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Abstract—From the attenuation measurements collected by a
network of spatially distributed sensors, radio tomography con-
structs spatial loss fields (SLFs) that quantify absorption of ra-
diofrequency waves at each location. These SLFs can be used for
interference prediction in (possibly cognitive) wireless communica-
tion networks, for environmental monitoring or intrusion detection
in surveillance applications, for through-the-wall imaging, for sur-
vivor localization after earthquakes or fires, etc. The cornerstone
of radio tomography is to model attenuation as the bidimensional
integral of the SLF of interest scaled by a weight function. Unfor-
tunately, existing approaches (i) rely on heuristic assumptions to
select the weight function and (ii) are limited to imaging changes
in the propagation medium or they require a separate calibration
step with measurements in free space. The first major contribu-
tion in this paper addresses (i) by means of a blind radio tomo-
graphic approach that learns the SLF together with the aforemen-
tioned weight function from the attenuation measurements. This
challenging problem is tackled by capitalizing on contemporary
kernel-based learning tools together with various forms of regu-
larization that leverage prior knowledge. The second contribution
addresses (ii) by means of a novel calibration technique capable of
imaging static structures without separate calibration steps. Nu-
merical tests with real and synthetic measurements validate the
efficacy of the proposed algorithms.

Index Terms—Radio tomography, tomographic imaging,
channel-gain cartography, kernel-based learning.

I. INTRODUCTION

T
OMOGRAPHIC imaging enjoys extensive popularity and

widespread usage in natural sciences, notably in medical

imaging [1]. The principles underpinning tomographic methods

have been carried over to construct spatial loss fields (SLFs),

which are maps quantifying the attenuation experienced by elec-

tromagnetic waves in radio frequency bands at every spatial
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position [2]. To this end, pairs of collaborating sensors deployed

across the area of interest estimate the attenuation introduced

by the channel between them. Different from traditional tech-

niques, radio tomography relies on incoherent measurements,

meaning that no phase information is available. This simplifi-

cation saves the costs incurred by the accurate synchronization

necessary to acquire phase differences among waveforms re-

ceived at different sensors.

SLFs are instrumental in a number of problems, including

radio tomographic imaging [3], channel-gain cartography [4],

and device-free passive localization [2], [5], [6]. Specifically,

the absorption mapped by SLFs allows one to discern objects in

space, thus enabling radio tomographic imaging. The latter is of

interest in environmental monitoring for surveillance or intru-

sion detection [7]. Relative to existing alternatives using camera

sensors, radio tomographic imaging features lower hardware

costs and benefits from the ability of radio frequency waves to

penetrate physical structures such as trees or buildings. The lat-

ter characteristic also renders radio tomography appealing for

through-the-wall imaging [8], [9], which finds multiple mili-

tary and civilian applications including security and responding

to emergency situations. For example, these techniques may

enable the police or emergency services to locate persons in

burning buildings, survivors in rescue operations, or kidnap-

pers in hostage situations. Similarly, SLFs are also useful in

channel-gain cartography, where the goal is to predict the chan-

nel attenuation for links between arbitrary pairs of locations

where no sensors are deployed [4]. Channel-gain maps obtained

from SLFs solve the classical problem of predicting the inter-

ference inflicted to receivers that never transmit, as necessary

in cognitive radio and for unlicensed access to television broad-

casting systems [10]–[13], where the non-collaborative nature

of primary users precludes any direct form of channel estimation

between secondary transmitters and primary receivers. Further

applications of these channel-gain maps include network plan-

ning or interference management in cellular networks.

The fundamental principle underlying radio tomography is

that closely located radio links exhibit similar shadowing due

to the presence of common obstructions. This correlation is re-

lated to the geometry of the propagation environment by the

model in [14], [15], which prescribes that the attenuation due to

shadowing is proportional to the line integral of a bidimensional

SLF. Inspired by this model, [2], [3], [16] proposed various tech-

niques for radio tomographic imaging. Since these techniques

avoid calibration issues by estimating the difference between

the SLF at consecutive time instants instead of the SLF itself,

they reveal the location of changes in the propagation medium

but are unable to image static structures. Similarly, [9] builds
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on the arguments in [17] to replace the SLF with an indicator

function of the voxels that contain objects in motion and there-

fore also suffers from this limitation. In contrast, the scheme

in [7] estimates the SLF directly and therefore can image static

structures, but involves a separate calibration stage where these

structures are absent.

On the other hand, existing radio tomography approaches

approximate the aforementioned line integral by a discretized

version of the bidimensional integral of the SLF scaled by a

function that quantifies the impact of the absorption at each

spatial point on the shadowing attenuation of each link. In [2],

[3], [9], [16], such a weight function is the indicator of an

ellipse with foci at the transmitter and receiver positions and can

be used to account for attenuation introduced by obstructions

inside the first Fresnel ellipsoid. Building upon these works, [7]

proposes a more sophisticated weight function that assigns a

higher weight to obstructions that lie close to the straight path

between transmitter and receiver. However, since the choice

of these weight functions relies on heuristic arguments, one

expects that the performance of radio tomographic methods can

be improved upon adopting weight functions that capture the

actual propagation phenomena more accurately.

A different body of literature applies radio tomography for

channel-gain cartography. Remarkably, [18] applies the radio

tomographic model in [15] to motivate a linear time-evolution

model for channel-gain cartography. A more explicit applica-

tion of radio tomography is reported in [19], where the weight

function is constant on its elliptic support.

To sum up, all tomography works so far adopt a heuristically

selected weight function. In contrast, the main contribution of

this paper comprises three blind estimators that simultaneously

learn the weight function and the SLF from the sensor mea-

surements, therefore suppressing the need for heuristic consid-

erations. The learned weight function reveals insightful infor-

mation about propagation in the medium of interest and opens

the door to validating models such as those in [17] and [7]. As

noted in [3], the non-blind radio tomography problem, where the

weight function is given and only the SLF has to be estimated,

is intrinsically ill-posed. Hence, the blind problem addressed

here is “doubly” challenging, since besides the SLF one has to

estimate the weight function. To cope with these difficulties, the

weight function is estimated here through kernel-based learning,

a framework that is extensively popular due to its simplicity,

universality, and because it leads to computationally efficient

algorithms [20], [21]. On the other hand, the SLF is estimated

using three alternative regularization criteria.

The second contribution is a novel calibration technique that

simultaneously estimates the antenna gains and path loss ex-

ponent together with the SLF and weight function. Different

from existing alternatives, the proposed method can image static

structures and does not need a separate calibration stage where

obstacles are removed from the propagation medium. There-

fore, the present work constitutes a significant step forward in

most applications involving tomographic imaging, channel-gain

cartography, and device-free localization.

The rest of the paper is organized as follows. Section II re-

views the radio tomography model, states the problem, and

defines the calibrated and uncalibrated scenarios. The novel

blind algorithm is then derived for the calibrated scenario

in Section III, and extended to the uncalibrated scenario in

Section IV. Numerical tests with synthetic as well as real mea-

surements are provided in Section V. Finally, Section VI sum-

marizes the main conclusions.

Notation: Sets are represented with calligraphic letters,

whereas bold uppercase (lowercase) letters denote matrices

(column vectors). IT represents the T × T identity matrix

and it ∈ R
T its t-th column. 0T is the T × T all-zero

matrix. Superscript (·)� stands for transposition, ⊗ for the

Kronecker product, and || · || for the Euclidean norm. The

vectorization of an M × N matrix X := [x1 , . . . ,xN ] is given

by vec(X) := [x�
1 , . . . ,x�

N ]�.

II. BACKGROUND AND PROBLEM STATEMENT

This section introduces the radio tomographic model and for-

mulates both the non-blind and blind radio tomography prob-

lems. Although the exposition builds on the framework in [7],

the proposed approaches readily carry over to the frameworks

in [2], [3], [16] and in [9] just by replacing the SLF here with

the difference of consecutive SLFs or with an indicator function

of voxels containing moving objects.

