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Collaborative Random Faces-Guided Encoders for
Pose-Invariant Face Representation Learning
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Abstract— Learning discriminant face representation for
pose-invariant face recognition has been identified as a critical
issue in visual learning systems. The challenge lies in the drastic
changes of facial appearances between the test face and the
registered face. To that end, we propose a high-level feature learn-
ing framework called “collaborative random faces (RFs)-guided
encoders” toward this problem. The contributions of this paper
are three fold. First, we propose a novel supervised autoencoder
that is able to capture the high-level identity feature despite of
pose variations. Second, we enrich the identity features by replac-
ing the target values of conventional autoencoders with random
signals (RFs in this paper), which are unique for each subject
under different poses. Third, we further improve the performance
of the framework by incorporating deep convolutional neural
network facial descriptors and linking discriminative identity
features from different RFs for the augmented identity features.
Finally, we conduct face identification experiments on Multi-PIE
database, and face verification experiments on labeled faces in the
wild and YouTube Face databases, where face recognition rate
and verification accuracy with Receiver Operating Characteristic
curves are rendered. In addition, discussions of model parameters
and connections with the existing methods are provided. These
experiments demonstrate that our learning system works fairly
well on handling pose variations.

Index Terms— Collaborative encoders, discriminant feature
learning, face representation learning, pose-invariant feature,
random faces (RFs).

I. INTRODUCTION

Learning discriminant face representation for face recog-
nitions has long been discussed in learning communities,
under either controlled lab environment, or unrestricted envi-
ronment [1]. Most of these applications run on 2-D facial
images and acquire facial descriptors through certain learning
systems [2]–[4]. By nature, such learning systems cannot avoid
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impact factors, such as expression, illumination, and pose.
Among them, pose is extremely challenging as facial appear-
ance is completely different between two poses, let alone
other complex ones, e.g., nonrigid motions [5] and aging [6].
Although 3-D face recognition algorithms work well against
pose variations, factors, such as expression, expensiveness, and
slow data acquisition process, still limit their broad use [7].
To compensate for the pose and rigid/nonrigid motions, face

alignment is first conducted as the standard preprocessing [1].
There are two kinds of face alignments: appearance level and
feature level. Appearance level alignment usually warps the
face to the frontal or designated pose based on the detected
fiducial points, with or without 3-D models [8], [9]. Conse-
quently, the learning systems only need to compare faces under
the same pose. Differently, feature level alignment manages to
explore a discriminative identity feature space, regardless of
pose variations. A common strategy of feature level align-
ment is to project data to some data-driven latent feature
space [10]–[13].
In this paper, following the line of feature level alignment,

we propose a new pose-invariant discriminant identity feature
and its learning system, inspired by the followed observations.

1) Facial features under different poses are transferable, in
either linear or nonlinear way [10], [13]. For instance,
we are able to map the side-view facial feature to the
front-view by a linear transform function [10].

2) Faces have common structures although their identities
are different. Thus, discriminative features should be
able to model both common facial attributes and private
ones.

3) Identity is unique for each individual; however, identity
feature could be arbitrary vector mapped to the corrected
identity as long as it is distinct in the feature space.

Inspired by the above-mentioned points, in this paper,
we develop a new approach called “Random Faces-guided
Sparse Many-to-one Encoder” (RF-SME). The entire frame-
work is shown in Fig. 1. First, a Single-hidden-layer Neural
Network (SNN) is built to guide the identity feature learning.
Essentially, it maps facial features under different poses to the
unique one (many-to-one), i.e., frontal pose. Second, we enrich
the identity feature and improve its discriminative power by
replacing frontal faces with multiple random faces (RFs) for
autoencoders. Thus, we can augment features by stacking
hidden layers of multiple autoencoders and encode both
common and private attributes. In addition, we incorporate
within/between class constraint to RF-SME, and synchronize
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Fig. 1. Framework of “RFs-guided sparse many-to-one encoder.” There are
multiple faces under different poses for each “ID.” They are the inputs of
the single-hidden-layer neural network, while RFs are the target values of
this network. Assume that we train M encoders and thus need M RFs for
each unique ID. The concatenated nodes in hidden layers compose the pose-
invariant feature (red nodes in the dashed area).

multiple autoencoders by enforcing the pairwise distances
of the same subjects from different encoders to be close.
We call it “Collaborative RF-SME” (CRF-SME). Furthermore,
we incorporate the powerful deep facial descriptors VGG-Face
[57], and propose a new deep model “VGG-RF/CRF-SME.”
The contributions can be summarized as follows.
1) We design a novel “broad” representation learning
framework using autoencoders as the building blocks
for high-level pose-invariant features.

2) We propose to use random signals instead of frontal
faces as the target values for feature augment, which
significantly boost the performance.

3) Multiple autoencoders are synchronized to retain dis-
criminant knowledge across different autoencoders, and
deep convolutional neural network (CNN) facial descrip-
tors are incorporated to boost the overall system perfor-
mance.

This paper is an extension of our previous conference
work [14], which details a competitive learning system for
face representation learning. Essentially, we improve the
RF-SME model by CRF-SME and VGG-RF/CRF-SME [by
7% on Multi-PIE and 14% on YouTube Face (YTF)], and
conduct more experiments for demonstration. Specifically,
we introduce discriminant analysis to the hidden layer and
encourage the consistence between features guided by different
RFs. In addition, we evaluate our model and competitive
methods on YTF database. New results and illustrations about
evaluations and model analysis can be found in Figs. 4, 5, 10,
11, 13, and 14, and Tables I, III, V, and VI.

