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ABSTRACT

Future 5G cellular networks, equipped with
energy harvesting devices, are uniquely posi-
tioned to interoperate with smart grid, due to their
resemblance in scale and ubiquity. New interoper-
able functionalities, such as real-time energy trad-
ing and future planning, are of particular interest
to improve productivity, but extremely challeng-
ing due to the physical characteristics of wireless
channels and renewable energy sources, as well
as time-varying energy prices. Particularly, a priori
knowledge on future wireless channels, energy
harvesting, and pricing is unavailable in practice.
In this scenario, simple but efficient Lyapunov
control theory can be applied to stochastically
optimize energy trading and planning. Simulations
demonstrate that Lyapunov control can approach
the offline optimum which is obtained under the
ideal assumption of full a priori knowledge, lead-
ing to 65 percent reduction of the operational
expenditure of 5G on energy over existing alter-
natives.

INTRODUCTION

Fifth generation (5G) cellular networks are antici-
pated to be densely deployed with a significantly
reduced coverage area per cell. Along with its
reduced per-cell size, the number of cells will dra-
matically increase due to the explosively increas-
ing mobile traffic and the limited availability of
high-frequency spectrum [1]. Consequently, the
total energy consumption of all base stations
(BSs) would be high. It would contribute over-
whelmingly to the operational expenditure of
cellular networks, and adversely to the global
carbon footprint. For economic and ecological
purposes, an increasing number of BSs are now
equipped with energy harvesting devices such as
solar panels or wind turbines. Renewable energy
up to 10,000 kW has been used to power cel-
lular systems, supplementing persistent supplies
from power grid [12]. Efficient techniques such as
ON/OFF BS switching [3], online scheduling [4,
51, and power control [6] have been proposed
to reduce the power consumption and delay,

or achieve a near-optimal throughput region for
energy harvesting powered users.

While cellular networks are evolving, the
revolution of power grid is also underway.
The next-generation smart grid, equipped with
advanced smart meters and control capability, will
be flexible, versatile, and able to support many
new functionalities such as distributed energy
generation, two-way energy flows, energy trading
and redistribution, and energy demand manage-
ment [7]. Traditional energy users, such as cellular
networks, are potentially becoming an integral
part of the smart grid, helping generate and redis-
tribute energy.

From a management and productivity point of
view, cellular networks are uniquely positioned
to interoperate with smart grid. In particular, the
sheer scale and ubiquity of cellular networks
result in a significant amount of energy, either
purchased off the grid or harvested from ambi-
ent environments. The amount is non-negligible
to the load of the entire smart grid. Moreover,
the centralized close control of cellular networks
resembles to that of the smart grid. This can pro-
vide efficient redistribution of energy and effective
price negotiation with the smart grid [8].

Figure 1 illustrates the new interoperable
framework of 5G and smart grid, where BSs
equipped with energy harvesting devices are con-
nected to the smart grid through smart meters.
The BSs are also connected to the core network
(i.e., the gateway and Internet) through broad-
band backhaul links using gigabit or carrier-grade
Ethernet [9]. Effective interoperability between 5G
and the smart grid is not only feasible, but also
important to both 5G and the smart grid.

A number of new functionalities become pos-
sible under this new interoperable framework.

