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In-MemoryProcessingontheSpintronicCRAM:
FromHardwareDesigntoApplicationMapping
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Abstract—TheComputationalRandomAccessMemory(CRAM)isaplatformthatmakesasmallmodificationtoastandard
spintronics-basedmemoryarraytoorganicallyenablelogicoperationswithinthearray.CRAMprovidesatruein-memorycomputational
platformthatcanperformcomputationswithinthememoryarray,asagainstothermethodsthatsendcomputationaltaskstoaseparate
processormoduleoranear-memorymoduleattheperipheryofthememoryarray.ThispaperdescribeshowtheCRAMstructurecan
bebuiltandutilized,accountingforconsiderationsatthedevice,gate,andfunctionallevels.Techniquesforconstructingfundamental
gatesarefirstoverviewed,accountingforelectricalandnoisemarginconsiderations.Next,theselogicoperationsarecomposedto
scheduleoperationsinthearraythatimplementbasicarithmeticoperationssuchasadditionandmultiplication.Thesemethodsare
thendemonstratedon2Dconvolutionwithmultibitdata,andabinaryneuralinferenceengine.TheperformanceoftheCRAMis
analyzedonnear-termandlonger-termspintronicdevicetechnologies.Significantimprovementsinenergyandexecutiontimeforthe
CRAM-basedimplementationoveranear-memoryprocessingsystemaredemonstrated,andcanbeattributedtotheabilityofCRAM
toovercomethememoryaccessbottleneck,andtoprovidehighlevelsofparallelismtothecomputation.

IndexTerms—Spintronics,In-memorycomputing,Memorybottleneck,STT-MRAM,NeuromorphicComputing,Nonvolatilememory
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1 INTRODUCTION

Today’scomputationalenginesareinadequatelyequipped
tohandlethedemandsoffuturebig-dataapplications.With
thesizeofdatasetsgrowingexponentiallywithtime[1],the
computationaldemandsfordataanalyticsapplicationsare
becomingevenmoreforbidding,andthemismatchbetween
applicationrequirementsandevolutionaryimprovements
inhardwareisprojectedtobecomemoreextreme.Current
hardwareparadigmshavemovedtowardsgreaterspecial-
izationtohandlethischallenge,andspecializedunitsthat
enablememory-centriccomputingareavitalingredientof
anyfuturesolution.

TechnologyNode 40nm 10nmHP 10nmLP

Energyof64-bit

datacommunication 1.55× 5.75× 5.77×

versuscomputation

Table1:Communicationvs.computationenergy,adapted
from[2].

However,keybottlenecksforlarge-scaledataanalytics
applications,eveninstate-of-the-arttechnologysolutions,
arethememorycapacity,communicationbandwidth,and
performancerequirements withinatightpowerbudget.
Technologyscalingtodatehasimprovedtheefficiencyof
logicmorethancommunication,andcommunicationenergy
dominatescomputationenergy[3],[4].Table1compares
thecostofcomputation(adouble-precisionfusedmultiply
add)withcommunication(a64-bitreadfromanon-chip
SRAM).Theratioofcommunicationenergytocomputation
energyincreasesfrom1.55×at40nmtoapproximately6×at
10nm,forboththehighperformance(HP)andlowpower
(LP)variants.Evenworse,transferringthesamequantity
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ofdataoff-chip,tomainmemory,requiresmorethan50×
computationenergyevenat40nm[2].Suchoff-chipaccesses
becomeincreasinglynecessaryasdatasetsgrowlarger,and
eventhecleverestlatency-hidingtechniquescannotconceal
theiroverhead.Atthesametime,theinevitabletrendof
higherdegreesofparallelprocessinghurtsdatalocalityand
resultsinincreasedexecutiontime,power,andenergyfor
datacommunication[3].
Moreover,general-purposeprocessorsareoftenineffi-

cientincomputingforemergingapplications:thishasmoti-
vatedatrendtowardsspecializedacceleratorunits,tailored
tospecificclassesofapplicationsthattheycanefficiently
execute.Thetrendofincreasingdatasetsizes,coupled
withthelargecost(intermsofbothenergyandlatency)of
transportingdatatotheprocessor,havepromptedtheneed
forasignificantdeparturefromthetraditional modelof
CPU-centriccomputing.Aneffectivewaytoovercomethe
memorybottleneckandmaintainthelocalityofcomputing
operationsistoembedcomputecapabilityintothe main
memory.Inrecentyears,twoclassesofapproacheshave
beenproposed:

•near-memorycomputingplacescomputationalunitsat
theperipheryofmemoryforfastdataaccess.

•truein-memorycomputingusesthememoryarraytoper-
formcomputationsthroughsimplereconfigurations.

Inthispaper, wepresentanapproachbasedonthe
spintronics-basedcomputationalrandomaccess memory
(CRAM)paradigm.TheCRAMconcept[5]usesasmall
modificationtothe MTJ-basedmemorycellthatenhances
itsversatilityandenableslogicoperationsthroughreconfig-
urationthatenablestheuseofcurrent-steeredlogic.Unlike
manyotherapproaches,this methodfitsthedescription
oftruein-memorycomputing,wherecomputationsareper-
formednatively withinthe memoryarrayand massive
parallelismispossible,e.g., witheachrowofthe mem-
oryperforminganindependentcomputation.TheCRAM-
basedapproachisdigital,unlikeprioranalog-likein-
memory/near-memorysolutions[6],[7], whichprovides



morerobustnesstovariationsduetoprocessdrifts,partic-
ularlyinimmaturetechnologiesthananalogschemes.This
sensitivityimpliesthatdigitalimplementationscanachieve
superiorrecognitionaccuracyoveranalogsolutionswhen
thefullimpactoferrorsandvariationsarefactoredin.
Oursolutionisbasedonspintronicstechnology,whichis

attractivebecauseofitsrobustness,highendurance,andits
trajectorytowardsfastimprovement[8],[9].Theoutlineof
theCRAMapproachwasfirstproposedin[5],operating
primarilyatthetechnologylevel withsomeexpositions
atthecircuitlevel.The work wasdevelopedfurtherto
showsystem-levelapplicationsandperformanceestima-
tionsin[10].Inthiswork,webridgethetwotoprovidean
explicitlinkbetweenCRAMtechnology,circuitimplemen-
tations,andoperationscheduling. Wepresenttechnology
alternativesandmethodsforbuildinggatesandarithmetic
units,studyschedulinganddataplacementissues,and
showhowthisapproachcanbeusedtoimplementasample
application,whichischosentobeaneuromorphicinference
enginefordigitrecognition.
Therestofthepaperisorganizedasfollows.Section2

discussesCRAMarchitecture.InSection3,wepresentan
approachfordesigningarithmeticfunctionatthedevice,
gate,andfunctionallevels.Giventhisdesign,amorede-
tailedelaborationonschedulingCRAMoperationsisdis-
cussedinSection4. Weelaborateontwoexampleapplica-
tions,correspondingtoimplementationsof2Dconvolution
andaneuralinferenceengine,inSection5. Wediscussthe
evaluationandresultsinSection6,relatedworkinSection7,
andthenconcludethepaperinSection8.

2 CRAMARCHITECTURE

2.1 MTJDevices

TheunitstoragecellusedinatypicalSTT-MRAMisanMTJ,
whichiscomposedoftwoferromagneticlayers–afixed
polarizinglayerandafreelayer–separatedbyanultrathin
nonconductiveMgObarrier[11].Weconsiderperpendicular
MTJ(PMTJ)technology,whereboththefreelayerandthe
fixedlayerare magnetizedperpendiculartotheplaneof
thejunction. Whenthe magnetizationorientationsofthe
twolayersareparalleltoeachother(referredtoastheP
state),applyingavoltageacrosstheMTJcauseselectronsto
tunnelthroughtheultrathinnonconductivelayerwithout
beingstronglyscattered,asaresultofwhichwehavehigh
currentflowandrelativelylowresistance,RP[12];whenthe
magnetizationorientationsoftwolayersareanti-parallelto
eachother(referredtoastheAPstate),theMTJhasahigher
resistance,RAP.Inthisway,an MTJcanstorelogic1and
0dependingonitsresistancestate,andwedefinelogic1
and0fortheAPandPstates,respectively[13].Acritical
attributeofanMTJisthetunnelingmagnetoresistanceratio
(TMR),definedas

TMR=
RAP−RP
RP

(1)

Withanelectricalcurrentflowingthroughthe MTJ,the
magnetizationdirectionofthefreelayercanbereverseddue
tothespin-transfer-torque(STT)effect,andthusthe MTJ
canbeswitchedbetweenPstateandAPstate.Toflipthe
magnetizationdirectionofthefreelayer,thecurrentdensity
shouldbelargerthanathresholdswitchingcurrentdensity,
Jc
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,whichistechnology-dependent.

Figure1:OverallstructureoftheCRAM.

