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Abstract
Visual tracking has achieved remarkable success in
recent decades, but it remains a challenging prob-
lem due to appearance variations over time and
complex cluttered background. In this paper, we
adopt a tracking-by-verification scheme to over-
come these challenges by determining the patch in
the subsequent frame that is most similar to the
target template and distinctive to the background
context. A multi-stream deep similarity learning
network is proposed to learn the similarity com-
parison model. The loss function of our network
encourages the distance between a positive patch
in the search region and the target template to be
smaller than that between positive patch and the
background patches. Within the learned feature
space, even if the distance between positive patches
becomes large caused by the appearance change or
interference of background clutter, our method can
use the relative distance to distinguish the target ro-
bustly. Besides, the learned model is directly used
for tracking with no need of model updating, pa-
rameter fine-tuning and can run at 45 fps on a sin-
gle GPU. Our tracker achieves state-of-the-art per-
formance on the visual tracking benchmark com-
pared with other recent real-time-speed trackers,
and shows better capability in handling background
clutter, occlusion and appearance change.

1 Introduction
Online single-object tracking plays a crucial role in many ar-
tificial intelligence applications, such as autonomous driving
systems, robotics, human-computer interaction, etc. Given an
arbitrary target object marked with a bounding box at the be-
ginning of a video, the goal of single-object visual tracking is
to localize this target in subsequent video frames. Due to the
requirements of these practical AI systems, an ideal tracker
should be fast, accurate and robust to the appearance change
of the target caused by illumination variations, occlusion, de-
formation. However, despite great progress in recent decades,
visual tracking remains a challenging problem.

To deal with the appearance change of the target, the most
popular trackers learn robust representations of the target ob-

127

127

255

255

127

127

Frame1

Frame 𝑖

Frame 𝑖 − 1

Template stream

Searching stream

Background streams

TSB-
Loss
Layer

Target Template

Search Region

Background Samples

59

3

59

3 3
3

3
3

3
3

96
256

25 10
384

8 6

11

11

127

127
384 256

59

3

59

3 3
3

3
3

3
3

96
256

25 10
384

8 6

11

11

127

127
384 256

123

3

123
3 3

3

3
3 3

3

96
256

57
26

384 384 256
24 22

255

255

11

11

Figure 1: Our multi-stream similarity learning network includes sev-
eral streams sharing parameters with each other. The definition and
input of each stream are annotated in the figure. Details of our
Template-searching-background (TSB) loss are shown in Figure 2.
It encourages the distance between a positive patch in the search re-
gion and the target template to be smaller than the distance between
the positive patch and background patches.

ject during an online tracking procedure and use them to
match the target across frames. This strategy plays a crucial
role in visual tracking algorithms such as IVT [Ross et al.,
2008], TLD [Kalal et al., 2012]. However, these trackers are
trained entirely online. Only simple models can be learned
in this way without taking advantage of a large number of
videos that are available offline. These offline videos include
abundant various scenarios that can help teach the tracker to
handle complex challenges in the real world.

Recently, Convolutional Neural Networks (CNN) have
been adopted to learn complex models and robust represen-
tations from large-scale datasets [Russakovsky et al., 2015].
It achieves superior progress on various artificial intelligence
tasks, e.g. object classification [Krizhevsky et al., 2012] and
natural language processing. Motivated by the great success
of CNNs, several recent works [Nam and Han, 2016] and
[Fan and Ling, 2016] treat the tracking problem as a binary
classification problem to separate the object from the back-
ground. They use pretrained CNN models from classifica-
tion tasks to exploit the representation power of CNN. Dur-
ing tracking procedure, stochastic gradient descent is applied
to fine-tune the network to classify the object and the back-
ground for a specific video. However, these methods are too
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slow to operate in real-time.
In this work, to learn a robust model entirely offline using

CNN for real-time tracking, we treat the single object track-
ing as a verification problem rather than a classification prob-
lem. We learn a general similarity comparison model to ver-
ify which image patch in the subsequent frame includes the
target object that is marked by the bounding box in the initial
frame of the video. Besides, features generated by a general
object classifier such as CNN pretrained on ImageNet dataset
are insufficient to capture large appearance variations. The
underlying reason is the classifier can only tell the difference
between different classes and not be able to distinguish differ-
ent objects of the same type. In order to track a particular tar-
get object, similarity learning for comparison at the instance
level is performed in our method.