Two-way energy trading (TWET): Cellular BSs,
as an integral part of the grid, can purchase ener-
gy off the grid in shortage of renewable energy,
and sell energy back to the grid when renew-
able energy is in abundance [7]. The abundant
renewable energy can be redistributed through
the smart grid for environmental benefits, as well
as financial gains of 5G. This helps balance energy
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FIGURE . A new interoperable framework of 5G and smart grid.
load and relieve pressure on the grid, and hence reduce the battery requirement, it is reasonable
improve the reliability of the grid. to discretize energy harvesting based on the
Dynamic energy pricing: As a result of intermit- wireless timescale.
tent renewable energy and TWET, energy prices  Taking these different timescales into account, a
are expected to exhibit strong dynamics in smart  foresighted plan of energy usage in advance will
grid. Dynamic pricing is important to regulate be of significance to reduce the operational cost
the energy demands, and encourage users such of 5G networks.
as 5G networks to consume energy wisely and Other new interoperable functionalities
efficiently. The prices of both selling and buying between 5G and smart grid include energy- and
energy fluctuate over time to reflect the real-time spectrum-efficient wireless transmission, energy
energy demand and supply availability. redistribution, wireless energy transfer, grid man-
Multi-timescale energy planning (MTEP): The ~ agement, and control monitoring [10].
interoperability of 5G and smart grid needs to In this article, we are particularly interested in
be supported over multiple different timescales TWET and MTEP, which are of practical value to
(i.e., for grid-energy pricing, energy harvesting, reduce the operational expenditure of 5G. Spe-
and wireless transmission), as shown in Fig. 2. The cifically, we introduce TWET and MTEP of 5G,
different timescales are due to the physical prop- discuss the challenges of their implementations,
erties of wireless channels and energy harvesting, and investigate the applications of stochastic
the time-varying demand and supply across smart control theory to optimize TWET and MTEP. In
grid, and the marketing strategies of electricity particular, Lyapunov control is assessed for the
utility companies: intended applications, and its effectiveness is
+ The wireless timescale depends on the chan-  verified by extensive simulations in practical sce-
nel coherence time of typically tens of millisec- narios without a priori knowledge on future wire-
onds. The BS’s update transmission is scheduled less channels, and energy pricing and harvesting.
based on this interval to keep up with changing Simulation results show that Lyapunov control
wireless channels. over TWET and MTEP has the potential for a 65
+ The smart grid energy pricing timescales are percent reduction in the operational cost of 5G
regulated by the electricity utility companies, on energy. It is also revealed that reducing the
depending on demand and supply, and mar- dissipation of the batteries at 5G BSs is crucial to
keting strategies. Different business models and improve the cost saving.
contractual arrangements can be made. Long-
term pricing, Iasti%g for up to days or month%, TWET AND MTEP For 5G
reflects medium- to-long-term demand and Figure 1 shows a promising 5G architecture cou-
supply, and changes in the fuel market. On the pled with smart grid, where each BS is equipped
other hand, short-term pricing reflects real-time with a smart meter, an energy harvesting device,
changes in demand and supply. It can apply the and a battery with finite capacity. The battery
wireless timescale, since wireless transmissions level needs to remain above a certain threshold to
drive the changes. avoid excessively discharging; otherwise, perma-
+ Energy harvesting is typically a slowly chang- nent damage can be done to the battery. At any
ing continuous process, under the current low  time, energy can be purchased off the smart grid
energy transfer rate (e.g., T mW/cm? for solar at a real-time buying price. Unused energy, either
panels) [4]. Nevertheless, it can readily be dis- previously purchased or locally harvested, can be
cretized due to the discrete nature of trading. stored in the battery for future use, or sold back
To capture the real-time changes of energy  to the grid through the smart meter at a real-time
consumption in wireless transmissions and also selling price.
|EEE Wireless Communications @ August 2017 25
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FIGURE 2. Multiple timescales of energy pricing and harvesting in the interopera-
ble framework of future 5G and smart grid.

Energy-efficient coordinated multipoint (CoMP)
techniques can be adopted at the BSs, as exten-
sively studied in 3GPP and specified in standards
[11]. The BSs jointly form multiple wireless beams
toward different users to deliver data traffic. Every
user has a requirement on the minimum data rate,
based on its specific traffic type or quality of ser-
vice (QoS) requirement. Such a minimum data rate
requirement can be translated to a signal-to-inter-
ference-plus-noise ratio (SINR) target.

Depending on the channel state information of
the users, the beams are designed to achieve the
SINR target while minimizing the transmit power
of the BSs. By this means, inter-user and inter-cell
interference can be suppressed, and energy effi-
ciency can be improved, thereby enhancing the
sustainability of the BSs with reduced demand for
energy supply from the grid.

With the aforementioned discretization of
wireless transmission, energy harvesting, and
pricing timescales, TWET can be formulated to
minimize the time-average energy cost of the BSs
across all time slots, as given by

min hm EE(G? i.buy ~ B Pl i)

NS ———

G;(1)

(1

where

. a{t is the real-time energy buying price at slot t.
+ Bitis the real-time energy selling price at slot t.

* Both ‘D:bu and (l),se“ indicate the difference
between t¥1e total of the energy consumed and
purchased to be pre-stored at BS i, and the
energy harvested by the BS during slot t. In the
case that the difference is positive, 0} buy is the
shortage of energy and needs to be purchased
from the grid, and (D, sell is zero. In the case that
the difference is negative, (D,tlse” is the surplus of
energy and can be sold back to the grid, and
i buy is zero.