2.2 TheCRAMArray

ThegeneralstructureofthespintronicCRAMisillustrated
inFig.1.TheoverallconfigurationoftheCRAMarrayis
verysimilartothestandard1-transistor1-MTJ(1T1MTJ)
STT-MRAM,exceptthattheCRAMusesa2T1MTJbit-
cell,withoneadditionaltransistor.LikethestandardSTT-
MRAMmemoryarray,theMTJineachbit-cellisaddressed
usingthe memorywordline(WL).Thesecondtransistor
inthebit-cell,whichenableslogicoperations,isenabled
byselectingthelogicbitline(LBL)forthetransistorwhile
turningoffWL.Thearraycanoperateintwomodes:

Memorymode: Whenthe WLishigh,itturnsonanaccess
transistorineachcolumnandenablesdatatoberead
fromorwrittenintothe MTJthroughthememorybit
line(MBL).Thesecondtransistoristurnedoffduring
thismodebyholdingdownLBL,andtheconfiguration
iseffectivelyidenticaltoabitcellinamemoryarray.

Logicmode:TurningontheLBLallowstheMTJtobecon-
nectedtoalogicline(LL)ineachrow.Inthelogicmode,
several MTJsinarowareconnectedtothelogicline.
Torealizealogicfunctionwithmultipleinputsandone
output,anappropriatevoltageisappliedtothebitlines.
SincethestatesoftheinputMTJsareexpressedinterms
oftheirresistance,thecurrentthroughtheoutputMTJ
dependsontheinputMTJresistances,andifitexceeds
thecriticalswitchingcurrent,Ic,theoutput MTJstate
isaltered.

Tounderstandthelogicmodemoreclearly,considerthe
scenariowherethreeMTJdevicesareconnectedtothelogic
line,asshowninFig.2.Thestatevariablesareexpressedin
termsofthe MTJresistance,whereresistancesR1andR2
correspondtothestatesofthetwoinputs,andRoisthe
output MTJresistance.Beforethecomputationstarts,the
outputMTJstateissettoapresetvalue.Thebitselectlines
(BSLs)oftheinput MTJsareconnectedtoapulsevoltage,
whilethatoftheoutputMTJisgrounded.Thisconfiguration
correspondstotheapplicationofavoltageVBSL acrossa
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Figure2:PerformingalogicoperationinarowoftheCRAM
array.

resistanceof(R1||R2)inserieswithRo.Asaresult,a
currentIflowsthroughthelogicline:

I=VBSL
R1R2
R1+R2

+Ro (2)

IfI>Ic,whereIcisthecriticalthresholdcurrentrequired
toswitchtheoutput MTJfromitpresetvalue,theoutput
statechanges;otherwiseitremainsthesame.

LL

BSL 3BSL 2BSL 1

Inputs Output

R1 R2 Ro

Threshold 
Detector
(I > Ic?) 

R1, R2, Ro 
are state 
variables 

I =I1+I2

I1 I2

VBSL VBSL Ground

I
S01

S12

S02

LL0

LL1

LL2

S23

S34

S24

S13

S35

LL3

LL4(a) (b)

2.3 PerformingLogicOperationsAcrossRows

Figure3:Switchesbetweenrowsforinter-rowtransfers.

TheschemeinFig.2showshowlogicoperationscan
becarriedoutbetween MTJsinthesamerow.However,
itisimportantattimestoperformlogicoperationsthat
traversemultiplerows.Toenableinter-rowcommunication,
weaugmentthearrayofFig.2byinsertingswitchesbe-
tweenlogiclineswhich,whenturnedon,allow MTJsin
differentrowstocommunicate.Itisunrealistictoallow
everyrowtocommunicatewitheveryotherrow,andnor
isthisrequiredintypicalcomputations.
Tomaintainthesimplicityofthearchitecture,anLLin

rowiisconnectedthroughswitchestotheLLsinitstwo
nearestadjacentrows,i.e.,asillustratedinFig.3,theLLin
rowi−2,i−1,i+1,andi+2,iftheyexist.Inperforming
in-memorycomputations,itisimportanttoensurethatan
internaldatatrafficbottleneckisnotintroduced:infact,the
bestsolutionswillperformverylocaldatamovement.This
isthereasonwhyourCRAMarchitectureonlyallowsdirect
movementtothetwonearestadjacentrows.Datamovement
to moredistantrowsisnotprohibited,but mustproceed
insequentialhopsofoneortworows.Inprinciple,itis
possibletoconnecteveryrowtoeveryotherrow.However,
fornrows,suchascheme wouldaddC(n,2) =O(n2)
transistors,and wouldalsointroducesignificantrouting

overheads.Incontrast,ourschemeadds2ntransistors,and
theselocalconnectionscanbemadequiteeasily.Toillustrate
theuseofthisstructure,letusconsideraverycommon
operationwheretheoutputofanoperationinrowNmust
be movedtorowM forthenextoperation.Eachsuch
operationrequirestheimplementationofaBUFFERgate,
whichcopiesavaluefromonerowtoanother.To move
fromrowNtorowM,thedatacan“jump”tworowsata
timetoreachitsdestination,exceptwhenthedestinationis
onerowaway,whereit“jumps”onerow.Forexample,to
copyavaluefromrow0torow7,forexample,onecould
movefirsttorow2,thenrow4,thenrow6,andthenfinally
torow7.Itiseasytoseethatingeneralthenumberof
stepsrequiredtotransferonebitfromrowM torowNis
|M−N|
2 .

Otherinterconnectionschemesmayalsobepossibleand
couldreducethecommunicationoverhead,dependingon
applicationcharacteristics.Theschemedescribedaboveis
builtontheassumptionthatenergyconsiderationsdictate
thatmostinter-rowcommunicationmustbelocal.
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2.4 PeripheralCircuitry

Figure4:Bitlinedrivercircuitry.

ThevoltagesonBSL,LBL,andMBLaresetbythebitline
drivers. WhileLBLtakesonnormalVddvalues,required
toturnontheaccesstransistor,thechosenvoltageonBSL
dependsonthelogicfunctionbeingimplemented.Aswe
willshowinSection3.2,thisvoltageisontheorderof100s
ofmVintoday’stechnologiesand10sofmVinadvanced
technologies.ThebitlinedriversareillustratedinFig.4:the
inputsare WE,D,andLBL,andtheoutputsBSLandMBL
aregeneratedusingthecircuitryshowninFig.4.
Thegenerationofthe MBLandBSLsignalsinFig.2is

illustratedinFig.4.Inmemorymode,LBLisgroundedand
lineDisusedtocontrolthedirectionofthecurrent.Incase
ofawriteoperation, WEissettoVdd,andifDisalsoat
Vdd,thencurrentisinjectedfromMBLtoBSL;otherwise,if
Disgrounded,thecurrentdirectionisreversed.Foraread
operation, WEisgroundedandbothdriversareoff;inthis
case, MBLisseparatelydrivenandconnectedtothesense
amplifier.Inlogicmode,WLandWEaregrounded,andLBL
isatVdd.IfDisalsoatVdd,thenthedriverconnectsBSL
toground,whileifDisgrounded,thenBSLisconnectedto
VBSL.
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3 DESIGNINGARITHMETICFUNCTIONS

3.1 Device-levelModels

InevaluatingtheperformanceoftheCRAM,weconsider
twosetsofdevice-levelmodelswhoseparametersarelisted
inTable2:(i)Today’s MTJtechnology,correspondingtoa
mainstreamprocesstoday,and(ii)AdvancedMTJtechnol-
ogy,correspondingtoarealisticfutureprocess.Thevalue
ofthelatterpointisthatduetotherapidevolutionof
MTJtechnology,usingonlytoday’snodeislikelytobe
pessimistic.Moreover,byusingtechnologyprojections,the
evaluationonanadvancedMTJtechnologyprovidesaclear
pictureofdesignissuesandbottlenecksforthis method.
Foreachtechnology,thetableprovidesspecificsoftheMTJ
materialsanddimensions,theTMR,theresistance-area(RA)
product,thecriticalswitchingcurrentdensity,Jc,thecritical
switchingcurrent,Ic,thewritetime,twr,aswellastheMTJ
resistanceineachstate.

Table2:MTJSpecifications

Parameters Today’sMTJ AdvancedMTJ

MTJtype InterfacialPMTJ InterfacialPMTJ

Materialsystem CoFeB/MgO/ CoFeB(SAF)/MgO/

CoFeB CoFeB

MTJdiameter 45nm 10nm

TMR 133%[14] 500%

RAproduct 5Ωµm2 1Ωµm2[15]

Jc 3.1×106A/cm2 106A/cm2

Ic 50µA 0.79µA

twr 3ns[16] 1ns[14]

RP 3.15KΩ 12.73KΩ

RAP 7.34KΩ 76.39KΩ

Ingeneral,fortheCRAMapplication,ahigherTMRis
beneficialsincethishelpsdifferentiatebetweenthe0and
1states moreeffectively.Toselecttheparametersforthe
Advanced MTJtechnology,weconsidervariousroadmaps
andprojections,aswellasconsultationswithtechnology
experts.Today,thelargestdemonstratedTMRis604%at
roomtemperatureforan MTJbuiltusingamaterialstack
ofCoFeB/MgO/CoFeB[9],[17].However,this MTJuses
athick MgOlayer, whichresultsinalargeRAproduct;
moreover,itusesin-plane magnetization, whichrequires
largerareaduetoitsneedforshapeanisotropyintheplane,
andislesspreferredoverperpendicularMTJmagnetization.
WhilethebestTMRforperpendicularMTJsinthelabtoday
isabout208%[18],therearepathwaysto muchhigher
TMRs. Accordingly, wesettheTMRforthe Advanced
MTJto500%.Thisisfurthersupportedbypredictionsthat
showthataTMRof1000%atroomtemperaturewillbe
attainableby2024[9].TheRAproductcanbetunedusing
newtunnelingbarriermaterials(e.g.,MgAlO),orreducing
theMgOthicknesswhilemaintainingcrystallinity.

