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Abstract—We consider exploiting graph structure for sparse graph approximations. Graphs play increasingly important roles in

learning problems: manifold learning, kernel learning, and spectral clustering. Specifically, in this paper, we concentrate on nearest

neighbor sparse graphs which are widely adopted in learning problems due to its spatial efficiency. Nonetheless, we raise an even

challenging problem: can we save more memory space while keep competitive performance for the sparse graph? To this end, first,

we propose to partition the entire graph into intra- and inter-graphs by exploring the graph structure, and use both of them for graph

approximation. Therefore, neighborhood similarities within each cluster, and between different clusters are well preserved. Second,

we improve the space use of the entire approximation algorithm. Specially, a novel sparse inter-graph approximation algorithm is

proposed, and corresponding approximation error bound is provided. Third, extensive experiments are conducted on 11 real-world

datasets, ranging from small- to large-scales, demonstrating that when using less space, our approximate graph can provide

comparable or even better performance, in terms of approximation error, and clustering accuracy. In large-scale test, we use less

than 1/100 memory of comparable algorithms, but achieve very appealing results.

Index Terms—Scalable graph approximation, nearest neighbor graph, intra-graph, inter-graph, approximation error

Ç

1 INTRODUCTION

GRAPHS play increasingly important roles in learning
problems: (1) data clustering, by building a pairwise

similarity graph [1], [2], [3], [4], [5], [6]; (2) subspace learn-
ing, including both linear dimensionality reduction meth-
ods, e.g., PCA [7], LDA [8], LPP [9], NPE [10], non-linear
ones, e.g., LEM [11], LLE [12], ISOMAP [13], and a unified
graph embedding framework [14], [15]; (3) kernel learn-
ing [16], [17], [18], [19]; (4) feature extraction [20], [21], and
networks issues, e.g., privacy [22], robustness [23], heteroge-
neity [24]. A typical graph consists of two parts: nodes and
edges. In most of graph based algorithms, a node represents
a data sample, and an edge encodes the pairwise relation
between two attached nodes, e.g., similarity. In learning
community, there are two typical similarity graphs: dense
graph, and t nearest neighbor (t-NN) sparse graph, which
are frequently used in kernel learning and graph Lapla-
cian [25], respectively. While dense graph computes all pair-
wise similarities and therefore requires more memory space,
t-NN sparse graph and its fast implementations [26], [27],
[28] usually take much less memory space due to the charac-
teristics sparsity. A t-NN graph can be formally defined as:

Definition 1. A t-NN sparse graph is a directed graph in gen-
eral. There is an edge from node xi to xj if and only if rðxi; xjÞ
is among the t smallest elements of the sets frðxi; xkÞjk ¼
1; 2; . . . ; i� 1; iþ 1; . . . ;mg, where m is the total number of
nodes, and rð�; �Þ is the distance metric.

While a t-NN graph uses tm storage units, a dense graph

will occupy m2 units, and in most real-world application
m � t. This becomes prohibitively large whenm is large. To
address this problem, substantial efforts have been made to
find compact representations for graph matrices and low-
rank matrix approximation is one of the feasible approaches.
In low-rank matrix approximation, original matrix is factor-
ized into a product of two low-rank matrices. Namely, given
a m�m matrix A, we try to approach a factorization:
A � B� C where B and C are m� r and r�m matrices,
and in general r � m. Theoretically, the optimal low-rank
approximation (w.r.t. spectral or Frobenius norm) can be
computed through truncated SVD. For a typical m�m
graph, however, the time complexity of SVD is cubic in m,
which is prohibitively expensive given a largem. To address
this problem, many algorithms have been proposed [29],
[30], [31]. Among them, randomized algorithms [32], [33] are
popular due to their simplicity and effectiveness. On the
other hand, truncated SVD is feasible and tractable for large-
scale t-NN sparse graphs thanks to the quick solver, e.g.,
ARPACK [34], which works as a complement when graph is
not symmetric, or dense. However, the two approaches
above perform poorly given limitedmemory [35], [36].

“Divide and conquer” (DC) [37] plays an important role
in algorithms design when problems are not tractable due
to large size. For instance, in data mining, it has been
adopted to boost the subspace learning [38], [39], and kernel
machines [40], [41] in two steps: local optimization (divide),
and global alignment (conquer). Recently, a general graph
approximation method with DC strategy is proposed [36].
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It first explores the internal structure, and then approxi-
mates each local graph with random projections. Finally,
local graphs are extrapolate to build a global graph.

Although a t-NN sparse graph occupies less space than a
dense graph, it still needs to be compressed for large-scale
problems. Existing methods such as truncated SVD for
sparse graph do not perform well with limited memory [36],
and approximation methods for dense graph do not always
fit for the sparse graph, especially when it is asymmetric. To
our best knowledge, such t-NN sparse graph approxima-
tion problem has not been widely discussed before.

To address these issues, we propose a memory efficient
approximation approach for a given t-NN graph.1 Different
from previous DC methods, we are the first to employ dif-
ferent graph approximation strategies for large-scale t-NN
sparse similarity graph2 by exploring the graph structure,
i.e., the induced intra-graph [36] and inter-graph learned
from underlying data distribution after data clustering,
which, to our best knowledge, has not been discussed
before. The novelty of this paper can be summarized as:

� First, we propose to partition the entire graph into
intra- and inter-graphs by exploring the underlying
graphs structure, and use both of them for graph
approximation. Thus, similarities within each cluster
and between different clusters are well preserved.

� Second, we improve the space use of our approxima-
tion algorithm. Specially, a novel sparse inter-graph
approximation algorithm is proposed, and corre-
sponding approximation error bound is provided.

� Finally, extensive experiments demonstrate that our
method provides comparable or even better graph
approximation given limited time or storage, espe-
cially on large-scale datasets: Mnist, RCV1, Covtype.

2 RELATED WORK

An intuitive memory efficient way is to sparsify the graph
and keep as few nonzero entries as possible. To this end,
researchers propose to learn a distribution over which the
expected value of each entry in the approximate graph is
equal to the true value of the graph entry, and meanwhile
ensure the approximate graph is sparse compared to the
original one [42], [43]. In brief, the sparsity is generated by
the original graph in addition to a sparse prior, with good
theoretical guarantees. However, it has not been widely
adopted in practice for graph approximation so far,
especially for the purpose of clustering.

Randomly selecting columns/rows also draws consider-
able attention [44], [45] recently. Matrix built by selected col-
umns assures the reconstruction error through r selected
columns is upper-bounded by the residue between A and
rank-r approximation AðrÞ [44], which guides the process of

automatic selection of columns. One instance uses greedy
algorithms for solutions [31], [46], [47]. Another instance is

incomplete Cholesky decomposition (ICD) [29], [48] which
is widely adopted for the matrix decomposition. Different
from greedy algorithms, Nystr€om method [49] uses sam-
pled landmarks to directly approximate the eigensystem of
the original matrix [35], [49], [50], showing enormous practi-
cal values in image segmentation and spectral clustering.
Different from ours, all the above methods do not exploit
the underlying structure of the data, and may not be appro-
priate for sparse matrix approximation. Notably, a recent
Nystr€om method uses k-means to discover landmarks [51],
which seems similar to our work; however, it did not con-
sider the intra-graph and can only work on dense graph.

