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Abstract
Low-rank subspace clustering (LRSC) has been
considered as the state-of-the-art method on smal-
l datasets. LRSC constructs a desired similarity
graph by low-rank representation (LRR), and em-
ploys a spectral clustering to segment the data sam-
ples. However, effectively applying LRSC into clus-
tering big data becomes a challenge because both
LRR and spectral clustering suffer from high com-
putational cost. To address this challenge, we create
a projective low-rank subspace clustering (PLrSC)
scheme for large scale clustering problem. First, a
small dataset is randomly sampled from big dataset.
Second, our proposed predictive low-rank decom-
position (PLD) is applied to train a deep encoder
by using the small dataset, and the deep encoder is
used to fast compute the low-rank representations
of all data samples. Third, fast spectral clustering
is employed to segment the representations. As a
non-trivial contribution, we theoretically prove the
deep encoder can universally approximate to the
exact (or bounded) recovery of the row space. Ex-
periments verify that our scheme outperforms the
related methods on large scale datasets in a small
amount of time. We achieve the state-of-art cluster-
ing accuracy by 95.8% on MNIST using scattering
convolution features.

1 Introduction
Low-rank subspace clustering (LRSC) has become an im-
portant topic because of its impressive performance in many
machine learning and computer vision applications, for exam-
ple, image clustering [Zhang et al., 2015], motion segmenta-
tion [Wang et al., 2015; Zhao and Fu, 2015], and dictionary
learning [Ding et al., 2016]. The underlying assumption is
that data points sampled from multiple high-dimensional sub-
spaces can be well represented by a union of low-dimensional
subspaces. It leads to a useful self-expressiveness proper-
ty that each data point can be efficiently reconstructed by a
combination of other data points [Elhamifar and Vidal, 2013;
Ding et al., 2015]. According to this property, LRSC is to
learn low-rank representations for dividing the data samples
into their respective subspaces. Hearteningly, many LRSC
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Figure 1: Projective low-rank subspace clustering by predictive low-
rank decomposition.

methods [Li and Fu, 2015; Shen et al., 2016] have been used
to achieve the state-of-the-art results on small datasets. While
as the data size grows, a critical problem comes, i.e. how to
effectively apply LRSC to cluster big data.

Recall that the classical paradigm, LRSC consists of two
steps. In the first step, the desired similarity graph is construct-
ed by learning the lowest-rank representations of all data. The
representations are obtained by using the low-rank represen-
tation (LRR) methods, such as robust principal component
analysis (RPCA) [Candés et al., 2011], latent LRR (latLR-
R) [Liu and Yan, 2011], and distributed LRR [Talwalkar et
al., 2013]. Based on the self-expressiveness property, LRR
and its variants usually select all data matrix as a dictionary.
When facing a big dataset, this leads that LRR fails to work
on a single machine with limited resource because of the high
time and space complexity of the pseudoinverse and singular
value decomposition (SVD). In order to reduce the number
size of the dictionary, a small dataset sampled from the big
dataset is regarded as a small dictionary [Wang et al., 2014;
Peng et al., 2016]. However, it still takes more time to compute
the codes (or representations) [Lin et al., 2011].

In the second step, spectral clustering (such as Normalized
Cuts (NCut) [Shi and Malik, 2000]) is applied to the similar-
ity graph for segmenting the data samples. However, it is a
difficult problem to apply spectral clustering to big data tasks
because of its computational complexity of O(n3), where n
is the number of samples [Cai and Chen, 2015]. Fortunately,
fast spectral clustering (FSC) [Cai and Chen, 2015] can carry
out the spectral clustering in linear time by sparsifying the
similarity matrix. Scalable LRR (SLRR) [Peng et al., 2016]
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and selection+LRR (selLRR) [Wang et al., 2014] select a
small dataset to preform clustering to build a collaborative
representation based classifier (CRC) or a linear classifier, re-
spectively. Although these methods can deal with the big data
clustering problem, they directly use the original data as the
representations to lead to poor clustering results.

In light of the above arguments, we provide an efficient
strategy to solve the big data clustering problem. To reduce
the expensive computing time, we first select a small dataset
from the large dataset for building a small LRR model, and
then use the small dataset to learn a deep encoder to quickly
approximate the low-rank representations of this small LRR
model. After learning, the deep encoder is easily used to fast
compute the low-rank representations of large dataset in the
first step. Next, fast spectral clustering is employed to cluster
the low-rank representations for avoiding the classification
problem in the second step. The whole process is shown in
Fig. 1. Our contributions are summarized as:
• We propose a predictive low-rank decomposition (PLD).

