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Abstract— Video analysis and understanding play a central
role in visual intelligence. In this paper, we aim to analyze
unconstrained videos, by designing features and approaches
to represent and analyze videography styles in the videos.
Videography denotes the process of making videos. The uncon-
strained videos are defined as the long duration consumer
videos that usually have diverse editing artifacts and significant
complexity of contents. We propose to construct a videography
dictionary, which can be utilized to represent every video clip
as a sequence of videography words. In addition to seman-
tic features, such as foreground object motion and camera
motion, we also incorporate two novel interpretable features to
characterize videography, including the scale information and
the motion correlations. We then demonstrate that, by using
statistical analysis methods, the unique videography signatures
extracted from different events can be automatically identified.
For real-world applications, we explore the use of videography
analysis for three types of applications, including content-based
video retrieval, video summarization (both visual and textual),
and videography-based feature pooling. In the experiments, we
evaluate the performance of our approach and other methods
on a large-scale unconstrained video dataset, and show that the
proposed approach significantly benefits video analysis in various
ways.

Index Terms— Videography analysis, video retrieval, video
summarization, feature pooling.

I. INTRODUCTION

AUTOMATIC understanding of visual content in uncon-
strained Internet video, such as those found on con-

sumer video sharing sites (e.g., YouTube and Metacafe), offers
an interesting but very challenging task. These videos are
particularly challenging because they contain very diverse
content; they are captured under a variety of camera motion
conditions (panning, zooming, translating); they are of highly
variable length (from minutes to hours); and they are often
heavily edited (e.g., shot stitching and adding captions).
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Nowadays, a huge amount of unconstrained videos are cap-
tured by nonprofessional users, which makes the task of
video understanding more challenging. As such, unconstrained
videos are qualitatively very different and even more challeng-
ing than widely-used video datasets, such as the Hollywood
dataset [18] or the YouTube Sports dataset [27], in which
video clips contain fairly coherent single action occurring
within a short duration. For example, some wedding videos
from video sharing websites are more than an hour long and
they are produced by stitching shots recorded separately across
the entire wedding event. Each shot contains fairly different
content, such as a panning camera capturing a party room
filled with dancing guests, a series of stitched shots of each
guest individually congratulating the wedding, or a shot that
zooms in on the bride and groom. On the other hand, other
wedding videos may be only minutes long, and only contain
shots of the key events of the ceremony.
In this work, we present an approach for unsupervised

videography analysis for this type of unconstrained video.
Intuitively, each videography can be understood as a camera
director’s direction on a movie script, e.g., “capture the running
actress by panning the camera, to have her face appear at
20 percent size of the video”. The idea is that different classes
of video content will have different videography styles—the
videography style of a wedding video should be different from
a sports video—and so, the videography style should provide
a valuable signal for automated content analysis. In this
paper, we demonstrate the value of videography analysis for
several important high-level tasks of intelligent video analysis.
Specifically, we focus on three applications: 1) content-based
video retrieval, 2) video summarization, and 3) videography-
based feature pooling.
In our approach, we assume that there are diverse videog-

raphy styles in unconstrained videos, which are discovered
as a videography dictionary via unsupervised clustering on
proposed features. Then, a video clip can be represented
as a series of segments with varying videography words.
For the underlying videography features, we extend conven-
tional features such as camera motion and foreground (FG)
object motion [10], [11], [17], [54] by incorporating two
novel features: motion correlation and scale information
(see Sec. III). To the best of our knowledge, our work is
the first to address the explicit learning of a videography
dictionary based on such a rich set of features beyond simple
camera motions.
The overview of our proposed approaches is illustrated in

Fig. 1. We first (step 1) decompose the long video clips
into sequence of shots through shot boundary detection, then
each shot is further divided into segments by motion-derived
“camera operation boundaries”. Meanwhile, the foreground
and background motions can be separated. After chopping
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Fig. 1. Framework for videography analysis and applications for unconstrained videos. Step 1: Clip decomposition. Step 2: Videography feature extraction.
Step 3: Videography dictionary construction from extracted features. Step 4: Test videos are quantized into videography word sequences and learning techniques
are used to identify signature styles. Step 5: Applications. The learned models are used to provide (1) content-based video retrieval, (2) video summarization,
and (3) feature pooling.

video into small pieces of relatively coherent content, we
compute a series of features within each segment (as illustrated
in Step 2 and described in Sec. III). Then we (step 3)
cluster these features to develop a videography dictionary, and
(step 4) quantize the segments into videography style words
and learn the relationship between the style words and events.
This is used for (application 1) content-based video retrieval,
(application 2) content-adaptive video summarization, and
(application 3) videography-based feature pooling.
For retrieval, we compare our approach with alternative

methods on the NIST 2011 TRECVid Multimedia Event
Detection video dataset (TRECVid MED 2011) [44] across
15 different diverse query collections, and show that the
videography style does indeed add complementary information
(Sec. V).
In addition, our adaptive summarization approach is dif-

ferent from the existing body of work relying on fixed rules
(e.g., [54]) in that our system optimizes summarization process
to highlight the unique content of the given test videos
(Sec. VI). As a mid-level semantic feature, videography can
also be combined with other type of semantic features, such
as Object Bank [23], to generate more detailed synopsis type
of summary for the video (Sec. VI).
We also present a videography based feature pooling

(VF-Pooling) method that utilizes the semantic information
on segment-level, and further improves the performance of
video recognition. As a novel semantic feature, videography
has its unique perspective for video content analysis. Thus,
it can be integrated with other features to generate more

powerful representation. Specifically, by assigning a videogra-
phy style label to each segment, our approach pre-categorizes
segments into groups where each group corresponds to a
videography style. In this way, we can build multiple descrip-
tors for each clip, where each descriptor comes from a
specific videography style group by averaging segment-level
features that belong to that group. In a sense, these descriptors
are local to the represented videography word. Our idea of
VF-Pooling adopts the similar strategy as [15], inspired by
recently introduced local pooling theory [4]. The general idea
of local pooling is that pooling similar features separately
in high-dimensional feature space would improve the overall
representational power.

