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Abstract
Future 5G cellular networks, equipped with 

energy harvesting devices, are uniquely posi-
tioned to interoperate with smart grid, due to their 
resemblance in scale and ubiquity. New interoper-
able functionalities, such as real-time energy trad-
ing and future planning, are of particular interest 
to improve productivity, but extremely challeng-
ing due to the physical characteristics of wireless 
channels and renewable energy sources, as well 
as time-varying energy prices. Particularly, a priori 
knowledge on future wireless channels, energy 
harvesting, and pricing is unavailable in practice. 
In this scenario, simple but efficient Lyapunov 
control theory can be applied to stochastically 
optimize energy trading and planning. Simulations 
demonstrate that Lyapunov control can approach 
the offline optimum which is obtained under the 
ideal assumption of full a priori knowledge, lead-
ing to 65 percent reduction of the operational 
expenditure of 5G on energy over existing alter-
natives.

Introduction
Fifth generation (5G) cellular networks are antici-
pated to be densely deployed with a significantly 
reduced coverage area per cell. Along with its 
reduced per-cell size, the number of cells will dra-
matically increase due to the explosively increas-
ing mobile traffic and the limited availability of 
high-frequency spectrum [1]. Consequently, the 
total energy consumption of all base stations 
(BSs) would be high. It would contribute over-
whelmingly to the operational expenditure of 
cellular networks, and adversely to the global 
carbon footprint. For economic and ecological 
purposes, an increasing number of BSs are now 
equipped with energy harvesting devices such as 
solar panels or wind turbines. Renewable energy 
up to 10,000 kW has been used to power cel-
lular systems, supplementing persistent supplies 
from power grid [12]. Efficient techniques such as 
ON/OFF BS switching [3], online scheduling [4, 
5], and power control [6] have been proposed 
to reduce the power consumption and delay, 

or achieve a near-optimal throughput region for 
energy harvesting powered users.

While cellular networks are evolving, the 
revolution of power grid is also underway. 
The next-generation smart grid, equipped with 
advanced smart meters and control capability, will 
be flexible, versatile, and able to support many 
new functionalities such as distributed energy 
generation, two-way energy flows, energy trading 
and redistribution, and energy demand manage-
ment [7]. Traditional energy users, such as cellular 
networks, are potentially becoming an integral 
part of the smart grid, helping generate and redis-
tribute energy.

From a management and productivity point of 
view, cellular networks are uniquely positioned 
to interoperate with smart grid. In particular, the 
sheer scale and ubiquity of cellular networks 
result in a significant amount of energy, either 
purchased off the grid or harvested from ambi-
ent environments. The amount is non-negligible 
to the load of the entire smart grid. Moreover, 
the centralized close control of cellular networks 
resembles to that of the smart grid. This can pro-
vide efficient redistribution of energy and effective 
price negotiation with the smart grid [8].

Figure 1 illustrates the new interoperable 
framework of 5G and smart grid, where BSs 
equipped with energy harvesting devices are con-
nected to the smart grid through smart meters. 
The BSs are also connected to the core network 
(i.e., the gateway and Internet) through broad-
band backhaul links using gigabit or carrier-grade 
Ethernet [9]. Effective interoperability between 5G 
and the smart grid is not only feasible, but also 
important to both 5G and the smart grid.

A number of new functionalities become pos-
sible under this new interoperable framework.

Two-way energy trading (TWET): Cellular BSs, 
as an integral part of the grid, can purchase ener-
gy off the grid in shortage of renewable energy, 
and sell energy back to the grid when renew-
able energy is in abundance [7]. The abundant 
renewable energy can be redistributed through 
the smart grid for environmental benefits, as well 
as financial gains of 5G. This helps balance energy 
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load and relieve pressure on the grid, and hence 
improve the reliability of the grid.

