covariance matrix of f if the
latter is known [3], [7]. Such an approach is expected to yield
good performance when the SLF does not change drastically
over space, e.g. because the wave length is large relative to
objects in the area of interest. A further alternative is to set
o(f) = f'Qf = f'D'DF, where D is a matrix approximat-
ing a differential operator; e.g. D := [D/, (DyP)T]T, withD,.,
D,, and P as in Section III-D3; see also [16].

With the Tikhonov regularizer p(f) = f' Qf, the f update
in (23) can be expressed in closed form as

flk+1]

1
argmin |3 — B[k + UFIP + pr £ Qf

=[B'k+1B[k+1] + p;TQ] 'B' [k + 1]5.
(24)

Therefore, to obtain an estimate for « and f, one just has to
cyclically apply (21) and (24) until convergence, i.e., one has to
execute the algorithm in Table I with the subroutine in Table II
at step [S2]. The complexity of [S2] is therefore O(T?L + L?).

2) £y-Norm Regularization: When f exhibits a sparse pat-
tern, as occurs when the propagation medium comprises a re-
duced number of relatively small obstructions such as trees,
or when trying to detect intruders in areas without obstacles,
then one can adopt the sparsity-promoting ¢, -norm regularizer
p(f) = ||fl|1 in (P2) [24]. In this case, (23) becomes

1
flk+ 1) = argmin 5 = Ble+ UFI + gl flh. 25)
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TABLE III
SUBROUTINE TO UPDATE f WITH ¢} -NORM REGULARIZATION

Input: B[k + 1], 8, pug, f[K].
1: Forli=1,2,...,L

Si[k] == 8 — B_y[k]f—i[K].
filk +1] = T3] [Klbu[k]; oy T/2) /b [K] 13-
Return flk+ 1) = [filk +1],..., frlk+1]]T.

Expression (25) is an instance of the LASSO problem [25],
which can be efficiently solved e.g. by the fast iterative shrink-
age/thresholding algorithm (FISTA) [26].

To keep the computational complexity at a minimum, the
proposed algorithm inexactly solves (25) per iteration by ap-
plying a single-pass coordinate-descent algorithm over each
element of f [27, Sec. 3.8.6]. To derive the update rule for
f. let by[k] denote the I-th column of B[k], and let B_;[k]
represent the submatrix of B[k| resulting from removing the
l-th column. Similarly, f; denotes the [-th entry of f and f_,;
represents a subvector of f with its [-th entry removed. By defin-
ing §;[k] := 8 — B_;[k]f_;[k], the minimizer of the objective
in (25) at iteration k for fixed f_; can be written as f;[k + 1] =
argminy, (1/7)||8;[k] — bi[k] fi||3 + 11¢|f1| and can be solved
in closed form as f;[k + 1] = (8] [k]by[k]; s T'/2) /||y [K] |13,
where T is the soft-thresholding function defined as I'(s; u) :=
sign(s) max{0, |s| — p}. The f-update for [S2]in the algorithm
of Table I is summarized in Table III. The complexity of this
subroutine is O(T'L?).

3) Total Variation Regularization: Following [3], one can
adopt a total variation (TV) regularizer, which promotes sharp
edges by penalizing non-sparse spatial variations in the estimate
of f [28]. This is useful in presence of solid obstacles with a
relatively homogeneous absorption pattern across its volume,
e.g., concrete pillars or walls. Denote by F € R+ > a matrix
such that f = vec(F). Its (I,1')-th entry f; » corresponds to the
value of f at the (,!")-th point of a bidimensional grid resulting
from a spatial arrangement of the points {X; }ZL:1 in L, rows and
L, columns across .A. The so-called ¢; -based anisotropic TV is
defined as

L, L,-1 Ly L,-1
= Z Z |frrs1 = firl Jrz Z [freve = fivl

=1 I'—1 =1 =1
(26)

This regularizer adds the absolute differences of function val-
ues at grid points located consecutively along a row or a column.
Thus, this regularizer promotes sparsity in the local differences
and therefore promotes constant regions in the estimate of F'.
For p(f) = TV(F), expression (23) becomes

1
flk+1] = arg min 75— Blk + 1Uf|13 + ufTV(F). (27)

Efficiently solving (27) is challenging since the TV reg-

ularizer is not differentiable. TV problems are generally

solved either through algorithms based on the iterative
shrinkage-thresholding algorithm (ISTA) [29], or through the
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TABLE IV
SUBROUTINE TO UPDATE f WITH TV REGULARIZATION

Input: f[k], v, [k],~v,[k],da[k], dy[k], B[k + 1], 3, g, v, La.
[S2-1] Update dual variables:

I v,k + 1] = v, [k] + v(Da fk]

20 yylk+ 1] =, k] + v(DyPf[k]
[S2-2] Update d:

30 du[k+ 1] =D(Da fk] + v, [k + 1]/vs 15 /v).