At any slot, energy can be either purchased
from or sold to the grid. The energy purchased
to be immediately consumed and/or stored for
future use, or the energy sold to the grid, is to be

optimized in Eq. 1. The energy can be stored in
the batteries of the BSs. Typically, the energy that
can be charged into or discharged from a battery
is bounded during a time period.

In practice, a battery can also undergo energy
dissipation. Storage efficiency, typically denoted
by n € (0, 1], indicates a leakage of (1 - )% of
the battery level during a time slot. It is important
to keep the batteries at a proper level to avoid
excessive leakage of energy.

Note that the long-term minimization of Eq. 1
cannot be achieved by myopically optimizing over
each individual slot. This is due to the fact that
the (dis)charging decisions are coupled across
time through the change of the battery levels.
The decision at any slot can have a non-negligible
impact on the decisions further in the future. Also,
the minimization of Eq. 1 is subject to non-convex
constraints posed by CoMP, such as the quadratic
function of the beamforming vectors to calculate
the energy consumption. The minimization does
not provide a tractable structure, and cannot be
readily solved using well-developed techniques
such as convex optimization.

In the ideal case where the energy prices,
energy harvesting, and wireless channels are a
priori known over time, TWET can be optimized
at once using offline approaches [12]. Specifically,
the non-convex constraints posed by CoMP can
be reformulated using semi-definite relaxation.
The resultant convex problem can readily be
solved using standard convex optimization solv-
ers, such as the interior point method, with opti-
mality rigorously proved using Lagrange duality
theory. In practice, however, the information of
real-time energy prices, energy harvesting, and
wireless channel conditions is unavailable ahead
of time due to causality. Of limited applications in
practice, the offline optimum can quantify a lower
bound for the energy cost of the BSs, and set up
a clear goal for practical designs of TWET.

A more general case of energy trading
between 5G and smart grid can involve multi-
ple asynchronous timescales of real-time wireless
transmission and short-term energy pricing, ener-
gy harvesting, and long-term energy pricing, as
discussed earlier. On average, a long-term ener-
gy buying price is lower than a real-time price;
see Fig. 2. This discrepancy can be exploited to
further reduce the energy cost of 5G compared
to TWET. Taking advantage of the discrepancy,
MTEP is expected to plan energy use and pur-
chase over multiple timescales. Having the same
objective as TWET, MTEP is clearly even more
challenging due to the fact that the ahead-of-time
planning and real-time trading are closely correlat-
ed and coupled along time.

LYAPUNOV CONTROL AND OPTIMIZATION

Given the stochastic process of TWET, control
theory is a promising candidate to solve TWET.
The control variables are the total energy con-
sumption of the BSs and the battery (dis)charging
amount during every slot, both of which depend
on the beamforming vectors of the BSs, the chan-
nels, and the SINR targets of the users. The bat-
tery level is restricted between C™in and Cmax,
which are the minimum threshold that the battery
needs to remain above and the maximum battery
capacity, respectively.
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Lyapunov control is a powerful tool to con-
trol and stabilize queueing systems, and has been
successfully applied to data queues in computer
networks [13] and energy queues in smart grid
[14]. A Lyapunov function L(t) is defined as a
non-negative scalar measure of queue lengths.
The function becomes large as the queueing sys-
tem moves toward unstable states. System sta-
bility can be achieved by taking control actions
that harness the Lyapunov function at any slot.
Consider a network of | queues (Qf, Q, ..., Q),
each with a stationary (stochastic) arrival process,
where the queue length Qf can take any real
value. A typical quadratlc Lyapunov function is
L(®) = 1/2 Ty (QD2.

A Lyapunov drift, defined as AL(t) = L(t + 1)
- L(t), measures the difference of the Lyapunov
function between two consecutive slots. Minimiz-
ing the drift per slot provides a practical means
to restrain the Lyapunov function, prevents the
queue lengths from unbounded growth, and
hence preserves system stability [13].