Dynamic energy pricing: As a result of intermit-
tent renewable energy and TWET, energy prices 
are expected to exhibit strong dynamics in smart 
grid. Dynamic pricing is important to regulate 
the energy demands, and encourage users such 
as 5G networks to consume energy wisely and 
efficiently. The prices of both selling and buying 
energy fluctuate over time to reflect the real-time 
energy demand and supply availability.

Multi-timescale energy planning (MTEP): The 
interoperability of 5G and smart grid needs to 
be supported over multiple different timescales 
(i.e., for grid-energy pricing, energy harvesting, 
and wireless transmission), as shown in Fig. 2. The 
different timescales are due to the physical prop-
erties of wireless channels and energy harvesting, 
the time-varying demand and supply across smart 
grid, and the marketing strategies of electricity 
utility companies:
•	 The wireless timescale depends on the chan-

nel coherence time of typically tens of millisec-
onds. The BS’s update transmission is scheduled 
based on this interval to keep up with changing 
wireless channels.

•	 The smart grid energy pricing timescales are 
regulated by the electricity utility companies, 
depending on demand and supply, and mar-
keting strategies. Different business models and 
contractual arrangements can be made. Long-
term pricing, lasting for up to days or months, 
reflects medium- to-long-term demand and 
supply, and changes in the fuel market. On the 
other hand, short-term pricing reflects real-time 
changes in demand and supply. It can apply the 
wireless timescale, since wireless transmissions 
drive the changes.

•	 Energy harvesting is typically a slowly chang-
ing continuous process, under the current low 
energy transfer rate (e.g., 1 mW/cm2 for solar 
panels) [4]. Nevertheless, it can readily be dis-
cretized due to the discrete nature of trading. 
To capture the real-time changes of energy 
consumption in wireless transmissions and also 

reduce the battery requirement, it is reasonable 
to discretize energy harvesting based on the 
wireless timescale.

Taking these different timescales into account, a 
foresighted plan of energy usage in advance will 
be of significance to reduce the operational cost 
of 5G networks.

Other new interoperable functionalities 
between 5G and smart grid include energy- and 
spectrum-efficient wireless transmission, energy 
redistribution, wireless energy transfer, grid man-
agement, and control monitoring [10].

In this article, we are particularly interested in 
TWET and MTEP, which are of practical value to 
reduce the operational expenditure of 5G. Spe-
cifically, we introduce TWET and MTEP of 5G, 
discuss the challenges of their implementations, 
and investigate the applications of stochastic 
control theory to optimize TWET and MTEP. In 
particular, Lyapunov control is assessed for the 
intended applications, and its effectiveness is 
verified by extensive simulations in practical sce-
narios without a priori knowledge on future wire-
less channels, and energy pricing and harvesting. 
Simulation results show that Lyapunov control 
over TWET and MTEP has the potential for a 65 
percent reduction in the operational cost of 5G 
on energy. It is also revealed that reducing the 
dissipation of the batteries at 5G BSs is crucial to 
improve the cost saving.

TWET and MTEP for 5G
Figure 1 shows a promising 5G architecture cou-
pled with smart grid, where each BS is equipped 
with a smart meter, an energy harvesting device, 
and a battery with finite capacity. The battery 
level needs to remain above a certain threshold to 
avoid excessively discharging; otherwise, perma-
nent damage can be done to the battery. At any 
time, energy can be purchased off the smart grid 
at a real-time buying price. Unused energy, either 
previously purchased or locally harvested, can be 
stored in the battery for future use, or sold back 
to the grid through the smart meter at a real-time 
selling price.

Simulation results show 
that Lyapunov control 
over TWET and MTEP 

has the potential for a 
65 percent reduction in 
the operational cost of 

5G on energy. It is also 
revealed that reducing 
the dissipation of the 

batteries at 5G BSs is 
crucial to improve the 

cost saving.