Sub-matrix methods provide a more general formulation
assuming matrix is decomposable by sub-matrices and coef-
ficient matrices [52], [53]. A typical approach named CUR
decomposition using both sub-collection of rows and col-
umns has been proposed in [54] with the form: A � CUR
where C and R are sub-matrices built by columns and rows,
and U is the linkage matrix. A randomized algorithm for
this problem can be found in [55]. Similar to columns/rows
sampling methods, the underlying structure of data is not
considered, leading to an inferior performance.

Another highly related work by random structure is
dimensionality reduction [33], which uses the range of data
in the randomized column space to reduce the size of the
matrix, but keeps its most geometrical structure [56]. A
Gaussian random matrix with over sampling is used in [57]
to perform dimensionality reduction and proved to yield
better results. Different from applying dimensionality
reduction to the whole graph, we adopt it in the local struc-
ture, giving rise to a better approximation by a factor of k,
where k is the number of local structures. This is particu-
larly useful given a large graph with limited memory.

“Divide and conquer” is an efficient approach towards
large-scale graph approximations [36], [40], [41], [50], [58].
In graph approximations, clustering methods are usually
adopted for the “divide” purpose, e.g., k-means [59], ran-
dom projection tree [60]. Afterwards, original large graph is
partitioned into a set of small subgraphs, whose size is
reduced by a factor of k. Finally, the original graph is
approximately recovered in the “conquer” step by extrapo-
lating intra-graphs. Different from dividing the graph itself,
method in [50] reduces the computation burden through
parallel techniques, i.e., Map-Reduce. Note that our method
also differs from [36], [40], [61] since we explicitly consider
both intra and inter relations of a sparse graph, and develop
a specific algorithm for the inter-graph approximation and
corresponding error bound.

3 FRAMEWORK

We first briefly explain how to use data’s underlying struc-
ture for better approximations, and then detail the intra-
and inter-graph approximations. Illustration of the entire
framework can be found in Fig. 1. In addition, we summa-
rize all the variables discussed in this paper in Table 1.

3.1 Graph Partition and Representation

Given a t-NN sparse graph and corresponding data sam-

ples, we first find k clusters and therefore k2 graph parti-
tions in the “divide” step. In our problem, there are two

1. In this paper, we assume the t-NN sparse graph is known at the
beginning, and we only consider how to better approximate such a
sparse graph, in terms of approximation error and clustering accuracy.
Detailed discussion of nearest neighbor graph construction is already
beyond the scope of this paper.

2. There might be other NN sparse graphs; however, in this paper,
we are more interest in NN similarity graph for learning problems.
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popular ways to group the data samples: (1) vector cluster-
ing method, e.g., k-means [59]; (2) graph clustering algo-
rithms, e.g., Louvain algorithm [62], Constrained Laplacian
Rank algorithm [63]. Notably, although vector clustering
usually uses Euclidean distance as the metric assuming
Gaussian as the underlying distribution, e.g., k-means,
which may conflict with the data distribution, it is still help-
ful for affinity graph with shift invariant kernel [40], e.g.,

Gaussian kernel.3 Given a dataset X 2 Rd�m, clustering

algorithms collapse all the data to k clusters fXi 2 Rd�mi ji ¼
1; 2; . . . ; kg. Each sample is assigned to a cluster represented
by its center:

Definition 2. Cluster center mi is the representative of the clus-
terXi computed by: mi ¼

P
x2Xi

x=mi.

We then re-arrange data samples into the order of
½X1; X2; . . . ; Xk	 according to the learned cluster indices,
and therefore can build the re-ordered graph matrix A

including k2 blocks. As we do not change the neighborhood
of each sample, the original t-NN sparse graph is still valid.
We only need to shift the row/column of the original graph
according to the order of ½X1; X2; . . . ; Xk	. The re-arranged
A can be either an affinity graph or a normalized graph Lap-

lacian, according to application scenarios. Among k2 blocks,
k diagonal blocks encode the intra relations within each
cluster, while the kðk� 1Þ off-diagonal blocks encode the
inter relations between two clusters.

Definition 3. Intra-graph Aa is the following diagonal fractions
of the original graph A:

Aa ¼ diagðA1; A2; . . . ; AkÞ ¼
A1 0 . . . 0
0 A2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Ak

2
6664

3
7775; (1)

where Ai is the induced subgraph ofXi; 1 
 i 
 k.

Although the original graph has been divided into k� k
subgraphs, the total size of them may still be large if they
are stored directly in memory. A popular approach would
be low-rank or rank-r matrix approximation. In this paper,
for efficiency, we further compress them using randomized
low-rank approximation algorithm [33]. Although a direct
randomized low-rank approximation on the original graph
matrix is also feasible, the low-rank approximation after
graph partition substantially improves the performance [36].
This is because a rank-r approximation on each subgraph
yields a rank-kr approximation on the entire intra-graph.

Definition 4. Inter-graph Ab is the following off-diagonal frac-
tions of the original graph A:

Ab ¼
0 A12 . . . A1k

A21 0 . . . A2k

..

. ..
. . .

. ..
.

Ak1 Ak2 . . . 0

2
6664

3
7775; (2)

where Aij; 1 
 i; j 
 k reflects the pairwise relationships
between data samples fromXi andXj.

In a dense graph, entries in the inter-graph dominate the
entire graph, which is impossible to store on a common PC
given a large m. In a sparse graph, however, either intra- or
inter-graph could dominate the entire graph, since the domi-
nance is affected bymany factors: number of neighbors, num-
ber of clusters, etc. To demonstrate the impacts of these
factors, we show experimental results from four datasets:
Corel, Satimage, Pendigit, Mnist, and use “IOA”, i.e., the

Fig. 1. Framework of the proposed method. For a given t-NN graph of m
samples, we first use k-means clustering to do the graph partition
(Section 3.1), and obtain intra- and inter-graphs on the left and right
hand side, respectively. Then for each of them, we follow algorithms
introduced in Sections 3.2 and 3.3 to achieve graph approximation.
Finally, approximate intra- and inter-graphs are combined together.

TABLE 1
Notations and Descriptions

Variable Description

A Affinity graph or normalized graph Laplacian
Aa, Ab Intra- and inter-graph
W Affinity graph, if A indicates graph Laplacian
di Degree of the ith node in the graph
D Diagonal matrix with d1; . . . ; dm on the diagonal
U;S; V Factor matrices of SVD

Â; Ŵ ; D̂ Approximate matrices of A;W;D

DD Difference between D̂ andD, i.e., D̂�D
L Logical index matrix for inter-graph
P Projection matrix
V Gaussian random matrix
Y Low-dimensional representation of data
m Number of data samples
k Number of clusters for k-means
r Target rank for low-rank approximation
p Over sampling factor
t Number of neighbors in NN graph
g bandwidth of Gaussian kernel

3. Unless specified otherwise, we will use k-means for the data clus-
tering through this paper due to its simplicity.
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number of entries in inter-graph over the number of all entries
to quantitatively measure the entries’ distribution in Fig. 2,
where the number of neighbors is set to 30 in the left figure,
and the number of clusters is set to 50 in the right figure.