A. Contributions of this Work

This paper is a substantial extension of our previous
work [22]. Compared to [22], we make the following
extensions: (1) we add more technical details and discussions
for videography features; (2) we add the textual-based video
summarizations; (3) we add the feature pooling based on
videography.
In this subsection, aspects of our proposed videography

analysis framework are highlighted:
1) To the best of our knowledge, our work is the first to
address the explicit learning of videography styles of
unconstraint video. The idea is that different classes of
video content will have different movie scripts which
reflect the camera man or director’s intention or direc-
tion. We believe that this type of information contains
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TABLE I

ABBREVIATIONS

interpretable semantics which can greatly help us under-
stand the video content.

2) We demonstrate the value of videography analysis for
several important high-level tasks of video analysis,
including 1) content-based video retrieval, 2) video
summarization (visual-based and textual-based), and
3) videography-based feature pooling.

To improve the readability of the paper, we have listed the
abbreviations that used throughout this paper in Table I.

II. RELATED WORK

The idea of representing videos as a series of segments
based on motion and/or appearance characteristics has been
explored to some extent, either as part of integrated sys-
tems [40], [49], [54] or on its own. Representations learning
plays a central role in visual analytics [25], and effective video
representations will greatly facilitate many video analysis
tasks, such as human motion segmentation [24], and human
activity recognition and prediction [20], [21], [26].
Some early works on video analysis, such as [40], utilizes

videography heuristics with respect to keyframe selection. Our
work shares a similar idea with them in terms of exploiting
videography information. However, our approach explicitly
learns videography styles, and can be applied to many high-
level visual understanding tasks such as textual-based video
summarization. Most systems, including this work, incorpo-
rate two main low-level processing steps: (a) shot bound-
ary detection [35], [52], which is to find the boundaries
between stitched shots, and (b) camera motion estimation
within shots [36], [53], [54] to further decompose shots into
finer sub-shot units based on evolving camera motion types.
In terms of videography modeling, the methods closest

to our work are [49], [54]. In [54], a system capable of
both summarization and retrieval was presented. The system
is mostly based on hand-tuned distance metrics and rules
to classify shots and videos into semantic categories, based
on multiple features with heavy emphasis on appearance
(e.g., color and texture), and a few others such as simple
camera motion primitives (i.e., Static/Pan/Tilt/Zoom; S/P/T/Z).
In our retrieval experiments (Sec. V), we compare our new
features with these simpler 4 types of camera motion primi-
tives. It is worth noting that our work presents results primarily
based on motion information without relying on appearance
matching, and therefore provides a clearer understanding on
the promise of motion-based videography modeling alone for
high-level tasks. Additionally, since our approach is learning-
based, the heavy burden of tuning system parameters is
alleviated. In [49], the authors presented seven self-defined

videography styles common in commercial movies, which are
classified per shot based on features such as motion, appear-
ance, and FG/BG separation; the videography quantization
is based on supervised learning, and its use for summariza-
tion or retrieval is not studied. In contrast, our approach is
unsupervised and does not require manually labeled training
data for sub-shot classification, and hence can scale up for
unconstrained videos with more complex videography styles
beyond commercial movies.
Video summarization that has been well studied in mul-

timedia community [6], [7], [13], [50] is formulated as a
key frame extraction problem where change detection is com-
monly used based on appearance features such as color [49].
Different approaches which incorporate overall camera motion
include [54]. However, both works adopted fixed rules for all
videos. Above mentioned methods are visual summarizations
which generate a “teaser” for the video. Recently, researchers
start looking at the possibility to translate video content
directly into human language [47]. The well-known challenge
here is the longstanding semantic gap between low-level visual
features and high-level semantic information.
The idea of soft feature pooling has been discussed in [4],

however, it mainly considers low-level features for image
classification. Our approach extends it from image analy-
sis to video analysis at segment-level. Some recent works
also explore video understanding at the segment-level, such
as [31] and [5]. In [31], the distinctive temporal segments
such as sub-actions are identified, in order to represent the
complicated activities. This strategy works well for video
data with fairly regularized structures, but may have limited
performance on unconstrained consumer videos. In [5], the
visual features extracted from video frames are clustered
into different groups. During this process, a secondary fea-
ture (e.g., GIST [32]) is also involved to guide the cluster-
ing. However, [5] mainly utilizes the image-based features.
Different from existing works, our approach is able to exploit
diverse multimedia features (audio and visual), and can take
advantages of temporal segments created based on some sort
of semantic analysis.
Deep learning has attracted an increasing attention due to

its impressive performance in various tasks [3]. In order to
achieve better performance, the technical components in the
proposed system, such as face detection and feature learning,
could be replaced by the advanced deep learning methods [42].
But, in this paper, we mainly focus on the design of the system
from a new perspective, and demonstrate the effectiveness of
the videography feature.