Figure 1. A new interoperable framework of 5G and smart grid.
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Energy-efficient coordinated multipoint (CoMP) 
techniques can be adopted at the BSs, as exten-
sively studied in 3GPP and specified in standards 
[11]. The BSs jointly form multiple wireless beams 
toward different users to deliver data traffic. Every 
user has a requirement on the minimum data rate, 
based on its specific traffic type or quality of ser-
vice (QoS) requirement. Such a minimum data rate 
requirement can be translated to a signal-to-inter-
ference-plus-noise ratio (SINR) target.

Depending on the channel state information of 
the users, the beams are designed to achieve the 
SINR target while minimizing the transmit power 
of the BSs. By this means, inter-user and inter-cell 
interference can be suppressed, and energy effi-
ciency can be improved, thereby enhancing the 
sustainability of the BSs with reduced demand for 
energy supply from the grid.

With the aforementioned discretization of 
wireless transmission, energy harvesting, and 
pricing timescales, TWET can be formulated to 
minimize the time-average energy cost of the BSs 
across all time slots, as given by

min lim
T→∞

1
T

(
i
∑

t=1

T
∑ αt

rtΦi,buy
t −βt

rtΦi,sell
t

! "### $###
)

Gi (t )  	
(1)

where
•	 atrt is the real-time energy buying price at slot t.
•	 btrt is the real-time energy selling price at slot t.
•	 Both  t

i,buy and  t
i,sell indicate the difference 

between the total of the energy consumed and 
purchased to be pre-stored at BS i, and the 
energy harvested by the BS during slot t. In the 
case that the difference is positive, t

i,buy is the 
shortage of energy and needs to be purchased 
from the grid, and t

i,sell is zero. In the case that 
the difference is negative, t

i,sell is the surplus of 
energy and can be sold back to the grid, and 
t

i,buy is zero.
At any slot, energy can be either purchased 

from or sold to the grid. The energy purchased 
to be immediately consumed and/or stored for 
future use, or the energy sold to the grid, is to be 

optimized in Eq. 1. The energy can be stored in 
the batteries of the BSs. Typically, the energy that 
can be charged into or discharged from a battery 
is bounded during a time period.

In practice, a battery can also undergo energy 
dissipation. Storage efficiency, typically denoted 
by h  (0, 1], indicates a leakage of (1 – h)% of 
the battery level during a time slot. It is important 
to keep the batteries at a proper level to avoid 
excessive leakage of energy.

Note that the long-term minimization of Eq. 1 
cannot be achieved by myopically optimizing over 
each individual slot. This is due to the fact that 
the (dis)charging decisions are coupled across 
time through the change of the battery levels. 
The decision at any slot can have a non-negligible 
impact on the decisions further in the future. Also, 
the minimization of Eq. 1 is subject to non-convex 
constraints posed by CoMP, such as the quadratic 
function of the beamforming vectors to calculate 
the energy consumption. The minimization does 
not provide a tractable structure, and cannot be 
readily solved using well-developed techniques 
such as convex optimization.

In the ideal case where the energy prices, 
energy harvesting, and wireless channels are a 
priori known over time, TWET can be optimized 
at once using offline approaches [12]. Specifically, 
the non-convex constraints posed by CoMP can 
be reformulated using semi-definite relaxation. 
The resultant convex problem can readily be 
solved using standard convex optimization solv-
ers, such as the interior point method, with opti-
mality rigorously proved using Lagrange duality 
theory. In practice, however, the information of 
real-time energy prices, energy harvesting, and 
wireless channel conditions is unavailable ahead 
of time due to causality. Of limited applications in 
practice, the offline optimum can quantify a lower 
bound for the energy cost of the BSs, and set up 
a clear goal for practical designs of TWET.