Consider a bidimensional geographical area indexed by the

closed and convex set A ⊂ R
2 . After averaging out the effects

of small-scale fading, the power gain between a transmiter lo-

cated at x ∈ A and a receiver located at x′ ∈ A is given in dB

units by

g(x,x′) = gTX(x) + gRX(x′)

− γ010 log10 ||x − x′||2 − s(x,x′) (1)

where gTX(x) (resp. gRX(x′)) is the combined gain of the power

amplifier (low-noise amplifier) and transmit (receive) antenna,

assumed omnidirectional for simplicity, of the sensor at x ∈
A (x′ ∈ A); γ0 is the pathloss exponent, and s(x,x′) is the

attenuation due to shadow fading. All other constant factors have

been absorbed into gTX(x) and gRX(x′). The radio tomographic

model in [7], which generalizes that in [14] and [15], prescribes

that

s(x,x′) =

∫

A
w(x,x′, x̃)f(x̃)dx̃ (2)

where f : A → R+ is the SLF and w : A×A×A → R+ is

the weight function. Whereas f(x̃) represents the absorption

at location x̃ ∈ A, the weight w(x,x′, x̃) quantifies the impact

of the absorption at x̃ on the attenuation between x and x′.
Typically, function w confers a greater weight w(x,x′, x̃) to

those locations x̃ lying closer to the line segment between x and

x′ and its selection is described later in this section.

Equation (2) models how the nature and spatial distribution of

obstructions in the propagation medium affect the attenuation

between each pair of locations. Its relevance is twofold: first,

as mentioned in Section I, f represents absorption across space

and therefore it can be used for imaging; see Section V for

examples. Second, if both w and f are known, the gain between
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any two points x and x′ can be recovered through (1) and (2),

which enables channel-gain cartography.

The goal of radio tomography is to estimate f . To this end, N
sensors at locations {x1 , . . . ,xN } ⊂ A collaboratively obtain

channel-gain measurements. Specifically, at time t = 1, . . . , T ,

sensors n(t) and n′(t) measure g(xn(t) ,xn ′(t)) e.g. through pi-

lot sequences, where n(t), n′(t) ∈ {1, . . . , N} ∀t. These mea-

surements can be expressed as ǧt = g(xn(t) ,xn ′(t)) + εt , t =
1, . . . , T , where εt stands for measurement error. It is instruc-

tive to consider first that {gTX(xn )}N
n=1 , {gRX(xn )}N

n=1 , and γ0

are known. In such a calibrated scenario, it follows from (1)

that {ǧt}T
t=1 contain the same information as {št}T

t=1 , where

št := gTX(xn(t)) + gRX(xn ′(t))

− γ010 log10 ||xn(t) − xn ′(t) ||2 − ǧt

= s(xn(t) ,xn ′(t)) − εt . (3)

Thus, the fusion center may use {št}T
t=1 rather than {ǧt}T

t=1 .

Section IV will deal with the uncalibrated scenario, where

{gTX(xn )}N
n=1 , {gRX(xn )}N

n=1 or γ0 are unknown.

So far, works on radio tomography have focused on the non-

blind problem, where one estimates f given w as well as the

measurements and radio locations {(xn(t) ,xn ′(t) , št)}T
t=1 . The

rest of this section describes the selection of w for this problem

and formulates its blind counterpart.

The radio tomographic model originally proposed in [14,

eq. (4)] and [15, eq. (9)] is expressed in terms of a line integral as

s(x,x′) =
1

√

‖x − x′‖2

∫ x ′

x

f(x̃)dx̃ (4)

and can be viewed as a special case of (2) upon setting

w(x,x′, x̃) =
1

√

‖x − x′‖2

∫ x ′

x

δ(||x̃ − x̌||2)dx̌ (5)

where δ stands for the Dirac delta. Informally, w in (5) is a func-

tion assigning a weight 1/
√

‖x − x′‖2 to the point x̃ if it lies on

the line segment between x and x′, and zero otherwise. There-

fore, this model only accounts for the attenuation introduced by

obstacles obstructing the line of sight.

However, objects that do not obstruct the line of sight can

still introduce attenuation if they lie close to it. The approach

in [3] and [16] captures this effect by assigning the weight

1/
√

‖x − x′‖2 to all locations x̃ lying within an ellipse with

foci at x and x′ through the function

w(x,x′, x̃) :=

⎧

⎪

⎨

⎪

⎩

0 if ‖x − x̃‖2 + ‖x̃ − x′‖2

> ‖x − x′‖2 + λ/2,

1/
√

‖x − x′‖2 otherwise

(6)

where λ > 0 is selected by the user. The weight function in (6)

is referred to as normalized ellipse function in [7], where λ is

set to the carrier wavelength so that w(x,x′, x̃) for fixed x and

x′ becomes the indicator of the first Fresnel zone, defined by

{x̃ ∈ R
2 : ‖x − x̃‖2 + ‖x̃ − x′‖2 ≤ ‖x − x′‖2 + λ/2}.

Despite capturing propagation effects more accurately than

(5), function (6) still assigns the same weight across all x̃ within

the first Fresnel zone, regardless of the distance from x̃ to the

direct path. Since the attenuation introduced by an obstacle

is expected to be a decreasing function of this distance, [7]

proposes the following inverse area elliptical function1

w(x,x′, x̃) := (7)

⎧

⎪

⎨

⎪

⎩

0 if ‖x − x̃‖2 + ‖x̃ − x′‖2 > ‖x − x′‖2 + λ/2,

4

πζβ (x,x′, x̃)
√

‖x − x′‖2
2 + ζ2

β (x,x′, x̃)
otherwise

where β > 0 is selected by the user and ζβ (x,x′, x̃) :=
max1/2

(

β2 , (‖x − x̃‖2 + ‖x̃ − x′‖2)
2 − ‖x − x′‖2

2

)

. Similar

to (6), if x̃ is out of the first Fresnel zone, then (7) prescribes

a zero weight. Otherwise, if x̃ lies inside a smaller ellipse with

foci at x and x′ and minor axis length β, then w(x,x′, x̃) equals

the reciprocal of the area of that ellipse. Finally, if x̃ lies out-

side of the smaller ellipse but inside the first Fresnel zone, then

w(x,x′, x̃) equals the reciprocal of the area of the smallest el-

lipse containing x̃ and having x and x′ as foci. Although w in (7)

is intuitively more accurate than its predecessors, the rationale

behind its selection is heuristic and may not accurately capture

real propagation phenomena. This idea is reinforced by noting

that (7), as well as (6), is discontinuous on the boundary of the

first Fresnel zone.

To bypass this need for heuristically selecting w, the goal of

this paper is to learn w from the data {(xn(t) ,xn ′(t) , št)}T
t=1 .

However, since f is generally unknown, the blind radio to-

mography problem involves learning w and f given just the

measurements {(xn(t) ,xn ′(t) , št)}T
t=1 .

III. BLIND RADIO TOMOGRAPHY ESTIMATORS

As explained in Section II, existing radio tomography

schemes estimate f from the measurements {(xn(t) ,xn ′(t) ,
št)}T

t=1 after setting w based on heuristic arguments. In

contrast, the present section proposes three estimators that

obtain both f and w from {(xn(t) ,xn ′(t) , št)}T
t=1 . To this end,

Sections III-A, III-B, and III-C formulate the estimation prob-

lem as a generic optimization program that can accommodate

different forms of prior information through regularization.

Subsequently, Section III-D proposes three solvers for different

regularizers and Section III-E introduces a computationally

efficient approximation for large measurement records.

A. Blind Radio Tomography as a Function Estimation Problem

In the radio tomography literature, the integral in (2) is

approximated as

s(x,x′) � c

L
∑

l=1

w(x,x′, x̃l)f(x̃l) (8)

where {x̃l}L
l=1 is a grid of points in A and c is a constant

that can be set to unity without loss of generality by absorbing

any scaling factor in f . It can be recognized from (8) that the

shadowing value s(x,x′) depends on f only through its values

1The disagreement between (7) and [7, eq. (19)] owes to typographical errors
in [7] and to the fact that the problem [7, eq. (20)] is solved here in closed form.
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at the grid points. Thus, it suffices to estimate the L entries

of the real-valued vector f := [f(x̃1), . . . , f(x̃L )]� rather than

the function f(x) for all x. On the other hand, finding w is

more challenging since s(x,x′) may be evaluated at arbitrary

real-valued coordinate pairs (x,x′) and, therefore, w(x,x′, x̃)
needs to be known for all x,x′ ∈ A. Therefore, estimating w
does not boil down to a vector estimation problem; instead, w
must be estimated as a function on A3 ⊂ R

6 .

Intuitively, the number of measurements required to estimate

w with a target accuracy depends on the size of its domain, in

this case A3 . Conversely, for a given number of measurements,

one expects that the larger the domain of w is, the lower the

quality of its estimate will be. For this reason, the rest of this

section presents two techniques to reduce the aforementioned

problem of estimating a function on A3 into the problem of

estimating a function on a smaller domain by exploiting the

known structure of w. It is worth noting that, despite enhancing

estimation performance, these techniques are not necessary for

the methods in this paper, which can handle in principle any

weight function defined on A3 .