II. RELATED WORK

Holistic feature learning for face representation considers
the whole face as the input and manipulate on all facial
components without distinction [15]–[17]. However, they usu-
ally suffer from illumination or pose variations given limited
training data. Besides, image filters, such as Gabor [18]

TABLE I

NOTATIONS AND DESCRIPTIONS

and bioinspired features [19], are applied on face for robust
features. On the other hand, local descriptors [20]–[22] col-
lect the hand-craft codes from local patches and assemble
them to formulate the final representation of each facial
image. Recent advances in feature learning prefer statistical
learning over the hand-craft fashion for more discriminative
feature [23]–[25]. Our method follows this trend, but carries
the semantics “many-to-one” that features the pose-invariant
representations.
In addition, a group of pose specified 2-D face recognition

algorithms have been proposed recently [5]. A straightfor-
ward way is to store or expand the poses of the regis-
tered faces to exhaustively cover all possible views of test
faces [26], [27]. On high-level, features from different views
are transformed to the ideal one, e.g., Tied Factor Analy-
sis [10]. Multiview Discriminant Analysis (MvDA) [11] con-
siders the discriminant information in an explicit way by
which multiple view-specific transforms can be jointly learned.
In addition, facial patches are explicitly considered in pro-
gressive face warping [28] with maximal intracorrelation [29]
and probabilistic pose matching [30]. Recently, coupled latent
space discriminative analysis (CLSDA) [12] considers latent
space for face recognition under multiple poses. Besides,
there are a large group of methods targeting at pose issues
for faces in the wild [31]–[35]. Different from those using
linear transforms, ours arguments the identity features through
multiple nonlinear mappings for better performance.
The 3-D face model is able to simulate facial appearance

from intended viewpoints [5]. Typical works include Mor-
phable Face [8] and 3-D Generic Elastic Model [36]. Pose
Normalization [37] invents a new matching scheme for each
reference and test image, i.e., it renders a new virtual frontal
face. Similarly, morphable displacement field (MDF) [38]
considers virtual faces to match the gallery both globally
and locally. Different from appearance level matching, pose
adaptive filter [39] attempts to adapt filters in a fast manner
according to the pose of the input images. Recently, a High-
fidelity Pose and Expression Normalization method (HPEN)
with the 3-D Morphable Model has been proposed and
achieved the state-of-the-art performance on Multi-PIE data
set [40]. In brief, the above-mentioned methods require an
automatic 3-D face model fitting process given a 2-D facial
image which may, however, easily be affected by illumination
and expression changes.
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Notably, face representation learning has attracted lots of
attention from learning communities, and many dedicated
learning systems have been developed, e.g., manifold/subspace
learning for weakly labeled images and aging issues [6], [41],
metric learning for human reidentification and face verifica-
tion [42], sparse and representation learning [2], [43], and
low-rank discriminative feature learning [3], [4].
Recently, deep learning [23], [24], [44] has shown supe-

rior performance on benchmark tests [45], [46]. Typi-
cal approaches for face recognition include deep belief
networks [47], deep metric learning [48], hybrid deep
models [49], face identity preserving (FIP) feature [50],
Stack Progressive AutoEncoders [13], deep and low-rank
modeling [51], [52], DeepID [53]–[55], DeepFace [56],
VGG-Face [57], and FaceNet [58]. Most of them rely on CNNs
to learn discriminant deep features against varied impact fac-
tors for faces in the wild. Most recently, a deep representation
learning framework with target coding has been brought to our
attention as it is similar to RFs procedure [59]. Different from
it and other deep CNN-based face recognition framework,
our method assembles multiple autoencoders under consistent
constraints to construct a “broad” structure for high-level pose-
invariant features, which could be a useful complement for
existing facial descriptors.

III. POSE-INVARIANT FACIAL FEATURE LEARNING

We summarize variables and their descriptions in Table I.

A. Sparse Many-to-One Encoder

SME, built on an SNN, improves the traditional SNN learn-
ing scheme. In SME, we formulate a many-to-one mapping
that enables SNN to extract identity preserved pose-invariant
features. Specifically, “many” here means that the inputs of
the SME are faces under different poses, while “one” means
that the target values are frontal faces of the same identity as
the inputs. We can see that SME encourages the outputs of the
SNN being close to the frontal face of the same identity, in
spite of poses of inputs. Next, we mathematically detail this
procedure.
Assume that we have I different subjects, each of which

is under J different poses. We denote xi, j ∈ R
D as the

input feature of the i th subject under the j th pose. In a
typical neural network, the neuron in the hidden layer is
essentially the weighted input plus a bias followed by a
nonlinear activation. In our model, the neuron vector can
be interpreted as a pose-invariant high-level representation.
Formally, this “input→hidden layer” transform f1(·) can be
written in

ai, j = f1(xi, j ) = h(W1xi, j + b1) (1)

where W1 ∈ R
d×D(d < D) is the weight matrix, b1 ∈ R

d is
the bias vector, h(x) = (1+e−x)−1 is the nonlinear activation
function, and ai, j ∈ R

d is the hidden vector.
In conventional autoencoders, the output is the reconstruc-

tion of the input signal by linearly weighting the hidden neuron
vector followed by another nonlinear activation. If we use f2(·)
for the “hidden layer→ouput” transform, then we have

t (xi, j ) = f2(ai, j ) = h(W2ai, j + b2) (2)

where W2 ∈ R
D×d is the weight matrix, b2 ∈ R

D is the bias,
and t (xi, j ) is the hypothesis generated by the autoencoder.
In traditional SNN or autoencoder, the target values are

either meaningful labels, e.g., identity, object category, or iden-
tical values of the inputs. The objective function encourages
hypothesis outputs to be as close to target values as possible.
Different from them, we enforce the target values being close
to the corresponding frontal facial features, i.e., t (xi, j ) ≈ x̂i

where x̂i represents the i th subject’s frontal pose feature.
As the output layer is generated by a feed-forward process
using hidden layer as the input, the hidden layer can be seen
as a basis as well as pose-invariant representation for the input.
By considering all training images, we formulate the objec-

tive function of the proposed SME as

min
W1,b1,W2,b2

1

2N

∑
i, j

‖t (xi, j ) − x̂i‖22 (3)

where N = I × J is the number of training samples. Typically,
this unconstrained optimization can be solved by gradient
descent algorithms given hypothesis t (·).
However, the flexible nature of the proposed SME will

easily make the model in (3) overfit. A typical solution is intro-
ducing a regularization term to the weight W . Inspired by the
comparative study of regularizers for regression problem [60],
we penalize the complexity of W1 and W2 via matrix l1 norm
and pursuit sparsity. Reasons are twofold. First, features are
not equally important, especially for structure datalike face.
Sparsity is able to select the most discriminative feature by
zeroing out irrelevant factors. Second, it can avoid overfitting.
Adding l1 regularizers to (3), we have a new unconstrained
optimization problem

min
W1 ,W2 ,

b1,b2

1

2N

∑
i, j

‖t (xi, j ) − x̂i‖22 +
2∑

k=1
λk‖Wk‖1 (4)

where ‖Wk‖1 = ∑
i j |[Wk]i, j | is the sum of absolute values

of elements in the matrix Wk , and λk is the weight decay
parameter that suppresses the element values in Wk . In prac-
tice, this unconstrained optimization problem can be solved via
Limited-memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm (L-BFGS) optimizer [61], [62] that is able to approach
large data with limited memory. More details about the opti-
mizer and solutions can be found in [61] and the off-the-shelf
package.1