3.2 Gate-levelDesign

WhenMTJsareconnectedtogetherinlogicmode,thetype
ofgatefunctionalitythatresultsfromtheconnectioncanbe
controlledbytwofactors:(i)thevoltageappliedontheBSL
lines,whichappearsacrosstheconnectedMTJdevices,and
(ii)thelogicvaluetowhichtheoutput MTJispreset.The
correspondingbiasvoltagerangeandthepresetvalueto
implementeachgatearesummarizedinTable3.Theoutput

presetforeachgateisuniqueanddependsonthegatetype
ratherthanonMTJtechnologyparameters.
ConsiderthecasewheretheconfigurationinFig.2is

usedtoimplementaNANDgate.SinceRAP=(TMR+1)RP,
andalogic0correspondstoRP,fromEq.(2),wehave:

I00=VBSL
RP
2
+Ro

I01=I10=VBSL
TMR+1

TMR+2
RP+Ro

I11=VBSL
(TMR+1)RP

2
+Ro (3)

TherequirementsfortheNANDgateisthatthefirsttwo
casesshouldresultinlogic1attheoutputMTJ,butthelast
caseshouldkeeptheoutputvalueatlogic0.Usingthefact
thatTMR>0,itiseasytoverifythatthecurrentmono-
tonicallydecreasesasI00>I01=I10>I11.Therefore,
iftheoutputispresettologic0,thenbyanappropriate
choiceofVBSL,thefirsttwocasescanresultinacurrent
thatexceedsIc,thusswitchingtheoutputwhilethelastcan
resultinacurrentbelowIc,keepingtheoutputatlogic0.
Asimilarargumentcanbemadetoshowthatiftheoutput
ispresetto1,thegatewillnotfunctioncorrectlybecauseit
requiresthefirsttwocases(highercurrents)nottoinduce
switching,whilethelastcase(lowestcurrent)mustinduce
switching.Thesameargumentscanbeusedtoarguethatan
ANDimplementationshouldbepresettologic1,allowing
switchinginthe00and01/10cases,butnotthe11case.
ItcanfurtherbeseenthatanXORcannotbenaturally

implementedinasinglegateunderthisscheme:depending
onthepresetvalue,itrequiresswitchingforthe00and
11casesbutnot01/10,orviceversa.Neithercasefollows
thetrendsbywhichthecurrentIincreases.Therefore,like
CMOS,anXORmustbeimplementedusingmultiplestages
oflogic.
FortheNANDgate,forapresetoutputvalueof0,Ro=

RP.Thereforetheresultsforthethreecasesare:

I00=
VBSL
RP

2

3

I10=I01=
VBSL
RP

TMR+2

2TMR+3

I11=
VBSL
RP

2

TMR+3
(4)

TherequirementsfortheNANDgateisthatthefirsttwo
casesshouldinduceswitchingtologic1,butthelastcase
shouldkeeptheoutputvalueatlogic0.Therefore,

TMR+2

2TMR+3

VBSL
RP

>Ic>
2

2TMR+3

VBSL
RP

,

i.e.,
2TMR+3

TMR+2
IcRp<VBSL<

2TMR+3

TMR+2
IcRP.

(5)

FromthevaluesofRP,TMR,andIcprovidedinTable2
andtherequirementthatthe00and10/11casesshould
switch, whilethe11caseshouldnot, wecanobtainthe
valuesinTable3.ForNANDgate,270.0mV<VBSL <
354.5mVfortoday’sMTJs,and18.6mV<VBSL <40.2mV
foradvanced MTJs.Similar methodsareusedforother
gates.Fromthetable,itcanbeseenthatthevoltageVBSL
requiredtoimplementeachgatetypeusingtoday’s MTJ
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Table3:BiasVoltageRangesandOutputPresetValues

Gate Biasvoltagerange Output

Today’sMTJ AdvancedMTJ preset

NOT 315.0–551.5mV 20.1–70.4mV 0

BUFFER 551.5–788.0mV 70.4–120.6mV 1

AND 506.5–591.0mV 68.9–90.5mV 1

NAND 270.0–354.5mV 18.6–40.2mV 0

OR 472.7–506.5mV 65.3–68.9mV 1

NOR 236.2–270.0mV 15.0–18.6mV 0

MAJ3 459.6–481.5mV 64.9–67.8mV 1

MAJ3 223.1–245.0mV 14.6–17.5mV 0

MAJ5 435.4–443.2mV 63.3–64.3mV 1

MAJ5 198.9–206.7mV 13.0–14.0mV 0

technologyishigherthanthatfortheadvanced MTJtech-
nology.
ForaNANDgate,thelowerendandupperofthebias

voltage(VBSL)isshowninEq.(5).Foreachgatetype,ifwe
denotethelowerandupperendsofthebiasvoltagerange
asVmin andVmax,respectively,thenwecandefinethenoise
margin,NM,as:

NM=(Vmax−Vmin)/Vmid (6)

whereVmid =(Vmax+Vmin)/2 (7)

Thismetricprovidesameasureoftherangeofthevoltage
swings,normalizedtothemean.

Figure5:Acomparisonofthenoisemarginforvariousgate
types,implementedinaCRAMtoday’sMTJsandadvanced

MTJs,asdefinedinTable2.

Fig.5showsthenoise marginforvariousgatetypes.
ItcanbeseenthatforAdvancedMTJs,thenoisemarginin
mostcasesisabout2Xlargerthanthoseoftoday’sMTJ.This
noisemarginisintendedtocapturethelevelofresilienceof
eachgatetypetoshiftsinparametervaluesduetoprocess
variations,supplyvoltagevariations,thermalnoise,etc.
Whileitisdifficulttoknowthelevelofsuchdrifts,since
thesetechnologiesarestillevolvingandareinahighstate
offlux.Inthiswork,wechooseathresholdfortheminimum
acceptablenoisemargininthisworkasNM =5%.From
thefigure,itcanbeseenthatthe MAJ3, MAJ5,andOR
gatesforbothtechnologiesandtheMAJ5gatefortoday’s
technologyfallbelowthisthreshold,andarenotusedhere.

3.3 Functional-levelDesign

In[5],NANDbasedlogicwasappliedtoimplementafull
adder(FA)usingCRAM.ANAND-basedimplementation
ofFArequires9stagesoflogic.Asshownin[5],Carryand
Sumcan,respectively,begeneratedafter9and8CRAM
computationsteps.Thislargenumberofsequencedoper-
ationsforanadditioncancanincurhighdelays.FAscan
beimplemented moreefficientlyusing majoritylogic[19]

insteadofNANDgates. Whilesuchimplementationscan
reducethenumberofstepsrequiredtoimplementaFAin
theCRAM,MAJ3andMAJ5havelowNMvalues(Fig.5),
butMAJ3andMAJ5gateshavesufficientNM
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foradvanced
MTJs.Therefore,weadapttheMAJ-basedFAdesignstouse
complementaryMAJlogicforadvancedMTJs,andstaywith
NANDgatesfortoday’sMTJs.

Figure6:(a)Thefulladderimplementationbasedon
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logic(b)schedulingCRAMoperationsontheadder.For

simplicity,theoutputpresetbeforeeachstepisnotshownin
thescheduleabove.

Figure7:4-bitripplecarryadderusingbubble-pushing.

Weproposeamodificationofthe MAJ-basedFAusing
theMAJ-basedlogicstructureshowninFig.6(a)toim-
plementthecomplementofaFA.Itcaneasilybeverified
thatthiscorrectlyproducestheoutputsSandCoutbased
oninputbitsA,B,andC. Wewilldefertheprecisesetof
schedulingoperationstoourdiscussioninSection4.

TodemonstratehowthiscomplementedFAcanbeused
tobuildann-bitadder,weshowa4-bitripplecarryadder
inFig.7.TheLSB(zerothbit)usesthelogicinFig.6
togeneratethecomplementedoutputcarry,whichisthe
complementedinputcarryC1ofthefirstbit,andtogenerate
thecomplementedsumbitS0.Thelatteristakenthrough
aninvertertogenerateS0.InsteadofinvertingC1,weuse
“bubble-pushing”toimplementthefirstbit,basedonthe
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observationthat:

Cout=MAJ3(A,B,C) (8)

S=MAJ5(A,B,C,Cout,Cout) (9)

Thus,weinvertA1andB1,whicharenotonthecritical
path,insteadofinvertingC1,togenerateS1andC2,andso
on.Ingeneral,forann-bitadder,alternatebitsusetrue
andcomplementedinputstotheMAJ-basedFA.Inthis
proposedschemeinversionsarenotrequiredforanyCout
bits(exceptfortheMSBforann-bitadderwherenisodd
–butitisunusualforntobeoddinrealapplications).
Explicitinversions(i.e.,NOTgates)areonlyrequiredfor
theSumoutputsofalternateFAsinthen-bitadder.