To this end, we propose a multi-stream deep neural net-
work to learn this general similarity comparison model used
for tracking by verification. During offline training proce-
dure, instead of learning a detector or classifier for each ob-
ject in training videos, our model focuses on the appearance
variations of the target objects. We optimize our comparison
model by introducing a loss function to encourage the dis-
tance between a positive patch in the search region and the
target template to be smaller than the distance between pos-
itive patch and the background patches. In this way, even
when the object suffers from huge appearance change or in-
terference of cluttered background, we can still use this rela-
tive distance to verify the object from the background context
robustly. Once the comparison model has been learned, it can
be directly used for tracking. Given the object being tracked
in the first frame as a target template, we can go through all
possible locations in the search region, and use our similar-
ity comparison model to find a candidate in the subsequent
frames that is most similar to the template and discriminative
to the background patches. In this way, model updating, pa-
rameter fine tuning, forget mechanisms are not required for
our tracker.

In summary, we make the following contributions:

• We adopt a tracking-by-verification scheme to verify
which image patch in the subsequent frame is most sim-
ilar to the template and distinctive to the background.
Instead of transferring feature space from a general ob-
ject classifier, we aim to efficiently learn a feature space
from a large-scale offline dataset for similarity compari-
son at the instance level other than the class level.

• We propose a multi-stream deep similarity learning net-
work for verification. By minimizing a relative distance
considering both the template and background patches,
the loss function of our network could learn a feature
space to make the tracker more robust to appearance
change and background clutter.

• Extensive experiments demonstrate that our tracker
(MDSLT) achieves state-of-the-art performance in the
visual tracking benchmark compared with recent real-
time-speed trackers. Especially it can better handle clut-
tered background and huge appearance change.

2 Related Work

Recently, generative trackers have been proposed to match
the target in each frame. These trackers aim to develop im-
age representations which can describe the target object ro-
bust to appearance changes. Generative trackers assume that
the object being tracked can be described by some generative
process and hence tracking corresponds to finding the most
probable candidate among all possible positions. In [Ross et
al., 2008], Eigen Images of the target are computed by incre-
mental PCA over the target intensity-value template. TL1T
[Mei and Ling, 2009] assumes that the tracked object can be
represented by a sparse combination of over-complete basis
vectors. However, these generative trackers could only work
well under less complex environments.

To handle challenges of visual tracking and achieve robust
performance, composite trackers have been proposed [Li and
Zhang, 2014]. TLD [Kalal et al., 2012] aims at using labeled
and unlabeled examples for discriminative classifier learning.
It applies tracking by combining the results of a detector and
an optical flow tracker. For MEEM [Zhang et al., 2014], a dis-
criminative tracker is learned and updated during the tracking
process. A set of historical snapshots constitute an expert en-
semble to help solve the model drift problem. More recently,
MUSTer [Hong et al., 2015] takes advantage of both short
and long-term memory to process target appearance mem-
ories. They are based on integrated correlation filters and
RANSAC matching respectively. However, these trackers are
traditionally trained entirely online. Only simple models can
be learned by this way without taking advantage of a large
number of videos that are available offline.

Motivated by the great success of deep neural network
models in related artificial intelligence area, some researchers
have tried to adopt deep learning methods for object tracking.
On the one hand, several Recurrent Neural Networks based
trackers [Gan et al., 2015] have been proposed to take advan-
tage of RNN’S ability of processing data sequences. These
methods have not achieve competitive performance on recent
popular benchmarks. On the other hand, by taking advantage
of large-scale offline training dataset for other similar com-
puter vision problems such as object classification and detec-
tion, MDNet [Nam and Han, 2016] trains a CNN as a object
detector in an offline phase, then use stochastic gradient de-
scent to learn a detector with patch examples extracted from
the video at test time. However, due to the heavy computa-
tional burden of online training, these methods are too slow
to operate in real-time. Recent deep neural networks based
trackers with high performance could only run at around 1
fps on a GPU. Since our deep learning based tracker is trained
offline and does not need model updating and online training,
it can perform 45 fps on a single GPU.