From Fig. 2, we can conclude that both intra- and inter-
graph are essential to a sparse graph. In addition to the
block-wise randomized low-rank approximation for intra-
graph, we propose a new inter-graph approximation
method according to the inter-graph’s characteristics, which
substantially reduces the space requirement. Both intra-
graph and inter-graph construction details will be revealed
in the following sections.

3.2 Intra-Graph Approximation

According to Definition 2, intra-graph consists of k sub-
graphs and they are usually dense. The reason for being
dense is, for a typical t-NN graph, the clustering process in
the graph partition may already group the data and their t
nearest neighbors together. This means intra-graph covers
most of the pairwise connections of the entire graph if the
number of clusters is not large. Under this situation, using
sparse eigen-decomposition method, e.g., ARPACK [34] for
computational efficiency is less reasonable. For that reason,
we treat the blocks of intra-graph as dense graphs and use
rank-rmatrix approximation to save space.

In general, rank-r approximation can be formulated by

min
rankðÂÞ¼r

kA� Âk2F ! min
U;V 2Rm�r;

U>U¼I

kA� UV >k2F ; (3)

where Â ¼ UV > is the rank-r decomposition of A. Accord-
ing to the facts revealed in [64], we learned that the solution

to Eq. (3) can be found by the eigen-decomposition of AA>

after A being centralized. The above decomposition can
enjoy further speed-up via randomized low-rank approxi-
mation [33]. “Randomized” here means we impose a ran-
dom projection on the original matrix to form a reduced
matrix, whose range can be used to approximate the range
of the original input. Then the SVD on the reduced matrix
can help find the low-rank approximation of the original
matrix with a lower time complexity. Suppose the target
rank is r, then time consuming SVD in the original low-rank

approximation approach can be reduced from Oðm3Þ to

Oðrm2Þ. We detail this process in Algorithm 1.
In Algorithm 1, first, a rank-ðrþ pÞ Gaussian random

matrix is generated where p is a over-sampling number in
step 1. Then we project the graph matrix to the random

space and find its range P through QR decomposition in

steps 2 and 3. Note that we use ðAA>ÞqA ðq � 1Þ instead of
A to mitigate the slow spectral decay of graph matrix A [33,

Section 4.5]. Finally, we take the orthogonal projection PP>

on A as the approximation of A. Therefore, A can be decom-

posed through the factorization of PP>A. In brief, we can
see that the randomized low-rank decomposition uses
approximately OðmrÞ space, where r � m in practice.

Algorithm 1. Randomized Low-Rank Graph
Approximation

Input: An m�m matrix A, target rank r, over-sampling
parameter p � 1, l ¼ rþ p

Output: Low-rank approximation of A, so that A � USV >

1: Generate anm� l Gaussian randommatrix V.
2: Form them� lmatrix Y ¼ ðAA>ÞqAV.
3: Construct an m� l matrix P whose columns are orthogonal

basis of the span of Y .
4: Apply SVD on P>A and obtain decomposed components ~U ,

S, and V .
5: Construct the low-rank decomposition for A with U , S, and

V , where U ¼ P ~U

Next we implement randomized low-rank approxima-
tion on each subgraph of intra-graph, leading to a time com-
plexity of OðrPi m

2
i Þ on SVD itself, where mi is the number

of samples in each cluster. In addition, we achieve a rank-rk
rather than rank-r approximation by using the same
amount of memory

U

2
4

3
5

|fflffl{zfflffl}
rank-r

S½ 	 V

2
4

3
5>

|fflfflffl{zfflfflffl}
rank-r

)
U1S1V

>
1 0 0

0 . .
.

0
0 0 UkSkV

>
k

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rank-kr

;

where the left formulation represents randomized low-rank
approximation on the entire graph with U � m� r,
S � r� r, V � m� r, while the right one represents that
on each single subgraph with Ui � mi � r, Si � r� r,
V � mi � r4.

From Algorithm 1, we can see rank-r approximation for

the ith subgraph is PiP
>
i Ai where Pi is the orthogonal basis

of the ith block. Therefore, the block-wise intra-graph’s ran-
domized low-rank approximation can be illustrated as

Aa � diagðP1P
>
1 A1; . . . ; PkP

>
k AkÞ

¼
P1 0 0

0 . .
.

0

0 0 Pk

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
P

P>
1 0 0

0 . .
.

0

0 0 P>
k

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P>

A1 0 0

0 . .
.

0

0 0 Ak

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Aa

;

and corresponding block-wise approximation error w.r.t
Frobenius norm can be immediately derived as

kAa � Âak2F ¼ kAa � PP>Aak2F

¼k ðI � PP>ÞAa k2F¼
Xk
i¼1

k ðIi � PiP
>
i ÞAi k2F :

Fig. 2. Statistical Information of graph entries. Here “IOA” means the
number of entries from inter-graph over that from the entire graph. We
experiment on four datasets with varied number of clusters/neighbors to
show the importance of both intra- and inter-graphs.

4. Note U and ½U1; . . . ;Uk	 are different.
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3.3 Inter-Graph Approximation

Inter-graph has a significantly different underlying structure
compared to that of intra-graph, since it is almost always
sparse if the entire t-NN graph is sparse. This motivates us to
find different approximation strategies. First, dense graph
approximation methods are obviously inappropriate for the
sparse one. Second, existing sparse graph approximation
methods may fail as they usually provide a dense approxi-
mate graph for the blocks from the inter-graph. When the
ground truth inter-graph is sparse, it will substantially
increase the approximation error. To make this clear, we
show approximate graphs by existing sparse graph approxi-
mation methods in Fig. 3. As we can see, Clustered Low-
Rank [36] generates a very dense inter-graph, which is signif-
icantly different from the original graph shown on the right.

To address this problem, we propose a novel inter-graph
approximation method by preserving the underlying struc-
ture of the inter-graph while approximating each block
therein by a single representative. First, to preserve the
underlying structure, we convert the entire inter-graph to a
binary graph, using “1” to mark the connected pairs in the
inter-graph, and “0” to mark the disconnected pairs. Sec-
ond, we use the center of each cluster to represent the entire
cluster, and the simplified relation between the ith and jth

clusters can be computed as: aij ¼ expð� ðmi�mjÞ2
2g2

Þ, where mi

and mj are centers of the ith and jth clusters, respectively.

The resulting approximate subgraph Âijði 6¼ jÞ in off-diago-
nal blocks can be written as

Âij ¼ aijLij; (4)

where j � j denotes the cardinality of a set, Lij is a jXij � jXjj
0-1 logical matrix indicating the existence of an entry in a
sparse graph. Therefore, the approximation error of the pro-
posed method for inter-graph is

kAb � Âbk2F ¼
X
i;j;i 6¼j

kAij � aijLijk2F : (5)

We illustrate an approximate graph by our proposed
approximation algorithm in the third sub-figure of Fig. 3.
Compared to Clustered Low-Rank [36] and Nystr€om [49]
methods, ours yields a more sparse inter-graph. Additional
advantage of using this inter-graph approximation is obvi-
ous: the space requirement is reduced substantially. Cur-
rently, we only need to store a single real number for each
off-diagonal block, plus a highly sparse logical matrix

which in general is very small. Although the approximation
method is intuitive, it is not theoretically clear on how good
this inter-graph approximation will be. This is because we
throw away many details after all and only preserve the
underlying structure and key similarities. Next section will
detail the error bounds of both intra- and inter-graphs.