III. VIDEOGRAPHY FEATURES

For every input video, our approach applies two main
processing steps to extract videography features, as illustrated
in Fig. 1. First, a two-level motion analysis is conducted
to decompose long clips into sequences of segments with
coherent motion types (S/P/T/Z). Second, multiple features
related to motion and scale patterns are measured from every
segment, which are used to characterize videography. For both
steps, we utilize densely computed KLT tracks [39] over the
entire clips as the main basis for the derived features.
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For the two-level decomposition, it is worth noting that we
incorporate existing effective methods as part of our feature
extraction module. In particular, we focus on: (a) developing
novel techniques to enable high-level videography analysis;
(b) its application for retrieval and summarization based on
noisy videography quantization as intermediate representa-
tions. Shot boundary detection is believed to be largely solved;
we adopt [52]. For background (BG) camera motion estima-
tion, we extend [36], [53] to estimate three camera motion
parameters (i.e., Pan/Tilt/Zoom; P/T/Z) from KLT tracks while
simultaneously separating the tracks into FG/BG groups.
We found that other approaches for FG/BG separation such
as [11] are unsatisfactory for unconstrained videos, possibly
due to the complex geometric scene structure in our data.
In the first phase, we use a shot boundary detection (SBD)

algorithm which relies on the birth and death ratio of KLT
tracks [52]. In detail, we developed two SBD modules, each
one for two different styles of boundaries, namely: Cut
(simple abrupt transition) and Fade-Out-In (common gradual
transition), which account for majority of boundaries in videos.
On labeled test data of 153 shot boundaries, the precision
and recall are 0.95 and 0.98 for Cut, and 0.63 and 0.75 for
Fade-Out-In, which are fairly good results.
Then, the second phase decomposes each shot further into

sub-segments based on four camera motion types (S/P/T/Z).
For unconstrained videos, camera motion estimation is chal-
lenging due to the complex interplay between the (apparent)
motion of background (BG) and foreground (FG) objects,
which need to be separated to yield accurate results. It is
worthy to note that the background motion estimation problem
mentioned in many existing papers [2] is quite different
from ours. For example, [2] focuses on the BG/FG separa-
tion, not the BG/FG motion separation. In our scenario, we
need to handle three problems: 1) FG/BG motion separation;
2) camera movement (four parameters) estimation; 3) FG
motion estimation.
We adopt [36], [53] because of its proven performance on

unconstrained videos and its advantage of solving FG/BG
separation simultaneously. In detail, four standard types of
camera motions are considered: pan (left or right), tilt (up
or down), zoom (in or out) and static. We represent the image
plane as a K × L regular grids, then fit the following affine
camera model with four parameters at every frame:[

Vklx

Vkly

]
=

[
zx Eklx

zy Ekly

]
+

[
p
t

]
. (1)

Above, capitalized variables are known values where
Vkl = (Vklx , Vkly) is the velocity vector of a block Bkl , and
Ekl = (Eklx , Ekly) is the center of Bkl . Per-cell velocity Vkl

is computed as the average from multiple tracks intersecting
that cell. Lower-case variables are unknowns to be estimated,
including zoom z, pan p, and tilt t . As suggested in [36], the
block size is set to 8×8. Therefore, the dimensions of K and L
vary with the size of video frame. In addition, we have tried
other settings for K and L in a certain range, but the overall
performance is not very sensitive to such settings.
We found that this grid-based formulation produces more

reliable motion estimates by compensating frequently irregular

spatial distribution of KLT tracks. The solution to Eq. 1 is
straightforward by deriving a grid-version solution from [36],
except that its accuracy will be guaranteed only when grid cells
belonging to background are used as velocity observations.
Accordingly, we solve it through iterative steps where FG
tracks are identified as outliers under current camera motion
estimates, and filtered out prior to updated camera motion
estimation. It can be observed that our overall iterative camera
motion estimation approach solves additional FG/BG sepa-
ration problem simultaneously. Because per-frame solutions
of Eq. 1 can be noisy, we use voting schemes across a
time window to determine camera motions other than static.
Specifically, we detect and classify the camera motion in a
shot using experiential rules and thresholds. Let Ck be the
camera parameter of the motion type k, and Ck(s) be the
motion parameter of Ck in frame s, k ∈ {pan, tilt, zoom}.
A camera motion occurs if the following rules are
satisfied:

• | ∑ j
s=i Ck(s)| > T sumk . The camera motion should occur

noticeably, so the summation should exceed T sumk .
• j − i + 1 > T spank . The camera motion should occur
continuously, so the duration should exceed T spank .

• 1
j−i+1 |

∑ j
s=i Ck(s)| > T avgk . The camera motion should

occur uninterrupted and perceptibly, so the average of the
summation should exceed T avgk ,

where i and j index the starting frame and ending frame of a
candidate segment, respectively.
If the rules are satisfied, each type of camera motion is

determined to occur in corresponding frames. For FG/BG KLT
trajectory assignment, a similar voting method is applied along
each trajectory by measuring the overlap portion of it with FG
blocks.
As a result, KLT tracks are grouped into BG or FG, where