Similarity comparison model for image patches [Chechik
et al., 2009] draws a lot of intention nowadays. Deep neu-
ral network based model such as Siamese network [Brom-
ley et al., 1993] is first proposed for signature verification.
Recently, these two-stream Siamese architecture have been
widely studied and adopted to solve face verification prob-
lems [Taigman et al., 2014] and image patch similarity learn-
ing [Zagoruyko and Komodakis, 2015]. Motivated by these
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achievements, some works propose similar two-stream neu-
ral network based trackers to learn the relationship between
input pairs. [Held et al., 2016] learns a regression function
to locate the objects in current frame by comparing with the
previous frame. The strong tie between adjacent frames de-
mands that the tracked object must represent at each frame.
Besides, once the tracker fails to locate the object, it will keep
failing until the object come back to the same location. [Tao
et al., 2016] and [Bertinetto et al., 2016] alternatively take the
object marked in the first frame as a template and search the
most similar image patch in the current frame to locate the
tracked object. However, only comparing with the template
in the first frame leads to not robust enough to huge appear-
ance change or background clutter. Instead, our method can
learn a similarity comparison model by minimizing a relative
distance considering template and background patches. The
learned feature space can make our tracker more robust.

3 Methods
Arbitrary single-object visual tracking problem is formulated
as a verification problem in this work. Given the target object
to be tracked in the first frame, we can go through all pos-
sible locations in the search region of the subsequent frame
to find a candidate that is most similar to the template and
discriminative to the background.

3.1 Multi-Stream Similarity Learning Networks
Our goal is to learn a feature space that the object patch of
the current frame is closer to the target template when com-
paring with patches of the background context surrounding
the object. We propose a multi-stream similarity learning net-
work to learn such a feature space. As shown in Figure 1, our
multi-stream tracking network includes several streams shar-
ing parameters with each other. To avoid confusion, input of
Template stream is the target template patch marked in the
first frame. Searching stream takes the search region patch
of the subsequent frame i as input. We define the remaining
streams as background streams. Their inputs are background
samples around the object in the frame i − 1. We only show
one background stream here.

In order to track in a fast speed, we design the base net-
works of our multi-stream tracking framework to be small.
They are similar to AlexNet [Krizhevsky et al., 2012] at con-
volution stage. However, we use less max pooling layers.
Because max pooling operation only keeps the strongest acti-
vations from neighboring groups of neurons in the same ker-
nel map to use as input for the subsequent layers. In this
way, it reduces redundant information and works pretty well
in object classification problem, where objects in the same
category have big differences in appearance. But in our case,
during the tracking procedure, we only track one particular
object and sometimes have to distinguish different objects of
the same type. Therefore, similarity comparison at the in-
stance level is needed. Since the layers in a deep network
capture progressively more abstract representations [Zeiler
and Fergus, 2014], it is important to keep sufficient informa-
tion of high level visual features for tracking by verification.
Hence, we add max pooling layers only after the first two
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Figure 2: Embedding vectors f of deep neural networks are trained
to satisfy the constraints of our template-searching-background loss.
By minimizing a relative distance, the loss pulls positive example in
the search region closer to the template, meanwhile, pushes M − 1
background samples away from the positive sample. In this way,
even when the object suffers from huge appearance change or inter-
ference of cluttered background, we can still use the relative distance
to verify the object from the background context robustly.

convolutional layers, which get activated the lower level vi-
sual patterns. Besides, ReLu and batch normalization [Ioffe
and Szegedy, 2015] layers are added behindhand except for
the final convolutional layer.

3.2 Template-Searching-Background Loss
We define the CNN as an embedding function: given an im-
age patch X , the output of the last layer could be defined as
embedding vector f(X). Then we describe the distance of
two image patches X1 and X2 using cosine distance in the
feature space as:

D(X1, X2) = 1− f(X1) · f(X2)

‖f(X1)‖ ‖f(X2)‖
. (1)

We aim to train our multi-stream tracking framework to ob-
tain a feature representation f(·), so that in the feature space,
the distance between target template T in the first frame and
positive candidate X+

i in the searching region of frame i is
small. Meanwhile, the distance between positive candidate
X+

i and background sample Bi,k near the object in frame
i− 1 is encouraged to be larger. Besides, for negative candi-
date X−i in the searching region of frame i, we encourage an
opposite trend. Therefore, for each training tracking video,
we aim to enforce the following relationship:{

D(T,X+
i ) < D(X+

i , Bi−1,j),
D(T,X−i ) > D(X−i , Bi−1,j),

∀(X+
i , X

−
i ) ∈ Si, ∀Bi−1,j ∈ βi−1,

(2)

where Si is the search region of frame i, and βi−1 is the set
of background samples around the object in frame i− 1.