4 THEORETICAL ANALYSIS

We present theoretical analysis of the approximation error
and time/space use. As the proposed approximate graph
includes two separated parts: Aa and Ab, we will discuss
them separately. Total error is thus bounded by the sum of
them. Without loss of generality, we discuss the average

case of the error, i.e., the expectation of kA� Âk2F

E½kA� Âk2F 	
¼ E½kAa þAb � Âa � Âbk2F 	
¼ E½kAa � Âa þAb � Âbk2F 	
¼ E½kAa � Âak2F 	 þ E½kAb � Âbk2F 	
¼ Sk

iE½kðI � PiP
>
i ÞAik2F 	 þ E½kAb � Âbk2F 	:

(6)

4.1 Error Bound of Intra-Graph

From Eq. (6), it can be learned that the approximation error
from intra-graph Aa is the sum over k components from
diagonal blocks. The error expectation of each is bounded
by the conventional randomized low-rank approximation
theorem stated in [33]:

Theorem 1 (Theorem 10.5 in [33]). A is a real m� n matrix
with decrease order singular values s1 � s2 � s3; . . ., r is the
target rank ðr � 2Þ, and p is the over-sampling parameter,
p � 2, where rþ p 
 minðm;nÞ. Executing Algorithm 1, we
can obtain an m� ðrþ pÞ matrix P with orthogonal columns.
Then we have

E½k A� PP>A k2F 	 
 1þ r

p� 1

� �X
j> r

s2
j ; (7)

where srþ1 is the ðrþ 1Þth singular value of A.
Remarks. From theorem above, we can see the approxima-

tion error is bounded by the sum of squares of small sin-
gular values of the original graph up to a constant factor:
1þ r=ðp� 1Þ. In general, higher target rank will yield bet-
ter approximation performance. When we use higher

Fig. 3. Illustration of approximate graphs by (from left to right): (1) Clustered Low-Rank [36], (2) Nystr€om method [49], (3) Ours, and (4) Original
Graph on Corel dataset. Numbers of clusters and neighbors are set to 10 and 30, and the target rank for each block is set to 10. Note, Clustered
Low-Rank and Nystr€om methods render a very dense inter-graph.
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rank to approach Aa, however, it is not clear whether this
upper bound will increase or decrease, because the right
part of Eq. (7) is not necessarily a monotonic function w.r.
t. r. This is also demonstrated by experiments on Segment
dataset from the 3rd row of Fig. 4. Finally, we obtain the
expected error bound for the entire intra-graph AaXk

i¼1

E½k Ai � PiP
>
i Ai k2F 	 
 1þ r

p� 1

� �Xk
i¼1

X
j> r

s2
ij;

where sij denotes the jth singular value of graph Ai.

4.2 Error Bound of Inter-Graph

The approximation error of inter-graph is due to the entry
replacement in Ab. Namely, we use the center of a cluster to
replace all members in this cluster. First, to derive a general
error bound for the inter-graph, we use perturbation theory
[65] to analyze the error caused by the approximation. Simi-
lar idea has been adopted in the theoretical analysis of spec-
tral clustering [2]. Second, we will discuss the impacts of
different model parameters: k, m, t, and the connections
between k-means and the inter-graph error bound.

Let x̂i ¼ xi þ �i be the perturbed samples that we use in
the approximation, where �i is a small additive noise hinged
to a specific cluster if any. To make this analysis tractable,
some restrictions are added to the distributions of �i
for each cluster: (1) �i is independent of xi; (2) �i is i.i.d.
according to a symmetric distribution with zero mean and

bounded support; (3) the variance of �i is small compared to
the original data. Next theory shows the difference between

Âb and Ab due to perturbation is upper bounded by the var-
iance of �i times some constant.

Theorem 2. Assuming that: (1) x1; . . . ; xm 2 Rd are generated
i.i.d. from a mixture of distributions such that the degree of
node in the built sparse graph is large enough, namely,
di=m > c0 holds for some constant c0 > 0, (2) for each clus-
ter, additive noise �i has zero mean, and an unique, yet bounded

support, and (3) kDDD
�1k2 ¼ oð1Þ, then

EkAb � Âbk2F

 2

c20m
2
þ 2tc1
c40m

3

� �
u2
X
i;j

�ij Varð�iÞ þ 2Varð�jÞ
� �

;
(8)

where Var(�) is the variance of the random variable, u and c1
are some constants, �ij is an entry from the logical index
matrix L, and i; j index the data samples.

Proof. To prove the theory, we need to find an appropriate
formulation for “kAb � Âbk2F”. Here, we are more inter-
ested in graph Laplacian than Gaussian graph since the
latter one can be proved similarly by setting matrix D as
an identity matrix. In the followings, we denote W as the
affinity graph, A as the graph Laplacian, and remove the
subscript b for simplicity. The following lemma gives an
approximation of this square Frobenius norm:

Fig. 4. Experimental results of graph approximation error (marked in blue, # better) and memory consumption (marked in red, # better) on four datasets
given different number of clusters (1st row), neighbors (2nd row), and ranks (3rd row). The X-axis represents the number of clusters/neighbors, and ranks,
and theY-axis represents the approximation error andmemory consumption.We compare three differentmethods: intra-graph, inter-graph, and ourmethod.
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Lemma 1. Assume for each data sample, the sum of addictive
noises of connected nodes are not large compared to its
degree, namely, kDDD

�1k2 ¼ oð1Þ, then we have the follow-
ing results:

kAb � ÂbkF

 kD�1

2DWD�1
2kF þ ð1þ oð1ÞÞkDDD

�3
2WD�1

2kF ;
where DW ¼ Ŵ �W , and DD ¼ D̂�D.

The proof of Lemma 1 can be found in the supplemen-
tary file, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TBDATA.2016.2617883, which is similar to the
proof of [58, Lemma 4]. Next, we derive upper bounds
for kD�1

2DW D�1
2k2F , and kDDD

�3
2WD�1

2k2F , respectively.
First, we rewrite kD�1

2DWD�1
2k2F in an entry-wise way

kD�1
2DWD�1

2k2F ¼
X
i;j

�ijd
2
ij

didj

 1

c20m
2

X
i;j

�ijd
2
ij;

where dij ¼ exp �kxi þ �i � xj � �jk2
2g2

 !
� exp �kxi � xjk2

2g2

 !
;

and i; j 2 ½1;m	 index two different data samples. How-
ever, since the exponential term in the formulation above
is not easy to bound, we convert it to a more explicit
one w.r.t. � by Cauchy Mean Value Theorem. Suppose
the function in Cauchy Mean Value Theorem is:

fðxÞ ¼ exp � kxk2
2g2

� �
, and two variables are xi þ �i � xj � �j

and xi � xj, respectively. Thenwe trivially have

dij ¼ f 0ð�ijÞð�i � �jÞ; �ij 2 ðxi þ �i � xj � �j; xi � xjÞ: (9)