BG group accounts for tracks mostly induced by camera
motion and FG group as outliers from BG. Furthermore,
to capture motion characteristics of FG objects accurately,
FG tracks are motion-corrected by subtracting average BG
motion. These are illustrated in Fig. 2(Top). Although FG/BG
separation results are not perfect, the portion of mis-classified
tracks is usually small, hence, unlikely to undermine the
overall videography analysis.
Once segments are obtained, a set of videography features

is extracted from every segment. In this work, we focus on
visual features related to motion and scale: (1) camera motion
type (S/P/T/Z), (2) FG and (3) BG motion, (4) correlations
between FG/BG motion, and (5) the scale of foreground. The
videography feature is finally represented as a 10 dimensional
feature vector. 1

For FG and BG motion, the average motion within a seg-
ment is normalized w.r.t. the video width, to cope with video

1The detailed information of each dimension in a videography feature
vector: (1) PAN: 1/pan-right, -1/pan-left, 0/no-pan; (2) TILT:1/tilt-up, -1/tilt-
down, 0/no-tilt; (3) ZOOM: 1/zoom-in, -1/zoom-out, 0/no-zoom; (4) static:
1/yes, 0/no; (5) Background motion magnitude (normalized to percentage of
the video width); (6) Foreground motion magnitude (normalized to percentage
of the video width); (7) Face scale (normalized to percentage of the video
width); (8) Face count; (9) FG/BG correlation (percentage of FG tracks that
have “same” direction with camera); (10) FG tracks ratio (percentage of tracks
that belong to foreground).



LI et al.: VIDEOGRAPHY-BASED UNCONSTRAINED VIDEO ANALYSIS 2265

Fig. 2. Videography feature extraction. (Top) Camera motion estimation with
FG/BG separation. (Middle) Original FG motion (green) is corrected (yellow).
(Bottom) Distribution of extracted videography features, and a clustering-
based quantization.

clips with varying sizes. Our novel FG/BG correlation feature
is motivated by the fact that similar camera motion may be
invoked by different intentions, e.g., tracking or simply switch
of focus. The magnitudes of FG/BG correlation are measured
by the normalized sum of inner product between FG tracks
and average BG motion. We also include scales of FG objects
as another distinctive feature for videography. For example,
clips with close-up shots of faces are very different from
clips which contain far-away shots of pedestrians. Because
the estimation of scale is a very challenging problem, in this
work, we used the bounding box sizes of face detections
produced by off-the-shelf systems (e.g., [48]) as a proxy for
scale estimates. In detail, average face size within a segment
(normalized by the video height) is used to represent the
scale. For example, face scale of 0.2 indicates that the average
size of faces occupies about 20 percent of the image height.
We also notice that a lot of advanced face detection methods
have been proposed in recent years, such as [55]. However, as

we are dealing with a huge unconstrained data set with low-
quality videos, the classical and efficient face detectors like the
Viola-Jones face detector [48] can already obtain comparable
results than the most recent methods in the unconstrained
scenario. Moreover, our paper mainly focuses on presenting
a novel framework to extract videography features for a series
of high-level video analysis tasks, and it’s quite flexible to
replace any building blocks with other appropriate methods
(e.g., human body detection [37]) in practice.

IV. VIDEOGRAPHY DICTIONARY AND ANALYSIS

Once videography features are obtained from segments,
they are grouped to form videography dictionary (VD) shown
in Fig. 1. The computed VD will be used to quantize
video clips into sets of videography words (VWs), as shown
in Fig. 1.
For our experiments, we extracted the above-mentioned

videography features from a training video dataset, which
consists of roughly 2000 unconstrained videos (∼80 hours
total), where 29 segments are found per clip on average.
The overall distribution of the extracted features is shown
in Fig. 2(Bottom), where the multi-modal characteristics
in most videography features (except FG motion) can be
observed. Such patterns indicate that there are indeed regu-
larized videography patterns in videos.
We have explored two different methods for developing the

dictionary: (1) concatenated and (2) joint learning. In the first
concatenated learning, each feature dimension is quantized
individually, and then all the features are concatenated to
form VD in a combinatoric manner. Straightforwardly, the first
feature dimension of camera motion type has four quantization
values of S/P/T/Z. We quantize the remaining features individ-
ually, based on an empirical analysis of the data on the training
set. In particular, we used regular intervals when quantizing the
features. As illustrated in Fig. 2(Bottom), the BG/FG motion
is separately quantized into small/medium/large; the FG/BG
correlation is quantized into correlation or no-correlation;
and the scale is quantized into no-face/small/medium/large.
In particular, the face scale feature is quantified to 0 if no
faces are detected from video. The video words are then
formed by concatenating these values. This procedure creates
4× 3× 3× 2× 4 = 288 possible video words.
Our analysis of the distribution of the resulting VD shows

that, interestingly, only ∼40% of the words are actually
observed in the data, indicating that only a subset of combina-
tions of feature quantizations are present, e.g., a combination
such as zoom-in, large FG and BG motion, no correlation,
and large scale actually does not appear. Furthermore, if we
eliminate rare words which have fewer than ten occurrences,
we are left with only 82 unique videography words, over a
dataset of 80 hours of unconstrained video. Such observation
provides an insight that there are fairly regularized patterns
in how people capture videos, regardless of content. To the
best of our knowledge, this is the first study that provides
automated analysis on characteristics of videography styles on
unconstrained Internet videos.
In the second method of joint learning for developing the

dictionary, we again quantize the motion type into the same
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Fig. 3. (a) Videography word examples. (b) Mutual information between different event classes and most frequent 50 VWs. (c) Qualitative analysis
on 4 event classes.