Using the logistic loss, we design the loss function as fol-
lows:

L(T,Xi, {Bi−1,j}Mj=1) = log(1 + elidi)

with di =

M∑
j=1

D(T,Xi)−D(Xi, Bi−1,j),
(3)

where Xi is one of the candidate patches in the searching
region of frame i, li ∈ {+1,−1} is the ground-truth label

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2168



of Xi, which represents the positive and negative candidate.
di is the distance relationship function. M is the number of
background samplesBi−1,j near the object in the frame i−1.

In our tracking network, we need to evaluate a lot of can-
didate patches in the search region of the current frame. A
straightforward way is to pass each candidate patch through
the network independently. However, this would cause se-
vere computation cost, especially when there are significant
overlaps between the candidate patches. Since our network
is fully-convolutional, we can set the whole search region Si

as the input of the network and adopt a sliding window on
the feature map f(Si). Then, for each sub-window, we ob-
tain the feature map f(Xi,k) of the corresponding candidate
patch Xi,k in the search region Si. In this way, we only need
to pass through the network once. After we get the feature
map of each candidate patch, we define our final loss func-
tion as follows:

L(T, {Xi,k}Nk=1, {Bi−1,j}Mj=1) =
N∑

k=1

L(T,Xi,k, {Bi−1,j}Mj=1),

(4)
where N is the number of candidate patches Xi,k in the
search region of frame i.

3.3 Tracking Method
After training our multi-stream similarity learning network
using the template-searching-background loss, we can di-
rectly adopt it for tracking. For each testing video, the ob-
ject patch in the given bounding box is set as the target tem-
plate. During tracking procedure, for any frame i, we set a
search region centered on the location of the object which is
detected in the i − 1 frame. To handle scale change of the
object, we use different scales searching windows over three
scales 1.038−1,0,1 of its previous size to get crops. Besides,
we compute background context patches by sampling around
the predicted object location we obtain in the previous frame
i − 1. These patches are passed through the corresponding
streams of our network. The candidate is picked if it matches
best to the target template and it is discriminative to the back-
ground samples in the search region.

pi = argmin
Xi,k∈Si

d(T,Xi,k, {Bi−1,k}Mk=1), (5)

where Xi,k represents one of the candidate patches in the
search region Si of frame i. d(·) is the distance relationship
function same as defined in Equation 3.

4 Experiments
4.1 Experimental Setup
Test dataset and evaluation metrics. To evaluate the track-
ing performance, we test and analyze our MDSLT method
on a large benchmark dataset (OTB-100) [Wu et al., 2015].
OTB-100 includes 100 videos with bounding box annotations
on each frame. This dataset is large enough to cover various
challenging aspects of object tracking, such as low resolution,
rotation, background clutter and occlusion. Besides, these as-
pects are labeled for each video sequences, which help us to
analyze the performance details. For evaluation metrics, we
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Figure 3: Overlap success plots and distance precision plots over
100 benchmark sequences of OTB-100 using one-pass evaluation
(OPE) for the top 10 trackers. The legend contains the area-under-
the-curve (AUC) score. Our MDLST method achieves the best per-
formance compared with recent real-time-speed trackers.

follow the evaluation protocol of [Wu et al., 2013], where two
metrics are used: success plot and precision plot. Both met-
rics measure the percentage of successfully tracked frames.
For the success plot, a frame is declared to be successfully
tracked if the estimated bounding box and the ground truth
box have an intersection-over-union overlap larger than a cer-
tain threshold. For precision plot, tracking on a frame is con-
sidered successful if the distance between the centers of the
predicted box and the ground truth box is under a threshold.
A plot is given by varying the threshold values. Tracking
algorithms are ranked based on the area under curve (AUC)
score for the success plot and precision at threshold 20 pixels
for the precision plot. We use the available toolkit provided
by the benchmark to generate plots and numbers.