A general Lyapunov drift-plus-penalty can be
specified by AL(t) + Vp(t), where, apart from the
Lyapunov drift AL(t), p(t) is a penalty function
and Vis a predefined non-negative weight of the
penalty. By minimizing the upper bound of the
drift-plus-penalty at every slot, we can stochas-
tically minimize the time average of the penalty
p(t) while stabilizing the queues. Through proper
selection of the penalty function p(t), this tech-
nique can then be used to stochastically minimize
specific metrics of stochastic systems with asymp-
totic optimality [13]. Lyapunov optimization is
desirable for TWET, as it enables the optimization
of the control decisions to be decoupled across
slots, in contrast to the offline optimization over
all slots with full knowledge of future channel,
energy price, and harvest realizations.

There can be a gap between the stochastical-
ly minimized time average of p(t) and the ideal
offline optimum. Such an optimality gap exists
because the queue stability is accounted for in
the instantaneous minimization through the
drift-plus-penalty objective, and only causal sys-
tem information is used per time slot. As a typi-
cal trade-off of Lyapunov optimization, a queue
length of O(V) is required to achieve an optimality
gap of O(1/V).

In this sense, the optimality gap can asymptoti-
cally diminish at the expense of increasing steady-
state queue lengths.

LYAPuNOv CONTROL OVER TWET

Given the intrinsic resemblance of the logic
queue Q and the battery level in BS i at any slot
t, denoted by C} in TWET, Lyapunov control has
great potential to be applied to optimize TWET
for CoMP [14]. Particularly, C} can be mapped to
Q}, and the total energy cost of all the BSs, £,C/(0),
can specify the penalty function p(t). As a result,
sequentially minimizing the upper bound of such
a Lyapunov drift-plus-penalty during each slot can
lead to the minimization of the time average of
the total energy cost in the long term, while stabi-
lizing all the batteries.

A nontrivial extension of Lyapunov optimi-
zation is required for its application to TWET,
though. On one hand, the battery level C{ needs
to be strictly within [CMin, Cmax] while the queue

length, Qf, can generally take any real values. On
the other hand, different from the data queues in
[13], batteries can have energy leakage due to
storage inefficiency. To tackle these challenges,
Q{ can be modeled as a biased battery level Cf
with a bias T so that Q} is consistent with the defi-
nition of Lyapunov control. The value of I' can be
specified offline by exploiting the queue stabiliz-
ing property of Lyapunov control.

The Lyapunov control of TWET for CoMP can
be automated following the steps below:

+ Initialization}: Set up I and V to ensure the fea-

sibility of TWET, and initialize Q° = C? + T.

« TWET and CoMP: At any slot t,
-Given energy buying/selling prices, harvest-
ed energy amount and channel state informa-
tion, obtain the optimal beams and battery (dis)
charging amount to minimize the upper bound
of the drift-plus-penalty AL(t) + VE,G{(t), subject
to the SINR reqmrements
-Buy energy amount of o] buy from, or sell ener-
gy amount of CD, sell to, the smart grid.

. Battery (dls)chargmg Update C=nC

and Qf = C! + T, where Eb, is the battery (dls)

charging amount of BS i.

Note that the minimization of the upper bound
of the drift-plus-penalty can be convexified with
respect to the beamforming vectors and battery
(dls)chargmg amount if the constraint of Cmin < C}
< CMaxjs relaxed. As a result, it can be minimized
efficiently using convex optimization techniques.
On the other hand, the relaxed battery constraint
remains inviolated once the batteries start to stabi-
lize. This is due to the queue stabilizing property
of Lyapunov control; that is, the dynamic range of
a stabilized queue with a length of O(V) depends
on V and can be limited within (Cmax - Cmin) by
adjusting V and T.

Also note that in the case of perfect batter-
ies, 1 = 1, the aforementioned trade-off of Lya-
punov control holds between a battery level and
the optimality gap (i.e., the gap from the ideal
offline optimum). In other words, the Lyapunov
control over TWET exhibits improving optimality
as the battery capacity CMa increases. Howev-
er, the trade-off no longer exists if the batteries
are imperfect (i.e,, 0 < 1 <1). In this case, the
minimum optimality gap is not monotonic with
respect to V, since practically the battery leakage
enlarges as C™® grows. Nevertheless, following
the recent work [15], the minimum optimality gap
can be numerically computed by a one-dimen-
sional search for V.