40 dylk + 1] =T(DyP k] + vy [k + 1] /v; pg /).

[S2-3] Update f:

flk+1] =

— da[k]).
— dy[k]).

4

-1
(%BT[k +1)Blk +1] +vD] D, + m;jm)

X (Dl(ydz[k +1] =y [k + 1))

+ Dy (vdylk + 1] — v, [k + 1]) + %BT[k + 1}5).

Return f[k + 1], v, [k + 1], v, [k + 1], da[k + 1], dy [k + 1].

alternating direction method of multipliers (ADMM) [30], [31].
Unfortunately, ISTA-based algorithms for TV problems are typ-
ically complicated by proximal operations requiring inner loops
with additional iterative methods such as the gradient projec-
tion (GP) algorithm. To circumvent this challenge, this works
pursues an ADMM approach.

To simplify notation, express (26) in terms of f as TV(f) :=
1D, fll + |D,PF|l1, where P is a permutation ma-
trix such that Pf = vec(F'), whereas D, :=1;, ® A, €
REv(Ee=1)xL and Dy :=1;, ® Ay, € RE«(Ey=DxL a0t as
discrete gradlent operators where Al is an (I — 1) x [ matrix
whose (¢, j)-th entry is 1 if ¢ = j; —1 if j =i + 1; and O oth-
erwise. The resulting ADMM algorithm, whose derivation is
omitted due to lack of space, is presented in Table IV. This sub-
routine assumes that the algorithm in Table I initializes ~,[0],
d.[0], 7, [0], and d,[0]. One immediate possibility is to set
all their entries to zero. Parameter v is a user-selected step
size. The complexity of this subroutine can easily be seen to
be O(TL? + L*). Note that steps 1-4 decouple across entries,
which implies that they can be executed in parallel.

E. Approximation for a Large Number of Measurements

The complexity of the algorithm in Table I is dominated by
the inversion of the L x L matrix in (21), which requires O(L?)
operations. Applications demanding high-resolution estimates
of f or w, and hence requiring large T, may therefore incur
prohibitive complexity since L:= Zt 1 Ly increases with T'.
To bypass such a bottleneck, this section presents a technique
to approximate the solution to (P1) for large 7" at affordable
computational complexity.

Observe that the size of the aforementioned L x L matrix is
determined by the number of terms in the sum of (16), which,
as dictated by the representer theorem, equals the number of
different vectors {¢t,l}1L:tft:1 where w is evaluated in the
objective of (P1). Thus, the size of such a matrix would be
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reduced if w in (P1) were only evaluated at a reduced set
of vectors {qu }lel, where L < L. To this end, approximate
w(y ;) ~ w(p, () in (P1), where 7(¢,1) is such that ¢,

is the best approximation of ¢, ; in {¢, },, to obtain

1 o 2
weg}}%RL f ; <st B f(Xif.l)>
(P17)

In this case, applying the representer theorem shows that the
minimizer of (P1’) can be expressed as

=3

Q|

(28)

for some {&; }/-_,. The number of summands in (28) is poten-
tially much smaller than that in (16), which reduces the com-
plexity of [S1] and therefore that of the algorithm in Table I.
Before presenting a solver for (Pl’ ), investigating how to ap-
proximate the vectors in {¢; e o 1 =1 With those of {p}E is

in order. To this end, suppose that {¢z} ;. are given. In this case,
the best approximation of ¢, ; in the Euclidean distance sense is
o, (1,1, Where 7(¢,1) := argmin, ey 7y @) — @, ||2. Thus,
for given {c}&l},i: 1> one can naturally quantify the quality of
the approximation as the sum of errors ZtT:1 ZILL

Lyl —

.....