Since fðxÞ is symmetric in y-axis, f 0ðxÞ is bounded every-
where. Assume maxfkf 0ðxÞkg ¼ u, then we have

d2ij 
 u2k�i � �jk2. In the following parts, we discuss how

to bound the expectation of k�i � �jk2, over both �i and �j.
Since there are only off-diagonal blocks in the inter-

graph, it is reasonable to assume �i and �j are additive
noises from two different clusters. The following lemma

gives a upper bound on Eðk�i � �jk2Þ.
Lemma 2. Assume X and Y are random variables sampled

from two different distributions, then we have the follow-
ing conclusions:

EXY ðkX � Y k2Þ

 VarðXÞ þ 2VarðY Þ þ 2kEðXÞ � EðY Þk2:

(10)

The proof of Lemma 2 can be found in the supple-
mentary file, available online. From Lemma 2, it can be
learned that the expectation of k�i � �jk2 can be
bounded by the variance of �i and �j, plus a square of
the difference of their expectations. Given the fact that
8i, Eð�iÞ ¼ 0, and considering all the off-diagonal
entries, we have the following conclusions:

EðkD�1
2DWD�1

2k2F Þ 

u2

c20m
2

X
i;j

�ij Varð�iÞ þ 2Varð�jÞ
� �

:

(11)

Second, for kDDD
�3
2WD�1

2k2F , we have the similar for-
mulation

kDDD
�3
2WD�1

2k2F ¼
X
i;j

wijd
2
i

d3i dj

 1

c40m
3

X
i

d2i ; (12)

where we adopt the fact that 8i; j; wij < 1, and di ¼

P
j �ij exp �kxiþ�i�xj��jk2

2g2

� �
� exp � kxi�xjk2

2g2

� �� �
: (13)

Similar to the previous proof, we use Cauchy Mean
Value Theorem to prove the upper bound where we
have the following deductions:

Eðd2i Þ 
 u2E
P

j �ijk�i � �jk
� �2


 tu2
P

j �ijEðk�i � �jk2Þ:

We sum over i and have the following conclusions:

E kDDD
�3
2WD�1

2k2F
� �


 tu2

c40m
3

X
i;j

�ij Varð�iÞ þ 2Varð�jÞ
� �

:
(14)

Combining Eqs. (11) and (14) completes the proof. tu
Remarks. From Theorem 2, we can conclude that followed

variables play key roles in the inter-graph approximation

1) the variance of additive noise Var ð�iÞ of each
sample

2) the total number of samplesm
3) the number of nearest neighbor t of the graph.
First, if we assume more clusters for the graph parti-

tion, then there are fewer data in each cluster, and their
variance Var ð�iÞ in each cluster might be reduced. Con-
sequently, the variance of additive noise and the upper
bound of inter-graph approximation will be reduced too.
Second, more data samples, i.e., a larger m will decrease
the value of the first factor of Eq. (8), but will potentially
increase the variance of samples in each cluster. Thus its
impact on the upper bound is unclear. Third, if more
neighbors are considered, i.e., t is larger, then the third
factor in Eq. (8) will increase too. However, the first fac-
tor may decrease, because di becomes larger (c0 becomes
larger as well.) as more neighbors are discovered. In fact,
the number of NN t in the first factor makes it even com-
plex. Although it is non-trivial to quantitatively measure
the relation between the inter-graph approximation error
and the number of clusters/neighbors, we experimen-
tally demonstrate the conclusions above in Fig. 4 w.r.t.
the number of clusters/neighbors.

In addition, on the strength of the Theorem 2, we could
have a better understanding of “graph partition” in the first
step of our framework. Suppose in each cluster, x̂i is gener-
ated by a unknown vector, plus an additive noise �i hinged
to a specific data cluster, then the upper bound in Eq. (8),
specifically, Var ð�iÞ, can be reduced by minimizing

Exikxi � x̂ik2 for each cluster. This is empirically identical to

“vector quantization” problem in signal processing [66]
with least square as the loss measurement,
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fc1; c2; . . . ; ck;Qg ¼ min
1

m

X
x2X

kx� QðxÞk2; (15)

where Q is a quantizer that quantizes the input signals into k
different codewords c1; c2; . . . ; ck. While solving this problem
is NP-Hard, there is promising local minima by k-means
where ci indicates the cluster center [67]. This fact supports
our using of k-means for graph partition in the first step.

4.3 Time Complexity

Time cost of the proposed method includes three parts: (1)
graph partition, (2) intra-graph approximation, and (3)
inter-graph approximation.

Graph Partition. Suppose the dataset has m samples, k
clusters, and the maximal iteration for k-means is set to n,
then the time complexity graph partition is OðkmnÞ. In prac-
tice, a relatively small n works well for the final graph
approximation performance. Thus, we set n ¼ 50 in our
implementation.

Intra-Graph Approximation. Suppose the target rank is r,
the number of samples in the ith cluster is mi, over sam-
pling factor is p, and l ¼ rþ p < mi. We list the detailed
time complexity of each step of Algorithm 1 below:

� Step-1:
P

i lmiTG. This step generates
P

i lmi Gauss-
ian samples, and each of them takes TG time.

� Step-2:
P

i Oð2qm2:373
i þ lm2

i Þ. This step includes two

parts: complexity of ðAiA
>
i ÞqAi, and ðAiA

>
i ÞqAiV.

The first is the product of ð2q þ 1Þ mi �mi matrices,

and each of it takes m2:373
i steps [68]. The second part

involves the product of a mi �mi and a mi � l
matrix.

� Step-3: l2
P

i mi. This is for the QR decomposition on

Y 2 Rmi�l.
� Step-4: 2l

P
i m

2
i . This is for the product P

>Ai and the

SVD on P>Ai.
� Step-5: r2

P
i mi. Complexity for product of P ~U ¼ U .

Remarks. (1) We use power method to mitigate the slow
decay of matrix spectral of Ai, and it will introduce addi-

tional 2qm2:373
i flops in Step 2. In most cases, q ¼ 1 is ade-

quate to address the above spectral problem. (2) The
product AiV in step-2 can be further reduced to

Oðm2
i log lÞ given a structured Gaussian, e.g., subsampled

random Fourier transform [69].

Inter-Graph Approximation. We first compute the small
graph with cluster centers as nodes, which takes k2 steps.
Then, all non-zero entries in the block Aijði 6¼ jÞ are
replaced by the similarity between representatives mi and
mj, which needs

P
i;j �ij steps. Therefore, the total steps of

the proposed inter-graph approximation is:
P

i;j �ij þ k2.

4.4 Space Consumption

Next, we discuss the space use of both intra- and inter-
graphs. For a specific Ai from intra-graph, its randomized

low-rank approximation takes up 2mirþ r2 memory space.

Since there are k clusters, the total size is:
Pk

i¼1 2mirþ kr2.
For inter-graph, we need to store a k� k compact graph,
and a m�m logical index matrix L indicating the existence
of an entry in graph Ab. Compared to the dense double

precision matrix, L only needs to store the coordinates of
off-diagonal blocks represented by integers, which reduces
the memory use. Next we compare the space consumption
of our method with related methods in Table 2.