After W1, W2, b1, and b2 are learned, we collect the
hidden layer vector ai, j as the pose-invariant high-level feature
for input xi, j , and efficient classifiers, e.g., nearest neighbor
classifier, can be used for final recognition task.

B. Random Faces

In a single SME model, we penalize the difference between
the frontal facial feature of each subject and the output
layer, and encourage t (xi, j ) = x̂i . This guides the output to
approximate the frontal face regardless of the poses of input
faces. However, the many-to-one mapping can only build a

1http://www.di.ens.fr/ mschmidt/Software/minFunc.html
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Fig. 2. Illustrations of RFs. In (a), we use a single frontal face as the target
value, M RFs in (b) simulate the common and private attributes between
different individuals by randomness. Therefore, feature 1− M in hidden layer
would be discriminative representations for identity.

single model corresponding to the single frontal face. We are
motivated to enrich the identity features by the following.
First, on the abstract level, the frontal facial feature of each

subject used for the target value is simply a representation.
Any unique matrix can work, not necessarily the frontal facial
feature. Second, we can encode the identity information into
many different “virtual” frontal faces rather than a “real”
frontal face, by including both common and private attributes.
To that end, we propose to use random signals or RFs to

replace the single frontal face as the target value in SME to
augment the identity features, which is shown in Fig. 2. For
the i th subject, we generate M RFs r (m)

i ∈ R
D , 1 ≤ m ≤ M ,

where each single element in the vector r (m)
i is 0∼1 uniform

distributed (independent and identically distributed). Thus,
for two different RFs, they have extremely low probability
being identical, which are ideal replacement for frontal faces.
Notably, the randomized vector r (m)

i is not even close to
faces in terms of appearance [Fig. 2(b) bottom part], but
they function similar to frontal facial features in training the
SME. For each element in the RFs, it is randomly encoded by
either common attributes or private attributes, depending on
its similarities to RFs for other identities. Then, the original
reconstruction loss function in (3) becomes∑

i, j

1

2N

∥∥t(m)(xi, j ) − r (m)
i

∥∥2
2, 1 ≤ m ≤ M. (5)

Solving M such problems, we are able to obtain M groups of
model parameters {W (m)

k , b(m)
k }. By stacking all the identity

features vertically, [a(1)
i, j ; a(2)

i, j ; . . . ; a(M)
i, j ], we obtain the RFs

guided pose-invariant identity feature.

C. Full-Aligned Versus Nonaligned Faces

If faces are aligned already, then one encoder is able to
map features from different poses to a unique one; otherwise,
J different encoders will be learned for J different poses. This
brings out two corresponding models (Fig. 3).

1) Full-Aligned Faces: For faces under different poses, if
we select dense facial landmarks and extract features from
the neighborhood of landmarks, i.e., small local patches on
face, and then, the features have been aligned already. Still,
we need frontal facial features or RFs to be the target values.

Fig. 3. Left: model-1 with a single {W (m)
1 , b(m)

1 } pair learned by full-aligned
faces. Right: model-2 with multiple {W (m)

1, j , b(m)
1, j }, 1 ≤ j ≤ J pairs learned

by nonaligned faces.

We name it Model-1 in this paper, which needs a single
pair of {W (m)

1 , b(m)
1 } to produce pose-invariant identity feature.

Nonetheless, finding landmarks could be time-consuming and
introduce many incorrect correspondences as well.

2) Nonaligned Faces: We may skip the face alignment
step and learn different RF-SMEs for different poses. This
essentially breaks down many-to-one mapping to a few one-
to-one mappings. For example, inputs for training a specific
pair of W (m)

1, j and b(m)
1, j will be facial features under the j th

pose, and outputs are either features under frontal pose or RFs.
For the test under arbitrary pose, we need to approximately
estimate its pose first, and then encode it by an appropriate
{W (m)

1, j , b(m)
1, j }. We call this Model-2.

D. Deep CNN Boosted RF-SME

While RF-SME has been proved powerful in our previ-
ous work [14], there are still a few issues that should be
addressed. First, Model-1 relies on the alignment, and local
correspondences to provide discriminant facial features. This
step not only takes additional time, but also may introduce
incorrect correspondences. Second, Model-2 usually trains
more than one encoders depending on the poses/views in the
problem. Therefore, it requires training samples under typical
or representative views/poses. This may not be satisfied in a
few real-world applications.
Recently, deep learning [23], [24], especially deep CNN has

been widely and successfully applied to face recognition prob-
lem [40], [50], [53]–[58]. The learned deep facial descriptors
are robust against pose, lighting, expressions, and generalized
well to unseen face images. Therefore, deep CNN could work
well, despite of missing correspondence or pose information in
real-world applications, which offers a powerful substitution
for Model-1 or Model-2.
Given a large amount of training data, e.g., CASIA-

WebFace [63], we could learn the deep discriminant facial
descriptors by following the well-established deep structure.
In this paper, we use the open source deep CNN model
released in [57] to build our deep model, which we call “VGG-
RF/CRF-SME.” The whole procedure is shown in Fig. 4.
First, the nonaligned training data are fed to the pretrained
deep CNN model. Second, we replace the last fully connected



SHAO et al.: COLLABORATIVE RFS GUIDED ENCODERS FOR POSE-INVARIANT FACE REPRESENTATION LEARNING 1023

Fig. 4. Illustration of the proposed VGG-RF/CRF-SME. In this model,
neither dense correspondence nor pose information is required. Raw images
are first fed into deep CNN, and then passed to RF-SMEs or CRF-SMEs
to extract pose-invariant features, followed by l2 normalization. Finally, the
normalized features are used for face problems.

layer with RF/CRF-SME and, then, freeze all the previous
layers. Then, we can take advantage of deep structure for
better pose-invariant feature learning. The learned features
in the hidden layer before activation from different SMEs
will be concatenated and, then, normalized for different face
problems.
In brief, the VGG-RF/CRF-SME can be seen as an interest-

ing practice with both broadness and deepness in the learning
model, as shown in Fig. 4. With deepness, we could take
advantage of the well-established deep CNN for robust facial
descriptors learned from millions of face images, while with
broadness, we could fulfill our many-to-one strategy and
extract high-level pose-invariant features. The importance of
both of them is demonstrated in the experiment sections.