A more general case of energy trading 
between 5G and smart grid can involve multi-
ple asynchronous timescales of real-time wireless 
transmission and short-term energy pricing, ener-
gy harvesting, and long-term energy pricing, as 
discussed earlier. On average, a long-term ener-
gy buying price is lower than a real-time price; 
see Fig. 2. This discrepancy can be exploited to 
further reduce the energy cost of 5G compared 
to TWET. Taking advantage of the discrepancy, 
MTEP is expected to plan energy use and pur-
chase over multiple timescales. Having the same 
objective as TWET, MTEP is clearly even more 
challenging due to the fact that the ahead-of-time 
planning and real-time trading are closely correlat-
ed and coupled along time.

Lyapunov Control and Optimization
Given the stochastic process of TWET, control 
theory is a promising candidate to solve TWET. 
The control variables are the total energy con-
sumption of the BSs and the battery (dis)charging 
amount during every slot, both of which depend 
on the beamforming vectors of the BSs, the chan-
nels, and the SINR targets of the users. The bat-
tery level is restricted between Cmin and Cmax, 
which are the minimum threshold that the battery 
needs to remain above and the maximum battery 
capacity, respectively.

Figure 2. Multiple timescales of energy pricing and harvesting in the interopera-
ble framework of future 5G and smart grid.
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Lyapunov control is a powerful tool to con-
trol and stabilize queueing systems, and has been 
successfully applied to data queues in computer 
networks [13] and energy queues in smart grid 
[14]. A Lyapunov function L(t) is defined as a 
non-negative scalar measure of queue lengths. 
The function becomes large as the queueing sys-
tem moves toward unstable states. System sta-
bility can be achieved by taking control actions 
that harness the Lyapunov function at any slot. 
Consider a network of I queues (Q1

t, Q2
t, …, QI

t), 
each with a stationary (stochastic) arrival process, 
where the queue length Qi

t can take any real 
value. A typical quadratic Lyapunov function is 
L(t) = 1/2 I

i=1 (Qi
t)2.

A Lyapunov drift, defined as rL(t) = L(t + 1) 
– L(t), measures the difference of the Lyapunov 
function between two consecutive slots. Minimiz-
ing the drift per slot provides a practical means 
to restrain the Lyapunov function, prevents the 
queue lengths from unbounded growth, and 
hence preserves system stability [13].

A general Lyapunov drift-plus-penalty can be 
specified by rL(t) + Vp(t), where, apart from the 
Lyapunov drift rL(t), p(t) is a penalty function 
and V is a predefined non-negative weight of the 
penalty. By minimizing the upper bound of the 
drift-plus-penalty at every slot, we can stochas-
tically minimize the time average of the penalty 
p(t) while stabilizing the queues. Through proper 
selection of the penalty function p(t), this tech-
nique can then be used to stochastically minimize 
specific metrics of stochastic systems with asymp-
totic optimality [13]. Lyapunov optimization is 
desirable for TWET, as it enables the optimization 
of the control decisions to be decoupled across 
slots, in contrast to the offline optimization over 
all slots with full knowledge of future channel, 
energy price, and harvest realizations.

There can be a gap between the stochastical-
ly minimized time average of p(t) and the ideal 
offline optimum. Such an optimality gap exists 
because the queue stability is accounted for in 
the instantaneous minimization through the 
drift-plus-penalty objective, and only causal sys-
tem information is used per time slot. As a typi-
cal trade-off of Lyapunov optimization, a queue 
length of O(V) is required to achieve an optimality 
gap of O(1/V).

In this sense, the optimality gap can asymptoti-
cally diminish at the expense of increasing steady-
state queue lengths.

Lyapunov Control over TWET
Given the intrinsic resemblance of the logic 
queue Qi

t and the battery level in BS i at any slot 
t, denoted by Ci

t in TWET, Lyapunov control has 
great potential to be applied to optimize TWET 
for CoMP [14]. Particularly, Ci

t can be mapped to 
Qi

t, and the total energy cost of all the BSs, iGi(t), 
can specify the penalty function p(t). As a result, 
sequentially minimizing the upper bound of such 
a Lyapunov drift-plus-penalty during each slot can 
lead to the minimization of the time average of 
the total energy cost in the long term, while stabi-
lizing all the batteries.