The first technique relies on the assumption that w de-

pends on {x,x′, x̃} only through φ1(x,x′) := ||x − x′||2 and

φ2(x,x′, x̃) := ||x − x̃||2 + ||x̃ − x′||2 , which respectively de-

note the length of the line of sight from x to x′ and path going

through the intermediate point x̃. In other words, such a weight

function can be expressed as2 w(x,x′, x̃) = w(φ(x,x′, x̃)),
where φ(x,x′, x̃) := [φ1(x,x′), φ2(x,x′, x̃)]�. Besides being

intuitively reasonable, this assumption is satisfied by all weight

functions in the literature; cf. Section II. For example, the weight

function in (6) satisfies w(x,x′, x̃) = w(φ(x,x′, x̃)) for

w(φ) :=

{

0, if φ2 > φ1 + λ/2

1/
√

φ1 otherwise
(9)

with φ := [φ1 , φ2 ]
�. Similarly, the weight function in (7) can

be expressed as w(x,x′, x̃) = w(φ(x,x′, x̃)) for

w(φ) :=

⎧

⎪

⎨

⎪

⎩

0, if φ2 > φ1 + λ/2

min
[

Ω(φ1 , φ2), Ω
(

φ1 ,
√

φ2
1 + β2

) ]

otherwise

(10)

where Ω(φ1 , φ2) := 4/(πφ2

√

φ2
2 − φ2

1). Thus, it is reasonable

to seek an estimate of w among the class of functions satisfying

this assumption, thereby reducing the problem of estimating a

function of 6 variables to that of estimating a function of only 2.

More formally, the sought w(φ) will be defined for φ ∈ B0 :=
{φ ∈ R

2 : 0 ≤ φ1 ≤ D, φ1 ≤ φ2 ≤ 2D} ⊂ R
2 , where D :=

supx,x ′∈A ||x − x′||2 is the diameter of A and the condition

φ1 ≤ φ2 follows from the triangle inequality. Since B0 ⊂ R
2 ,

this re-parameterization of w is expected to significantly reduce

the number of measurements needed to attain a target estimation

accuracy.

The second technique to reduce the size of the domain of w
relies on the fact that this function is expected to take significant

2Although the symbol w is used to represent both functions w(x, x′, x̃) and
w(φ), there is no ambiguity since the former function takes 6 scalar arguments
whereas the latter takes 2.

values only on a small region of the space, the rest being close

to zero. For example, one may assume along the lines of (9) and

(10) that w(x,x′, x̃) only takes non-zero values within a certain

ellipsoid with foci at x and x′, such as the Fresnel ellipsoid.

In terms of the re-parameterization in the previous paragraph,

such an ellipsoid can be expressed as the set of x̃ such that

φ2(x,x′, x̃) ≤ φ1(x,x′) + λ/2, implying that one may confine

the support of w to the reduced set B := {φ ∈ R
2 : 0 ≤ φ1 ≤

D, φ1 ≤ φ2 ≤ 2D, φ2 ≤ φ1 + λ/2} ⊂ B0 . Besides this ellip-

soid, the user can select further regionsB or ellipsoids. Although

w is expected to take small values off the Fresnel ellipsoid, these

values may be estimated by selecting a larger domain set, even

B = B0 . However, this operation comes with a caveat: as ex-

pected, the larger B, the larger the number of measurements

required to maintain the estimation performance. Therefore, the

size of this region must be increased only if a sufficiently large

number of measurements is given.

The two techniques introduced in this section are applied next

to simplify (8). To this end, apply the re-parameterization pre-

scribed by the first technique to obtain the shadowing attenuation

of the t-th measurement from (8), which yields

s(xn(t) ,xn ′(t)) �
L

∑

l=1

w(φ(xn(t) ,xn ′(t) , x̃l))f(x̃l) (11)

after absorbing c in f . The second technique, which confines the

support of w toB, allows a reduction in the number of summands

in (11) by disregarding those with φ(xn(t) ,xn ′(t) , x̃l) /∈ B since

they result in w
(

φ(xn(t) ,xn ′(t) , x̃l)
)

= 0. For the t-th measure-

ment, define

Lt := {l : 1 ≤ l ≤ L, φ(xn(t) ,xn ′(t) , x̃l) ∈ B}
:= {it,1 , . . . , it,L t

} (12)

as the set comprising the indices of the Lt grid points x̃l

for which φ(xn(t) ,xn ′(t) , x̃l) is in B. With this notation, (11)

becomes

s(xn(t) ,xn ′(t)) �
L t
∑

l=1

w(φt,l)f(x̃it , l
) (13)

where φt,l := φ(xn(t) ,xn ′(t) , x̃it , l
), l = 1, . . . , Lt .

In short, expression (13), which was obtained through the

re-parameterization and support confinement techniques in this

section, will prove decisive to lower the computational complex-

ity and improve the estimation performance of the estimators

proposed in the rest of the paper.

B. Function Estimation via Kernel-Based Learning

Before formulating the blind radio tomography problem, this

section reviews kernel-based learning, which is one of the most

prominent frameworks for non-linear function estimation due to

its simplicity, good performance, low computational complex-

ity, and universality, in the sense that any continuous function

vanishing at infinity can be learned with arbitrary accuracy un-

der general conditions; see e.g. [21].

Kernel-based methods seek function estimates within large

classes of functions termed reproducing kernel Hilbert spaces
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(RKHSs) and defined as

H :=

{

w(φ) =

∞
∑

i=1

αiκ(φ,φi) : αi ∈ R;φ,φi ∈ B ∀i

}

.

In this expression, κ : B × B → R denotes a reproducing ker-

nel, which is a function satisfying two properties [20]: (i) it is

symmetric, meaning that κ(φ1 ,φ2) = κ(φ2 ,φ1), ∀φ1 ,φ2 ∈
B; and (ii) it is positive definite, meaning that:

I
∑

i=1

I
∑

i ′=1

αiαi′κ(φi ,φi ′) ≥ 0,

∀I > 0, {αi}I
i=1 ⊂ R, {φi}I

i=1 ⊂ B.

A frequent choice of reproducing kernel is the so-called Gaus-

sian radial basis function

κ(φ,φ′) = exp

(

−‖φ − φ′‖2
2

2σ2
κ

)

(14)

where σ2
κ > 0 is a user-selected parameter. Being a Hilbert

space, H is endowed with an inner product and, conse-

quently, a norm. Specifically, the norm of a function w(φ) =
∑∞

i=1 αiκ(φ,φi) ∈ H can be obtained through the reproducing

kernel as

||w||2H =

∞
∑

i=1

∞
∑

i ′=1

αiαi ′κ(φi ,φi′) (15)

and is used in kernel-based learning as a proxy for smoothness

of w. Different from other function norms such as the well-

known ||w||22 :=
∫

|w(φ)|2dφ, the RKHS norm does not require

(potentially multidimensional) integration. This constitutes a

major benefit of adopting the RKHS framework.

Nonparametric kernel-based estimates are commonly sought

as the minimizers of judiciously selected regularization criteria.

For the present problem, this paper proposes jointly estimating

ŵ and f̂ as the minimizers of

(P1) min
w ∈ H,f ∈ RL

1

T

T
∑

t=1

(

št −
L t
∑

l=1

w(φt,l)f(x̃it , l
)

)2

+ µw‖w‖2
H + µfρ(f).

Here, the inner summation in the first term is the approxima-

tion (13) to s(xn(t) ,xn ′(t)). Therefore, the first term in (P1)

penalizes estimates w and f predicting shadowing values that

differ from those observed, i.e. {št}T
t=1 . The second term limits

overfitting by promoting smooth estimates for w, where the no-

tion of smoothness is captured by the RKHS norm in (15). The

convex regularizer ρ(f), for which different choices will be in-

vestigated in Section III-D, promotes a certain known structure

on f . Finally, the regularization parameters µw > 0 and µf > 0
balance the trade-off between data fitting, smoothness of w, and

compliance of f with prior knowledge. These parameters can

be selected by cross-validation; see e.g. [22, Sec. 1.3]. How-

ever, in practice, the extra computation time entailed by this

approach is bypassed by fixing these parameters to values that

exhibit acceptable performance in a broad collection of typical

scenarios.

To sum up, this section formulated the blind radio tomography

problem as the function estimation problem in (P1). The rest of

the paper will deal with solving (P1).