IV. COLLABORATIVE RANDOM FACES-GUIDED
ENCODERS

In the RF-SME model, faces of each subject are enforced
to map to certain RFs, but RFs for the same subject are
generated independently. In other words, M RF-SMEs have
weak connections as no constraint is imposed among them.
In addition, within each SME, no explicit discriminant crite-
rion is considered. To that end, we propose a novel CRF-SME
model.
Recall that the originally proposed loss function of the mth

RF-SME can be written as

E (m)
1 = 1

2N

N∑
i=1

∥∥t(m)(xi ) − r (m)
i

∥∥2
2 +

2∑
k=1

λk
∥∥W (m)

k

∥∥
1. (6)

Note for the facility of later deductions, we skip the pose
index j and follow the Model-1 setting. This means ri will
be the paired RFs for a specific xi . In addition, we introduce
two intermediate variables{

y(m)
i = W (m)

1 xi + b(m)
1

z(m)
i = W (m)

2 a(m)
i + b(m)

2 .
(7)

It can be checked that a(m)
i = h(y(m)

i ), and t(m)(xi ) = h(z(m)
i ).

We will keep these notations through this paper.

A. Fisher Criterion and Feature Consistency

For face identification problem, a common criterion used for
discriminative feature learning is to make samples of the same

class as condense as possible while keep those from different
classes as separated as possible, i.e., Fisher Criterion [15].
In the proposed RF-SME framework, this corresponds to
enforcing the hidden units of each input to have such relations.
First, for within-class constraint of Fisher Criterion of the

mth SME, we have

E (m)
2 = 1

2N

N∑
i=1

∥∥∥∥∥∥a(m)
i − 1

nyi

∑
y j=yi

a(m)
j

∥∥∥∥∥∥
2

2

(8)

where yi is the label of xi , nyi is the number of samples in
class yi . Intuitively, E (m)

2 measures the compactness of each
class via the sum of square distance between each sample and
its class center.
Second, for between-class constraint of Fisher Criterion of

the mth RF-SME, we have

E (m)
3 = 1

2C

C∑
c=1

∥∥∥∥∥∥
1

nc

∑
yi=c

a(m)
i − 1

N

N∑
j=1

a(m)
j

∥∥∥∥∥∥
2

2

(9)

where C is the number of classes. Differently, E (m)
3 should be

as large as possible to make data separable.
On the other hand, we need to intentionally couple fea-

tures from different RF-SMEs. Although each RF-SME is
formulated and solved independently, the features generated
by different RF-SMEs should keep the consistency, meaning
pairwise relations from one RF-SME should be similar to those
from another RF-SME. Suppose d(m)

i j and d(n)
i j are pairwise

distances between features ai and a j generated by the mth and
the nth RF-SME, then naturally, the following loss function
should be minimized:

E (m)
4 = 1

2

∑
n

m<n

∑
i, j

i �= j

(
d(m)

i j − d(n)
i j

)2

where

d(m)
i j − d(n)

i j = (∥∥a(m)
i − a(m)

j

∥∥
2 − ∥∥a(n)

i − a(n)
j

∥∥
2

)
. (10)

Therefore, we are ensured that the pairwise relations keep
consistent across different features from different RF-SMEs.
Incorporating both the discriminative and pairwise distance

consistency constraints of multiple RF-SMEs, we can build a
new CRF-SME by minimizing the following loss function:

E =
∑

m

(
E (m)
1 + ω1

(
E (m)
2 − E (m)

3

) + ω2E (m)
4

)
(11)

where ω1 and ω2 are two balancing parameters. Fig. 5 sum-
marizes the loss functions of CRF-SME discussed earlier.

B. Solutions

The problem proposed in (11) is not convex, and to the best
of our knowledge, it does not have a closed-form solution due
to the sum operation over m. However, we could break down
the entire problem into M subproblems and iteratively solve
them one at a time.
It is easy to check that the loss functions of E (m)

2 , E (m)
3 , and

E (m)
4 in (11) are smooth and have a second-order derivative.
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Fig. 5. Illustration of the CRF-SME model. We use the same color for feature vectors from the same subject. CRF-SME aims to maximize the distance
between blue data and red data by maximizing

∑
m E(m)

3 , 1 ≤ m ≤ M, while keep red (blue) data itself condense by minimizing
∑

m E(m)
2 . In addition, we

maintain the pairwise relations of two features from two different SMEs formulated by E4 to guarantee the data consistency across multiple SMEs.

Still, we are able to use L-BFGS optimizer for the solutions
of this unconstrained optimization problem. Similar to quasi-
Newton algorithms, we have the following updating rules at
step t using L-BFGS optimizer:

⎧⎪⎪⎨
⎪⎪⎩

Wt+1 = Wt − αt Ut
∂ E

∂W

∣∣∣∣
Wt

bt+1 = bt − βt Vt
∂ E

∂b

∣∣∣∣
bt

(12)

for all {W (m)
k , b(m)

k } pairs, where αt and βt are the learning
rates, and Ut and Vt are the approximations for the inverse
Hessian matrices of E with respect to W and b, respectively.
For more details and discussions of αt , βt , Ut , and Vt , which
are beyond the scope of this paper, readers can refer to
work [61]. Here, we concentrate more on the derivatives of
E with respect to W and b as they are affected by the
Fisher Criterion and feature consistency constraints introduced
in (8)–(10), and closely related to both learning rate {αt , βt },
and inverse Hessian matrices approximations {Ut , Vt }.
The derivatives of E (m)