four values (S/P/T/Z). However, for each motion type, we
perform K-means clustering on the remaining four-dimension
continuous vector space formed by concatenating the four raw
feature types (FG motion, BG motion, amount of correlation,
size of face). In our experiments, we chose K=30, which yields
4 × 30 = 120 video words. We used a smaller number of
clusters because of the observation that many of the video
words from the first method were actually not used.
In addition, the K-means method here can be replaced

by some advanced dictionary learning methods, such as
K-SVD [1], in order to learn informative bases for
representation.
Once VDs are obtained, we can examine their accuracy as

a macro feature type by examining the sample video segments
in each word cluster. Example segments belonging to two
sample videography word clusters are shown in Fig. 3(a),
along with the detected visual features overlaid on images
to show more details, including camera motion (left bottom
arrows), compensated FG motion (green tracks), and face
detections (orange boxes).2 The textual descriptions of both
words were produced manually, by looking at both the feature
vector values and the grouped segments. It can be observed
that segments with highly related content are successfully
grouped into the same VWs. In particular, it is worth noting
that in the second example, similar segments are grouped
together correctly, even though faces are not detected due
to the challenging imaging conditions. We have manually
examined 10 VWs by drawing 30 segment samples each and
concluded that, on average, 88% of segments from the same
VWs show perceptually identical videography.
We qualitatively compare the videography words decided

by the joint learning strategy and the concatenated learning

2In this work, faces are intentionally occluded in this figure for privacy.

strategy. By using the joint learning, the first three rows are
characterized as videography words “Zoom-in Small Face”,
and the bottom three rows as “Tracking Foreground Motion”,
as shown in Fig. 3(a). In the case of concatenated learning,
the decided words for the first three rows are “Zoom + Small
(BG motion) + Small (FG motion) + Correlation + Small
Face”. And the words for the last three rows are “Tilt +
Small (BG motion) + Large (FG motion) + No Correlation +
No-face/Small Face”. Clearly, the joint learning is an unsuper-
vised data-driven strategy, and could truthfully represent the
videography style of the grouped video segments.
We also conducted analysis on the correlations between

VWs and particular visual content, so called events. By events,
we mean semantic content classes captured in videos, such as
Flash mob or Birthday party (defined further in [44]). This
notion of analyzing or learning about videography of videos
containing the same events is illustrated in Fig. 3(b,c). Specifi-
cally, we measured the mutual information (MI) between each
word and each event. A high MI score indicates that a word
is discriminative for the corresponding event. Our results are
summarized in Fig. 3(b) where MI between every event and
top 50 most frequent VWs are shown. It can be observed
that, for a particular event, there are certain signature VWs.
More detailed analysis is shown for four event types and top
20 words, in Fig. 3(c). In particular, this analysis provides
insight on how different events are captured with different
styles. For example, it shows that event Board trick has a
strong style of tracking moving object; event Flash mob has
a strong style of browsing scenes; event Wedding ceremony
shows frequent zooming; and event Birthday party shows
frequent facial close-up. This observation on discriminative
correlations suggests that videography analysis can actually
be used for challenging tasks such as retrieval (Sec. V) and
summarization (Sec. VI).
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Fig. 4. Average Precision (%) of video retrieval results on MED corpus, for 15 events: (E01) Board trick, (E02) Feeding animal, (E03) Fishing, (E04)
Wedding, (E05) Working wood project, (E06) Birthday party, (E07) Change vehicle tire, (E08) Flash mob, (E09) Getting vehicle unstuck, (E10) Groom
animal, (E11) Make sandwich, (E12) Parade, (E13) Parkour, (E14), Repair appliance, and (E15) Sewing project.

TABLE II

MEAN AVERAGE PRECISION (%) OF VIDEO RETRIEVAL RESULTS ON MED CORPUS, FOR TWO SEPARATE TEST DATASETS OF EVENTS 1-5 AND

EVENTS 6-15 RESPECTIVELY. FUSION RESULTS ARE OBTAINED BY COMBINING J_BFCS AND GIST. THE RESULTS WITH DYNAMIC

EVENTS ONLY ARE MARKED WITH (D), WHICH INCLUDE EVENTS: E01, E04, E06, E08, E12, AND E13. BOLD FONTS DENOTE

THE BEST RESULT, AND Italic FONTS DENOTE THE SECOND-BEST RESULT

V. APPLICATION FOR VIDEO RETRIEVAL

In this section, we present our approach and experimental
results for videography-based video retrieval. In detail, we
computed videography word bag-of-word (VW-BoW) repre-
sentations, where per-clip unigram features are built from set
of VWs (regardless of temporal ordering), for every clip. The
goals are to examine (1) how well the proposed VW-BoW
feature can perform in retrieval tasks by itself, compared to
other alternatives and with detailed studies on the contribution
of each videography feature component, and (2) whether our
approach offers a useful modality to capture characteristics of
video belonging to high-level event classes, in comparison to
other macro-level features such as GIST [32].
For dataset, we use TRECVid 2011 multimedia event detec-

tion (MED) corpus [44] as our data, due to its large size, real-
istic content variability, and existing clip-level annotations for
15 different event classes. Both the scale and complexity of the
dataset are beyond the widely-used datasets [18], [27]. Clips
are frequently captured in unconstrained lighting and camera
motion conditions, exhibiting diverse degrees of encoding
artifacts and severe background clutter, and heavily edited
by owners using shot stitching, caption embedding, etc. For
training data, we use “Part-1 training data” (called event kits),
which consists of videos from 15 different event classes of
137 clips per class on average (total 2061 clips) with average
duration of 4.2 minutes. From these training data, our VDs
are computed by selecting the best run out of 100 K-means
clustering, and later used for test data. The 15 event types
are enlisted in the caption of Fig. 4, with events frequently
exhibiting complex camera motion marked in bold faces.