&, (.|l Thus, if {¢ }/, are not given, it would be prudent
to choose the {¢, }/ |, minimizing this total error. The result-
ing minimizers are the L centroids of {¢,, Z}IL:' ft:l obtained
through K-means with L clusters [22, Sec. 9.1]. However, if
running K-means on {¢t1,}lL:’ft:1 is too costly for the avail-
able computegtional resources, a fast alternative is to draw the
vectors {¢, }- ) uniformly at random and without replacement
from {¢, I}l 1t=1"

The rest of this section describes how to adapt the algorithm in
Table I to obtain a solver for (P1). The first step is to recognize
that all equations after (16) and all algorithms in Sections III-C
and III-D depend on { ¢, , }IL:’ ’ft:l only through K; ; in (17) and
its concatenations K, and K. Therefore, the sought solver arises
by replacing ¢, ; with qbr,, l=1,...,L;,t=1,...,T,in
the definitions of these matrices. Spemﬁcally, the (1, 1’)-th entry
of K, which according to (17) is given by (¢, ;, dp p),
must be replaced with x (g, (t0)5 LD, (¢,))- In matrix form, this is
equivalent to replacing K; » with R, KR/, where K is an L x
L matrix whose (I,1') element is #(¢;, @) and Ry isan L; x L
matrix whose [-th row has a one at the (¢, [)-th column and zeros
elsewhere. Likewise, K; must be replaced with R, KR', where
R:=[R/,...,R}]" € R\*! and K with RKR .

By applying these substitutions and letting & := [ay, ...,

a;]" := R"a, problem (P2) becomes
1 _
(P2") min —[|5 — (Ir ® f ) ¥ ' RKa|3
a,f T
+ pwa K+ ppp(f).

+ pw w3, + pgo(F).
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TABLE V
PROPOSED BLIND RADIO TOMOGRAPHY ALGORITHM IMPLEMENTING THE
COMPLEXITY REDUCTION APPROXIMATION IN SECTION III-E. NOTE THAT THE
SPARSE MATRICES ¥, {¥;}T_ {R;}7_,, AND R NEED
NOT BE EXPLICITLY CONSTRUCTED

Input: {(xn(t)7 Xn!(t)» ét)}?:l’ Kfs Hw, R, I_/
1: For every t = 1,...,T, obtain
Ly in (12).
d)f,l :_: ¢>(xn(t),xn/(t), }zit,l), = 1, ey Lt.
A, = clustering_algorithm({d)t’l}t,l,E).
: Obtain {r(t,1)}4;",_, using (ILE).
: Form K, {Rt}le, and R as described in Sec. III-E.
: Initialize f[0].
:For k=0,1,...
[S1] « updgte ~
Compute A[k] := (Ir ® f' [k])TTRK.
Obtain a[k + 1] via (29).
[S2] f update
Compute B[k + 1] := 320", (it @ & [k + JK R/ @)
Obtain f[k + 1] via subroutines in Tables II, III, or IV.
7: Set w(¢p) = Zl 1 ozl[k + 1]k(¢, ¢l)

Return function (x, x’, %) := w(¢(x,x’,%)) and vector f[k].

A B W N

until convergence

Whereas (P2) involves L+ L variables, (P2’) only has L+1L,a
potentially much smaller number that confirms the complexity
reduction stemming from the approximation in this section.
The alternating minimization algorithm proposed in
Section III-D to solve (P2) readily carries over to solve (P2’).
Specifically, the update in [S1] can be obtained from (20) by
replacing afk + 1] with a[k + 1], a with &, and A[k] with
Alk] := (Ir @ f"[k])® " RK. In this way, (21) becomes

-1

alk+1] = [A"[KA[K] +p, TK) " A[K5.  (29)

Similarly, the update in [S2] can be obtained from (23) if
BIk] is replaced with B[k] := Y_, (i, ® &' [k K R, ®,).
Therefore, the subroutines in Tables II, III, and IV can be in-
voked with B/[k], rather than B[k], as input argument. After the
optimum & has been found through this modified iteration, w
can be recovered through (28).

Table V summarizes the modified solver. Through the ap-
proximation in this section, (21) was replaced with (29). The
latter involves inverting an L x L matrix, which is considerably
smaller than the L x L matrix inverted in (21) and no longer in-
creases with T'. Thus, the approximation in this section reduced
the computational complexity from O(L?) to O(L?*). Moreover,
since the size of Blk| equals that of B[k], the complexity of
[S2] remains the same as in Table 1.

IV. RADIO TOMOGRAPHY FROM UNCALIBRATED
MEASUREMENTS

To simplify the presentation, Section III focused on the
scenario with known {grx(x,)}"_1, {grx(x,)}"_;, and 7,
where one can obtain the equivalent set of measurements
{8(%(t),X'n (1)) }i=1 using (3). Unfortunately, these gains and
path loss exponent are difficult to determine accurately in
practice. This section extends the method in Section III to
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accommodate the case with unknown {grx(x,)}_,,
{grx (%, )}Y_,, and ~yo, which will be referred to as the un-
calibrated scenario.