PLD replaces the costly and highly non-linear SVD oper-
ations by a non-iterative deep encoder for quickly calcu-
lating the low-rank coding subspaces. We theoretically
prove the deep encoder can universally approximate to
the exact (or bounded) recovery of the row space.
• We create a projective low-rank subspace clustering

(PLrSC) scheme to large scale clustering problem by
a manner of “sampling, PLD, fast spectral clustering”.
• Experimental results verify that our scheme outperforms

the state-of-art baseline methods on large scale image
datasets. It is important to note that we reach the best
clustering accuracy 95.8% on MNIST-SC.

Notations: For a matrix A ∈ Rd×n, the nuclear nor-
m, `1 norm, `2,1 norm, F-norm, and square of F-norm are
denoted by ‖A‖∗ =

∑
i σi(A) (the sum of the singular

values of A), ‖A‖1 =
∑
ij |Aij |, ‖A‖2,1 =

∑
j ‖A:j‖2,

‖A‖F =
√∑

ij(Aij)2, and ‖A‖2F =
∑
ij(Aij)2.

2 Related Works
We will review fast coding models, and fast spectral clustering.

Fast Coding were presented to fast infer the codes by learn-
ing a (linear) encoder, such as projective low-rank representa-
tion (PLR) [Li et al., 2016; Li et al., 2014; Ding et al., 2016],
RPCA encoder (RPCAec) [Sprechmann et al., 2015], and
latLRR [Liu and Yan, 2011]. However, PLR was a super-
vised model for classification tasks, not subspace clustering.
RPCAec assumed that the underlying data structure was a
single low-rank subspace, while our model (PLD) could bet-
ter handle the multiple subspaces data. Moreover, although
latLRR could quickly calculate the codes by the linear en-
coder, it essentially resolved the insufficient sampling data
[Liu and Yan, 2011], and the linear encoder was difficult
to capture the complex data structure [Bengio et al., 2013;
Li et al., 2017b]. Fortunately, PLD was to learn a deep en-
coder, which had power to draw the high-level features.

Fast Spectral Clustering (FSC) tried to speed up the spec-
tral clustering algorithms due to the high computational com-
plexity of the traditional spectral clustering, for example,

Nyström [Chen et al., 2011] and landmark-based spectral
clustering (LSC) [Cai and Chen, 2015]. Nyström was to re-
duce the computational costs of eigen-decomposition over the
whole similarity matrix [Fowlkes et al., 2004]. Moreover, it
was parallelized both memory use and computation on dis-
tributed systems [Chen et al., 2011]. LSC [Cai and Chen,
2015] selected small data points to sparsely represent other
data points for computing the spectral embedding of the data.
Unfortunately, LSC and Nyström result in a poor result with
the original input data. Our method is to learn “good” features
by deep encoder, and employ LSC to cluster the features.

3 Predictive Low-rank Decomposition (PLD)
Before building our projective low-rank subspace cluster-
ing scheme, we firstly propose a predictive low-rank de-
composition (PLD) model to fast calculate the projective
low-rank representations in this section. Given a dataset
Y = [Y1, · · · ,Yi, · · · ,Yk] ∈ Rd×n, where each column is a
data point, k is the number of subspaces, d is the number of
dimensions, and n is the number of data points, we construct a
formulation of PLD, and solve PLD by combining an alternat-
ing direction method (ADM) [Liu et al., 2013] and a gradient
descent algorithm [Li et al., 2015].

3.1 Problem Formulation.
Large scale LRSC is restrained by solving LRR due to the
high computational complexity of Singular Value Threshold-
ing (SVT) operator [Cai et al., 2010]. Actually, sparse coding
also faces the expensive inference problem [Elhamifar and
Vidal, 2013]. In order to avoid the expensive inference, predic-
tive sparse decomposition (PSD) [Gregor and LeCun, 2010;
Li et al., 2017a] is to fast approximate the codes or repre-
sentations learned from the sparse coding model by training
a feedforward neural network. Inspired by PSD, we learn a
non-iterative deep encoder fde(Y; θ) (θ is the learning param-
eter) to approximate the low-rank representations. The deep
encoder is used to quickly calculating the low-rank codes for
replacing many costly non-linear SVT operations. Therefore,
we propose a predictive low-rank decomposition (PLD), which
is written as a following nonconvex optimization:

min
E,θ
‖Z‖∗ + λ‖E‖2,1 + γ‖Z− fde(Y; θ)‖2F (1)

s.t. Y = YZ + E,
where Y ∈ Rd×n is the input data, Y is chosen as the dictio-
nary, E ∈ Rd×n is the sparse noise matrix, λ is the regulariza-
tion parameter of the sparse noise term, ‖Z − fde(Y; θ)‖2F
is an approximation term, γ is a regularization parameter
of the approximation term (usually, γ = 1), fde(Y; θ) =

g(WL · · · g(Wi · · · g(W2Y))) is a deep encoder with L layer-
s, g is an activation function (such as sigmoid, tanh and ReLU),
θ = {W2, · · · ,WL} ∈ R̃ = {R`2×`1 , · · · ,R`L×`L−1} is a
learning parameter set, and `i is the number of units in the i-th
layer (`1 = d and `L = n). For example, a deep encoder with
L = 3 layers is fde(Y; θ) = g(W3g(W2Y)).