A nontrivial extension of Lyapunov optimi-
zation is required for its application to TWET, 
though. On one hand, the battery level Ci

t needs 
to be strictly within [Cmin, Cmax], while the queue 

length, Qi
t, can generally take any real values. On 

the other hand, different from the data queues in 
[13], batteries can have energy leakage due to 
storage inefficiency. To tackle these challenges, 
Qi

t can be modeled as a biased battery level Ci
t 

with a bias  so that Qi
t is consistent with the defi-

nition of Lyapunov control. The value of  can be 
specified offline by exploiting the queue stabiliz-
ing property of Lyapunov control. 

The Lyapunov control of TWET for CoMP can 
be automated following the steps below:
•	 Initialization}: Set up  and V to ensure the fea-

sibility of TWET, and initialize Qi
0 = Ci

0 + .
•	 TWET and CoMP: At any slot t,
	 –Given energy buying/selling prices, harvest-

ed energy amount and channel state informa-
tion, obtain the optimal beams and battery (dis)
charging amount to minimize the upper bound 
of the drift-plus-penalty rL(t) + ViGi(t), subject 
to the SINR requirements.

	 –Buy energy amount of t
i,buy from, or sell ener-

gy amount of t
i,sell to, the smart grid.

•	 Battery (dis)charging: Update Ct
i = h Ci

t–1 + Et
b, 

and Qi
t = Ci

t + , where Et
b,i is the battery (dis)

charging amount of BS i.
Note that the minimization of the upper bound 

of the drift-plus-penalty can be convexified with 
respect to the beamforming vectors and battery 
(dis)charging amount if the constraint of Cmin  Ct

i 
 Cmax is relaxed. As a result, it can be minimized 
efficiently using convex optimization techniques. 
On the other hand, the relaxed battery constraint 
remains inviolated once the batteries start to stabi-
lize. This is due to the queue stabilizing property 
of Lyapunov control; that is, the dynamic range of 
a stabilized queue with a length of O(V) depends 
on V and can be limited within (Cmax – Cmin) by 
adjusting V and .

Also note that in the case of perfect batter-
ies, h = 1, the aforementioned trade-off of Lya-
punov control holds between a battery level and 
the optimality gap (i.e., the gap from the ideal 
offline optimum). In other words, the Lyapunov 
control over TWET exhibits improving optimality 
as the battery capacity Cmax increases. Howev-
er, the trade-off no longer exists if the batteries 
are imperfect (i.e., 0 < h <1). In this case, the 
minimum optimality gap is not monotonic with 
respect to V, since practically the battery leakage 
enlarges as Cmax grows. Nevertheless, following 
the recent work [15], the minimum optimality gap 
can be numerically computed by a one-dimen-
sional search for V.

Lyapunov Control over MTEP
Supporting the interoperability of 5G and smart 
grid over multiple timescales, MTEP is able to 
further reduce the energy cost of 5G compared 
to TWET. Particularly, ahead-of-time planning is 
carried out to leverage typically lower long-term 
energy buying prices and reduce instant energy 
shortage at individual slots. The Lyapunov control 
can be applied to MTEP. Particularly, the fore-
cast (i.e., ahead-of-time) energy trading decision 
over a larger timescale can be accommodated in 
the Lyapunov optimization framework, like TWET 
running at longer intervals. MTEP now essentially 
consists of multiple asynchronous Lyapunov con-
trol processes running at the intervals of wireless 
transmission, real-time energy pricing, and long-

Supporting the interop-
erability of 5G and 

smart grid over multiple 
timescales, MTEP is 

able to further reduce 
the energy cost of 5G 

compared to TWET. 
Particularly, ahead-of-

time planning is carried 
out to leverage typically 
lower long-term energy 

buying prices and reduce 
instant energy shortage 

at individual slots.
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term energy pricing. Nevertheless, the processes 
have the common objective of stochastically mini-
mizing the time average of energy cost.