For test data, MED corpus provides two different sub-
sets, “Part-1 DEV-T” for the first 5 event classes, and
“MED11TEST” for the remaining 10 event classes, with 4292
and 32061 total clips respectively. Both test datasets contain
large amount of negative clips which do not belong to any of
the target event classes, consequently, they serve as realistic
test-bed for retrieval experiments. The positive examples in the
two test datasets only constitute 2.34% and 0.37% on average
per class respectively.
Our retrieval experiments are conducted using one-vs-all

SVM classifiers, parameters of which are tuned via cross-
validation. The overall results are summarized in Fig. 4 and
Table II, where several experiments are conducted. As per-
formance metrics, average precision (AP) is used. It is worth
noting that APs for E06-E15 are lower than E01-E05, because
the relative ratio of negative samples in the test dataset
for E06-E15 is about 10 times higher. In detail, Chance
denotes random retrieval and PTZ denotes the use of four-
dimensional BoWs of discrete camera motion types only
(e.g., S/P/T/Z) without detailed videography features, as com-
parative methods [54]. The variations of our approaches are
marked using abbreviations where J and C denote joint or
concatenated VD learning, described in Sec. IV. Additionally,
B, F, C, S indicate the inclusion of BG motion, FG motion,
BG/FG correlation, and scale respectively, during VD learning.
These experiments have been conducted to examine the useful-
ness of each videography feature for retrieval. The minus sign
‘−’ indicates that the VD has been pruned by filtering out VWs
with low MI scores per event type. For all the experiments
with BoW-type features, histogram intersection kernel (HIK)
was used for SVM training and testing. In addition, we
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compare our approach with two recently proposed video event
detection and video retrieval methods that are also conducted
on the TRECVid 2011 MED dataset, including long short
term memory networks (LSTM) [51] and correspondence-
latent Dirichlet allocation (corr-LDA) [12]. Table II shows that
the proposed approach with fusion strategy achieves higher
mAP than LSTM and corr-LDA.
[32] shows the results using GIST features with linear

SVMs. Because GIST is a per-image feature, GIST features
are computed on frames extracted from labeled video clips.
Then, one-vs-all SVMs were trained on image features using
clip labels. For testing, SVMs are applied on extracted images,
then, scores were averaged to produce a clip-level score.
Apparently, VWs and GIST capture very distinct signals from
data. Accordingly, in the experiment marked as Fusion, we
have further explored whether fusion of two modalities can
lead to further improvement, which will show whether these
two feature types are complementary. For fusion, we have
used the approach of “late fusion” (e.g., [14]) where we have
used the weighted sum of two classifiers as the fusion score.
Among VW-based approaches, J_B FC S was used because
it has been shown to provide best performance, and weights
were determined by cross validation where equal weights of
<0.5, 0.5> were found to be best.
Overall, we can observe that VWs clearly provide advantage

over the conventional simpler alternative of using camera
types only, i.e., PTZ. From Fig. 4, it can also be observed
that every videography feature contributes towards improving
performance. Between joint and concatenated VD learning,
joint learning shows superior performance overall, possibly
due to the data-driven construction of the dictionary which
avoids many empty (or rare) VWs in concatenated learning.
However, pruning VWs by MI scores does not seem to neces-
sarily boost performance. Table III shows mean average preci-
sion (mAP) for key experiments in Fig. 4 on two test datasets.
It can be observed that motion-based macro feature such as
videography can outperform GIST for E01-E05 in “Part-1
DEV-T” set, and E06, E08, E11, E13, E14 in “MED11TEST”
set. More importantly, the fusion results are much better
than either approach, indicating that two feature types are
complimentary. Table III also shows mAPs for dynamic events
only, where we observe big boost in performance for VWs.
Dynamic events mean that the there are usually significant
changes between different shots in the videos. Interestingly, the

event classes which show clear discriminative correlation with
VWs in Fig. 3(b) are dynamic events, and they also show more
advantages when VWs are used for retrieval. We also notice
that some recent methods that utilize Fisher vectors [33], [41]
of spatio-temporal visual words achieved impressive results on
the video retrieval task, which demonstrates the effectiveness
of advanced features like Fisher vectors. The videography
features proposed could be fused with other features in real-
world applications.

VI. APPLICATION FOR VIDEO SUMMARIZATION

With the huge amount of video content data available, it’s
essential to find important or interested contents efficiently,
but unfortunately, it’s impossible to edit those videos for a
concise version manually. Thus, automatic video summariza-
tion techniques are badly needed, and construct the basis for
many important video analysis tasks, such as those for the
intelligence and security purpose. In this section, we present
our videography-aware adaptive summarization methods.
Conceptually, content summarization is a kind of infor-

mation abstraction either by selecting the most informative
portions of content, or by refining the content into natural
language description. In terms of video summarization, we
call the former “visual summarization”. For example, a movie
teaser would be an example of this type of summary. The latter
one is actually a “recounting” process to generate a series of
textual notes which best represents the event happened in the
video. This type of summary is a cross-modal information
abstraction, and consequently more difficult and always less
accurate.
In this paper, we demonstrate how to utilize videography

analysis as an effective way to generate both visual and tex-
tual summarization. For visual summarization, we stitch key
frames highlighted by event-relevant videography styles. For
textual summarization, we combine the mid-level semantics of
videography with another mid-level semantic feature, Object
Bank, to generate key phrases level of summarization.