1 have two different formulations
depending on the layer k of W (m)

k and b(m)
k⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ E (m)
1

∂W (m)
1

= ∑
i δ

(m)
i,1

(
x (m)

i

)	 + λ1�
(m)
W1

∂ E (m)
1

∂W (m)
2

= ∑
i δ

(m)
i,2

(
a(m)

i

)	 + λ2�
(m)
W2

(13)

and (∂ E (m)
1 /∂b(m)

k ) = ∑
i δ

(m)
i,k , where

{
δ
(m)
i,1 = (

W (m)
2

)	
δ
(m)
i,2 ⊗ h′(y(m)

i

)
δ
(m)
i,2 = (

t(m)(xi ) − r (m)
i

) ⊗ h′(z(m)
i

) (14)

⊗ is the elementwise multiplication and �
(m)
Wk

is an indicator
matrix with element 1 for positive element and -1 for negative
element in W (m)

k .
For E (m)

2 , E (m)
3 , and E (m)

4 , since they are related to the con-
straints in the hidden layer, the derivatives are only computed

in the hidden layer. For E (m)
2 , we have

∂ E (m)
2

∂b(m)
1

= 1

N

∑
i

⎛
⎝a(m)

i ⊗ h′(y(m)
i

) − 1

nyi

∑
y j =yi

a(m)
j ⊗ h′(y(m)

j

)⎞⎠
(15)

and

∂ E (m)
2

∂W (m)
1

= 1

N

∑
i

⎛
⎝a(m)

i ⊗h′(y(m)
i

)
x	

i − 1

nyi

∑
y j =yi

a(m)
j ⊗ h′(y(m)

j

)
x	

j

⎞
⎠.

(16)

Similarly, for E (m)
3 , we have

∂ E (m)
3

∂b(m)
1

= 1

C

C∑
c=1

(
ā(m)

c ⊗ h′( ȳ(m)
c

) − ā(m) ⊗ h′(ȳ(m))
)

(17)

where ā(m)
c is the mean of hidden layer vectors from class c,

ȳ(m)
c is the mean of vectors y(m)

i from class c, ā(m) is the mean
of all hidden vectors, and ȳ(m) is the mean of all y(m)

i vectors.
Then, the derivative with respect to W1 can be written as

∂ E (m)
3

∂W (m)
1

= 1

C

C∑
c=1

(
ā(m)

c ⊗ h′(ȳ(m)
c

)
x̄	

c − ā(m) ⊗ h′(ȳ(m))x̄	)
.

(18)

For E (m)
4 , we have a slightly complex derivative since we have

two intermediate derivative corresponding to a(m)
i and a(m)

j ,
respectively

∂ E (m)
4

∂W (m)
1

=
∑

i, j
m<n

(∇d(m)
i j ⊗ h′(y(m)

i

)
x	

i −∇d(m)
i j ⊗ h′(y(m)

j

)
x	

j

)
(19)
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Algorithm 1 Gradient Descent Algorithm for CRF-SME
Input: Training samples x1, x2, . . . , xN , random faces

r (1)
1 , . . . , r (1)

N , . . . , r (M)
1 , . . . , r (M)

N , and model
parameters λ1, λ2, ω1, ω2.

Output: Weights matrices and bias vectors
W (m)
1 , b(m)

1 , W (m)
2 , b(m)

2 (1 ≤ m ≤ M).
1 Initialization: random initialization for

W (m)
1 , b(m)

1 , W (m)
2 , b(m)

2 (1 ≤ m ≤ M) with the purpose of
symmetry breaking.

2 repeat
3 Feed-forward process, compute a(m)

i and
t(m)(xi ), (1 ≤ i ≤ N, 1 ≤ m ≤ M) by Eq. (1), (2).

4 for m = 1 to M do
5 Back-propagation process, compute the gradient of

E w.r.t. W (m)
1 , b(m)

1 , W (m)
2 , b(m)

2 by Eq. (13)-(20).
6 Update W (m)

1 , b(m)
1 , W (m)

2 , b(m)
2 by Eq. (12).

7 end
8 Compute total loss Et by Eq. (11)
9 t = t + 1

10 until The variation of the objective function between two
consecutive iterations is smaller than predefined
threshold, i.e., |Et − Et+1| < ε;

Fig. 6. Samples of landmark localization and across pose alignment on Multi-
PIE database. In the second row, note that some landmarks are invisible.
Identity features under full-aligned setting are extracted from local patches
defined by the red landmarks.

where ∇d(m)
i j = (a(m)

i − a(m)
j ) − 2(a(n)

i − a(n)
j ) and

∂ E (m)
4

∂b(m)
1

=
∑

i, j
m<n

(∇d(m)
i j ⊗ h′(y(m)

i

) − ∇d(m)
i j ⊗ h′(y(m)

j

))
. (20)

Finally, we keep updating {W (m)
k , b(m)

k } until the change of
total loss is less than a predefined threshold ε, i.e., |Et+1 −
Et | < ε. We summarize the whole procedure in Algorithm 1.

V. EXPERIMENTS

A. Face Identification Results

We consider using Multi-PIE [64] database for face iden-
tification, and compare the proposed models with others.
In full-aligned setting, we use the face alignment model
proposed in [65] for landmark localization,2 as shown
in Fig. 6. In nonaligned setting, faces are manually cropped

2It should be noted that to avoid trivial hand labeling work and meanwhile
obtain high-quality landmarks for this setting, we use [65], which was trained
by 900 Multi-PIE images. These landmarks, which should be provided before
the training, however, will not affect our model training and its effectiveness.

based on the boundary of the face, and then resized to the
size of 128× 128.

1) Pose Range: It can be learned from Fig. 6 that some face
landmarks become invisible if the pose angle goes beyond
45◦. Therefore, in full-aligned setting, only pose angles in
[−45◦, 45◦] are considered, while in nonaligned setting, all
poses in [−75◦, 75◦] are included.