Several approaches are available to handle uncalibrated mea-
surements, including [2], [3], and [16], where gain measure-
ments are replaced with their difference between two time in-
stants. The unknown gains and path loss cancel out since they
remain constant over time. Applying such an approach, it be-
comes possible to reconstruct the difference between the SLF
at those time instants, which allows the detection of changes
in the propagation environment produced e.g. by intruders, but
does not allow for imaging static structures. A static structure
is imaged in [7] by gathering two measurement sets. The first
set is obtained before placing the structure and is used for es-
timating {grx(x,)}"_1, {grx(x,)}Y_;, and ;. The second
set is obtained after assembling the structure, and is used to
estimate f for a postulated w. Unfortunately, in many cases it
is not possible to remove a structure, e.g. a building, to cal-
ibrate the system. To circumvent the limitations of these ap-
proaches, this section proposes estimators for {grx(x,)}\_;,
{grx(x,)}Y_,,and vy, as well as f and w, from the uncalibrated
data {(Xn(t) » Xn/(t) gt)};:l’ where g; = g(X,, (t)» Xn’(t)) + &,
t=1,...,T;see Section II.

Let G := {71,...,7¢} denote the set of C' different gains,
either for transmission or reception, so that grx(x,) € G
and grx(x,) € G Vn. One can always form this set as G =
{grx(x1), ., 9tx (XN ), grx(X1), - . -, grx (X ) } and the pro-
posed algorithm will estimate these 2N gains. However, if
for example all sensors are of the same manufacturer and
model, one may assume that grx(x1) = ... = grx(Xv) =T
and grx(x1) = ... = grx(Xn) = 72. In this case, G contains
just two elements, which implies that only two gains have to
be estimated and the quality of the estimates will therefore be
higher for a given 7. Adding ¢, to both sides of (1) yields

g=Qv — P — 8 (30)
where ¢; := 101og;o([¢1(Xn (1), Xn/(1))s---» D1 (X (1), Xnr
(TN g:= g1, gr]"s v :=[n,...,7c]’, and Q€
R”T*C is a matrix whose t-th row has ones at columns c¢;
and ¢y, where ¢; and ¢, are such that grx(,)) = 7., and
9rx(Z/(1)) = Ve, - It follows from (30) that 5 = Qv — ¢ 7
_g:Q7_g’ where €2 := [_¢119] and ’7:[703717
.. ,’yc]T. Then, (P2’) can be reformulated as

1 - _
(2)  min 7§ Qv+ (1 © f)¥ RKal}
v, &,

+ NwdTKd + pr(f)'

Minimizing (P2”’) with respect to -y, one obtains
1 . =
min fﬂpﬁ @+ (Ir o f' )T RKa)lf3

+ pp ' Ka + pugp(f) (€20)
where P§ := Iy — Q(QTQ)’leT. Comparing (P2’) with
(31), it follows that the algorithm in Table V can be em-

ployed to solve (31) if one replaces 3 with —ng, Alk] with

2063

Ag k] := Pg(Ir @ f[k])® RK, and B[k] with Bg [k] :=
Pﬁ Zthl(it ® a'[KK/ R/ ¥,).

From (P2’) and (31), it follows that the price to be paid for
working with uncalibrated data is that the information along the
column span of Q is neglected. The dimension of this column
span therefore embodies the uncertainty in the calibration. As
expected, the larger this dimension, the larger the 7 required
to attain a target estimation performance. Since this dimension
increases with C) it is important to keep the cardinality of G as
low as possible. To this end, one can assign multiple sensors to
the same 7., € G. Although some error is incurred if the gains
of these sensors are not exactly ., , the overall effect of reducing
C may pay off.

V. NUMERICAL TESTS

This section demonstrates the benefits of the proposed al-
gorithms through numerical tests with both synthetic and real
measurements. MATLAB code is available at the author’s
websites.