5 EXPERIMENTS

In this section, we evaluate our sparse graph approximation
method on 11 real-world datasets, and show the experimen-
tal results of approximation error and spectral clustering based
on the approximate graph. In our experiments, we compare
with the most recent state-of-the-art works, e.g., [36], [40],
[49], [50], [51], [70]. In addition, we discuss time and space
cost of both the proposed method and comparison methods.

5.1 Dataset Descriptions

We use four small-scale, and four mid-scale real-world
datasets to demonstrate our methods can work well on a
wide range of datasets, and use three additional large-scale
real-world datasets to test the scalability of the proposed
method. The details of 11 datasets are elaborated in Table 3.

Corel5 The dataset has been widely used in computer
vision and image processing. We use its subset from [50] for
our test, where 2,074 images, 144 features including shape,
texture, color, are chosen for evaluations.

RCV16 Reuters Corpus Volume I (RCV1) is an archive of
804,414 manually categorized newswire stories from Reu-
ters Ltd. [71], which includes three controlled vocabularies:
industries, topics, and regions. There are 23,149 training
documents and 781,256 test documents. In our evaluations,
similar to [50], only categories with more than 500 instances
are selected, which constructs a dataset with 193,844 sam-
ples in 103 categories.

Segment, DNA, Satimage, Pendigit, USPS, Letter, Mnist,
Covtype are popular machine learning datasets that are
widely used in clustering and multi-class classification
tasks. These datasets cover a broad range of data type from
images, DNA, to digital numbers or letters. For their
detailed descriptions, please refer to LIBSVM Data.7

5.2 Experiment Configurations

To evaluate the proposed method and make a fair compari-
son with existing methods, we conduct several groups of
experiments. In all experiments, we consider normalized
graph Laplacian with Gaussian kernel as our objective

TABLE 2
Space Consumption of Related Methods

Method Space Consumption

Original mt (double)
Nystr€om [49] m� # selected columns (double)
Meka [40] Oðmrþ ðkrÞ2Þ (double)
LSC [70] m� # of landmarks (double)
Ours m2ðlogicalÞ þ �k2 þPk

i¼1 2mirþ kr2
�ðdoubleÞ

5. https://sites.google.com/site/dctresearch/Home/content-based-
image-retrieval

6. http://www.jmlr.org/papers/volume5/lewis04a/lyrl2004_rcv1
v2_README

7. https://www.csie.ntu.edu.tw/�cjlin/libsvmtools/datasets/
multiclass.html
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graph. The weight of each edge in the affinity graph is com-

puted by: aij ¼ expf� kxi�xjk2
2g2

g, where xi and xj are two data

samples, and g is the bandwidth of Gaussian kernel. In our
experiments, g is automatically set in a self-tuning fash-
ion [72]. Normalized graph Laplacian [2] can be immedi-

ately derived from the affinity graph by L ¼ D�1
2AD�1

2,8

whereD is a diagonal matrix, withDii ¼
Pm

j¼1 aij.

In the experiments, we use all the data in each dataset for
graph construction, and clustering. We use the following
methods and their abbreviations in our experiments: Origi-
nal Graph [50], Intra-Graph [36], Inter-Graph, Clustered
Low Rank (C-LR) [36], Clustered-SVD (C-SVD) [36],
Nystr€om (NYS) [49], Clustered Nystr€om (C-NYS) [51], LSC
[70], MEKA [40], and Ours. Specifically, we compare with
Intra-Graph, Inter-Graph, C-LR, and C-SVD on graph
approximation experiments, and compare with NYS,
C-NYS, LSC, and MEKA on spectral clustering experiments
since they are kernel approximation methods suitable for
large-scale spectral clustering.

“Original Graph” follows the conventional way to build
the sparse affinity graph and normalized graph Laplacian,
as stated in [2]. “Intra-Graph” means we directly take the
approximations of diagonal blocks in Aa as the approximate
sparse graph. Compared to “Intra-Graph”, C-LR [36] takes
an extra step to extrapolate the approximations of diagonal
blocks to off-diagonal blocks, which somehow enhances the
performance, especially when the graph is not highly
sparse. However, it will dramatically increase the computa-
tional burden. “C-SVD” [36] is very close to “C-LR”, except
that it uses conventional SVD decomposition rather than
randomized low-rank approximation for each block in the
intra-graph. Inter-Graph is proposed in this paper, and
detailed in Section 3.3. “NYS” [49] has been extensively
adopted for large-scale spectral clustering, due to its time
and spatial efficiency. “MEKA” [40] is very similar to C-LR,
but use Nystr€om instead of randomized low-rank approxi-
mation for intra-graph. Besides, it accelerates the computa-
tion of inter-graph by extra constraints. “C-NYS” [51] is a
special version of “NYS”, which takes the cluster clusters as
the sampled data for Nystr€om method. Finally, “LSC” seeks
t nearest neighbors of each data sample, and use the similar-
ities between the data and their neighbors as the new
feature. Therefore, the affinity graph can be naturally
decomposed into two low-rank matrices, which saves huge
amount of time for the following eigen-decomposition.

In this paper, all the experiments are ran on an Intel i7-
3770K PC with 32 GB memory. The software environment is
Windows platform + MATLAB 2014b.

5.3 Measurements and Factors

We use following criteria for evaluations of each algorithm:
Approximation error reflects the difference between

ground truth and approximate graph by Frobenius norm:

kA� ÂkF . We further normalized it by the norm of ground

truth graph: kA� ÂkF =kAkF . Intuitively, higher approxi-
mation error means lower accuracy of the approximation.

Clustering accuracy [73] is the average performance of label
matching results between resulted labels and ground truth
labels for spectral clustering, which can be formulated as

Clustering Accuracy ¼ max
f

P
i cðyi; fðziÞÞ

m
; (16)

where zi=yi is the cluster/class label of xi, fð�Þ is a permuta-
tion function that maps each cluster label to a class label.
cðyi; ziÞ is a function equal to 1 if yi ¼ zi, 0 otherwise.

Normalized mutual information (NMI) measures the
mutual information entropy between resulted cluster labels
and ground truth labels, followed by normalizations which
guarantee that NMI ranges from 0 to 1. Mathematically, it
can be written as

NMI ¼
P

i

P
j ni;j log ðm�ni;j

ni�nj Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPi ni log

ni
mÞð
P

j nj log
nj
mÞ

q ; (17)

where ni and nj denotes the number of data in cluster i and
category j, and ni;j denotes the number of data in both clus-
ter i and category j. Therefore, if the data are randomly par-
titioned, NMI is inclined to 0.

Space and time consumptions are key indicators in our eval-
uations. First, we need to check if the space use of our
method is smaller than the original graph or competitors. In
addition, the running time of ours should be comparable
with the original one; otherwise, it is nothing but a trade-off
between time and space. To empirically measure the space
consumption, we store the matrices for graph reconstruction
into binary files and measure their memory consumption on
Windows platform. For example, our method needs to store
k triplets fUi;Si; Vig and kðk� 1Þ pairs faij;Lijg, while for
Nystr€om methods, we need to store intermediate matrices
W and A.9 For the actual time complexity, we record the
end-to-end running time of each algorithm. Note that theo-
retical time/space complexity of our algorithm can be fond
in Sections 4.3 and 4.4.