A. Visual Summarization

Visual summarization is designed to highlight the segments
with distinctive videography styles for particular events. Our
novel insight is that identification of segments from videos
where cameramen are systematically exhibiting distinctive
videography styles for particular events will provide unique
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Fig. 5. Videography-aware adaptive summarization. (Left) Segment scores are based on MIs of corresponding VWs. Frames are selected at designated
relative location within segments. (Right) Three summarization results by this work (red rows) and baseline (blue rows). Detected FG regions (green) and
human judgements on relevance of key frames (good:none, near-miss: yellow, miss: red) to associated events are marked on each image.

summarization, assuming that such segments are strongly
correlated with the major region of interest. While many works
deliberately avoid the use of segments with motion due to
complexity, e.g., [30], such segments can be indeed crucial
to characterize dynamic contents in videos exhibiting frequent
camera motion, frequently recorded by mobile devices.
In our approach, frames are extracted by two step pro-

cedures, as illustrated in Fig. 5 (Left). First, key segments
are selected based on segment scores, with optional weighted
sampling scheme in case there are more number of segments
than the desired number of key frames. For segment scores,
MI scores have been used.3 Then, key frames are extracted,
one per selected segment. In particular, our novel innovation is
that frames are designed to be extracted from different relative
location within each segment based on their videography.
Two different types of key frame selection mechanisms were
used: frames are selected (1) in the middle of segments
when videography is either stationary or indicates FG/BG
correlation (to capture peak of FG motion), and (2) at either
end of segments when the videography indicates P/T/Z without
FG/BG correlation (to capture the destination of the shifting
attention).
Qualitative summarization results are shown in Fig. 5

(Right), where frames extracted from same videos by our
proposed method (red rows) and a conventional baseline (blue
rows) are compared, for three different event classes. The
results of the baseline method were obtained by extracting
frames with highest scores based on color histogram changes,
which is very common. It can be observed that our method
is very effective in identifying unique contents from clips.

3Without event labels, term frequency inverse document frequency (tf-idf)
scores [28] can be used instead.

TABLE IV

EVALUATION OF VISUAL SUMMARIZATION

In particular, most extracted frames contain important visual
moments when the FG people are at the peak of their action
or camera focus, such as skilled jumps or before blowing a
birthday cake candle. On the other hand, results by the base-
line tend to include frames that just exhibit strong changing
background or even black frames around the captions inserted
by users. Overall, we observe that the proposed method can
generate good visual summaries, especially for clips which
contain complex camera motions.
We also perform quantitative evaluations for video summa-

rization. By following the evaluation protocols and evaluation
metric in [34], we compare our approach with the baselines,
including shot detection (SD) with SVM, and kernel video
summarization (KVS) [34]. The evaluation metric is mean-
ingful summary duration (MSD), and a good summarization
is corresponding a low MSD score. Table IV shows that our
approach could achieve comparable performance with KVS.

B. Textual Summarization

Natural language as the most sophisticated information
vehicle has been the core of AI research for decades. There
exist many challenges in developing automatic video contents
translation systems [8], [9], [19]. One well-known challenge is
the long-standing semantic gap between computable low-level
features and semantic information that they encode.
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Fig. 6. The average precision values of all objects with respect to event
groom animal.

For unconstrained consumer video, though sentence-level
textual summarization is still an extremely challenging task at
current level of AI technology, the word-level or phrase-level
of “video recounting” have become more and more promising
due to a series of semantic features recently introduced in the
literature. The proposed videography feature is also a mid-
level feature with a clear semantic meaning. The interpretabil-
ity of videography makes it a good complement to other
semantic features, such as Object Bank. Specifically, in our
approach, we utilize the detected object labels and videography
style labels to generate a phrase-level summary. In particular,
the template based language models are employed to generate
phrases [43]. For example, we can generate a phrase “the cam-
era zoom into a bride’s face” by combining videography label
“zoom in a middle-size face” with the detected object “bride”.
Or, we can generate a phrase “the camera is panning left
tracking a moving person” by combining videography label
“pan to the left tracking an object” (strong FG/BG correlation)
with the detected object “human”. Because videography is a
motion-driven feature, it can add dynamic information about
the video content, which provides a lively graphic description
of the scene.
Object Bank feature in total has 177 object detectors, where

each object has 6 different scales and 2 views. We still
conduct experiments on the TRECVid MED 2011 dataset.
First, we evaluate the discriminability of each object with
respect to each event by ranking object labels according
to their average precision (AP) scores for retrieval task.
Figs. 6 and 7 show the detailed average precision values for
all object classes with respect to event E01 to E05 in the
TRECVid MED 2011 corpus, respectively. Fig. 8 shows the
results of Object Bank [23], the Sequence to Sequence
based Video to Text (S2VT) method [46], and the phrase-
level textual summarization results of our method. S2VT
is the state-of-the-art method that automatically generating
descriptions from videos. Fig. 8 shows that our method and
S2VT provides complementary descriptions of the video, as
they are motivated from different perspectives. In particular,
S2VT generates accurate descriptions by virtue of deep feature
learning, while our method explicitly shows the transition of
video by exploiting the camera motion information.