The Lyapunov control running in real time 
depends on that running ahead of time over large 
timescales. For illustration convenience, here we 
consider two different timescales of energy pric-
ing: real time for a short slot (with a duration of 
trt) and ahead of time for a long interval (with 
a duration of t lt). In this case, the energy pur-
chased ahead of time is persistently output from 
the grid during an upcoming interval (i.e., evenly 
distributed across slots within the interval). This 
sets a consistent offset on the energy that can be 
purchased or sold in real time, and becomes part 
of the drift-plus-penalty for the Lyapunov control 
over TWET at every slot within the interval.

The energy purchased or sold ahead of time 
can be optimized by minimizing the upper bound 
of the drift-plus-penalty of the Lyapunov control 
running at the long interval. For an upcoming 
interval, this drift-plus-penalty adds up those of the 
Lyapunov control over TWET at all slots within the 
interval [15]. In this sense, both controls, running 
at the long interval and by slots, have a unified 
drift-plus-penalty with respect to every single slot; 
in other words, minimizing the upper bound of 
the drift-plus-penalty on the interval basis does not 
violate (i.e., is equivalent to) that on the slot basis. 
Given their common objective of minimizing the 
time average of the penalty (i.e., energy cost), the 
legitimacy of coupling the two Lyapunov controls 
stands, preserving the asymptotic optimality of 
MTEP as well as the trade-off between the battery 
level and optimality gap.

As mentioned earlier, in MTEP, the 
drift-plus-penalty per slot contains an unknown 
energy offset that depends on the ahead-of-time 
decision to be optimized at the beginning of 
the corresponding interval. This is different from 
TWET. A stochastic subgradient method can be 
used to update the ahead-of-time decision for an 
upcoming interval. The convex techniques devel-
oped for TWET can be used to optimize the real-
time decisions for all the slots within the interval. 
These can be carried out in an alternating manner 
until the upper bound of the drift-plus-penalty is 
minimized for the interval; equivalently, the upper 
bounds are minimized across all slots within the 
interval.

Performance and Discussion
Consider a 5G network of two BSs and three sin-
gle-antenna mobile users. Each BS is equipped 
with two transmit antennas. We assume the users 
are in the middle of the two BSs, and the BS-user 
links experience independent and identically dis-
tributed Rayleigh fading channels. Both the max-
imum charging and discharging energy amounts 
per slot are 2 kWh. We set the long-term pricing 
interval tlt = 1 min and the real-time pricing inter-
val (slot) trt = 10 s. The battery storage efficiency 
is h = 0.95 unless otherwise specified. The long-
term and real-time energy buying prices an

lt and at
rt 

are assumed to follow folded normal distributions, 
with the averages of $1.5/kWh and $2.3/kWh, 
respectively. The long-term and real-time energy 
selling prices are set as bn

lt = 0.9an
lt and at

rt = 0.3at
rt, 

since the buying and selling prices are highly relat-
ed and both dependent on the demand and sup-
ply availability. The energy harvesting also follows 
a folded normal distribution, with an average rate 
of 1.2 kWh/slot. Finally, let k

req denote the SINR 
target for user k.

For the purpose of comparison, we also simu-
late a greedy algorithm that myopically minimizes 
the instantaneous cost on energy per slot. In this 
sense, any surplus energy of a BS is sold to the 
smart grid, and any shortage in energy needs to 
be purchased from the smart grid, at every slot; 
that is, there is no battery (dis)charging. 