2) Model Parameters: In full-aligned setting, no pose infor-
mation is needed in both training and test phases, and we
have two pairs of parameters: {W (m)

1 , b(m)
1 } and {W (m)

2 , b(m)
2 }

learned from the proposed SME. In nonaligned setting, how-
ever, we need to learn a pair of parameters {W (m)

1, j , b(m)
1, j } for

each pose using either holistic or local features. To obtain
approximate pose in the nonaligned setting, we use three key
points: two eyes and nose tip detected by [65] to estimate the
pose of test faces. And, therefore, we could choose appropriate
model from the set of {W (m)

1, j , b(m)
1, j }.

In our evaluations, both ω1 and ω2 are set to 0.001, and λ1
and λ2 are set to 0.0001. In most of the cases, Algorithm 1 will
converge in 100 iterations.3 Note that the data consistency con-
straint is time-consuming since it will look through all possible
pairs from different RF-SMEs. To alleviate the computational
burden and meanwhile keep the comparable performance, we
randomly sample a few pairs from all possible combinations
of RF-SMEs and feature vectors. For the initialization of
{W (m)

k , b(m)
k }, we refer to the approach suggested in [68],

which empirically shows better performance. For more details
about model parameters, please refer to Section V-D.

3) Notations: We use Model-1/2 + SME to indicate the
SME model with corresponding frontal face feature as the
output, and use Model-1/2 + RF/CRF + SME(·) to indicate
the RF-SME, followed by the number of RFs in the bracket
in Tables II and III. In addition, the deep CNN boosted
RF/CRF models are represented by VGG-RF/CRF-SME. Both
the results in our previous work [14] and in this paper are
highlighted throughout the experiments with bold fonts.

4) Running Environment: We experiment on an Intel i7
desktop with 16-GB memory. All codes are written in
MATLAB and optimized by parallel computing toolbox.
Furthermore, the unconstrained optimization problem in our
model is solved by L-BFGS optimizer. For deep CNN facial
descriptors, we adopt the VGG-Face model [57] and take fc7
as the facial descriptors.

5) Full-Aligned Faces: In full-aligned setting, faces of
all subjects under neutral expressions and illumination from
session 1 to session 4 are selected. Also, we extract facial
features from local patches defined by the detected landmarks,
and in total, there are 52 different 20 × 20 patches which
yields a 20800-D feature vector to represent each face. We
then use Whitening Principal Component Analysis (PCA) to
further reduce it to 400-D. Unless otherwise stated, we set
hidden layer size to 100, and the output layer size to 40. We
choose the last 88 subjects’ face images as the training data,
and the rest from 249 subjects’ as test data. Finally, we use the
nearest neighbor classifier to predict the test image’s identity.
Note that we have two different registration methods here.

3Note this is different from “epoch” used in many deep learning models.
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TABLE II

FULL-ALIGNED FACES-BASED IDENTIFICATION RESULTS UNDER TWO DIFFERENT SETTINGS ON MULTI-PIE. THE 3-DGEM MODEL IS LEARNED ON

USF HUMAN-ID DATABASE [66], INCLUDING 94 DIFFERENT 3-D FACE MODELS. NOTE 3-DGEM DID NOT CONSIDER EYEGLASSES IN MODEL

LEARNING. IN THE RESULTS, “GLASSES” INDICATE THE ACCURACY OF THE ORIGINAL TEST SET (249 INDIVIDUALS) WITH EYEGLASSES

ON FACE, WHILE “NO-GLASSES” INDICATE THE ACCURACY OF A SUBSET (158 INDIVIDUALS) OF THE ORIGINAL TEST SET WITHOUT

EYEGLASSES. DURING THE TRAINING, WE TAKE EYEGLASSES INTO ACCOUNT, AND THE ACCURACY OF OUR MODEL IS

EVALUATED ON THE ORIGINAL 249 PEOPLE’S TEST SET

TABLE III

NONALIGNED FACES-BASED IDENTIFICATION RESULTS UNDER THREE DIFFERENT SETTINGS ON MULTI-PIE

Setting-1 adopts frontal face from each subject, while Setting-
2 randomly chooses an image under arbitrary pose from each
subject as the reference. Both are reported in Table II. Note
that the results for Setting-2 are averaged after 20 trials.
Besides, we render the virtual frontal faces generated by

single sparse many-to-one encoder with frontal face as the out-
put. Specifically, in full-aligned setting, we use the hypothesis
output t (x) = h(W2a + b2), where a is the pose-invariant
feature, to recover the virtual frontal face of input x . We
illustrate these virtual frontal faces in Fig. 7. These results
show that our SME can map features in different formats
to frontal face feature space regardless of pose, which also
demonstrates the property of many-to-one of SME.
From Table II, we learn that the majority of them performs

well due to face alignment. Classical facial features, such as
Local Binary Patterns (LBP) and Linear Discriminant Analy-
sis (LDA) work pretty well given only 2-D images, and most

Fig. 7. Virtual frontal faces on Multi-PIE database (by Model-1). Odd rows:
test faces. Even rows: virtual front faces by Model-1.

of the 2-D face recognition algorithms perform better than the
3-D method proposed in [36]. Still, we believe that accurate
alignment plays a big role in the improvement. In general,
we can see that our new method is superior to competitors
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with face being aligned. On the other hand, we witness a
performance drop in Setting-2 of Table II, compared with the
same method in Setting-1. These can be easily observed from
the local descriptors-based methods, e.g., LBP and Histogram
of Oriented Gradients. However, our methods still keep very
competitive performance. Besides, it can be found that Model-
1 with RFs (RF or CRF) performs better than a single SME,
i.e., Model-1, which demonstrates the importance of RFs.
Finally, the new model proposed in this paper consistently
performs better than our previous conference work [14].

6) Nonaligned Faces: This setting has faces manually
cropped to 128×128 according its boundary, and no landmarks
are required. Therefore, no faces are aligned, and Model-2 is
deployed to learn separated {W (m)

1, j , b(m)
1, j } for different poses.