VII. VIDEOGRAPHY-BASED FEATURE POOLING

Though many video retrieval systems (e.g., [14], [29]) have
successfully adopted clip-level representations through global

Fig. 7. The average precision values of all objects with respect to event
wedding.

Fig. 8. Textual summarization of the video samples.

pooling strategy, the detailed temporal structure, especially
for long-duration unconstrained consumer videos, has been
ignored completely. Recent efforts [5] start looking at this
problem and exploiting the potential of segment level descrip-
tors. In this section, we will present a videography based
feature pooling (VF-Pooling) approach that leverages the
segment-level semantics and improves the model performance.
As a novel semantic feature, videography has its unique
perspective for video content analysis. Thus, how to effectively
integrate multiple semantic features together becomes quite
intriguing.
Specifically, by assigning a videography style label to each

segment, our approach pre-categorizes segments into groups
where each group corresponds to a videography style. In this
way, we can build multiple descriptors for each clip, where
each descriptor comes from a specific videography style group
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Fig. 9. Videography based feature pooling.

Fig. 10. Videography based feature pooling results. The metric AP(%) is used to evaluate baseline methods and the proposed VF-Pooling frameworks.

by averaging segment-level features belong to that group.
In a sense, these descriptors are local to the represented
videography word. Our idea of VF-Pooling adopts the similar
strategy as [15], inspired by recently introduced local pooling
theory [4]. The general idea of local pooling is that pooling
similar features separately in high-dimensional feature space
would improve the overall representational power.
The VF-Pooling framework is illustrated in Fig. 9. First,

according to our videography analysis, we decompose each
video clip into a set of segments, and then soft-assign every
segment some videography style labels (VD word). A large
assignment value indicates that strong videography style
happened in current segment. Soft-assignment is important
because when we build videography dictionary, we applied
unsupervised clustering method, e.g. K-means, which may
lead to arbitrary space partitioning. Then, each segment will
be represented by a given feature. In our evaluation, we use
feature HOG3D [16] as descriptor for each segment. The
extracted feature descriptors for videos could be regarded as
projections from a video clip to the videography space. After
building multiple feature descriptors, kernelization can be
separately applied to measure the similarity between different
video clips w.r.t. each videography style. Finally, multiple
kernel fusion techniques are applied to provide improved
discriminant power for video event classification.
In detail, let xa = {xi

a| xi
a ∈ RD1, 1 ≤ i ≤ n} be a training

sample, where xi is a D1-dimensional videography feature
representation for the i -th segment, and n denotes the total

number of segments in a video clip a. Based on videography
features, we learn a VD dictionary by K-means clustering.
Then, each centroid of the K-means clusters represents a
videography style in the archive. Assuming the VD dictionary
size is M , each VD word is represented by a centroid v j , then
we can represent the videography style set as V = {v j | v j ∈
RD1, 1 ≤ j ≤ M}. Let ya = {yi

a| yi
a ∈ RD2, 1 ≤ i ≤ n}

be the D2-dimensional HOG3D feature representation for the
i -th segment. Then feature descriptor ϕ j (ya) of a video a
corresponding to the j -th videography style is formulated as
a weighted representation calculated for the entire video seg-
ments {x1, x2, · · · , xn}, with corresponding soft-assignment
weights as

ϕ j (ya) = 1

n

n∑
i=1

ω j (Sj , yi
a) · yi

a, (2)

where ω j (Sj , yi
a) denotes a soft-weight assignment function

between the j -th VD word Sj and the feature representation
of video segment yi

a .
For evaluation, we select the histogram intersection ker-

nel (HIK) SVMs to train classifiers. The kernel between a
pair of video samples is calculated by integrating all the
kernels calculated for each videography style. In addition, our
work explores several different variations of kernel fusion,
such as average weighted and Mutual Information weighted.
Based on our previous discovery, we notice that certain videog-
raphy styles are more discriminative for a particular event.
Exploiting mutual information makes it possible to assign
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discriminative weights for the combination of kernels. For
dataset, we use TRECVid MED 2011 corpus [44] as our
data, due to its large size, realistic content variability, and
existing clip-level annotations for 15 different event classes.
We compare our approaches (i.e., VFP-EQ-HOG3D and VFP-
MI-HOG3D) with the related methods HOG3D, multi-way
local pooling using equal kernel weights (MLP-EQ) and MLP
using multiple kernel learning (MLP-MKL) [15]. Fig. 10 and
Table. V show the evaluation results, which indicates that
the our approach achieves better results than the compared
methods.

VIII. CONCLUSION
We have presented a framework for videography learning

and analysis, and its application for video retrieval, video
summarization and videography based feature pooling. The
introduced features and data-driven VD learning helps identify
characteristic videography among videos from same events.
Our experiments show that meaningful summarization and
retrieval results can be obtained using videography. The
proposed VF-Pooling schema can effectively improve the
representation power of features. Both fusion and feature
pooling results indicate that videography captures unique
aspects of videos and can be jointly used with other features to
improve content based video analysis substantially. Our exten-
sive experiments on the challenging TRECVid MED 2011
dataset demonstrate the usefulness of the proposed feature
and learning framework. Future work will extend the semantic
advantages of videography feature by using it for other high-
level content analysis task together with other types of seman-
tic features, such as Action Bank [38]. Also, for videography
based feature pooling, more advanced kernel weight learning
techniques can be considered such as multiple kernel learning
(MKL) [45]. We believe that videography analysis can help
solve many more widely-studied video problems.
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