C. Kernel-Based Estimate via the Representer Theorem

A solution to (P1) cannot be found in its present form by

numerical means since it involves a search over the infinite

dimensional space H. To circumvent this issue, this section

reformulates (P1) as an optimization problem in finitely many

scalar variables.

To this end, one can invoke the representer theorem [20],

[23], which establishes that the minimizer of (P1) with respect

to w admits the expansion

ŵ(φ) =
T

∑

t=1

L t
∑

l=1

αt,lκ(φ,φt,l) (16)

for some {αt,l}t,l . In other words, although H contains all

functions of the form w(φ) =
∑∞

i=1 αiκ(φ,φi) for arbitrary

{φi}∞i=1 ⊂ B and {αi}∞i=1 ⊂ R, one can confine the search for

an estimate to those functions of the form (16).

Clearly, after applying the representer theorem, finding the

optimum w amounts to finding the optimum {αt,l}t,l in (16). As

detailed below, these coefficients follow upon substituting (16)

into (P1). To this end, let

Kt,t ′ :=

⎡

⎢

⎣

κ(φt,1 ,φt ′,1) · · · κ(φt,1 ,φt ′,L t ′
)

...
. . .

...

κ(φt,L t
,φt ′,1) · · · κ(φt,L t

,φt ′,L t ′
)

⎤

⎥

⎦
(17)

and let Kt := [Kt,1 , . . . ,Kt,T ] ∈ R
L t ×L̃ , where L̃ :=

∑T
t=1

Lt . With this notation and w as in (16), the inner summation in

(P1) becomes

L t
∑

l=1

ŵ(φt,l)f(x̃it , l
) =

L t
∑

l=1

T
∑

t ′=1

L t ′
∑

l ′=1

f(x̃it , l
)κ(φt,l ,φt ′,l ′)αt ′,l ′

= f�Ψ�
t Ktα (18)

where α := [α1,1 , α1,2 , . . . , α1,L1
, α2,1 , . . . , αT ,LT

]� ∈ R
L̃

and Ψt ∈ {0, 1}L t ×L is a matrix whose entries (l′, it,l ′),
l′ = 1, . . . , Lt , are set to one and the rest are set to zero.

Matrix Ψt selects the entries of f := [f(x̃1), . . . , f(x̃L )]�

with indices in Lt , that is Ψtf = [f(x̃it , 1
), . . . , f(x̃it , L t

)]�.

Likewise, from (15) and (16), the norm in the second term of

(P1) equals

‖ŵ‖2
H =

T
∑

t,t ′=1

L t
∑

l=1

L t ′
∑

l ′=1

αt,lκ(φt,l ,φt ′,l ′)αt ′,l ′ = α�Kα (19)

where K := [K�
1 , . . . ,K�

T ]� ∈ R
L̃×L̃ .

Therefore, from (18) and (19), (P1) can be rewritten as

(P2)

min
α,f

1

T
‖š − (IT ⊗ f�)Ψ�Kα‖2

2 + µw α�Kα + µfρ(f)
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where š := [š1 , . . . , šT ]� and Ψ := diag {Ψ1 , . . . ,ΨT } ∈
{0, 1}L̃×LT .

To sum up, this section reformulated (P1) as (P2). Upon solv-

ing (P2), which will be addressed in the rest of the paper, one

directly obtains an estimate of f at the grid points {x̃l}L
l=1

through f . To recover the estimate of w, one just needs to sub-

stitute the entries of the α solving (P2) into (16).

D. Numerical Solvers for Three Regularizers

This section presents three solvers for (P2) with different

choices of ρ(f) that promote certain known structure in f .

Although (P2) is not jointly convex in α and f , it is separately

convex in each of these vectors. This motivates an alternating

minimization approach where, at step [S1], one minimizes (P2)

with respect to α for fixed f and, at step [S2], one minimizes

(P2) with respect to f for fixed α. More specifically, in [S1],

one obtains the (k + 1)-st iterate α[k + 1], k = 0, 1, . . . , as

α[k + 1] = arg min
α

1

T
‖š − A[k]α‖2 + µw α�Kα (20)

where A[k] := (IT ⊗ f�[k])Ψ�K ∈ R
T ×L̃ depends on the

k-th iterate f [k]. From the first-order optimality conditions of

(20), its minimizer can be found in closed form as

α[k + 1] =
(

A�[k]A[k] + µw TK
)−1

A�[k]š. (21)

To obtain an update equation for [S2], note that

(IT ⊗ f�)Ψ�Kα = (IT ⊗ f�)

(

T
∑

t=1

it ⊗ Ψ�
t Ktα

)

=

T
∑

t=1

(it ⊗ α�K�
t Ψt)f (22)

where it is the t-th column of IT . From (22), one can express

the minimizer of (P2) with respect to f as

f [k + 1] = arg min
f

1

T
‖š − B[k + 1]f‖2 + µfρ(f) (23)

where B[k] :=
∑T

t=1(it ⊗ α�[k]K�
t Ψt) ∈ R

T ×L . Different

from (20), no closed-form solution for (23) necessarily exists.

Sections III-D1, III-D2, and III-D3 will present three solvers for

(23) with three different choices of ρ(f).
Table I summarizes the alternating minimization solver pre-

sented in this section. To minimize memory requirements and

execution time, one should avoid explicit construction of Ψ

by accounting for its sparsity in the operations involving this

matrix. For instance, one can obtain (IT ⊗ f�[k])Ψ� in [S1]

by selecting the appropriate columns of IT ⊗ f�[k]. Regard-

ing computational complexity, [S1] requires O(L̃3) operations

whereas the number of operations in [S2] is determined by the

selected regularizer.

1) Tikhonov Regularizer: Following [3], one can adopt the

Tikhonov regularizer ρ(f) = f�Qf to promote certain forms

of smoothness on f by suitably selecting Q. The simplest

approach, which can also be adopted in absence of prior in-

formation on f , is to set Q = IL . The resulting regularizer

ρ(f) = ||f ||22 promotes smoothness since it heavily penalizes

TABLE I
PROPOSED BLIND RADIO TOMOGRAPHY ALGORITHM. NOTE THAT Ψ AND

{Ψt}T
t=1 NEED NOT BE EXPLICITLY CONSTRUCTED

TABLE II
SUBROUTINE TO UPDATE f WITH TIKHONOV REGULARIZATION

estimates where a small fraction of the entries of f contain

most of the energy ||f ||22 . As a more sophisticated alternative,

one may set Q to be the inverse covariance matrix of f if the

latter is known [3], [7]. Such an approach is expected to yield

good performance when the SLF does not change drastically

over space, e.g. because the wave length is large relative to

objects in the area of interest. A further alternative is to set

ρ(f) = f�Qf = f�D�Df , where D is a matrix approximat-

ing a differential operator; e.g. D := [D�
x , (DyP)�]�, with Dx ,

Dy , and P as in Section III-D3; see also [16].

With the Tikhonov regularizer ρ(f) = f�Qf , the f update

in (23) can be expressed in closed form as

f [k + 1] = arg min
f

1

T
‖š − B[k + 1]f‖2 + µff�Qf

= [B�[k + 1]B[k + 1] + µfTQ]−1B�[k + 1]š.
(24)

Therefore, to obtain an estimate for α and f , one just has to

cyclically apply (21) and (24) until convergence, i.e., one has to

execute the algorithm in Table I with the subroutine in Table II

at step [S2]. The complexity of [S2] is therefore O(T 2L + L3).
2) �1-Norm Regularization: When f exhibits a sparse pat-

tern, as occurs when the propagation medium comprises a re-

duced number of relatively small obstructions such as trees,

or when trying to detect intruders in areas without obstacles,

then one can adopt the sparsity-promoting �1-norm regularizer

ρ(f) = ||f ||1 in (P2) [24]. In this case, (23) becomes

f [k + 1] = arg min
f

1

T
‖š − B[k + 1]f‖2

2 + µf‖f‖1 . (25)
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TABLE III
SUBROUTINE TO UPDATE f WITH �1 -NORM REGULARIZATION

Expression (25) is an instance of the LASSO problem [25],

which can be efficiently solved e.g. by the fast iterative shrink-

age/thresholding algorithm (FISTA) [26].