4 SCHEDULINGCRAMOPERATIONS
Schedulingann-bitadditionontheCRAM:Webegin
withtheimplementationofsingle-bitadditionintheCRAM
andthen moveto multibitadditions.TheFAstructure
involvesmultiplestepsthatimplementMAJ3,MAJ5,NOT,
andBUFFER,andthesecomputationalstepsareshownin
Fig.6(b).Foreachstep,itisassumedthatinitializations(out-
putpresets)areperformedbeforetheshowncomputational
steps.

Step1FortheFAscorrespondingtoodd-numberedbitsin
n-bitaddition,theinputisnotcomplemented.InStep
1,weinitializetheCoutcellto0,andthencompute
Cout← MAJ3(A,B,C)byactivatingtheBLLtransis-
tor,afterinitializingtheCoutcellto0.

Step2We copy the computed Cout using D ←
BUFFER(Cout).TheregisterDisusedtostorethevalue
ofCout,astwoCoutoperandsarerequiredforthenext
step.

Step3WecomputeS←MAJ5(A,B,C,Cout,Cout).
Inprinciple,thiswouldhavetobefollowedbySteps4and
5(notshowninthefigure),whichusetheNOTfunctionto
obtaintheuncomplementedSandCoutoutputs.However,
bubble-pushing makesitunnecessarytoinvertarippled
carryoutput,andalternateoutputbitsneednoinversion
onthesumbits,butneedinputinversions.However,for
odd-numberedFAs,werequireaStep4toinverttheSum
output,andforeven-numberedbits,weadda“Step0”that
invertstheinputbitsAandB;notethatneitheroftheseis
typicallyonthecriticalpath.
Thecomputationforeven-numberedbitsisanalogous.

WecomputeCoutusingEquation(8),thencopyittoanother
locationD,andfinallyuseEquation(9)tocomputeS.
Weconsiderdataplacementandschedulingforann-bit

carry-propagateadder(CPA)usingn=4toillustratethe
idea,basedonFig.7.Eachofthefour

MAJ 
Adder

B0A0

S0

Cin
MAJ 
Adder

B1A1

MAJ 
Adder

B2A2

S2

MAJ 
Adder

B3A3

S1S3

C1C2C3
Cout

Figure5:4-bitripplecarryadderusingthebubble-pushingtechnique.
IneachMAJ FAcomplementofsumandcarryareachievedafter3

steps.

Time 1 2 3 4 5 6 7 8 9

Row0 C1 – D0 S0 S0
Row1 – C1 C2 – D1 S1
Row2 – – – C2 C3 D2 S2 S2
Row3 – – – – – C3 Cout D3 S3

TableIII:Schedulingtableforthe4-bitCPAfromt=1to9.

ThecomputationalstepsareshowninFig.4(b).Forodd-numbered
bits,wheretheinputisnotcomplemented,inStep1,wecompute
Cout ← MAJ3(A,B,C)byactivatingtheBLLtransistor,after
initializingtheCoutcellto0.Next,inStep2,wecopythiscomputed
valuetoitsadjacentcellbyperforming D← BUFFER(Cout).
Finally,inStep3,wecomputeS← MAJ5(A,B,C,Cout,Cout).
Thecomputationforeven-numberedbitsisanalogous.
Inprinciple,thiswouldhavetobefollowedbySteps4and5
(notshowninthefigure),whichusetheNOTfunctiontoobtainthe
uncomplementedSandCoutoutputs.However,asexplainedinthe
previoussection,thebubble-pushingapproachmakesitunnecessary
toinvertarippledcarryoutput,andalternateoutputbitsneedno
inversiononthesumbits,butneedtheinputbitstobeinverted
instead.Therefore,forodd-numberedFAs,werequireaStep4to
inverttheSumoutput,andforeven-numberedbits,weadda“Step
0”thatinvertstheinputbitsAandB;notethatneitheroftheseis
typicallyonthecriticalpath.

B.Scheduingann-bitadditionontheCRAM

Next,weconsiderdataplacementandschedulingforann-bit
additionoperation,usingtheexampleofn=4toillustratetheidea,
basedonFig.5.EachofthefourMAJ FAsinthisstructureis
implementedwithinaseparaterowofCRAM,andthecomputation
ineachrowisperformedinseparatestepsthatcapturethesequential
datadependencyofthecomputation.
Theschedulingtableofthe4-bitcarryrippleadderisshownin
Fig.III,wheretheithbit-sliceisimplementedinrowioftheCRAM.
Onceacarryinrowiisgenerated,itistransferredtorowi+1.Thus,
att=1,C1isgeneratedandistransferredtorow1att=2;at
t=3,C2isgeneratedinrow1andtransferredtorow2att=4,and
att=5,C3isgeneratedandtransferredtorow3att=6.Nowthat
allinputstotheMSBareavailable,usingthescheduledescribedin
Fig.4(b),threetimeunitslater,att=9,thecomputationiscomplete.

C. MultiplicationsandDotProducts

Thedotnotationisausefultooltorepresentarithmeticoper-
ations[16].ThenotationisintuitiveandisillustratedinFig.6
fortheadditionandmultiplicationoftwo4-bitbinarydigits.Each
dotrepresentsaplacesignificance,anddotsrepresentingeachinput
numbercorrespondtoitsfourbits,withweightsof1,2,4,and8,
respectively,fromrighttoleft.Fig.6(a)showsthatthesumofthese
two4-bitnumbersisa5-bitnumberrepresentedwithfivedots.The
multiplicationoftwo4-bitnumbers,showninFig.6(b),generates
asetoffourshiftedpartialproductsthatareaddedtogeneratethe
8-bitproduct.
Breakingdowntheproductcomputationfurtherbymappingitto
FAoperations,afastmethodforaddingthepartialproductsofa

Figure6:Dotnotationrepresentation[16]:(a)Additionoftwo4-bit
digits,(b)Multiplicationoftwo4-bitdigits

Figure7:4×4Wallacetreemultiplier:(a)Theschematic,(b)Thedot
notationrepresentation.

multiplicationistouse Wallace/Daddatrees[17].Theschematicof
4×4WallacetreemultiplierisshowninFig.7,annotatedwiththe
intermediatecomputationsCijandSijforvariousvaluesofiand
j.Ateachlevelofthecomputation,weuseaFAtoreduce3(or
sometimes2,usingahalf-adder(HA))bitsofthepartialproducts
toasumbitandacarrybitthatispropagatedtothenextcolumn.
Forinstance,inLevel1,A2,B1,andC0areaddedtoproduceS11
andC11,whichareaddedtosimilartermsinLevel2.Eachsuch
FA/HAisshownbyareddottedrectanglecontaining2or3dots.The
numberedlabelatthebottomleftcorneroftherectanglerepresents
theCRAMrownumberthatimplementstheFAoperation.Itcanbe
seenthateachcolumnofthecomputation,whichcorrespondstoa
placesignificance,mapstothesameCRAMrowineachLevel(e.g.,
thethird-lastcolumninLevel1thataddsA2,B1,andC0mapsto
CRAMrow2.TheresultantsumoutputS11remainsinthatrowand
isaddedwithwithotheroperandsinLevel2,whilethecarryoutput
istransferredtothenexthigherrow).
Anotherviewoftheschedulingofthesecomputationsispresented
inTableIV.Theimplementationofeachlevelrequires5steps,
andcomputationsrelatedtoFAswithineachlevelareperformed
inparallel.Asinthecaseoftheripplecarryadder,thefirstthree
stepsforeachFAatLevel1involvecomputingthecomplementof
theoutputcarry,cloningthecomputedcarrycomplementtoanother
cell,andthencomputingthecomplementofthesumatt=1,2,3,
respectively.Asbefore,bubble-pushingisusedsothattheinverted

Level1 Transfer Level2 CPA

Time 1 2 3 4 5 6 7 8

Row0 C10 D1 S10
Row1 C11 D2 S11 C10 C20 D5 S20
Row2 C12 D3 S12 C11 C21 D6 S21 CPA

Row3 C13 D4 S13 C12 C22 D7 S22
Row4 C13 C23 D9 S23

TableIV:SchedulingtablefortheWallacetreeadder.

4

MAJ-basedFAsin
thisstructureisimplementedwithinaseparaterowofthe
CRAM,andthecomputationineachrowisperformedin
separatestepsthatcapturedatadependencies.

Figure8:Schedulingtableforthe4-bitCPAfromt=1to9.