A. Tests With Synthetic Measurements

This section illustrates the effectiveness of the proposed es-
timators in exploiting prior information through the three regu-
larizers in Section III-D. The test setup comprises a square area
A = [0.5,30.5]* over which the grid {x;}7°} := {1,...,30}?
of L = 900 points is defined. All experiments adopt the weight
function in (10) with A = 0.39 and 8 = 1.1, whereas a certain
f will be specified per experiment. A total of N = 80 sensors
were deployed uniformly at random outside of objects over A
at positions {x, }_, . The ¢-th measurement is obtained by the
n(t)-th and n’ (¢)-th sensors, where n(t) and n’(t) are drawn per
t uniformly at random without replacement from {1,..., N}.
To focus on the impact of regularization, the effects of calibra-
tion are not accounted for in this section, where {grx (%, ) }2_1,
{grx(x,)}N_,, and ~, are assumed known, implying that the
fusion center uses the “shadowing” measurements {3;}7_;.
The latter are generated as 3; := 5(X;,(4), Xp1(¢)) — €, Where
5(X(+) Xpr(1)) is obtained through (11) and {e,}I_, are in-
dependent zero-mean Gaussian random variables with vari-
ance o> = 1072 unless otherwise stated.

Algorithm in Table V was tested with a Gaussian kernel
k(@) = exp (—(1/2)( — &) ding ' {0?,03} (¢ — &)
and for the three regularizers in Section III-D. To cope with the
large number of variables, the support confinement technique
in Section III-A is applied with B equal to the first Fresnel
zone. To simplify computations, the technique in Section III-E
is applied by drawing the vectors {¢; }~_ | uniformly at random
and without replacement from {¢, }ZL:’ 'ﬂ:l.

The rest of the section presents three simulations illustrat-
ing the importance of appropriately capturing prior information
through the regularizers. Comparisons between the proposed
estimator and non-blind alternatives will be provided later.

The first experiment adopts the smooth function f(x)=
cr Yo5_y exp(—|x — %;][3 /0% ;). where %1 = [15,13]", %, =
[7,20]", %3 = [20,20]", 07 | = 13,07, = 0} 5 = 5,and ¢ is
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© (d

Fig. 1. (a) True SLF F; sensor locations are marked with red crosses. (b—d)
Estimated F using the algorithm in Table V (012 =5x%x 1072, 0% =7x 1072,
L = 2,500, T'= 3,000) with (b) Tikhonov regularization (Q = Igoo, ptp =
1074, My =2 X 1072); (c) ¢1-norm regularization (up = 2 x 1074, Ly =
9 x 1075); (d) TV regularization (g =4 x 107>, p,, =3 x 1074, p =1 x
1073).

a constant ensuring that max; f(%X;) = 1. Fig. la depicts the
values over the bidimensional grid of this function, whereas
Figs. 1b, lc, and 1d depict its estimates for the three regular-
izers. As expected, the SLF estimated through Tikhonov regu-
larization is the most satisfactory in this case since it promotes
smooth estimates, a property present in f.

In the second experiment, f was set to the sparse function
on Fig. 2a. The estimated SLFs for the three regularizers are
displayed in Figs. 2b, 2c, and 2d. In this case, the Tikhonov
regularizer does not yield a good estimate since f is not smooth.
In contrast, the ¢;-norm regularizer leads to the most accurate
estimate since it exploits the sparsity of f.

In the third experiment, f was set to the function with flat
regions and sharp edges on Fig. 3a. The estimates for the three
regularizers are depicted in Figs. 3b, 3c, and 3d. As expected,
the TV-regularizer leads to the best estimate since it promotes
the kind of structure present in f.

To illustrate the influence of the number of measurements,
the estimated SLF in the setup of Fig. 3d is depicted in Fig. 4
for different values of T'. As expected, the quality improves for
larger T'. A visually satisfying estimate is already obtained for
T = 1,800, which corresponds to T'/N = 22.5 measurements
per sensor on average. However, the needed 7" will be dictated
by the specific application and how quality is quantified there.

To corroborate the ability of the proposed algorithms for
learning w(¢1, ¢2), Fig. 5 compares the true w(¢y, o) with
w(¢1, ¢ ) obtained through the TV-regularized estimator in the
same setting as Fig. 3. Note that such functions are only de-
fined for ¢y > ¢ since the triangle inequality imposes that
¢9(x, %', X) > ¢ (x,x) forall (x,x’,%). The fit is satisfactory
except in the vicinity of the points where w is discontinuous
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Fig.2. (a) True SLF F; sensor locations are marked with red crosses. (b-d) Es-
timated F' using the algorithm in Table V (67 = 9 x 1072, 03 = 11 x 1072,
L = 2,500, T' = 3,000) with (b) Tikhonov regularization (Q = Igoo, pty =
4 %1074, Lty =9 %10 2); (c) ¢;-norm regularization (pp =5 x 10 5
o = 1 x 1073); (d) TV regularization (g = 1 x 1074, p1,, = 3.5 x 1074,
p=5x10"".