TABLE 3
Details of the Datasets Used in the Experimental Section

Details/ Name
Small-Scale Mid-Scale Large-Scale

Corel Segment DNA Satimage Pendigit USPS Letter Mnist-Test Mnist RCV1 Covtype

# Instances 2,074 2,310 3,186 4,435 10,992 11,000 15,000 10,000 60,000 193,844 581,012
Dimensionality 144 19 180 36 16 256 16 784 784 47,236 54
Class 18 7 3 6 10 10 26 10 10 103 7

8. We use D�1
2AD�1

2 instead of I �D�1
2AD�1

2 as the normalized
graph Laplacian for the convenience of our proof. This will not change
the eigenvectors, but change the corresponding eigenvalues from the
first several smallest ones to the leading ones. 9. The matrices have different meanings in [50].
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Number of Clusters/Neighbors and Rank. First, the “number
of clusters” will affect the integrity of each cluster. If more
clusters are assumed, then more inter-cluster relationships
are kept in the off-diagonal blocks of the graph matrix. On
the other hand, if there are fewer clusters, most inter-cluster
relationships are embedded in diagonal blocks of the graph
matrix where intra-graph matrix becomes the dominance.
Second, the “number of neighbor” is also a critical factor
identified by spectral clustering and other graph based
dimensionality reduction methods. In general, there is no
fixed pattern to follow [74]. However, in most cases, a small
number of neighbors yields good results (This saves space as
well). In experiments, we vary the number of neighbors and
set it relatively small. Finally, “rank” is an essential measure-
ment of the matrix and a higher rank leads to more linearly
independent columns/rows. If the target rank is close to the
realmatrix rank, it may provide a lower approximation error.

5.4 Results and Analysis

5.4.1 Approximation Error and Model Parameters

First, we will illustrate the approximation error and memory
consumption results on four datasets with varied number of
clusters/neighbors and ranks in Fig. 4, as each of them will
affect our model performance. In addition, as both intra-
and inter-graphs are important components of our method,
they are illustrated as the comparisons.

On the 1st row of Fig. 4, we vary the number of clusters
for small-scale datasets from 10 to 100, and then for mid-
scale datasets from 20 to 200. We set the number of neigh-
bors at 30, and rank at 2 (for each block) for both small- and
mid-scale datasets. The performance of Inter-Graph and
Ours increases gradually with the change of numbers of
cluster. More clusters mean the inter-graph is dominant,
and more neighbors come from the outside of the cluster, as
we discussed in Theorem 2. Since the improvement of Inter-
Graph is greater than the decrease caused by Intra-Graph,
ours still achieves improvements. In addition, the memory
consumption of Inter-Graph and Ours keeps going up as
more off-diagonal entries will be non-zeros with a larger k.

On the 2nd row of Fig. 4, we keep the number of cluster
at 50, and 100 respectively for small- and mid-scale datasets
and rank = 2 while vary the number of neighbors for these
datasets. We can observe that the number of neighbors do
not impact the approximation error so much on intra-graph
based methods, but do on Inter-Graph and Ours, as we ana-
lyzed in Theorem 2. When more neighbors are allowed in the
affinity graph, more values can be used for the approxima-
tion of inter-graph, therefore, leading to a better perfor-
mance. This however will consume more memory to
approximate the off-diagonal blocks of graph.

On the 3rd row of Fig. 4, we vary the rank of intra-graph,
and set cluster = 50 and neighbor = 30 for small-scale data-
sets, and cluster = 100, neighbor = 30 for mid-scale datasets.
For most of the cases, when the target rank for each block is
increasing, the Intra-Graph and Ours perform better. How-
ever, there are two exceptions from “Corel” and “Segment”
datasets, where both Intra-Graph and Ours have decreased
performance when rank is approaching 20. The reason is
the intra-graph approximation error’s upper bound is not a
monotonic function of rank r, as we explained in Section 4.1
under Theorem 1. Increasing r will enlarge the first factor of

this upper bound. When this increase cannot be compen-
sated by the second factor, the approximation error will
inevitably increase rather than decrease. In addition, we can
see a larger target rank increases the memory consumption,
as we discussed in Section 4.4.

Second, in Fig. 5, we fix the number of clusters/neigh-
bors, and compare with the state-of-the-art sparse graph
approximation methods: C-LR, C-SVD,10 by changing the
memory use of approximation methods. We tune the target
rank of each method, and manage to keep the memory use
of all methods falling into similar ranges. Clearly, our
method performs better than others. In addition, we can see
that C-LR works comparably to C-SVD, demonstrating the
practical value of randomized low-rank approximation.

5.4.2 Spectral Clustering Results

Next, we focus on the performance of spectral clustering by
the approximate normalized graph Laplacian. Recall that
we introduce two popular measurements for evaluations:
clustering accuracy and NMI, which reflect different aspects
of the algorithm in Figs. 6 and 7. Here we first summarize
the end-to-end procedure of using our approximate graph
for spectral clustering in Algorithm 2.

Sightly different from the approximation error experi-
ments that only adopt sparse graph as the experiment subject,
in spectral clustering experiments, we use both sparse graph
(Ours), and dense graphs (NYS, C-NYS, LSC,MEKA) for eval-
uations, since both of them are compatible with spectral clus-
tering. Although the graph itself has different forms among
these methods, we use storage space as a factor to measure
the performance of these approximation methods. Note that

Fig. 5. Experimental results of graph approximation error (# better) on
eight datasets. The X-axis represents the size of memory (Byte), and
the Y-axis represents the approximation error. We compare three differ-
ent methods: Clustered-Low-Rank (C-LR), Clustered-SVD (C-SVD),
and our method.

10. Truncated, or top-k SVD by quick solver, e.g., ARPACK [34] is
also appropriate for the sparse graph approximation. However, it has
been proved in [36] that C-LR and C-SVD consistently perform better
than it in terms of memory usage.
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we tune the bandwidth of Gaussian kernel for each method
independently to ensure their best performance.

Algorithm 2. Spectral ClusteringwithApproximateGraph

Input: Dataset X 2 Rd�m, sparse affinity graph A 2 Rm�m, pre-
defined number of partition k, rank r, and number of neigh-
bors t.

Output: Cluster label set fzig; i 2 ½1;m	.
1: Partition theX by vector/graph clustering approaches.
2: Rearrange the sub-graphs Aij in A according to the partitions

ofX, i.e., entries in Aij only reflect the similarities of samples
fromXi andXj.

3: Compute the graph Laplacian for A.
4: Approximate Aa and Ab by Sections 3.2 and 3.3.
5: Compute the eigenvectors of A � Âa þ Âb.
6: Use the row-space of the eigenvectors as the new representa-

tion for k-means clustering, and obtain new cluster label set
fzig; i 2 ½1;m	.