Theschedulingtableofthe4-bitripplecarryadderis
showninFig.8, wheretheithbit-slice mapstoCRAM

rowi.Onceacarryinrowiisgenerated,itistransferredto
rowi+1.Thus,att=1,C1isgeneratedandistransferred
torow1att=2;att=3,C2isgeneratedinrow1and
transferredtorow2att=4,andatt=5,C3isgenerated
andtransferredtorow3att=6.Nowthatallinputstothe
MSBareavailable,usingthescheduledescribedinFig.6(b),
threetimeunitslater,att=9,thecomputationiscomplete.
Multiplication:Thedotnotationisausefultooltorepresent
arithmeticoperations[20].Thenotationisillustratedin
Fig.9fortheadditionandmultiplicationoftwo4-bitbinary
digits.Eachdotrepresentsaplacesignificance,anddots
representingeachinputnumbercorrespondtoitsfourbits,
withweightsof1,2,4,and8,fromrighttoleft.Fig.9(a)
showsthatthesumofthesetwo4-bitnumbersisa5-bit
number.Themultiplicationoftwo4-bitnumbers(Fig.9(b)),
generatesasetoffourshiftedpartialproductsthatare
addedtogeneratethe8-bitproduct.

Figure9:Dotnotationrepresentation[20]:(a)Additionoftwo
4-bitdigits,(b)Multiplicationoftwo4-bitdigits.

Figure10:(a)Schematicand(b)dotnotationrepresentation
fora4×4Wallacetreemultiplier.

Breakingdowntheproductcomputationfurtherby
mappingittoFAoperations,afastmethodforaddingthe
partialproductsofamultiplicationistouseWallace/Dadda
trees[21].Theschematicof4×4Wallacetreemultiplieris
showninFig.10,annotatedwiththeintermediatecomputa-
tionsCijandSijforvariousvaluesofiandj.Ateachlevel
ofthecomputation,weuseaFAtoreduce3(orsometimes
2)bitsofthepartialproductstoasumbitandacarrybitthat
ispropagatedtothenextcolumn.Forinstance,inLevel1,
A2,B1,andC0areaddedtoproduceS11andC11,which
areaddedtosimilartermsinLevel2.SomeFAscanbe
implementedassimplerhalfadders(HAs)sincetheyhave
onlytwoinputs.EachsuchFA/HAisshownbyareddotted
rectanglecontaining2or3dots.Thenumberedlabelatthe
bottomleftcorneroftherectanglerepresentstheCRAMrow
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numberthatimplementstheFAoperation.Itcanbeseen
thateachcolumnofthecomputation,whichcorrespondsto
aplacesignificance,mapstothesameCRAMrowineach
Level(e.g.,thethird-lastcolumninLevel1thataddsA2,
B1,andC0mapstoCRAMrow2.TheresultantsumS11
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Figure5:4-bitripplecarryadderusingthebubble-pushingtechnique.
IneachMAJ FAcomplementofsumandcarryareachievedafter3

steps.

Time 1 2 3 4 5 6 7 8 9

Row0 C1 – D0 S0 S0
Row1 – C1 C2 – D1 S1
Row2 – – – C2 C3 D2 S2 S2
Row3 – – – – – C3 Cout D3 S3

TableIII:Schedulingtableforthe4-bitCPAfromt=1to9.

ThecomputationalstepsareshowninFig.4(b).Forodd-numbered
bits,wheretheinputisnotcomplemented,inStep1,wecompute
Cout ← MAJ3(A,B,C)byactivatingtheBLLtransistor,after
initializingtheCoutcellto0.Next,inStep2,wecopythiscomputed
valuetoitsadjacentcellbyperforming D← BUFFER(Cout).
Finally,inStep3,wecomputeS← MAJ5(A,B,C,Cout,Cout).
Thecomputationforeven-numberedbitsisanalogous.
Inprinciple,thiswouldhavetobefollowedbySteps4and5
(notshowninthefigure),whichusetheNOTfunctiontoobtainthe
uncomplementedSandCoutoutputs.However,asexplainedinthe
previoussection,thebubble-pushingapproachmakesitunnecessary
toinvertarippledcarryoutput,andalternateoutputbitsneedno
inversiononthesumbits,butneedtheinputbitstobeinverted
instead.Therefore,forodd-numberedFAs,werequireaStep4to
inverttheSumoutput,andforeven-numberedbits,weadda“Step
0”thatinvertstheinputbitsAandB;notethatneitheroftheseis
typicallyonthecriticalpath.

B.Scheduingann-bitadditionontheCRAM

Next,weconsiderdataplacementandschedulingforann-bit
additionoperation,usingtheexampleofn=4toillustratetheidea,
basedonFig.5.EachofthefourMAJ FAsinthisstructureis
implementedwithinaseparaterowofCRAM,andthecomputation
ineachrowisperformedinseparatestepsthatcapturethesequential
datadependencyofthecomputation.
Theschedulingtableofthe4-bitcarryrippleadderisshownin
Fig.III,wheretheithbit-sliceisimplementedinrowioftheCRAM.
Onceacarryinrowiisgenerated,itistransferredtorowi+1.Thus,
att=1,C1isgeneratedandistransferredtorow1att=2;at
t=3,C2isgeneratedinrow1andtransferredtorow2att=4,and
att=5,C3isgeneratedandtransferredtorow3att=6.Nowthat
allinputstotheMSBareavailable,usingthescheduledescribedin
Fig.4(b),threetimeunitslater,att=9,thecomputationiscomplete.

C. MultiplicationsandDotProducts

Thedotnotationisausefultooltorepresentarithmeticoper-
ations[16].ThenotationisintuitiveandisillustratedinFig.6
fortheadditionandmultiplicationoftwo4-bitbinarydigits.Each
dotrepresentsaplacesignificance,anddotsrepresentingeachinput
numbercorrespondtoitsfourbits,withweightsof1,2,4,and8,
respectively,fromrighttoleft.Fig.6(a)showsthatthesumofthese
two4-bitnumbersisa5-bitnumberrepresentedwithfivedots.The
multiplicationoftwo4-bitnumbers,showninFig.6(b),generates
asetoffourshiftedpartialproductsthatareaddedtogeneratethe
8-bitproduct.
Breakingdowntheproductcomputationfurtherbymappingitto
FAoperations,afastmethodforaddingthepartialproductsofa

Figure6:Dotnotationrepresentation[16]:(a)Additionoftwo4-bit
digits,(b)Multiplicationoftwo4-bitdigits

Figure7:4×4Wallacetreemultiplier:(a)Theschematic,(b)Thedot
notationrepresentation.

multiplicationistouse Wallace/Daddatrees[17].Theschematicof
4×4WallacetreemultiplierisshowninFig.7,annotatedwiththe
intermediatecomputationsCijandSijforvariousvaluesofiand
j.Ateachlevelofthecomputation,weuseaFAtoreduce3(or
sometimes2,usingahalf-adder(HA))bitsofthepartialproducts
toasumbitandacarrybitthatispropagatedtothenextcolumn.
Forinstance,inLevel1,A2,B1,andC0areaddedtoproduceS11
andC11,whichareaddedtosimilartermsinLevel2.Eachsuch
FA/HAisshownbyareddottedrectanglecontaining2or3dots.The
numberedlabelatthebottomleftcorneroftherectanglerepresents
theCRAMrownumberthatimplementstheFAoperation.Itcanbe
seenthateachcolumnofthecomputation,whichcorrespondstoa
placesignificance,mapstothesameCRAMrowineachLevel(e.g.,
thethird-lastcolumninLevel1thataddsA2,B1,andC0mapsto
CRAMrow2.TheresultantsumoutputS11remainsinthatrowand
isaddedwithwithotheroperandsinLevel2,whilethecarryoutput
istransferredtothenexthigherrow).
Anotherviewoftheschedulingofthesecomputationsispresented
inTableIV.Theimplementationofeachlevelrequires5steps,
andcomputationsrelatedtoFAswithineachlevelareperformed
inparallel.Asinthecaseoftheripplecarryadder,thefirstthree
stepsforeachFAatLevel1involvecomputingthecomplementof
theoutputcarry,cloningthecomputedcarrycomplementtoanother
cell,andthencomputingthecomplementofthesumatt=1,2,3,
respectively.Asbefore,bubble-pushingisusedsothattheinverted

Level1 Transfer Level2 CPA

Time 1 2 3 4 5 6 7 8

Row0 C10 D1 S10
Row1 C11 D2 S11 C10 C20 D5 S20
Row2 C12 D3 S12 C11 C21 D6 S21 CPA

Row3 C13 D4 S13 C12 C22 D7 S22
Row4 C13 C23 D9 S23

TableIV:SchedulingtablefortheWallacetreeadder.

4

remainsinthatrowandisaddedwithotheroperandsin
Level2,whilethecarry-outgoestothenextrow).

Figure11:SchedulingtablefortheWallacetreeadder.