© (C))

Fig.3. (a) True SLF F; sensor locations are marked with red crosses. (b—d) Es-
timated F using the algorithm in Table V (012 =8x 1072, 0% =85x 1072,
L = 3,000, T = 3,000) with (b) Tikhonov regularization (Q = Igoo, p1p =
4 %1074, Ly =9 % 1072); (¢) ¢;-norm regularization (g = 1 x 1074,
pw =9 x 1075); (d) TV regularization (ug =5 x 1075, p,, =6 x 1074,
p=5x10"%

or non-smooth. These singularities are a consequence of the
simplifications adopted in [7] to postulate (10). However, it is
reasonable to expect that a function w accurately capturing the
actual physics must be continuous and smooth. Hence, these
discontinuities are just model artifacts, and the fitting error in
those regions is thus not a limitation.
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Fig. 4. Estimated F using the algorithm in Table V (012 =8x1072, a% =
8.5 x 1072, L = 3,000), with TV regularization (ug = 1 x 104,41, = 3.5 x
1074, p=5x107%). (a) T = 1,400; (b) T = 1,600; (c) T = 1,800; (d) T =
2,000.
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Fig. 5. True and estimated weight functions. Setting of Fig. 3d.

The next experiment investigates the robustness of the pro-
posed algorithms against measurement noise ¢;. The normal-
ized error || f — f|l2/||f]]2 averaged over sensor locations and
realizations of {¢; }7_, will be used to quantify estimation per-
formance, where f is the estimate of the true SLF f. Fig. 6
depicts this error as a function of the standard deviation of ¢,
in the setups of Figs. 1b, 2c, and 3d. Note that the latter figures
correspond to the right endpoint of the x-axis of Fig. 6. Observe
that the estimation performance is not meaningfully sensitive
to the standard deviation of the measurement noise so long as
the latter is sufficiently small. Moreover, Fig. 6 reveals that the
noise power used in Figs. 1b, 2c, and 3d is significantly high;
yet the SLF estimates there are of a visually good quality, which
suggests that the proposed algorithms are reasonably robust to
measurement noise.
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Fig. 6. Normalized error vs. noise standard deviation o, obtained by the

proposed blind algorithm with the (circle) Tikhonov regularization (setting of
Fig. 1b); (triangle) ¢1 -norm regularization (setting of Fig. 2¢); (diamond) TV
regularization (setting of Fig. 3d).

The rest of this section investigates the performance of the
proposed blind estimator in channel-gain cartography tasks. To
this end, the same setting as in Figs. 3 and 5 is adopted. From the
estimates }' and w obtained through the algorithm in Table V
with TV regularization, an estimate of the shadowing attenuation
§(x,x’) is obtained through (8) by replacing w and f with their
estimates. For comparison purposes, s(x,x’) is also estimated
from (8), where w(¢) is pre-specified and f is estimated through
non-blind radio tomography as [3]

2

(P3) + g TV(S)

1, & )
min 7 ; 5 — ;w(qﬁt,z)f(m,‘z)
which can be accomplished through the subroutine in Table I'V.

Since {grx (%, ) }Y_1, {grx (%, ) }2_, , and 7 are known, then
knowing s(x, x) amounts to knowing g(x, x’); cf. (1). This sug-
gests adopting a performance metric quantifying error between
s(x,x’) and 5(x,x’), such as the following normalized mean-

square error (NMSE)

O E{[[s(x, %) = 3(x,x)]?dxdx'}
NMSE := AE{fA 52 (x, X )dxdx'}

where the expectation is over the set {x, })_, of sensor lo-
cations and realizations of {e;}/_,. Simulations estimated the
expectations by averaging over 20 independent Monte Carlo
runs. The integrals are approximated by averaging the integrand
over 1,000 pairs (x,x’) chosen independently and uniformly at
random over A.

Fig. 7 compares the NMSE of the proposed blind algorithm
with that of its non-blind counterparts, which assume the weight
functions in (9) and (10). Since the measurements were gener-
ated using (10), the latter acts as a benchmark. Every point in
the horizontal axis corresponds to a different value of the pa-
rameter L, which in turn corresponds to a certain computational
complexity of the blind algorithm. It is observed that the NMSE
of the proposed algorithm approaches that of the clairvoyant
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Fig. 7. NMSE vs. number L of centroids obtained by (circle) the proposed

blind algorithm with the TV regularizer (setting of Fig. 3d with N = 200);
and (square, triangle) existing non-blind alternatives (p1p =5 x 1075, p=
5 x 10~*). The clairvoyant algorithm (square) adopts (10), which is the weight
function used to generate the measurements.