To keep the computational complexity at a minimum, the

proposed algorithm inexactly solves (25) per iteration by ap-

plying a single-pass coordinate-descent algorithm over each

element of f [27, Sec. 3.8.6]. To derive the update rule for

f , let bl [k] denote the l-th column of B[k], and let B−l [k]
represent the submatrix of B[k] resulting from removing the

l-th column. Similarly, fl denotes the l-th entry of f and f−l

represents a subvector of f with its l-th entry removed. By defin-

ing s̃l [k] := š − B−l [k]f−l [k], the minimizer of the objective

in (25) at iteration k for fixed f−l can be written as fl [k + 1] =
arg minf l

(1/T )‖s̃l [k] − bl [k]fl‖2
2 + µf |fl | and can be solved

in closed form as fl [k + 1] = Γ(s̃�l [k]bl [k];µfT/2)/‖bl [k]‖2
2 ,

where Γ is the soft-thresholding function defined as Γ(s;µ) :=
sign(s)max{0, |s| − µ}. The f -update for [S2] in the algorithm

of Table I is summarized in Table III. The complexity of this

subroutine is O(TL2).
3) Total Variation Regularization: Following [3], one can

adopt a total variation (TV) regularizer, which promotes sharp

edges by penalizing non-sparse spatial variations in the estimate

of f [28]. This is useful in presence of solid obstacles with a

relatively homogeneous absorption pattern across its volume,

e.g., concrete pillars or walls. Denote by F ∈ R
Lx ×Ly a matrix

such that f = vec(F). Its (l, l′)-th entry fl,l ′ corresponds to the

value of f at the (l, l′)-th point of a bidimensional grid resulting

from a spatial arrangement of the points {x̃l}L
l=1 in Lx rows and

Ly columns across A. The so-called �1-based anisotropic TV is

defined as

TV(F) :=

Lx
∑

l=1

Ly −1
∑

l ′=1

|fl,l ′+1 −fl,l ′ | +
Ly
∑

l ′=1

Lx −1
∑

l=1

|fl+1,l ′ −fl,l ′ |.

(26)

This regularizer adds the absolute differences of function val-

ues at grid points located consecutively along a row or a column.

Thus, this regularizer promotes sparsity in the local differences

and therefore promotes constant regions in the estimate of F .

For ρ(f) = TV(F), expression (23) becomes

f [k + 1] = arg min
f

1

T
‖š − B[k + 1]f‖2

2 + µf TV(F). (27)

Efficiently solving (27) is challenging since the TV reg-

ularizer is not differentiable. TV problems are generally

solved either through algorithms based on the iterative

shrinkage-thresholding algorithm (ISTA) [29], or through the

TABLE IV
SUBROUTINE TO UPDATE f WITH TV REGULARIZATION

alternating direction method of multipliers (ADMM) [30], [31].

Unfortunately, ISTA-based algorithms for TV problems are typ-

ically complicated by proximal operations requiring inner loops

with additional iterative methods such as the gradient projec-

tion (GP) algorithm. To circumvent this challenge, this works

pursues an ADMM approach.

To simplify notation, express (26) in terms of f as TV(f) :=
‖Dxf‖1 + ‖DyPf‖1 , where P is a permutation ma-

trix such that Pf = vec(F�), whereas Dx := ILy
⊗ ∆Lx

∈
R

Ly (Lx −1)×L and Dy := ILx
⊗ ∆Ly

∈ R
Lx (Ly −1)×L act as

discrete gradient operators where ∆l is an (l − 1) × l matrix

whose (i, j)-th entry is 1 if i = j; −1 if j = i + 1; and 0 oth-

erwise. The resulting ADMM algorithm, whose derivation is

omitted due to lack of space, is presented in Table IV. This sub-

routine assumes that the algorithm in Table I initializes γx [0],
dx [0], γy [0], and dy [0]. One immediate possibility is to set

all their entries to zero. Parameter ν is a user-selected step

size. The complexity of this subroutine can easily be seen to

be O(TL2 + L3). Note that steps 1–4 decouple across entries,

which implies that they can be executed in parallel.

E. Approximation for a Large Number of Measurements

The complexity of the algorithm in Table I is dominated by

the inversion of the L̃ × L̃ matrix in (21), which requires O(L̃3)
operations. Applications demanding high-resolution estimates

of f or w, and hence requiring large T , may therefore incur

prohibitive complexity since L̃ :=
∑T

t=1 Lt increases with T .

To bypass such a bottleneck, this section presents a technique

to approximate the solution to (P1) for large T at affordable

computational complexity.

Observe that the size of the aforementioned L̃ × L̃ matrix is

determined by the number of terms in the sum of (16), which,

as dictated by the representer theorem, equals the number of

different vectors {φt,l}L t ,T
l=1,t=1 where w is evaluated in the

objective of (P1). Thus, the size of such a matrix would be
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reduced if w in (P1) were only evaluated at a reduced set

of vectors {φ̄l}L̄
l=1 , where L̄ � L̃. To this end, approximate

w(φt,l) ≈ w(φ̄r(t,l)) in (P1), where r(t, l) is such that φ̄r(t,l)

is the best approximation of φt,l in {φ̄l}L̄
l=1 , to obtain

min
w∈H,f∈RL

1

T

T
∑

t=1

(

št −
L t
∑

l=1

w(φ̄r(t,l))f(x̃it , l
)

)2

(P1’) + µw‖w‖2
H + µfρ(f).

In this case, applying the representer theorem shows that the

minimizer of (P1′) can be expressed as

ŵ(φ) =

L̄
∑

l=1

ᾱlκ(φ, φ̄l) (28)

for some {ᾱl}L̄
l=1 . The number of summands in (28) is poten-

tially much smaller than that in (16), which reduces the com-

plexity of [S1] and therefore that of the algorithm in Table I.

Before presenting a solver for (P1′), investigating how to ap-

proximate the vectors in {φt,l}L t ,T
l=1,t=1 with those of {φ̄l}L̄

l=1 is

in order. To this end, suppose that {φ̄l}L̄
l=1 are given. In this case,

the best approximation of φt,l in the Euclidean distance sense is

φ̄r(t,l) , where r(t, l) := arg minr∈{1,...,L̄} ‖φt,l − φ̄r‖2 . Thus,

for given {φ̄l}L̄
l=1 , one can naturally quantify the quality of

the approximation as the sum of errors
∑T

t=1

∑L t

l=1 ||φt,l −
φ̄r(t,l) ||22 . Thus, if {φ̄l}L̄

l=1 are not given, it would be prudent

to choose the {φ̄l}L̄
l=1 minimizing this total error. The result-

ing minimizers are the L̄ centroids of {φt,l}L t ,T
l=1,t=1 obtained

through K-means with L̄ clusters [22, Sec. 9.1]. However, if

running K-means on {φt,l}L t ,T
l=1,t=1 is too costly for the avail-

able computational resources, a fast alternative is to draw the

vectors {φ̄l}L̄
l=1 uniformly at random and without replacement

from {φt,l}L t ,T
l=1,t=1 .

The rest of this section describes how to adapt the algorithm in

Table I to obtain a solver for (P1′). The first step is to recognize

that all equations after (16) and all algorithms in Sections III-C

and III-D depend on {φt,l}L t ,T
l=1,t=1 only through Kt,t ′ in (17) and

its concatenations Kt and K. Therefore, the sought solver arises

by replacing φt,l with φ̄r(t,l) , l = 1, . . . , Lt , t = 1, . . . , T , in

the definitions of these matrices. Specifically, the (l, l′)-th entry

of Kt,t ′ , which according to (17) is given by κ(φt,l ,φt ′,l ′),
must be replaced with κ(φ̄r(t,l) , φ̄r(t ′,l ′)). In matrix form, this is

equivalent to replacing Kt,t ′ with RtK̄R�
t , where K̄ is an L̄ ×

L̄ matrix whose (l̄, l̄′) element is κ(φ̄l̄ , φ̄l̄ ′) and Rt is an Lt × L̄
matrix whose l-th row has a one at the r(t, l)-th column and zeros

elsewhere. Likewise, Kt must be replaced with RtK̄R�, where

R := [R�
1 , . . . ,R�

T ]� ∈ R
L̃×L̄ , and K with RK̄R�.

By applying these substitutions and letting ᾱ := [ᾱ1 , . . . ,
ᾱL̄ ]� := R�α, problem (P2) becomes

(P2’) min
ᾱ,f

1

T
‖š − (IT ⊗ f�)Ψ�RK̄ᾱ‖2

2

+ µw ᾱ�K̄ᾱ + µfρ(f).

TABLE V
PROPOSED BLIND RADIO TOMOGRAPHY ALGORITHM IMPLEMENTING THE

COMPLEXITY REDUCTION APPROXIMATION IN SECTION III-E. NOTE THAT THE

SPARSE MATRICES Ψ, {Ψt}T
t=1 , {Rt}T

t=1 , AND R NEED

NOT BE EXPLICITLY CONSTRUCTED

Whereas (P2) involves L̃ + L variables, (P2’) only has L̄ + L, a

potentially much smaller number that confirms the complexity

reduction stemming from the approximation in this section.