Implementation details. For network training, large scale
dataset with ground truth bounding box on the target is
needed. Commonly used dataset in tracking community such
as ALOV [Smeulders and Shah, 2014], VOT [Kristan et al.,
2016] are small and have overlap with our test tracking bench-
mark OTB-100 [Wu et al., 2015], therefore not ideal enough
for training. ImageNet Video dataset from [Russakovsky et
al., 2015] has been introduced to the tracking community re-
cently. It includes around 4400 videos with more than one
million frames annotated by bounding boxes on the target ob-
ject. Besides, the objects and scenes in this dataset are differ-
ent from those in the commonly used tracking benchmarks,
which can avoid over-fitting. Therefore, we use 90% videos
in this dataset for training and the rest 10% for validation.
In this way, our training dataset has no overlap with the test
dataset. We train our network for 240K iterations with learn-
ing rates 0.01 at the beginning and reduce the learning rate by
a factor of 10 at every 80K iterations. We use mini-batches
of size 8. During the training process, for each video, we set
the object patch from a random frame as the target template.
Then we get the search region and background samples from
another two random adjacent frames i−1 and i. For the labels
of samples in the search region of frame i, a candidate is con-
sidered as a positive sample if it has overlap larger than 0.7
with the corresponding ground truth bounding box, otherwise
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Figure 4: Overlap success plots and distance precision plots over four tracking challenges of occlusion, rotation, illumination variation and
background clutter for the top 10 trackers. The legend contains the area-under-the-curve (AUC) score for each tracker. Our MDLST method
achieves the best performance when evaluating with four challenging factors.

as negative sample. For background context patches, we use
four angular divisions and get four samples around the object
in the frame i−1 with 0.3 to 0.5 overlap with the ground truth
bounding box.

4.2 Results and Analysis
Overall quantitative evaluation. We evaluate our tracker on
the benchmark compared with some state-of-the-art tracking
methods. In addition to the 31 trackers included in the bench-
mark [Wu et al., 2015], e.g., TLD [Kalal et al., 2012] and
Struck [Hare et al., 2016], we also include some most recent
popular trackers presented in the major computer vision and
AI conferences, that can run at real-time speed (fps>20) for
fair comparison such as SiameseFC [Bertinetto et al., 2016],
DSST [Danelljan et al., 2016], DLSSVM [Ning and Yang,
2016], KCF [Henriques et al., 2015], CCT [Zhu et al., 2015]
and LCT [Ma et al., 2015]. We report the overall perfor-
mance results in one-pass evaluation using the distance pre-
cision and overlap success rate in Figure 3. For clarity, only
the top performing trackers are shown. We can find that our
proposed method achieves the best performance in both dis-
tance precision (DP) plot and overlap success (OS) plot. For
fair comparison, we do not plot the results of MDNet [Nam
and Han, 2016], SANet [Fan and Ling, 2016] and HDT [Qi et
al., 2016] here, which can only run at around 1 fps. Though
they could achieve better accuracy with AUC score of 67.8%,
69.2% and 65.4% for OS plot reported by the authors, we
are focusing on the real-time tracker for practical use which
inevitably scarifies the accuracy to redeem the efficiency.

Attribute-based evaluation. Videos in the benchmark
dataset [Wu et al., 2015] are annotated with 11 attributes to
describe the different challenges in the visual tracking prob-
lem. We report results for four main challenging attributes
in distance precision (DP) plot and overlap success (OS) plot
in Figure 4. Among existing methods, LCT outperforms well
with area-under-the-curve (AUC) score 56.6% of overlap suc-
cess (OS) in illumination variation, 73.0% of distance preci-
sion (DP) 52.5% of OS in background clutter while our MD-
SLT method achieve 58.1%, 73.4% and 54.2% respectively
with more faster speed (45 fps) than LCT (27 fps). DLSSVM
performs well with DP of 71.3% in occlusion and 77.6% in
rotation while SiameseFC achieves OS of 52.6% and 56.0%
in these two challenges. Our MDSLT achieves better perfor-
mance with DP of 73.0%, 79.9% and OS of 54.3%, 58.5% re-
spectively. Besides, compared with SiameseFC, our method’s
better performance proves the efficiency of using the relative
distance defined in Equation 3. Even when the object suffers
from huge appearance change due to occlusion, rotation, il-
lumination, we can use the relative distance calculated in our
learned feature space to verify the object from the background
robustly. Especially, considering the background also makes
our tracker more robust to the cluttered background with 5%
higher than SiameseFC for both OS and DP scores. Quantita-
tive results for all challenge cases are shown in Table 1. Our
proposed MDSLT method outperforms all other methods in
10 out of 11 challenges. It also has competitive performance
with only 0.1% lower than DLSSVM in the rest challenge.