Cinder Block

20 ft

Fig. 8. Testbed configuration.

estimator for sufficiently large L. Moreover, assuming the wrong
weight function in the non-blind algorithm incurs a five-fold er-
ror, thus motivating blind methods.

B. Tests With Real Measurements

This section validates the proposed estimators using the real
data set in [7]. The test setup is depicted in Fig. 8, where
A =10.5,20.5)% is a square with sides of 20 feet (ft), over
which a grid {x;}?%% := {1,...,31}? of L = 961 points is de-
fined. A collection of 20 sensors measure the channel attenu-
ation at 2.425 GHz between pairs of sensor positions, marked
with the N = 80 crosses. Thus, although the number of actual
sensors is 20, the effective number of sensors is N = 80. To
estimate {grx(x,)}Y_1, {grx(%,)}2_;, and 7 using the ap-
proach in [7], a first set of 2,400 measurements was obtained
before placing the artificial structure in Fig. 8. Afterwards, the
structure comprising one pillar and six walls of different ma-
terials is assembled and 7' = 2,380 measurements {g; }/_, are
obtained.
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Fig. 9. Estimated F via (a) the non-blind algorithm in [3], [7] and
(b—d) the Algorithm in Table V (L = 2,500) with (b) Tikhonov regularization
(02 =1x10"1, 02 =15x107!, pup =6x10"2, p, =3 x1072); (0)
{1 -norm regularization (af =8x 1072, 0% =35x%x 1071, gy = 6x 1072,
pw = 1.3 x 107%); (d) TV regularization (7 = 1 x 107,62 = 3.8 x 1071,
py =43, py = 1.3 X 1073, p=1x 1073). The first set of measurements
was used to estimate path loss and sensor gains.

—o—(Tikhonov) ¢; = 13.5
—A— (Tikhonov) ¢; = 14
-&- (Tikhonov) ¢; = 14.5
- (Tikhonov) ¢; = 15
-@-(f1-norm) ¢ = 13.5
-A-(f1-norm) ¢ = 14
-@-({-norm) ¢, = 14.5
-5+ (f-norm) ¢, = 15
e+ (TV) ¢ =135

A (TV) ¢y = 14
EoEan| e (TV) ¢y = 14.5

2

<

< g ;

= B:gggﬂm -5-(TV) 61 = 15
0.4

AR I e

136 138 14 142 144 146 148 15 15,

<

o

[ee]
-

=)

o
N

Fig. 10. Estimated weight functions with (red) Tikhonov, (green) ¢; -norm,
and (blue) TV regularization.

The proposed algorithm is tested with the same kernel, sup-
port confinement, and approximation technique for large num-
ber of measurements as in Section V-A. Following [3] and [7],
the (1,1')-th entry of Q! in the Tikhonov regularizer was set
to (02/d5) exp(—||%X; — Xy ||2/Js ), which is the covariance of
f(%;) and f(%p) predicted by the exponential decay model
in [14], for 02 = 4.76 and J; = 1. An initial &[0] was obtained
through kernel ridge regression [20] with the Gausian kernel
by fitting (9), and f[0] was subsequently obtained from &[0]
through the subroutine associated with the selected p(f).
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Fig. 11. Estimated F via the algorithm in Section IV (L = 2,000) with (a) Tikhonov regularization ((Tf =8x1072, (r% =35x%x 1071, py =32x 1071,
fw =5 x 1073); (b) ¢ -norm regularization (02 = 8 x 1072, 02 =3.5x 107!, up =3 x 1073, 1, = 1.3 x 1071); and (c) TV regularization (o7 = 0.1,

02 =38x10"1, up=95%x10"3, py, =33x 1073, p=1x1073).

The first simulation mimics the setup in [7]. The first set of
measurements, i.e., the one obtained without the structure, is
used to estimate {grx (x,)}_1, {grx(x,)}2_;, and vy using
the approach in [7]. The calibrated measurements {ét}tT:l are
obtained from {g; }7_, by substituting these estimates into (3).