LyApuNov CONTROL OVER MTEP

Supporting the interoperability of 5G and smart
grid over multiple timescales, MTEP is able to
further reduce the energy cost of 5G compared
to TWET. Particularly, ahead-of-time planning is
carried out to leverage typically lower long-term
energy buying prices and reduce instant energy
shortage at individual slots. The Lyapunov control
can be applied to MTEP. Particularly, the fore-
cast (i.e., ahead-of-time) energy trading decision
over a larger timescale can be accommodated in
the Lyapunov optimization framework, like TWET
running at longer intervals. MTEP now essentially
consists of multiple asynchronous Lyapunov con-
trol processes running at the intervals of wireless
transmission, real-time energy pricing, and long-

Supporting the interop-
erability of 56 and
smart grid over mulfiple
timescales, MTEP is
able to further reduce
the energy cost of 56
compared to TWET.
Particularly, ahead-of-
time planning is carried
out fo leverage typically
lower long-term energy
buying prices and reduce
instant energy shortage
at individual slots.
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term energy pricing. Nevertheless, the processes
have the common objective of stochastically mini-
mizing the time average of energy cost.

The Lyapunov control running in real time
depends on that running ahead of time over large
timescales. For illustration convenience, here we
consider two different timescales of energy pric-
ing: real time for a short slot (with a duration of
T, and ahead of time for a long interval (with
a duration of ty). In this case, the energy pur-
chased ahead of time is persistently output from
the grid during an upcoming interval (i.e., evenly
distributed across slots within the interval). This
sets a consistent offset on the energy that can be
purchased or sold in real time, and becomes part
of the drift-plus-penalty for the Lyapunov control
over TWET at every slot within the interval.
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The energy purchased or sold ahead of time
can be optimized by minimizing the upper bound
of the drift-plus-penalty of the Lyapunov control
running at the long interval. For an upcoming
interval, this drift-plus-penalty adds up those of the
Lyapunov control over TWET at all slots within the
interval [15]. In this sense, both controls, running
at the long interval and by slots, have a unified
drift-plus-penalty with respect to every single slot;
in other words, minimizing the upper bound of
the drift-plus-penalty on the interval basis does not
violate (i.e., is equivalent to) that on the slot basis.
Given their common objective of minimizing the
time average of the penalty (i.e., energy cost), the
legitimacy of coupling the two Lyapunov controls
stands, preserving the asymptotic optimality of
MTEP as well as the trade-off between the battery
level and optimality gap.

As mentioned earlier, in MTEP, the
drift-plus-penalty per slot contains an unknown
energy offset that depends on the ahead-of-time
decision to be optimized at the beginning of
the corresponding interval. This is different from
TWET. A stochastic subgradient method can be
used to update the ahead-of-time decision for an
upcoming interval. The convex techniques devel-
oped for TWET can be used to optimize the real-
time decisions for all the slots within the interval.
These can be carried out in an alternating manner
until the upper bound of the drift-plus-penalty is
minimized for the interval; equivalently, the upper
bounds are minimized across all slots within the
interval.

PERFORMANCE AND DISCUSSION

Consider a 5G network of two BSs and three sin-
gle-antenna mobile users. Each BS is equipped
with two transmit antennas. We assume the users
are in the middle of the two BSs, and the BS-user
links experience independent and identically dis-
tributed Rayleigh fading channels. Both the max-
imum charging and discharging energy amounts
per slot are 2 kWh. We set the long-term pricing
interval T, = 1 min and the real-time pricing inter-
val (slot) T,y = 10 s. The battery storage efficiency
isn = 0.95 unless otherwise specified. The long-
term and real-time energy buying prices o)l and of!
are assumed to follow folded normal distributions,
with the averages of $1.5/kWh and $2.3/kWh,
respectively. The long-term and real-time energ
selling prices are set as B,',t =0.90" and o' = 0.30!",
since the buying and selling prices are highly relat-
ed and both dependent on the demand and sup-
ply availability. The energy harvesting also follows
a folded normal distribution, with an average rate
of 1.2 kWh/slot. Finally, let T°? denote the SINR
target for user k.

For the purpose of comparison, we also simu-
late a greedy algorithm that myopically minimizes
the instantaneous cost on energy per slot. In this
sense, any surplus energy of a BS is sold to the
smart grid, and any shortage in energy needs to
be purchased from the smart grid, at every slot;
that is, there is no battery (dis)charging.