Qualitative evaluation. We compare our algorithm with
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Table 1: Area-under-the-curve (AUC) Score of Success Plot for Each Challenge Case

Attribute
Method TLD DSST KCF Struck CCT SiamFC DLSVM LCT MDSLT

Fast Motion 0.430 0.465 0.460 0.467 0.557 0.571 0.542 0.534 0.573
Motion Blur 0.430 0.473 0.459 0.463 0.530 0.558 0.571 0.533 0.570

In-plane Rotation 0.437 0.510 0.465 0.451 0.510 0.560 0.533 0.557 0.585
Out-of-plane Rotation 0.385 0.481 0.450 0.424 0.516 0.540 0.531 0.538 0.561

Low Resolution 0.346 0.391 0.305 0.312 0.432 0.655 0.377 0.399 0.665
Out of View 0.353 0.385 0.493 0.374 0.440 0.483 0.468 0.452 0.503
Deformation 0.352 0.434 0.436 0.383 0.508 0.502 0.504 0.499 0.514

Scale Variation 0.387 0.479 0.394 0.402 0.486 0.555 0.465 0.488 0.569

Ours SiamFC LCT KCF Struck TLDG.T.

Ironman

MotorRolling

Basketball

# 0460 # 0472 # 0490

Figure 5: Qualitative result examples of six trackers on three chal-
lenging sequences (best view in color). The bounding box with a
blue dotted line (marked with G.T.) shows the ground truth for each
frame. Our method can track the object more robustly.

other five state-of-the-art trackers, SiameseFC [Bertinetto et
al., 2016], LCT [Ma et al., 2015], KCF [Henriques et al.,
2015], Struck [Hare et al., 2016], and TLD [Kalal et al.,
2012] on several sequences. We show three challenge exam-
ples in Figure 5. For Ironman sequence, it is hard to track
the head of the Iron-man due to the fast motion with sig-
nificant background clutter such as explosions, robots. All
other trackers fail except ours. MotorRolling is ideally used
to test the tracker’s robustness to fast motion, rotation, scale
change, motion blur and background clutter. Our method can
track the motorcycle more successfully comparing with oth-
ers. The KCF and LCT tracker is based on a correlation filter
learned from HOG features which are less effective to dis-
criminate targets from the cluttered background. The Struck
tracker does not perform well since it is less effective in han-
dling appearance change caused by multiple factors with one
single classifier. In contrast, our method could learn a more
effective feature expression by using CNN trained on large
scale offline dataset. Though SimameseFc also uses the deep
learning framework, it only considers the similarity between
the target in the current frame with the template marked in the
first frame. Therefore, SiameseFC fails when this appearance
similarity goes down. Since during the training procedure, we
optimize our comparison model by introducing a loss func-

tion to encourages the distance between a positive patch in
the search region and the target template to be smaller than
that between positive patch and the background patches. In
this way, at test stage, even when the object suffers from huge
appearance change due to occlusion, rotation or interference
of cluttered background, we can use the relative distance cal-
culated in our learned feature space to verify the object from
the background context. Taking background context into con-
sideration also helps our model to distinguish the object from
similar objects nearby successfully as shown in Basketball se-
quence. However, by only considering the similarity between
target in the current frame with the template, SiameseFC fails
and turns to track another similar player with a green shirt.

5 Conclusion
In this paper, we treat the single object tracking as a verifi-
cation problem rather than a classification or detection prob-
lem. Instead of transferring feature space from a general ob-
ject classifier such as CNN models pretrained on ImageNet,
we efficiently learn a feature space from a large-scale offline
dataset for similarity comparison at instance level. A multi-
stream deep neural network is proposed to learn this general
similarity comparison model with a loss function minimiz-
ing a relative distance. In this way, considering both tem-
plate and background information could help to verify and
track the object more robustly. The learned model can be
directly used for tracking with no need of model updating,
parameter fine tuning. From experiments results, our tracker
achieves state-of-the-art performance on the visual tracking
benchmark compared with other recent real-time-speed track-
ers. It also shows better capability in handling background
clutter, occlusion and appearance change.
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