The way we change the memory use for each method is
different: (1) for Ours and MEKA, we gradually increase the
target rank of the approximation algorithms; (2) for NYS,
and C-NYS, we increase their sampling amounts; (3) for
LSC, we gradually increase the number of neighbors used
for computing similarities. In fact, we can hardly keep the
memory usage of all the methods in the same range due to
different strides. Therefore, we only promise to use approxi-
mately the same memory over different methods, and keep
the unions of these ranges as large as possible. For each
method, 10 results with different memory use are com-
puted, and their average performance and standard devia-
tion are shown in the box-plots from Figs. 6 and 7. Note the
numbers in the bracket below each box-plot indicate the
range of actual memory usage. In most cases, Ours performs
comparably with the state-of-the-art methods, in terms of
accuracy and NMI, but using less memory, which is clearly
shown by the mid-scale datasets’ results in Fig. 7.

Fig. 6. Experimental results of clustering accuracy (" better) with different memory use (Mb) on eight datasets. X-axis represents different
approximation methods, and their ranges of memory use, and Y-axis represents the clustering accuracy featured by box-plot.

Fig. 7. Experimental results of NMI (" better) with different memory use (Mb) on eight datasets. X-axis represents different approximation methods,
and their ranges of memory use, and Y-axis represents the NMI featured by box-plot.
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Remarks. From Fig. 4 we can see that the number of clus-
ters k, neighbor t, and rank r will affect the graph
approximation error. In addition, we can learn that
given limited memory, our method can perform fairly
well compared to the existing methods on clustering
task, measured by accuracy and NMI. In experiments
of different scales, we found that 10-100 clusters work
well for small-scale dataset, while 20-200 clusters are
good for large-scale dataset, e.g., 580 K data samples.
The parameter choosing within these ranges are usually
trade-off between memory use and performance. We
also suggest a small r 2 ½1; 20	 for the target rank of
intra-graph. It is also interesting to find from Figs. 5, 6,
and 7 that a moderate approximation error will yield
acceptable clustering performance, meaning we may
save more memory if using the graph for clustering
after compression. Finally, oversampling factor p is
empirically set to maxf1; 0:5rg, providing good results
on all the datasets.

5.4.3 Large-Scale Data

We run experiments on three large-scale datasets: Mnist(60
K), RCV1(200 K), Covtype(580 K) and compare with the
same methods used in previous experiments for evaluation.
Note our method uses the same parameters: clusters = 100,
neighbor = 30, rank = 2. For both NYS and C-NYS, the num-
ber of sampling is set to 100. For MEKA11 the target rank is
set to 100, and the number of clusters is set to 10. Finally,
the number of neighbors in LSC is set to 100. Experimental
results are shown in Tables 4 and 5, Fig. 8.

In Table 4, our method achieves better results on
approximation error while using comparable time (com-
pared to Intra- and Inter-Graph). This time complexity
advantage becomes significant compared to both C-LR
and C-SVD, which is caused by the time-consuming
outer product of vectors in the extrapolation of C-LR and
C-SVD. In addition, since the inter-graph is very sparse,
the extrapolation to the inter-graph does not work well,
and the improvement from Intra-Graph to either C-LR, or
C-SVD is very limited.

In Table 5, our method obtains better results on cluster-
ing accuracy (Acc). An interesting phenomenon is that even
the original graph does not perform well compared to other
graph approximation methods on Mnist and RCV1 datasets.
We believe that the huge size of sparse graph degenerates

the performance of SVD operation in MATLAB implemen-
tation. We should point out our method uses even less
memory than those column sampling methods, e.g., NYS,
C-NYS because we compress the original sparse graph
according to its underlying structure. In addition, we found
that although MEKA has shown superior performance in
dense graph approximation, its performance on spectral
clustering is not good enough. We believe the reason is that
it does not well preserve the graph structure. Finally, the
most competitive method is LSC in terms of Acc in this
experiment; however, it uses more than 100 times of mem-
ory (9.1 !1,393.1 Mb) compared to Ours. These facts dem-
onstrate that the proposed method is memory-efficient
especially with large-scale data.

In addition, we also conduct experiments to evaluate
approximation error by varying the memory use in Fig. 8,
where we compare C-LR, C-SVD, and our method. Simi-
lar to the results from Fig. 5, using more memory,
approximation error is gradually decreased by three
methods. When using approximately same amount of
memory, our method performs better than the other two
with large margins.

5.4.4 Impacts of Graph Partitions

As the first step of the proposed graph approximation
method, graph partition will affect the quality of the
approximate graph. This is mainly due to the random fac-
tors introduced by the clustering methods, e.g., k-means. In
the following experiments, we will evaluate such impact
factors by running our methods with k-means 50 times for
graph approximation on Corel and Letter datasets in Fig. 9

TABLE 4
Large-Scale Experimental Results, Set-1

Methods/DB Mnist RCV1 Covtype

Criteria Apx Time Apx Time Apx Time

Intra-Graph 94.9 2.3 97.1 17.7 98.3 252.3
Cluster-LR 94.7 91.4 96.9 1,948.2 97.9 15,376.4
Cluster-SVD 94.2 117.7 96.7 2,543.5 97.4 18,263.1
Inter-Graph 73.8 3.2 78.8 33.7 82.3 393.5
Ours 66.7 5.6 75.0 51.5 79.5 645.8

For “Approximation Error (Apx, %)” and “Time (s)”, lower means better.

TABLE 5
Large-Scale Experimental Results, Set-2

Methods/DB Mnist RCV1 Covtype

Criteria Acc Space Acc Space Acc Space

Original Graph 57.1 24.9 12.6 81.5 41.3 180.7
Nystr€om 49.3 5.03 12.9 58.5 23.5 103.4
C-Nystr€om 58.6 5.0 15.7 58.3 24.8 102.8
LSC 50.5 449.2 16.6 1,393.1 25.6 4,336.5
MEKA 41.4 4.7 14.5 30.4 22.8 78.2
Ours 66.8 3.2 18.3 9.1 27.4 39.7

For “Accuracy (Acc, %)” higher means better, while for “Space (MB)” lower
means better.

Fig. 8. Experimental results of approximation error (# better) with differ-
ent memory consumption (Byte) on large-scale datasets. X-axis repre-
sents different memory use, and Y-axis represents approximation error.

11. MEKA is very sensitive to the number of clusters, and a large one
usually leads to exceptions in eigen-decomposition.
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(left). In addition, we also evaluate the difference between
the vector clustering, e.g., k-means and graph clustering,
e.g., Constrained Laplacian Rank method [63] in Fig. 9
(right). From these results, we can see that vector clustering
performs slightly better in terms of average performance on
both Corel and Letter datasets while graph clustering per-
forms stable on Letter dataset. This gives us some hints on
the performance and stableness of different clustering meth-
ods for our graph approximation algorithm.

6 CONCLUSIONS

In this paper, we proposed a nearest neighbor sparse
graph approximation algorithm by exploiting the under-
lying graph structure. Through graph partition in the first
step, we decomposed the whole graph into intra- and
inter-graphs. Then we approximated both intra- and
inter-graphs according to their underlying structures,
which significantly reduces the computational burden. To
theoretically demonstrate the correctness of the proposed
method, both intra- and inter-graphs’ error bounds and
their time/space costs were provided. Finally, we con-
ducted extensive experiments on eleven datasets in differ-
ent scales, and demonstrated that when using comparable
resources (time/space), our method could achieve better
performance.
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