Anotherviewoftheschedulingofthesecomputations
ispresentedinFig.11.Theimplementationofeachlevel
requires5steps,andcomputationsrelatedtoFAswithin
eachlevelareperformedinparallel.Asinthecaseofthe
ripplecarryadder,thefirstthreestepsforeachFAatLevel1
involvecomputingthecomplementoftheoutputcarry,
cloningthecomputedcarrycomplementtoanothercell,and
thencomputingthecomplementofthesumatt=1,2,3,
respectively.Asbefore,bubble-pushingallowstheinverted
sumandcarryoutputstobeuseddirectlyinthenextbit
slice.
TobeginthecomputationsatLevel2,thecomputed

carryvaluesinrowimustbesenttorowi+1,andthis
isaccomplishedatt=4,5.Notethatduetothestructureof
theCRAM,thismustbeperformedintwosteps:whenrow
iisconnectedtoi+1,wecannotsimultaneouslyconnect
rowi+1toi+2,otherwisewecreateaninadvertentpath
fromitoi+2.Therefore,transfersfromalleven-numbered
rowstothenextrowoccurinonetimeslot,andtransfers
fromallodd-numberedrowsinanother.Threemoresteps
arerequiredtoperformtheFAcomputationatLevel2,
whichcompletesatt=8,andtheresultsthengotoaCPA,
implementedasinSection4.

5 CRAMAPPLICATIONS

Inthissection,wepresenttwoapplicationsoftheCRAM:
atwo-dimensional(2D)convolutionoperationforimage
filteringusingimagesandfiltersrepresentedby multiple
bits,andabinaryneuromorphicinferenceenginefordigit
recognition.

5.1 2DConvolutionforImageFiltering

Convolutionisabuildingblockofmanyimageprocessing
applications,suchasimagefilteringforsharpeningand
blurring.Fig.12(a)showsaninputimage with512×512
pixelsthatisconvolvedbya3×3filtertoyieldanoutput
imagewiththesamenumberofpixels,showninFig.12(b).
Theoutputpixelinlocation(i,j)iscomputedasfollows,as
illustratedinFig.13(a):

Oi,j=
3

k=1

3

l=1

fk,l·Ii−k+2,j−l+2

100 200 300 400 500

100

200
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(b)

Figure12:Usingtheaverage(mean)filtertodenoiseanimage:
(a)thenoisyimagewithnumerousspecks,and(b)the

denoisedversion.

wherefrepresentsamatrixassociatedwiththe3×3filter,
andIisthematrixofinputpixels.TheimageIisrepre-
sentedusing4bits,andthefilterfusestwobits.Thus,each
partialproduct(fk,l·Ii−k+2,j−l+2)hassixbits.
TocomputeO(i,j),theresultofthedotproductrep-

resentingapixeloftheoutputimage,ninesix-bitpartial
productsareaddedtogetherusingatreeadder,asshown
inFig.13(b).Thetreeadderhasfourlevels,andusesa
six-bitripplecarryadderatthefinalstage.Asillustrated
inthefigure,thetotalnumberofrowsrequiredforthe
implementationofonedotproductis19.Similartothe
adderandmultiplier,itiseasytobuildaschedulingtable
fortheimplementationofthedotproduct:forconciseness,
itisnotshownhere.Thetotalnumberofstepsforthe
implementationincludesallstepsformultiplication,addi-
tionswithintherows,inter-rowtransfers,andthefinalCPA.
Theconvolutionforeachoutputpixelcanbecomputedin
parallel.

5.2 ANeuralInferenceEngine

Usingthebuildingblocksdescribedabove,weshowhow
the CRAMcanbeusedtoimplementaneuromorphic
inferenceengineforhandwrittendigitrecognitionusing
datafromthe MNISTdatabase[22].Theneuralnetwork
architecturefrom[23](Fig.14)isusedtoimplementthe
recognitionscheme.EachoftheMNISTimagesisscaledto
11×11asin[23],atransformationthatmaintains91%recog-
nitionaccuracyandreducescomputation.Notethatusing
thefullimage,orusingamorecomplexneuralenginewith
higherrecognitionaccuracy,doesnotfundamentallychange
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Figure16:(a)ThedistributionsofthenumberofFAsineach
levelofWallacetree.(b)Thedistributionofthetotalnumber

ofmovesrequiredinthedatatransferphases.

theformofEquation(11).AsshowninSection3,theCRAM
architecturecanperformtheunitoperations(additionand
multiplication)foreither.Forexample,theconvolutionlayer
inaconvolutionalneuralnetwork(CNN)involvesdot
productoperations,andthenasummationovertheresults
ofthesedotproducts.ComputationsinotherCNNlayers,
suchaspoolingandReLU,alsorequiresimplearithmeticor
BooleanoperationsthatcanbeimplementedontheCRAM
substrate.

6 EVALUATIONANDRESULTS
WeevaluatetheperformanceoftheCRAMfortwoappli-
cations:(a)performing2Dconvolutiontofiltera512×512
image,and(b)digitrecognition,usedtoanalyze10,000
handwrittendigitimagesfromtheMNISTdatabase.Inboth
applications,theexecutiontimeandenergyoftheCRAM
arecompared withthoseofanear-memoryprocessing
(NMP)system,whereaprocessorisavailableattheedgeof
thememoryarray. Wedonotexplicitlyshowcomparisons
betweenNMPandprocessor-basedcomputing,wherethe
dataistakenfrom memorytoaprocessororcoprocessor
forcomputation,andtheresultsaretransported:itiswell-
documented[2],[4],[24]thatthismethodisvastlyinferior
totheNMPapproachduetothecommunicationbottleneck
describedinSection1.Forexample,[24]reportsa6.5×
improvementthroughtheuseof NMP,ascomparedto
processor-basedcomputing.Notethatthiscommunication
overheadlimitstheeffectivenessofanyprocessororcopro-
cessorthatrequirescommunicationtoandfrom memory,
includingspecializedacceleratorcores(e.g.,neuromorphic
unitsorGPUs).
TheorganizationoftheCRAMarrayisshowninFig.17.

Forthe2Dconvolutionapplication,a256Mb[512Mb]
CRAMarrayisenoughtocomputealloutputpixelsofa
512×512imagewith4bitsperpixelinparallelusingthe
advanced[today’s] MTJdevice.Forthedigitrecognition
application,werequirea1Gbmemory,whereeachimage
canbeprocessedinparallelwithinasubarray.Theoverall
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Figure17:EachCRAMunitincludesfourCRAMsubarrays
andonepredecoder.Apredecoderblockisatthecenterofthe
CRAMunit,andfansouttofourCRAMcolumndecoders.

arrayisdividedintosubarraysasshowninthefigure.The
operationsintheCRAMarrayarescheduledbyactivating
theappropriateLBLandBSLlines.Inmemorymode,the
predecoderanddecodermodulesdrivetheselectionofWL
(seeFig.1),whileinlogicmode,theydrivetheselectionof
LBL.ThepredecoderatthecenteroftheCRAMunitfans
outtoasetofdecodersinourevaluations:here,weshow
fourdecoders,butifalargernumberofsubarraysisused,
thisnumbercanbedifferent.
TocalculatetheenergyanddelayoftheCRAMsystem,

weconsideredtheenergyanddelaycomponentsinboth
peripheralcircuitryandtheCRAMarray.Todeterminethe
impactofthesizeofCRAMonexecutiontimeandenergy,
weconsideredtwocasesforthesizeofCRAMsubarrays:
1024rows×1024columns,and128rows×512columns.

6.1 ExecutionTime

CRAM:Weassumethatthedataisplacedintheappropriate
CRAMarraylocation.Theexecutiontime,tCRAM,is:

tCRAM=tMTJ +tDr, (12)

wheretMTJ andtDr aredelayrelatedtocomputationsin
the MTJarrayandinthebitlinedriversofFig.4,respec-
tively.ThetotalarraydelayisdominatedbytheMTJdelay,

tMTJ =Nsteptwr, (13)

whereNstepandtwrare,respectively,thenumberofcompu-
tationstepsandtheMTJwritetimepercomputation.Here,

Nstep=NMul +NLNFA+
NL
i=1Ii−→i+1+tCPA (14)

whereNMul isthenumberofstepsrequiredtogenerate
partialproductsforthefirstlevelofthetreeadder.The
secondtermindicatestotalnumberofintrarowcomputation
stepsrequiredfortheimplementationoftheneuralnetwork,
whereNLthenumberoflevelsintheimplementationtree
adder,andNFAthenumberofstepsfortheimplementation
ofaFA.Thethirdtermcorrespondstothetotalnumberof
stepsfortransferringdatabetweenrowsoftheCRAMarray:
ateachleveliofthetree,thenumberofsuchtransfers
isdenotedbyIi−→i+1.Finally,tCPA isthetimerequired
forthecarrypropagationadditionstepattheendofthe
Wallacetreecomputations.Thepresetaddsnoexecution
timeoverheadandcanbeperformedeitherduringthewrite
operationwhenCRAMisinthememorymode,oronline
duringthecomputationwhenCRAMisinthelogicmode.
Inthelattercase,theoutput MTJsarepresetinparallel
withthelogiccomputationofthepreviousstep,addingno
overheadtothecomputetime.Duringthelogicoperation
LBLs,andBSLsareengagedincomputation,andcurrent

flowsthroughLLs(seeFig.1andFig.2).Simultaneously,
onecanalso writethepresetvalueforthenextstep,as
onlyMBLandBSL(ofanothercolumn)areinvolvedinthe
writingoperation,andthereisnooverlapbetweencurrent
pathrelatedtocomputationandthattooutputpreset.
Forthe2Dconvolutionapplication,wehave:

•FromSection5.1,NMul =9andNL=4.
•BasedonSection3.3,NFA =3usingtheMAJgates,
withbubble-pushing,inadvanced MTJtechnologies,
andNFA =9using NAND-basedlogicintoday’s
technology(whereMAJgatesdonotprovidesufficient
noisemargin,asshowninSection3.2).