Fig. 9a displays the non-blind estimate of the SLF in [7],
which essentially solves P3 with TV(f) replaced with ' Qf,
where Q is as described earlier. Figs. 9b, 9¢c, and 9 d depict the
blind SLF estimates with Tikhonov, ¢;-norm, and TV regular-
ization, respectively. It is observed that both non-blind and the
blind algorithms with Tikhonov and TV regularizers success-
fully recover the form of the artificial structure in the propa-
gation medium, yet some artifacts are introduced possibly due
to the presence of the sensors and their tripods. The proposed
algorithms attain a reconstruction performance similar to the
non-blind algorithm without any need for heuristic assumptions
on w. Admittedly, the reconstructed SLF of the blind algorithms
is not visually much better than that for the non-blind algorithm
due to the low number of measurements. The reason is that
the total number of unknowns is 2,982 for the former and just
961 for the latter. On the contrary, for 7" sufficiently large, it is
expected that the blind algorithm achieves a better estimation
performance.

In the same setup, Fig. 10 shows the estimate of w obtained
with the proposed algorithm. The estimated curves are satisfac-
tory since they are smooth and approximately decreasing within
their support. Unfortunately, having limited the support of w to
the first Fresnel ellipsoid prevents us from estimating the values
of w off this ellipsoid. However, this limitation was imposed by
the low number of measurements relative to the number of un-
knowns; one would be able to obtain more satisfactory estimates
of w on larger supports if more measurements were available.

The second simulation assesses the performance of the pro-
posed algorithm in the uncalibrated scenario; see Section II.
In this scenario, the measurements in absence of the artificial
structure in Fig. 8 are not used. In contrast, the proposed algo-
rithm adopts the technique in Section IV with grx(x1) = ... =
grx(xy) = and grx(x1) =...= grx(Xy) = 2. Fig. 1
shows the proposed SLF estimates with the three regulariz-
ers. The estimate with TV regularization is visually acceptable,

0-6% -e-Blind I
0.685 -A- (Norm. ellipse) Non-blind |
0.68F -0~ (Inv. area) Non-blind
0.675F

€2

%3 0.67}

Z o= mmm AR T HAr-memresrfl
0.66
0.655F
0.651 D
0.64 ; ‘ ;

00 1000 1500 2000 2500
L
Fig. 12.  NMSE vs. number of centroids L obtained by (bold) the blind

algorithm with the Tikhonov regularizer (67 = 9 x 1072, 62 = 1.5 x 1071,
g =3x 1072, 1y = 2 x 1072); and the non-blind algorithm [3], [7] with
(dotted) the normalized ellipse (up = 1 x 1072); and (dashed) inverse area
elliptical (1 = 2 x 1073) models.

whereas for the Tikhonov regularizer, the result is similar to
Figs. 9a and 9b, where twice more measurements were used.
Therefore, the technique in Section IV suppresses the need for
separate calibration stages in which the structure is not present
while minimally sacrificing estimation performance.

The last simulation assesses the performance of the proposed
algorithm and competing alternatives for channel-gain cartog-
raphy. To compare with the algorithm in [7], the same set of
shadowing measurements as in the first simulation of this sec-
tion was used. Data {3, }7_; was split into a training set with
80% of the measurements and a test set {$; };c¢ with the remain-
ing 20%, where the indices in the set £ are drawn uniformly
at random without replacement from {1,...,7"}. Per Monte
Carlo run, the proposed algorithm is executed and an estimate
(X (1), Xp(1)) 1s Obtained per ¢ € & after substituting < and f
into (13). Afterwards, §(x, (1), X, (1)) is obtained by substitut-
ing 8(X,, (1), X,/(1)) as well as the estimates for {grx (x,)}2_ 1.
{grx (%, )}Y_,, and 7, from the calibration stage into (1). The
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performance metric is

E{Eteg(gt - g(xn(t) » Xn'(t) ))2}
E{> ee 97}

where the expectation is taken over realizations of £.

Fig. 12 depicts the NMSE of the proposed blind algorithm
with Tikhonov regularization along with that of the non-blind
algorithm in [7] with w as in (6) and (7). The advantage of
the proposed algorithm over its non-blind counterparts is man-
ifest for sufficiently large L. As before, greater differences are
expected for larger measurement sets.

NMSE :=

VI. CONCLUDING SUMMARY

This paper developed blind radio tomographic algorithms that
simultaneously estimate the spatial loss field and weight func-
tions of the radio tomographic model, which are of interest in
imaging and channel-gain cartography applications. Although
the problem is challenging, the usage of kernel-based learning
with various regularizers accounting for prior knowledge to-
gether with several complexity reduction techniques resulted in
an algorithm that needs no heuristic assumption on the weight
function, can image static structures, and does not require sepa-
rate calibration stages. The effectiveness of the novel algorithm
was corroborated through synthetic- and real-data experiments.
Future research will include online and distributed approaches
to blind radio tomography.
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