The alternating minimization algorithm proposed in

Section III-D to solve (P2) readily carries over to solve (P2’).

Specifically, the update in [S1] can be obtained from (20) by

replacing α[k + 1] with ᾱ[k + 1], α with ᾱ, and A[k] with

Ā[k] := (IT ⊗ f�[k])Ψ�RK̄. In this way, (21) becomes

ᾱ[k + 1] =
[

Ā
�
[k]Ā[k] + µw T K̄

]−1
Ā

�
[k]š. (29)

Similarly, the update in [S2] can be obtained from (23) if

B[k] is replaced with B̄[k] :=
∑T

t=1(it ⊗ ᾱ�[k]K̄�R�
t Ψt).

Therefore, the subroutines in Tables II, III, and IV can be in-

voked with B̄[k], rather than B[k], as input argument. After the

optimum ᾱ has been found through this modified iteration, w
can be recovered through (28).

Table V summarizes the modified solver. Through the ap-

proximation in this section, (21) was replaced with (29). The

latter involves inverting an L̄ × L̄ matrix, which is considerably

smaller than the L̃ × L̃ matrix inverted in (21) and no longer in-

creases with T . Thus, the approximation in this section reduced

the computational complexity fromO(L̃3) toO(L̄3). Moreover,

since the size of B[k] equals that of B̄[k], the complexity of

[S2] remains the same as in Table I.

IV. RADIO TOMOGRAPHY FROM UNCALIBRATED

MEASUREMENTS

To simplify the presentation, Section III focused on the

scenario with known {gTX(xn )}N
n=1 , {gRX(xn )}N

n=1 , and γ0 ,

where one can obtain the equivalent set of measurements

{š(xn(t) ,x
′
n(t))}T

t=1 using (3). Unfortunately, these gains and

path loss exponent are difficult to determine accurately in

practice. This section extends the method in Section III to
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accommodate the case with unknown {gTX(xn )}N
n=1 ,

{gRX(xn )}N
n=1 , and γ0 , which will be referred to as the un-

calibrated scenario.

Several approaches are available to handle uncalibrated mea-

surements, including [2], [3], and [16], where gain measure-

ments are replaced with their difference between two time in-

stants. The unknown gains and path loss cancel out since they

remain constant over time. Applying such an approach, it be-

comes possible to reconstruct the difference between the SLF

at those time instants, which allows the detection of changes

in the propagation environment produced e.g. by intruders, but

does not allow for imaging static structures. A static structure

is imaged in [7] by gathering two measurement sets. The first

set is obtained before placing the structure and is used for es-

timating {gTX(xn )}N
n=1 , {gRX(xn )}N

n=1 , and γ0 . The second

set is obtained after assembling the structure, and is used to

estimate f for a postulated w. Unfortunately, in many cases it

is not possible to remove a structure, e.g. a building, to cal-

ibrate the system. To circumvent the limitations of these ap-

proaches, this section proposes estimators for {gTX(xn )}N
n=1 ,

{gRX(xn )}N
n=1 , and γ0 , as well as f and w, from the uncalibrated

data {(xn(t) ,xn ′(t) , ǧt)}T
t=1 , where ǧt = g(xn(t) ,xn ′(t)) + εt ,

t = 1, . . . , T ; see Section II.

Let G := {γ1 , . . . , γC } denote the set of C different gains,

either for transmission or reception, so that gTX(xn ) ∈ G
and gRX(xn ) ∈ G ∀n. One can always form this set as G =
{gTX(x1), . . . , gTX(xN ), gRX(x1), . . . , gRX(xN )} and the pro-

posed algorithm will estimate these 2N gains. However, if

for example all sensors are of the same manufacturer and

model, one may assume that gTX(x1) = . . . = gTX(xN ) = γ1

and gRX(x1) = . . . = gRX(xN ) = γ2 . In this case, G contains

just two elements, which implies that only two gains have to

be estimated and the quality of the estimates will therefore be

higher for a given T . Adding εt to both sides of (1) yields

ǧ = Ωγ1 − φ1γ0 − š (30)

where φ1 := 10 log10([φ1(xn(1) , xn ′(1)), . . . , φ1(xn(T ) ,xn ′

(T ))]�), ǧ := [ǧ1 , . . . , ǧT ]�, γ1 := [γ1 , . . . , γC ]�, and Ω ∈
R

T ×C is a matrix whose t-th row has ones at columns c1

and c2 , where c1 and c2 are such that gTX(xn(t)) = γc1
and

gRX(xn ′(t)) = γc2
. It follows from (30) that š = Ωγ1 − φ1γ0

− ǧ = Ω̃γ − ǧ, where Ω̃ := [−φ1 ,Ω] and γ = [γ0 , γ1 ,
. . . , γC ]�. Then, (P2’) can be reformulated as

(P2”) min
γ,ᾱ,f

1

T
‖ǧ − Ω̃γ + (IT ⊗ f�)Ψ�RK̄ᾱ‖2

2

+ µw ᾱ�K̄ᾱ + µfρ(f).

Minimizing (P2”) with respect to γ, one obtains

min
ᾱ,f

1

T
‖P⊥

Ω̃
(ǧ + (IT ⊗ f�)Ψ�RK̄ᾱ)‖2

2

+ µw ᾱ�K̄ᾱ + µfρ(f) (31)

where P⊥
Ω̃

:= IT − Ω̃(Ω̃
�
Ω̃)−1Ω̃

�
. Comparing (P2’) with

(31), it follows that the algorithm in Table V can be em-

ployed to solve (31) if one replaces š with −P⊥
Ω̃

ǧ, A[k] with

ĀΩ̃ [k] := P⊥
Ω̃

(IT ⊗ f�[k])Ψ�RK̄, and B[k] with B̄Ω̃ [k] :=

P⊥
Ω̃

∑T
t=1(it ⊗ ᾱ�[k]K̄�

t R�
t Ψt).

From (P2’) and (31), it follows that the price to be paid for

working with uncalibrated data is that the information along the

column span of Ω̃ is neglected. The dimension of this column

span therefore embodies the uncertainty in the calibration. As

expected, the larger this dimension, the larger the T required

to attain a target estimation performance. Since this dimension

increases with C, it is important to keep the cardinality of G as

low as possible. To this end, one can assign multiple sensors to

the same γc0
∈ G. Although some error is incurred if the gains

of these sensors are not exactly γc0
, the overall effect of reducing

C may pay off.

V. NUMERICAL TESTS

This section demonstrates the benefits of the proposed al-

gorithms through numerical tests with both synthetic and real

measurements. MATLAB code is available at the author’s

websites.

A. Tests With Synthetic Measurements

This section illustrates the effectiveness of the proposed es-

timators in exploiting prior information through the three regu-

larizers in Section III-D. The test setup comprises a square area

A = [0.5, 30.5]2 over which the grid {x̃l}900
l=1 := {1, . . . , 30}2

of L = 900 points is defined. All experiments adopt the weight

function in (10) with λ = 0.39 and β = 1.1, whereas a certain

f will be specified per experiment. A total of N = 80 sensors

were deployed uniformly at random outside of objects over A
at positions {xn}N

n=1 . The t-th measurement is obtained by the

n(t)-th and n′(t)-th sensors, where n(t) and n′(t) are drawn per

t uniformly at random without replacement from {1, . . . , N}.

To focus on the impact of regularization, the effects of calibra-

tion are not accounted for in this section, where {gTX(xn )}N
n=1 ,

{gRX(xn )}N
n=1 , and γ0 are assumed known, implying that the

fusion center uses the “shadowing” measurements {št}T
t=1 .

The latter are generated as št := s(xn(t) ,xn ′(t)) − εt , where

s(xn(t) ,xn ′(t)) is obtained through (11) and {εt}T
t=1 are in-

dependent zero-mean Gaussian random variables with vari-

ance σ2
ε = 10−2 unless otherwise stated.

Algorithm in Table V was tested with a Gaussian kernel

κ(φ,φ′) = exp
(

−(1/2)(φ − φ′)�diag−1{σ2
1 , σ2

2}(φ − φ′)
)

and for the three regularizers in Section III-D. To cope with the

large number of variables, the support confinement technique

in Section III-A is applied with B equal to the first Fresnel

zone. To simplify computations, the technique in Section III-E

is applied by drawing the vectors {φ̄l}L̄
l=1 uniformly at random

and without replacement from {φt,l}L t ,T
l=1,t=1 .