•Wecountallnumberofstepsintheinter-rowcommu-

nicationphases,andfindthat
NL
i=1Ii−→i+1=14.

•Extendingtheargumentfromthefour-bitadderin
Section3.3,tCPA=13forthesix-bitadder.

From(14),weobtainNstep=48(fortheadvancedCRAM
withMAJ3basedlogic)andNstep=72columns(fortoday’s
CRAM with NAND-basedlogic).Thus,thecomputation
foreachpixeloftheoutputimagerequiresanarrayof
19rows(Section5.1)andNstepcolumns.Byroundingthe
columncountstothenearestpowerof2,andconsidering
all512×512pixelsoftheoutputimage,aCRAMarraysize
of256Mbisrequiredforthecomputationontheadvanced
MTJ;thecorrespondingnumberfortoday’sMTJis512Mb.
Forthedigitrecognitionapplication:

•FromSection5,NMul =6,andNL=10.
•Asbefore,NFA=3usingtheadvancedCRAM,and
NFA=9usingtoday’stechnology.

•Thenumberofstepsintheinter-rowcommunication

phasesisdeterminedtobe
NL
i=1Ii−→i+1=247.

•FromSection3.3,tCPA=9forthefour-bitadder.

Therefore,Nstep=292fortheadvanced MTJtechnology
(usingMAJlogic),andNstep=352usingtoday’sMTJs(us-
ingNANDlogic).Thecomputationofeachimagerequires
anarrayof121rows(correspondingtothepartialproducts)
times10outputs,and292or352columns(correspondingto
thestepsinthecomputation),dependingonthetypeofMTJ
used.Therefore,rounding292(or352)tothenearesthigher
powerof2,ina1024×1024memorysubarray,wecanfit
18images(9imagesalongtherowsand2imagesalong
thecolumns).Theentiresetof10,000imagesthusrequires
10,000/18=556sucharrays;roundingthisupto1024,we
seethatwerequire1024suchsubarrays,providingatotal
memorysizeof1Gb,aslistedearlier.
ToincorporatethedelayofbitlinedriversintheCRAM,

anoverheaddelayestimatedineachstepbyconsideringthe
delaycomponentsofaDRAMarraywiththesamephysical
size. Weusetheparametersand modelsinthe NVSim
memorysimulator[25]at10nmand45nmtoconsidera
subarrayofthissizeandusetheunderlyingparametersto
obtainthesedelays. Wetailorthe NVSIM modelstothe
specificsoftheCRAMcomputation.Specifically,inlogic
mode,eachcomputationsteprequiresLBLstobedriven,
similartodrivingwordlines,butdoesnotrequirebitline
orsenseamplifiercircuitry.Theloadseenbythecolumn
driversinlogicmodecanbemodeledinthesamewayas
theloadseenbyrowdriversinmemorymode:insteadof
drivingawordlinetransistorasinmemorymode,theLBL
drivestheaccesstransistorthatconnectsacelltotheLL.
Foreachstepofcomputation,wecalculatethesumofthe
delayofthedecoderandpredecoderusingsimilarmodels
asNVSim,andthisvalueismultipliedbyNsteptofindthe
totaloverheadcorrespondingtotDr.Thesizeofthebit-cell
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isalsoalteredtoreflecttheincreasedsizeoftheCRAMbit
celloverthatforanSTT-MRAMcell.
NMPSystem:Thenear-memoryprocessing(NMP)system
takesdatafromthememorytoaprocessorandperformsits
computationoutsidethememorysystem. Weassumethat
theoperationisbasedonaDRAMstructure,withbetter
performancecharacteristicsthanaspintronicmemory.For
thedigitrecognitionapplication,toprocessall10Kimages
oftheMNISTdatabase,10,000images,eachofsize121bits,
mustbefetchedfromDRAM,forcomputationsinthenear-
memoryprocessor.Thedelayforthisscenarioisestimated
usingCACTI[26].Asimilarapproachisusedforthe2D
convolutionapplication.
Computingoneoftheoutputs,Yi,oftheneuralnet

requires121 MACoperations.Tofindtheprocessingtime
ofeachblockofdata,itisassumedthattheprocessoruses
instructionpipeliningtechniqueandthatitcanperform
the multiply-accumulator(MAC)operationinoneclock
cycle.Incase multipleprocessingunitsareavailableon
theprocessor,weappropriatelyscaletheexecutiontimeby
thenumberofprocessors. Wepessimisticallyassumemax-
imumparallelism,whereeachfetchedimageisprocessed
inparallel,andthelevelofparallelismisonlylimitedby
thedataratefrom memory.Theclockfrequencyofthe
processoris1GHz,butduetotheassumptionabove,the
precisecomputingspeedoftheprocessordoesnotaffectthe
evaluationofNMPexecutiontime.

6.2 Energy

Analogoustodelay,theCRAMenergyiscomputedas:

ECRAM=EMTJ +EDr (15)

whereEMTJ andEDr aretheenergyrelatedtocomputa-
tionsinthe MTJarrayandforthebitlinedrivers,respec-
tively.TheenergyintheMTJarrayisgivenby

EMTJ =EPreset+EMul+Erow+Etransfer+ECPA (16)

in whichEPreset isthepresetenergybeforethelogic
operationstarts;EMul istheenergyfor multiplicationto
producepartialproductsinLevel1ofthetreeadders;
Erowistheenergyforintrarowcomputation,andcanbe
obtainedbyenumeratingallFAsworkinginparallelinthe
9levelsoftheimplementationtrees;Etransferistheenergy
fortransferringdataacrossrowsbetweenvariouslevelsof
computation,andcanbeobtainedbyenumeratingallinter-
row movesand multiplyingthecountbytheenergyof
BUFFERgate;ECPAistheenergyfortheimplementation
ofthefinalripplecarryadders.Fortheadvanced MTJ
technologyusingMAJ3gates,Eq.(16)canberewrittenas
follows(asimilarequationcanbederivedfortoday’sMTJ):

EMTJ =NpreEpre+NNOTENOT +NBUFEBUF+

NMAJ3EMAJ3+NMAJ5EMAJ5
(17)

Here,Epreistheenergyforpresettheoutputofonegate;
EgandNgaretheenergyfortheimplementationofa
singlegategandthenumberofgatesoftypeg,g∈{NOT,
BUFFER,MAJ3,MAJ5}.NotethatNpreisequaltothesum
ofcountsofallgates,asweneedtopresettheoutputsofall
gates.colorredAsanexample,theenergyvaluesandcounts
forgatesandtheoutputpresetforthedigitrecognition
applicationusingadvancedCRAMarelistedinTable4.
Thevalueofdriverenergy,EDr,fortheCRAMisesti-

matedusingNVSim,usinganalogousanalysistechniquesas
forthedelaycomputation.Sincemultiplecolumnsmaybe

drivenineachstep,wemultiplytheenergycostofdriving
eachcolumnbyNeff,theaveragenumberofcolumns
driveninanypartofthecomputation.Theenergywithin
eachCRAMunitisthesumofenergyoffourCRAMsubar-
raysandonedecoder.ThisvalueismultipliedbyNstepto
obtainthetotaloverheadcorrespondingtoEDr.
Forthenear memoryprocessingsystem,theenergy

consistsoftwocomponents:(i)memoryaccessenergyand
(ii)computationenergy.Theestimatedcostforaccessing256
bitsoftheoperandfrom memoryisestimatedusing[2],
normalizedtoCACTI.

Table4:TheenergycostforvariousCRAMgatetypesand
presetoperationsundertheAdvancedMTJtechnology.

Gate NOT BUFFER MAJ3 MAJ5 Preset

Energy/gate(aJ) 30.7 73.8 7.6 6.3 26.1

Count(×105) 365 3017 657 294 4333

6.3 ComparisonbetweenCRAMandNMP

TheresultsforexecutiontimeandenergyforCRAM(at
10nmand45nm)andNMP(at16nmand45nm)areevalu-
atedforbothapplications(10nmdataforCMOS/NMPwas
notavailable).
Theevaluationresultforthe2Dconvolutionapplication

islistedinTable5.Basedontheresult,today’sCRAMis
620×faster,and23×moreenergyefficientthantheNMP
system.TheadvancedCRAMis1500×faster,and750×
moreefficientthanaNMPsystem.

Table5:Comparisonbetweentheexecutiontime,t,and
energy,E,inCRAMandNMPbasedcomputationsforthe2D
convolutionapplication.ThesizeoftheCRAMsubarraysin

thisevaluationis128×128.