Notably, the target values are set to a 2500-D random vector
given raw facial images as inputs. There are three settings
in nonaligned faces-based experiments. Setting-1 takes the
last 237 subjects’ facial images in Multi-PIE as the training
data, and the rest 100 subjects’ facial images as the test data.
Setting-2 follows the configurations in [12] where the first
100 subjects’ images are taken for model training and the rest
for testing. In Setting-3, we follow the configuration in [13]
and take the first 200 subjects’ images from four sessions as
training samples, and use the rest images for testing purpose.
From the Setting-1 results in Table III, we observe per-

formance degradation from almost all the methods, except
for ours. As our methods do not need alignment and dense
landmarks, we also have profile (−75◦, 75◦) in the evaluation.
Instead of LDA [15], we compare with the recent state-of-
the-art MvDA [11] (multiview LDA) Table III. In addition, in
Setting-2 of Table III, we compare with CLSDA [12]. In both
settings, our method works better even for 45◦ or 75◦ poses.
This demonstrates that the proposed Model-2 can extract
pose-invariant features without alignment or dense landmarks.
Finally, we also compare with the recently published pose-
invariant feature learning methods, e.g., LE [67], MDF [38],
HPEN [40], and deep neural networks-based pose-invariant
feature learning methods, e.g., FIP [50] and Stacked Progres-
sive Auto-Encoders [11] in Setting-3. Results demonstrate the
newly proposed CRF-SME, especially, the deep version, i.e.,
VGG-CRF-SME performs fairly well compared with these
state-of-the-art works.
Note that we adopt Model-1 for deep facial descriptors, i.e.,

Model-1+VGG-CRF-SME in nonaligned setting in Table III as
we believe that the deep facial descriptors can partially solve
the pose issue. We can see that the deep facial descriptor
VGG-Face performs well in all three settings, but not the
best among the other competitors. However, with Model-1,
the newly proposed VGG-CRF-SME performs best compared
with the state-of-the-art works. Additionally, our new model
in this paper performs consistently better than our conference
work [14] in Table III. Notably, the proposed VGG-CRF-SME
outperforms our previous conference work by 7% in Setting-1.

B. Verification Results on LFW

“Labeled Faces in the Wild” (LFW) [45] is a benchmark
that evaluates face verification algorithms through real-world

Fig. 8. Sample faces of two different people from LFW database, subject to
pose, illumination, and expression variations.

TABLE IV

VERIFICATION ACCURACIES (MEAN + STD) ON LFW DATABASE USING
UNRESTRICTED PROTOCOL

public figures facial images (Fig. 8). This database collects
over 13000 images of faces from the Internet and 1680
individuals with at least two face images. As our model
requires the identity information of the training data, we follow
the “unrestricted” protocol in this experiment. We use LBP
and High-dimensional LBP (HLBP) features provided by [35]
to evaluate our method. Whitening PCA is then applied to
reduce the dimensionality of both features to 400. We run
our evaluations following the tenfold cross validation protocol
and pick individuals who have at least five facial images for
training. The size of hidden layer is 100 and that of output
layer is 40.
During the training, we follow the pose grouping approach

suggested in [69] to centralize faces according to their poses.
Afterward, Model-1 is adopted to learn the pose-invariant dis-
criminant features, and both training and test data are projected
into the new feature space. Note that we normalize each feature
vector to have unit length. To conduct face verification, we
compute the similarity scores of each pair of faces from an
RF/CRF-SME. All such scores from different RF/CRF-SMEs
formulate a new feature vector that will be used in similarity
computing. For VGG-CRF-SME, we use the cosine similarity
for the verification purpose. The average verification rates over
ten trials and Receiver Operating Characteristic (ROC) curves
of both our methods and competitors are shown in Table IV
and Fig. 9.
As images in LFW (Fig. 8) have arbitrary poses, expres-

sions, and illuminations, it is quite challenging for both
verification algorithms and human being. As our model is
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Fig. 9. ROC curves of face verification on LFW database using unrestricted
protocol.

Fig. 10. Sample faces of four different people from YTF database subject
to pose and expression variations.

compatible with both shallow and deep structure, we show
the results of both with and without external training data.
First, for shallow structure, it is clear that CRF-SME performs
better than RF-SME on both LBP and HLBP features due to
the Fisher Criterion and proposed data consistency constraint.
In addition, we can see that the proposed CRF-SME model
with HLBP feature performs better than state-of-the-art meth-
ods in Table IV. There are two reasons for the improve-
ment: first, HLBP with dense landmarks provides robust
facial features; second, our CRF-SME can take good advan-
tage of these features (see our improvements over results in
[35, Table IV]. Second, when external data are allowed,
our VGG-CRF-SME model works comparably with those
state-of-the-art deep models, e.g., DeepFace, and better than
VGG-Face, as shown in the bottom part of Table IV. It should
also be noted that the structure of our deep model is relatively
simple, i.e., one deep CNN + 20 parallel SNNs, compared
with 200 networks in DeepID2.

C. Verification Results on YTF

YTFs database [46] is a data set collected from YouTube
videos targeting at the problem of unconstrained face ver-
ification in videos. The database collects 1595 people’s
3425 videos. Like LFW database, most of them are pub-
lic figures. In this database, each subject has an average
of 2.15 videos and video clips have an average length of
181.3 frames. Key frames of four people are shown in Fig. 10.
Similar to LFW benchmark, YTF provides ten splits of

video pairs for face verification purpose. Specifically, it ran-
domly collects 5000 video pairs from the database. Half of
these pairs include videos of the same person, while the rest
half video pairs have different identities. In the benchmark

Fig. 11. ROC curves of face verification on YTF database.

TABLE V

VERIFICATION ACCURACIES (MEAN + STD) ON YTF DATABASE

test, each single split has 250 “same” and 250 “not-same”
video pairs. We adopt the image restricted protocol and
tenfold cross validation for evaluation. We use the LBP feature
descriptors provided by [46] as our low-level features, and
project the original LBP feature into a 400-D feature space
before processed by RF/CRF-SME. We randomly select 40
images from each folder included in the training pairs and
consider them as the inputs for each RF/CRF-SME. Other
settings follow those in LFW and both accuracies and ROC
curves are reported in Table V and Fig. 11, respectively.
From the experimental results, we can observe that YTF

database is more challenging, due to the low-resolution
images, and extreme lighting or facial expressions, as shown in
Fig. 10. When there is no external data, compared with other
state-of-the-art methods, our methods perform well. It should
be noted that in [73], more training samples are created by
flipped frames, which is not used in our methods. Without
such process, the performance of EigenPEP drops down to
0.824±0.017, which is inferior to ours. Given external training
data, our method performs better than most of the deep models
in Table V. The improvement of our method over VGG-
Face proves that the proposed CRF-SME is useful to extract
high-level pose-invariant face features. Notably, the proposed
VGG-CRF-SME outperforms our previous conference work
by 14%.
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Fig. 12. Identification rates of l1 (ours) and l2 norms for a single SME over different values of λ1 and λ2 on Multi-PIE database. (a) l1 norm. (b) l2 norm.
(c) Impacts of the hidden layer size.