Figure 3 demonstrates that TWET and MTEP 
are able to increasingly reduce the energy cost of 
wireless operators at the cost of increasing battery 
capacity. For instance, the average operational 
cost of TWET under h = 1 is reduced from $47.5 
to $29.6 as the battery capacity increases from 

Figure 3. Time-average energy cost vs. battery capacity Cmax, where gk
req = 5 dB, 

Cmin = 1 kWh, and h = 0.95,0.99 and 1.
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40 kWh to 120 kWh. It is also shown that exploit-
ing multiple timescales of wireless transmission 
and energy pricing, real-time energy trading, and 
ahead-of-time energy planning can significantly 
reduce the cost. With perfect batteries (h = 1), 
reductions of 43 and 65 percent can be achieved 
using TWET and MTEP at the battery capacity of 
1000 kWh, respectively, compared to the myopic 
greedy algorithm. This is because the exploitation 
of multiple timescales facilitates predicting future 
energy pricing and harvesting, and hence refining 
current trading decisions.

In fact, we show that the Lyapunov control 
over MTEP can closely approach the offline opti-
mum, which is only possible when full a priori 
knowledge is available. This is due to the fact that 
MTEP can take advantage of multi-timescale ener-
gy pricing, while TWET can only work with real-
time prices. We also see that imperfect batteries 
can have a non-negligible impact on the efficiency 
of TWET and MTEP. The conclusion drawn is that 
the installation of batteries with low dissipation is 
crucial to save the energy cost of 5G.

We proceed to evaluate the requirement of 
energy harvesting capabilities in real-time energy 
trading and future planning. Figure 4 plots the 
time-average energy cost against the energy har-
vesting rate (in kilowatt-hours per slot). We see 
that the cost declines linearly with the growth of 
energy harvesting capability in both TWET and 
MTEP. Also, it is observed that the gap between 
MTEP and the offline absolute optimum remains 
almost unchanged, while that between TWET and 
MTEP decreases as the harvested energy increas-
es. In other words, the ahead-of-time energy plan-
ning in MTEP is particularly important to systems 
with limited energy harvesting capabilities.

Finally, we show that the saving of ener-
gy cost, through real-time energy trading and 
future planning, can be further increased in large 
wireless networks. In Fig. 5, the number of the 
BSs increases from one to six. We see that the 
increasing number of BSs can effectively reduce 
the energy cost per user, especially in the case 
where there are more users. This is due to the 
improved beamforming accuracy and reduced 
interference of CoMP. Particularly, the cost saving 
grows but the growth rate decreases as the num-
ber of BSs increases. This is because the chan-
nels become increasingly orthogonal among the 
users, and the inter-user interference diminishes, 
as the total number of transmit antennas increas-
es. As a result, for each user, the beamforming 
becomes increasingly close to spatial matched fil-
tering, which is optimal in terms of minimizing the 
total transmit power given the SINR requirements 
in interference-free channels. The total transmit 
power of the BSs asymptotically approaches the 
minimized power of spatial matched filtering, 
which only depends on the SINR requirements. 
We also observe that the average costs increase 
as the SINR target grows (e.g., from 5 dB to 20 
dB). This is reasonable, since more energy needs 
to be consumed (and thus purchased) to meet 
more stringent SINR targets.

Conclusions and Future Works
In this article, we discuss the potential applica-
tions of Lyapunov control to TWET and MTEP 
in future 5G networks. We demonstrate that 

Lyapunov control is able to decouple decision 
making over time without the need for a priori 
knowledge on future wireless channels, energy 
prices, and renewable resources, while still pre-
serving optimality in a stochastic sense. Simulation 
results show that effective real-time energy trading 
and planning is able to save 65 percent of the 
operational cost of 5G on energy, and the saving 
can be further increased by enlarging the wire-
less network. The results also reveal that the bat-
tery dissipation can have a non-negligible adverse 
impact on the cost saving, and the development 
and installation of batteries with low dissipation 
are crucial.

In light of the current framework, future direc-
tions include leveraging the predicted information 
(e.g., energy prices and renewable generation) 
in energy trading and planning, and the decen-
tralized implementation of Lyapunov control as 
well as integration of power distribution networks, 
both of which facilitate the adaptation to large-
scale network deployments.
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