CRAM NMP

10nm 45nm 16nm 45nm

t 54.0ns 231.2ns 84.3µs 144.4µs

E 252.1nJ 16.5µJ 189.2µJ 388.6µmJ

Forthedigitrecognitionapplication,theresultsforexe-
cutiontimeandenergyforCRAM(at10nmand45nm)and
NMP(at16nmand45nm)areshowninTable6(10nmdata
forCMOS/NMPwasnotavailable).ThevalueofEMTJ is
53.8µJfortoday’sMTJtechnology,and35.4nJforadvanced
MTJs,threeordersof magnitudelower. Whilethedriver
energyalsoreducesfrom45nmto10nm,thereductionis
moremodest.Asaresult,theenergyforadvancedMTJsis
dominatedbythedriverdelay.
Theimprovementsshowninthetablecanbeattributed

to(a)highlocalityoftheoperationsand(b)largeamounts
ofparallelismaseachrowcomputesinparallel.Weseethat

•Forthe1024×1024subarray,theCRAMenergyisabout
40×betterthanNMPat45nm,andimprovestoover
2500×lowerat10nm.Theexecutiontimeis1400×
betterat45nm,andabout1700×betterat10nm.

•Theexecutiontime[energy]forthe45nmCRAMare,
respectively,over500×[20×]betterthan16nmNMP.

•The10nmCRAMexecutiontime[energy]isover3×
[80×]betterthanthe45nmCRAM.

•Furtherimprovementsareseenusingthesmallersub-
array.Theenergyoverheadassociated withsmaller
subarraysissmallat45nm,butismagnifiedat10nm,
wherethedriverenergydominatesthesubarrayenergy.
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Table6:Comparisonbetweentheexecutiontime,t,and
energy,E,inCRAMandNMPbasedcomputationsfor

neuromorphicdigitrecognition.

CRAM
NMP

1024×1024 128×512

10nm 45nm 10nm 45nm 16nm 45nm

t 434ns 1381ns 338ns 1105ns 0.74ms 1.96ms

E 0.49µJ 60.3µJ 0.75µJ 63.8µJ 1.27mJ 2.57mJ

ThedistributionsofenergyanddelayfortheCRAM,
bothusingtoday’s MTJsandadvanced MTJs,withsubar-
raysof1024rows×1024columns,and128rows×512
columns,areshowninFig.18andFig.19,respectively.For
the1024×1024case,undertoday’stechnology,the MTJ
arrayintheCRAMconsumesadominantcomponentof
theenergy.However,foradvancedMTJs,duetothegreatly
improvedenergyoffutureMTJs,theenergybottleneckwill
beinthedrivercircuitry.Bydecreasingthesizeofthe
subarrayto128rows×

Execution Time - Today's CRAM

67.7%

32.3%

Today's MTJ Array
45nm Driver Circuit

Energy - Today's CRAM

89.3%

10.7%

Execution Time - Advanced CRAM

68.5%

31.5%

Advanced MTJ Array
10nm Driver Circuit

Energy - Advanced CRAM
7.2%

92.8%

512columns,thetotalexecutiontime
decreasesduetoareductioninthedrivercircuitrydelay.As
aresult,theexecutiontimeisdominatedmorestronglyby
theMTJarray.However,thedrivercircuitryplaysaslightly
moreprominentroleindeterminingtheenergythanforthe
largersubarrayinFig.18.Thus,tradeoffsbetweenenergy
anddelaycanbeobtainedbyalteringsubarraysizes.

Figure18:Distributionofenergyanddelayofthedriverand
CRAMarrayforCRAMwiththesubarraysizeof1024×1024.

Execution Time - Today's CRAM

92.8%

7.2%

Today's MTJ Array
45nm Driver Circuit

Energy - Today's CRAM

85.3%

14.7%

Execution Time - Advanced CRAM

87.9%

12.1%

Advanced MTJ Array
10nm Driver Circuit

Energy - Advanced CRAM
4.7%

95.3%

Theseresultclearlyshowsthatforbothapplications,
CRAMoutperformstheNMPsysteminbothenergyand
executiontime.IntheNMPsystem,itisnecessarytofetch
thedatafrom memoryandprocessitinprocessorunits.
Evenwiththe maximumlevelofparallelisminNMPby
using multipleprocessorunits,andexploitinghiddenla-
tencytechniques,thedelayoverheadoffetchingdatato
theNMPattheedgeofthememoryisamajorbottleneck.
Incontrast,theCRAMdoesnotfacethisdelaypenalty.
Moreover,theCRAMcomputation modelenablesavery
highdegreeofparallelismaseachrowcanperformits

Figure19:Distributionofenergyanddelayofthedriverand
CRAMarrayforCRAMwithsubarraysizeof128×512.

computationsindependently.
Forexample,inthe2Dconvolutionapplication,alldot

productsgeneratingoutputpixelscanbecomputedinpar-
allel.Incontrast,theNMPsystemfacesaserialbottleneck
inthewaythatdataisfetchedfromthememory.Moreover,
theenergycostofthecostofdatatransferscannotbehidden
intheNMPsystemasdatamustbetakenalonglonglines
totheedgeof memory.Incontrast,allcommunicationin
theCRAMisinherentlylocalwithinthesubarray,providing
largeenergysavings.

7 RELATEDWORK

Methodsforaddressingthecommunicationbottleneck
throughdistributedprocessingofdataatthesourcehave
beenproposedin[27],[28].Suchtechniquesfeaturearich
designspace,whichspansfull-fledgedprocessors[28],[29]
andco-processorsresidinginmemory[30],[31].However,
untilrecently,thepromiseoftheseapproachescouldnotbe
translatedtodesignsduetotheincompatibilityofthestate-
of-the-artlogicandmemorytechnologies.
Thischangedsomewhat withtheemergenceof3D-

stackedarchitectures[32],[33],whereaprocessorisplaced
nexttothe memorystack,hasenabledtheemergenceof
severalapproachesfornear-memorycomputing[34]–[36].
However,buildingtruein-memorycomputinghasbeendif-
ficult.InCMOS-basedtechnologies:thecomputingengine
isoverconstrainedasit mustusethesametechnologyas
memory,andtypically,methodsthatareefficientforcom-
putationmaynotbesoformemory.Asaresult,techniques
thatattemptin-memorycomputationmustnecessarilydraw
thedataouttotheperipheryofthememoryarray,e.g.,toa
senseamplifierorauxiliarycomputationalunit,toperform
thecomputationandthenwritetheresultbacktomemory
asneeded.Thereareseveralexamplesofsuchplatforms.
Theworkin[37]performssearchoperationsforcontent-
addressablememoryfunctionalities,whichneednowrite-
backbutarelessgeneralthanfullin-memorycomputing;
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methodsin[38]placeacomputationalunitattheedge
of memory;logicfunctionalitiesin[39]performbitwise
operationsthroughthesenseamplifier.
Post-CMOStechnologiesopenthedoortonewarchi-

tectures.The methodin[40]presentsalogic-in-memory
platformthatcombinesmagnetictunnelingjunctions(MTJs)
with MOStransistors,andembedscomputingelements
withinamemoryarray.However,thisbreakstheregularity
ofthearraysothat whileitisefficientforcomputation,
it maynotbeidealforuseasa memory module.SPIN-
DLE[41],aspintronics-baseddeeplearningenginepro-
posesatieredarchitectureofprocessingelementswitha
neuralcomputingcoreandmemoryscratchpadattheedge,
communicating withoff-chip memory.ThePinatubo[42]
processing-in-memoryarchitectureperformsbulkbitwise
operationsthroughredesignedreadcircuitrythatperforms
computationsattheperipheryofaphasechange mem-
oryarray.Aspintronics-basedsolutionin[43]proposesa
spin-transfertorquemagneticrandomaccessmemory(STT-
MRAM)approachthatalsoperformsbitwisecomputation
attheperipheryofthearraybymodifyingtheperipheral
circuitryinastandardSTT-MRAMmodule.UnlikeCRAM,
these methodsperformcomputationattheedgeofthe
memoryarray. Anotherarchitecture[44]buildsafour-
terminaldomainwalldevicebasedonthespin-Halleffect,
butincursasignificantareaoverhead.Amemristor-based
approach[45]showstheabilitytoperformlogicfunctions
inanarray,butdoesnotshowlargerapplications.

8 CONCLUSION

ThispaperpresentsadetailedviewofhowtheCRAMin-
memorycomputationplatformcanbedesigned,optimized,
andutilized.Asopposedtomanyoftheapproachespro-
posedsofartosolvethe memorybottleneckbybringing
processingclosertomemory,CRAMimplementsatruein-
memorycomputingparadigmthatperformslogicopera-
tionswithinthememoryarray.Methodsforimplementing
specificlogicfunctionshavebeenpresentedandhavebeen
usedtoperformbasicarithmeticoperations,namely,adders
and multipliers.Attheapplicationlevel,theproblemsof
2Dconvolutiononmultibitnumbers,andaninferenceen-
gineforbinaryneuromorphicdigitrecognition,havebeen
mappedtotheCRAM.Anevaluationofthese methods
showsthatforthetaskofevaluatingtheentire MNIST
benchmarksuite,theCRAMachievesimprovementsofover
threeordersofmagnitudeintheexecutiontime.Fortoday’s
MTJtechnology,improvementsofabout40×intheenergy
areseen,afigurethatimprovesto> 2500×forfuture
generationsofMTJs.
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