D. Model Selection and Parameters Discussion

1) Weight Decay Parameters: We show the impacts of
model parameters λ1 and λ2 and hidden layer size on model’s
performance. First, we show that how λ1 and λ2 will affect
the performance in Fig. 12. Results are collected by Model-
1 with single SME on Multi-PIE database following the
Setting-1 of full-aligned faces. Clearly, different λ1 and λ2
values render different results, and their impacts on l1 (our
method) and l2 matrix regularizers are shown in Fig. 12(a)
and (b), respectively. In Fig. 12(a) and (b), the improvement
by regularizers over the conventional methods (λ1 = λ2 = 0)
is significant. Besides, l1 norm performs slightly better than l2
norm in our model. Although this does not mean to prove that
l1 matrix norm is superior in selecting discriminative features,
it supports the claim l1 regularizer empirically works well [60].

2) Hidden Layer Size: Hidden layer size of RF/CRF-SME
is also of great importance. Intuitively, a large hidden layer
size is easy to keep the intrinsic features, but would take
longer time for training, while a small hidden layer size may
suffer from inferior performance due to weak representation
capability. To make this clear, we show the impact of layer
size on identification task in Fig. 12(c). In this experiment,
we use a single SME and follow the Setting-1 of full-aligned
faces, and, therefore, are able to concentrate only on the size
of hidden layer and performance. L-BFGS algorithm runs 400
iterations with different layer sizes, ranging from 50 to 140.
In this experiment, layer sizes that are shown have different
convergence speeds and larger hidden layer sizes converge
faster. This can also compensate for the longer running time
caused by the larger layer size.

3) Balancing Parameters: Recall in the loss function (11),
we have two balancing parameters ω1 and ω2 for the terms
E (m)
2 − E (m)

3 and E (m)
4 , respectively, which can control the

impacts of the two terms. A larger balancing parameter will
suppress the corresponding loss function more, and vice versa.
When both of them are set to zeros, CRF-SME model degen-
erates to RF-SME with only the first term in (12). To better
illustrate their impacts, we show different performances of our
model given different ω1 and ω2 values in Fig. 13(a). As we
can see the range 0.001–0.0001 works well for both of them.
A larger value of ω1 will punish more on E (m)

2 − E (m)
3 , and

may lead to overfitting, while a larger value of ω2 will enforce
different CRF-SMEs to be identical. Both of them lead to poor
performance, as shown in Fig. 13(a).

Fig. 13. Impacts of ω1 and ω2 on the performance (left) and output layer sizes
of the CRF-SME model on Multi-PIE (full-aligned Setting-1) over different
number of SMEs (right).

4) Output Layer Size: In addition, we discuss the sizes of
the RFs in the output layer. Intuitively, small sizes of the
RFs have weak capability on representation, but it promises
to keeps good consistency between RFs. On the other hand,
large sizes have better expressiveness, but may suffer from
the weak consistency of identity features. To quantitatively
measure the impacts of sizes of output layers on the system
performance, we conduct another experiment on Multi-PIE
database by fixing the size of the hidden layer at 100 and
varying the sizes of output layer gradually from 10 to 320.
In Fig. 13(b), we can see that the performance is affected
in two ways. First, larger output sizes will yield better per-
formance for the single SME which can be observed when
the value of x-axis is equal to 1. In the meanwhile, larger
number of CRF-SMEs results in better performance, but the
improvements vary depending on the sizes of output layer.
Clearly, small sizes of the output layer enjoy a significant
improvement, while the larger sizes (e.g., 320) achieve a
slight improvement and subject to a decrease at the later
stage. Therefore, we can conclude that the moderate size of
output layer is a key for better performance as well as data
consistency.

5) Consistency: We also evaluate the importance of data
consistency of our CRF-SME framework, and results are
shown in Fig. 14. In this experiment, hidden layer and output
layer sizes are set to 100 and 40, respectively, for both
databases, and full-aligned faces with Setting-1 are used
for Multi-PIE. From the results on two databases, we can
observe that data consistency constraint helps to keep boosting
the performance when the number of CRF-SME increases.
Without such constraint, RF-SME suffers from unstable per-
formance when the number of encoders is increasing. There
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Fig. 14. Illustration of data consistency. We show the importance of data
consistency on Multi-PIE and LFW databases.

TABLE VI

TRAINING TIME COMPARISONS ON LFW DATABASE

are some points where more RF-SMEs even ruin the system
performance; however, CRF-SME with data consistency nearly
increases the system performance monotonously.

6) Running Time: Finally, we compare the running time
with competitive methods that do not relay on large-scale
training data in Table VI. Specifically, we compare with
HLBP+Joint Bayesian [35], Discriminative Deep Metric
Learning [48], and Fisher Vector Faces [72]. From the results,
we can see that the proposed RF-SME is very efficient, using
the shortest training time. Since we add consistency constraint
in CRF-SME, it needs more running time to get converged.

VI. CONCLUSION

In this paper, a novel collaborative face identity feature
learning system robust to arbitrary poses had been proposed.
First, a sparse many-to-one encoder was designed to miti-
gate negative factors incurred by arbitrary poses. Second, we
invented a new target signal, i.e., RFs to enrich the pose-
invariant features, which can be further boosted by the deep
CNN facial descriptors. Since these encoders did not explicitly
align themselves, we introduced a new learning criterion to
hidden layers to enforce the data consistency. We evaluated
our methods on both Multi-PIE and real-world face databases
including variety of negative factors. Sufficient experiments
validated the effectiveness and advantage of our learning
system over state-of-the-art works.
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