The rest of the section presents three simulations illustrat-

ing the importance of appropriately capturing prior information

through the regularizers. Comparisons between the proposed

estimator and non-blind alternatives will be provided later.

The first experiment adopts the smooth function f(x) =
cf

∑3
j=1 exp(−‖x − x̄j‖2

2/σ2
f ,j ), where x̄1 = [15, 13]�, x̄2 =

[7, 20]�, x̄3 = [20, 20]�, σ2
f ,1 = 13, σ2

f ,2 = σ2
f ,3 = 5, and cf is
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Fig. 1. (a) True SLF F; sensor locations are marked with red crosses. (b–d)

Estimated F̂ using the algorithm in Table V (σ2
1 = 5 × 10−2 , σ2

2 = 7 × 10−2 ,

L̄ = 2,500, T = 3,000) with (b) Tikhonov regularization (Q = I900 , µf =

10−4 , µw = 2 × 10−2 ); (c) �1 -norm regularization (µf = 2 × 10−4 , µw =

9 × 10−5 ); (d) TV regularization (µf = 4 × 10−5 , µw = 3 × 10−4 , ρ = 1 ×
10−3 ).

a constant ensuring that maxl f(x̃l) = 1. Fig. 1a depicts the

values over the bidimensional grid of this function, whereas

Figs. 1b, 1c, and 1d depict its estimates for the three regular-

izers. As expected, the SLF estimated through Tikhonov regu-

larization is the most satisfactory in this case since it promotes

smooth estimates, a property present in f .

In the second experiment, f was set to the sparse function

on Fig. 2a. The estimated SLFs for the three regularizers are

displayed in Figs. 2b, 2c, and 2d. In this case, the Tikhonov

regularizer does not yield a good estimate since f is not smooth.

In contrast, the �1-norm regularizer leads to the most accurate

estimate since it exploits the sparsity of f .

In the third experiment, f was set to the function with flat

regions and sharp edges on Fig. 3a. The estimates for the three

regularizers are depicted in Figs. 3b, 3c, and 3d. As expected,

the TV-regularizer leads to the best estimate since it promotes

the kind of structure present in f .

To illustrate the influence of the number of measurements,

the estimated SLF in the setup of Fig. 3d is depicted in Fig. 4

for different values of T . As expected, the quality improves for

larger T . A visually satisfying estimate is already obtained for

T = 1,800, which corresponds to T/N = 22.5 measurements

per sensor on average. However, the needed T will be dictated

by the specific application and how quality is quantified there.

To corroborate the ability of the proposed algorithms for

learning w(φ1 , φ2), Fig. 5 compares the true w(φ1 , φ2) with

ŵ(φ1 , φ2) obtained through the TV-regularized estimator in the

same setting as Fig. 3. Note that such functions are only de-

fined for φ2 ≥ φ1 since the triangle inequality imposes that

φ2(x,x′, x̃) ≥ φ1(x,x′) for all (x,x′, x̃). The fit is satisfactory

except in the vicinity of the points where w is discontinuous

Fig. 2. (a) True SLF F; sensor locations are marked with red crosses. (b-d) Es-

timated F̂ using the algorithm in Table V (σ2
1 = 9 × 10−2 , σ2

2 = 11 × 10−2 ,

L̄ = 2,500, T = 3,000) with (b) Tikhonov regularization (Q = I900 , µf =

4 × 10−4 , µw = 9 × 10−2 ); (c) �1 -norm regularization (µf = 5 × 10−5 ,

µw = 1 × 10−3 ); (d) TV regularization (µf = 1 × 10−4 , µw = 3.5 × 10−4 ,

ρ = 5 × 10−4 ).

Fig. 3. (a) True SLF F; sensor locations are marked with red crosses. (b–d) Es-

timated F̂ using the algorithm in Table V (σ2
1 = 8 × 10−2 , σ2

2 = 8.5 × 10−2 ,

L̄ = 3,000, T = 3,000) with (b) Tikhonov regularization (Q = I900 , µf =

4 × 10−4 , µw = 9 × 10−2 ); (c) �1 -norm regularization (µf = 1 × 10−4 ,

µw = 9 × 10−5 ); (d) TV regularization (µf = 5 × 10−5 , µw = 6 × 10−4 ,

ρ = 5 × 10−4 )

or non-smooth. These singularities are a consequence of the

simplifications adopted in [7] to postulate (10). However, it is

reasonable to expect that a function w accurately capturing the

actual physics must be continuous and smooth. Hence, these

discontinuities are just model artifacts, and the fitting error in

those regions is thus not a limitation.
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Fig. 4. Estimated F̂ using the algorithm in Table V (σ2
1 = 8 × 10−2 , σ2

2 =

8.5 × 10−2 , L̄ = 3,000), with TV regularization (µf = 1 × 10−4 , µw = 3.5 ×
10−4 , ρ = 5 × 10−4 ). (a) T = 1,400; (b) T = 1,600; (c) T = 1,800; (d) T =
2,000.

Fig. 5. True and estimated weight functions. Setting of Fig. 3d.

The next experiment investigates the robustness of the pro-

posed algorithms against measurement noise εt . The normal-

ized error ‖f̂ − f‖2/‖f‖2 averaged over sensor locations and

realizations of {εt}T
t=1 will be used to quantify estimation per-

formance, where f̂ is the estimate of the true SLF f . Fig. 6

depicts this error as a function of the standard deviation of εt

in the setups of Figs. 1b, 2c, and 3d. Note that the latter figures

correspond to the right endpoint of the x-axis of Fig. 6. Observe

that the estimation performance is not meaningfully sensitive

to the standard deviation of the measurement noise so long as

the latter is sufficiently small. Moreover, Fig. 6 reveals that the

noise power used in Figs. 1b, 2c, and 3d is significantly high;

yet the SLF estimates there are of a visually good quality, which

suggests that the proposed algorithms are reasonably robust to

measurement noise.

Fig. 6. Normalized error vs. noise standard deviation σε obtained by the
proposed blind algorithm with the (circle) Tikhonov regularization (setting of
Fig. 1b); (triangle) �1 -norm regularization (setting of Fig. 2c); (diamond) TV
regularization (setting of Fig. 3d).

The rest of this section investigates the performance of the

proposed blind estimator in channel-gain cartography tasks. To

this end, the same setting as in Figs. 3 and 5 is adopted. From the

estimates f̂ and ŵ obtained through the algorithm in Table V

with TV regularization, an estimate of the shadowing attenuation

ŝ(x,x′) is obtained through (8) by replacing w and f with their

estimates. For comparison purposes, s(x,x′) is also estimated

from (8), where w(φ) is pre-specified and f is estimated through

non-blind radio tomography as [3]

(P3) min
f∈RL

1

T

T
∑

t=1

(

št −
L t
∑

l=1

w(φt,l)f(x̃it , l
)

)2

+ µf TV(f)

which can be accomplished through the subroutine in Table IV.

Since {gTX(xn )}N
n=1 , {gRX(xn )}N

n=1 , and γ0 are known, then

knowing s(x,x′) amounts to knowing g(x,x′); cf. (1). This sug-

gests adopting a performance metric quantifying error between

s(x,x′) and ŝ(x,x′), such as the following normalized mean-

square error (NMSE)

NMSE :=
E{

∫

A[s(x,x′) − ŝ(x,x′)]2dxdx′}
E{

∫

A s2(x,x′)dxdx′}
where the expectation is over the set {xn}N

n=1 of sensor lo-

cations and realizations of {εt}T
t=1 . Simulations estimated the

expectations by averaging over 20 independent Monte Carlo

runs. The integrals are approximated by averaging the integrand

over 1,000 pairs (x,x′) chosen independently and uniformly at

random over A.

Fig. 7 compares the NMSE of the proposed blind algorithm

with that of its non-blind counterparts, which assume the weight

functions in (9) and (10). Since the measurements were gener-

ated using (10), the latter acts as a benchmark. Every point in

the horizontal axis corresponds to a different value of the pa-

rameter L̄, which in turn corresponds to a certain computational

complexity of the blind algorithm. It is observed that the NMSE

of the proposed algorithm approaches that of the clairvoyant
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Fig. 7. NMSE vs. number L̄ of centroids obtained by (circle) the proposed
blind algorithm with the TV regularizer (setting of Fig. 3d with N = 200);
and (square, triangle) existing non-blind alternatives (µf = 5 × 10−5 , ρ =

5 × 10−4 ). The clairvoyant algorithm (square) adopts (10), which is the weight
function used to generate the measurements.