Figure 3 demonstrates that TWET and MTEP
are able to increasingly reduce the energy cost of
wireless operators at the cost of increasing battery
capacity. For instance, the average operational
cost of TWET under n = 1 is reduced from $47.5
to $29.6 as the battery capacity increases from
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40 kWh to 120 kWh. It is also shown that exploit-
ing multiple timescales of wireless transmission
and energy pricing, real-time energy trading, and
ahead-of-time energy planning can significantly
reduce the cost. With perfect batteries (n = 1),
reductions of 43 and 65 percent can be achieved
using TWET and MTEP at the battery capacity of
1000 kWh, respectively, compared to the myopic
greedy algorithm. This is because the exploitation
of multiple timescales facilitates predicting future
energy pricing and harvesting, and hence refining
current trading decisions.

In fact, we show that the Lyapunov control
over MTEP can closely approach the offline opti-
mum, which is only possible when full a priori
knowledge is available. This is due to the fact that
MTEP can take advantage of multi-timescale ener-
gy pricing, while TWET can only work with real-
time prices. We also see that imperfect batteries
can have a non-negligible impact on the efficiency
of TWET and MTEP. The conclusion drawn is that
the installation of batteries with low dissipation is
crucial to save the energy cost of 5G.

We proceed to evaluate the requirement of
energy harvesting capabilities in real-time energy
trading and future planning. Figure 4 plots the
time-average energy cost against the energy har-
vesting rate (in kilowatt-hours per slot). We see
that the cost declines linearly with the growth of
energy harvesting capability in both TWET and
MTEP. Also, it is observed that the gap between
MTEP and the offline absolute optimum remains
almost unchanged, while that between TWET and
MTEP decreases as the harvested energy increas-
es. In other words, the ahead-of-time energy plan-
ning in MTEP is particularly important to systems
with limited energy harvesting capabilities.

Finally, we show that the saving of ener-
gy cost, through real-time energy trading and
future planning, can be further increased in large
wireless networks. In Fig. 5, the number of the
BSs increases from one to six. We see that the
increasing number of BSs can effectively reduce
the energy cost per user, especially in the case
where there are more users. This is due to the
improved beamforming accuracy and reduced
interference of CoMP. Particularly, the cost saving
grows but the growth rate decreases as the num-
ber of BSs increases. This is because the chan-
nels become increasingly orthogonal among the
users, and the inter-user interference diminishes,
as the total number of transmit antennas increas-
es. As a result, for each user, the beamforming
becomes increasingly close to spatial matched fil-
tering, which is optimal in terms of minimizing the
total transmit power given the SINR requirements
in interference-free channels. The total transmit
power of the BSs asymptotically approaches the
minimized power of spatial matched filtering,
which only depends on the SINR requirements.
We also observe that the average costs increase
as the SINR target grows (e.g., from 5 dB to 20
dB). This is reasonable, since more energy needs
to be consumed (and thus purchased) to meet
more stringent SINR targets.

ConcLusions AND FUTURE WORKS
In this article, we discuss the potential applica-
tions of Lyapunov control to TWET and MTEP
in future 5G networks. We demonstrate that

Average cost per BS per user (5)

—6— 1 user per BS
—— 2 users per BS
—&— 3 users per BS

v=20dB

No. of BSs

FIGURE 5. Time-average energy cost per BS per user vs. the number of BSs,
where the SINR requirement is v, 9 = 5 and 20 dB for all users, C™ = 80

kWh, and Cmin = 1 kWh.

Lyapunov control is able to decouple decision
making over time without the need for a priori
knowledge on future wireless channels, energy
prices, and renewable resources, while still pre-
serving optimality in a stochastic sense. Simulation
results show that effective real-time energy trading
and planning is able to save 65 percent of the
operational cost of 5G on energy, and the saving
can be further increased by enlarging the wire-
less network. The results also reveal that the bat-
tery dissipation can have a non-negligible adverse
impact on the cost saving, and the development
and installation of batteries with low dissipation
are crucial.

In light of the current framework, future direc-
tions include leveraging the predicted information
(e.g., energy prices and renewable generation)
in energy trading and planning, and the decen-
tralized implementation of Lyapunov control as
well as integration of power distribution networks,
both of which facilitate the adaptation to large-
scale network deployments.
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