Fig. 8. Testbed configuration.

estimator for sufficiently large L̄. Moreover, assuming the wrong

weight function in the non-blind algorithm incurs a five-fold er-

ror, thus motivating blind methods.

B. Tests With Real Measurements

This section validates the proposed estimators using the real

data set in [7]. The test setup is depicted in Fig. 8, where

A = [0.5, 20.5]2 is a square with sides of 20 feet (ft), over

which a grid {x̃i}961
i=1 := {1, . . . , 31}2 of L = 961 points is de-

fined. A collection of 20 sensors measure the channel attenu-

ation at 2.425 GHz between pairs of sensor positions, marked

with the N = 80 crosses. Thus, although the number of actual

sensors is 20, the effective number of sensors is N = 80. To

estimate {gTX(xn )}N
n=1 , {gRX(xn )}N

n=1 , and γ0 using the ap-

proach in [7], a first set of 2,400 measurements was obtained

before placing the artificial structure in Fig. 8. Afterwards, the

structure comprising one pillar and six walls of different ma-

terials is assembled and T = 2,380 measurements {ǧt}T
t=1 are

obtained.

Fig. 9. Estimated F̂ via (a) the non-blind algorithm in [3], [7] and
(b–d) the Algorithm in Table V (L̄ = 2,500) with (b) Tikhonov regularization
(σ2

1 = 1 × 10−1 , σ2
2 = 1.5 × 10−1 , µf = 6 × 10−2 , µw = 3 × 10−2 ); (c)

�1 -norm regularization (σ2
1 = 8 × 10−2 , σ2

2 = 3.5 × 10−1 , µf = 6 × 10−2 ,

µw = 1.3 × 10−3 ); (d) TV regularization (σ2
1 = 1 × 10−1 , σ2

2 = 3.8 × 10−1 ,

µf = 4.3, µw = 1.3 × 10−3 , ρ = 1 × 10−3 ). The first set of measurements
was used to estimate path loss and sensor gains.

Fig. 10. Estimated weight functions with (red) Tikhonov, (green) �1 -norm,
and (blue) TV regularization.

The proposed algorithm is tested with the same kernel, sup-

port confinement, and approximation technique for large num-

ber of measurements as in Section V-A. Following [3] and [7],

the (l, l′)-th entry of Q−1 in the Tikhonov regularizer was set

to (σ2
s /δs) exp(−‖x̃l − x̃l ′‖2/δs), which is the covariance of

f(x̃l) and f(x̃l ′) predicted by the exponential decay model

in [14], for σ2
s = 4.76 and δs = 1. An initial ᾱ[0] was obtained

through kernel ridge regression [20] with the Gausian kernel

by fitting (9), and f [0] was subsequently obtained from ᾱ[0]
through the subroutine associated with the selected ρ(f).
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Fig. 11. Estimated F̂ via the algorithm in Section IV (L̄ = 2,000) with (a) Tikhonov regularization (σ2
1 = 8 × 10−2 , σ2

2 = 3.5 × 10−1 , µf = 3.2 × 10−1 ,

µw = 5 × 10−3 ); (b) �1 -norm regularization (σ2
1 = 8 × 10−2 , σ2

2 = 3.5 × 10−1 , µf = 3 × 10−3 , µw = 1.3 × 10−1 ); and (c) TV regularization (σ2
1 = 0.1,

σ2
2 = 3.8 × 10−1 , µf = 9.5 × 10−3 , µw = 3.3 × 10−3 , ρ = 1 × 10−3 ).

The first simulation mimics the setup in [7]. The first set of

measurements, i.e., the one obtained without the structure, is

used to estimate {gTX(xn )}N
n=1 , {gRX(xn )}N

n=1 , and γ0 using

the approach in [7]. The calibrated measurements {št}T
t=1 are

obtained from {ǧt}T
t=1 by substituting these estimates into (3).

Fig. 9a displays the non-blind estimate of the SLF in [7],

which essentially solves P3 with TV(f) replaced with f�Qf ,

where Q is as described earlier. Figs. 9b, 9c, and 9 d depict the

blind SLF estimates with Tikhonov, �1-norm, and TV regular-

ization, respectively. It is observed that both non-blind and the

blind algorithms with Tikhonov and TV regularizers success-

fully recover the form of the artificial structure in the propa-

gation medium, yet some artifacts are introduced possibly due

to the presence of the sensors and their tripods. The proposed

algorithms attain a reconstruction performance similar to the

non-blind algorithm without any need for heuristic assumptions

on w. Admittedly, the reconstructed SLF of the blind algorithms

is not visually much better than that for the non-blind algorithm

due to the low number of measurements. The reason is that

the total number of unknowns is 2,982 for the former and just

961 for the latter. On the contrary, for T sufficiently large, it is

expected that the blind algorithm achieves a better estimation

performance.

In the same setup, Fig. 10 shows the estimate of w obtained

with the proposed algorithm. The estimated curves are satisfac-

tory since they are smooth and approximately decreasing within

their support. Unfortunately, having limited the support of ŵ to

the first Fresnel ellipsoid prevents us from estimating the values

of w off this ellipsoid. However, this limitation was imposed by

the low number of measurements relative to the number of un-

knowns; one would be able to obtain more satisfactory estimates

of w on larger supports if more measurements were available.

The second simulation assesses the performance of the pro-

posed algorithm in the uncalibrated scenario; see Section II.

In this scenario, the measurements in absence of the artificial

structure in Fig. 8 are not used. In contrast, the proposed algo-

rithm adopts the technique in Section IV with gTX(x1) = . . . =
gTX(xN ) = γ1 and gRX(x1) = . . . = gRX(xN ) = γ2 . Fig. 11

shows the proposed SLF estimates with the three regulariz-

ers. The estimate with TV regularization is visually acceptable,

Fig. 12. NMSE vs. number of centroids L̄ obtained by (bold) the blind
algorithm with the Tikhonov regularizer (σ2

1 = 9 × 10−2 , σ2
2 = 1.5 × 10−1 ,

µf = 3 × 10−2 , µw = 2 × 10−2 ); and the non-blind algorithm [3], [7] with

(dotted) the normalized ellipse (µf = 1 × 10−2 ); and (dashed) inverse area

elliptical (µf = 2 × 10−3 ) models.

whereas for the Tikhonov regularizer, the result is similar to

Figs. 9a and 9b, where twice more measurements were used.

Therefore, the technique in Section IV suppresses the need for

separate calibration stages in which the structure is not present

while minimally sacrificing estimation performance.

The last simulation assesses the performance of the proposed

algorithm and competing alternatives for channel-gain cartog-

raphy. To compare with the algorithm in [7], the same set of

shadowing measurements as in the first simulation of this sec-

tion was used. Data {št}T
t=1 was split into a training set with

80% of the measurements and a test set {št}t∈E with the remain-

ing 20%, where the indices in the set E are drawn uniformly

at random without replacement from {1, . . . , T}. Per Monte

Carlo run, the proposed algorithm is executed and an estimate

ŝ(xn(t) ,xn ′(t)) is obtained per t ∈ E after substituting ŵ and f̂
into (13). Afterwards, ĝ(xn(t) ,xn ′(t)) is obtained by substitut-

ing ŝ(xn(t) ,xn ′(t)) as well as the estimates for {gTX(xn )}N
n=1 ,

{gRX(xn )}N
n=1 , and γ0 from the calibration stage into (1). The
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performance metric is

NMSE :=
E{

∑

t∈E(ǧt − ĝ(xn(t) ,xn ′(t)))
2}

E{∑t∈E ǧ2
t }

where the expectation is taken over realizations of E .

Fig. 12 depicts the NMSE of the proposed blind algorithm

with Tikhonov regularization along with that of the non-blind

algorithm in [7] with w as in (6) and (7). The advantage of

the proposed algorithm over its non-blind counterparts is man-

ifest for sufficiently large L̄. As before, greater differences are

expected for larger measurement sets.

VI. CONCLUDING SUMMARY

This paper developed blind radio tomographic algorithms that

simultaneously estimate the spatial loss field and weight func-

tions of the radio tomographic model, which are of interest in

imaging and channel-gain cartography applications. Although

the problem is challenging, the usage of kernel-based learning

with various regularizers accounting for prior knowledge to-

gether with several complexity reduction techniques resulted in

an algorithm that needs no heuristic assumption on the weight

function, can image static structures, and does not require sepa-

rate calibration stages. The effectiveness of the novel algorithm

was corroborated through synthetic- and real-data experiments.

Future research will include online and distributed approaches

to blind radio tomography.
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