3.2 Optimization.
The problem (1) is non-convex because of the non-convex deep
encoder. Clearly, it is an important challenge. We employ an
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alternating direction method (ADM) [Liu et al., 2013] and
a gradient descent algorithm [Li et al., 2015] to solve (1).
For efficiency, the problem (1) is first transformed into the
following equivalent problem:

min
E,J,Z,θ

‖J‖∗ + λ‖E‖2,1 + γ‖Z− fde(Y; θ)‖2F (2)

s.t. Y = YZ + E, Z = J.
Then the problem (2) can be solved by minimizing the follow-
ing augmented Lagrange function:

L =‖J‖∗ + λ‖E‖2,1 + γ‖Z− fde(Y; θ)‖2F+

µ(‖Y− YZ− E + Q1/µ‖2F + ‖Z− J + Q2/µ‖2F)/2

− (‖Q1‖2F + ‖Q2‖2F)/(2µ), (3)

where Q1 and Q2 are the Lagrange multipliers, and µ is a
penalty parameter. To tackle this unconstrained problem, it
can be minimized by ADM, which is to iteratively update the
variables {E, J,Z, θ}, the Lagrange multipliers {Q1,Q2} and
the penalty parameter µ until convergence. The iteratively key
steps are as following:

Updating θ: θ is calculated by minimizing L with respect
to the weight parameters θ, while others are fixed. The optimal
solution is to solve a subproblem1: Lθ = ‖Z − fde(Y; θ)‖2F.
By using a gradient descent (GD) algorithm [Li et al., 2015]
to minimize Lθ, the updating form is

θ = θ − ζ∂Lθ/∂θ, (4)

where ζ is a learning rate, and ∂Lθ/∂θ is the gradient of Lθ.
Updating J: J is calculated by minimizing L with respect

to J, while others are fixed. The optimal solution is to solve a
subproblem: LJ = arg minJ

1
µ‖J‖∗ + 1

2‖J− (Z + Q2/µ)‖2F.
This subproblem LJ has a closed-form solution given by

J = Υ 1
µ

(Z + Q2/µ), (5)

where Υα(C) = USα [Σ] VT is the SVT operator [Cai et al.,
2010], UΣVT is the singular value decomposition (SVD) of
C, and Sε[·] is the shrinkage-thresholding operator defined as
Sε[x] = max{|x| − ε, 0}sgn(x).

Updating Z: Z is calculated by minimizing L with respect
to Z, while others are fixed. The optimal solution is to solve
a subproblem: LZ = arg minZ γ‖Z− fde(Y; θ)‖2F + µ(‖Y−
YZ−E + Q1/µ‖2F + ‖Z− J + Q2/µ‖2F)/2. This subproblem
LZ has a closed-form solution

Z =
(
2γI/µ+ YTY

)−1 (
YT (Y− E) + J+

+(2γfde(Y; θ) + YTQ1 −Q2)/µ
)
. (6)

Due to the nonlinear deep encoder, the term γ‖Z−fde(Y; θ)‖2F
will increase the number of iterations as LZ is difficult to
guarantee convergence. For fast obtaining local convergence,
we can remove this term, and LZ also has another closed-form
solution Z, which is as follow:

Z =
(
I + YTY

)−1(
YT (Y− E) + J + (YTQ1 −Q2)/µ

)
. (7)

1Here, we do not show the regularization technique in deep en-
coder. Generally, the Frobenius norm or `2 norm can be also used to
prevent the over-fitting of weights.

Algorithm 1 PLD via ADM and gradient descent.

1: Input: A small data matrix Y.
2: Initialize: θ is randomly initialized, Z = 0,E = 0,Q1 =

0,Q2 = 0, ζ = 0.01, µ = 10−5, µmax = 106, ρ =
1.2, ε = 10−4.

3: While not converged do
4: repeat
5: update θ by Eq. (4),
6: until ‖Z− fde(Y; θ)‖2F < ε,
7: update J by Eq. (5),
8: update Z by Eq. (6) or Eq. (7),
9: update E by Eq. (9),

10: update Q1 and Q2 by Eq. (10) and Eq. (11).
11: update the parameter µ = min{ρµ, µmax},
12: check: ‖Y− YZ− E‖2F < ε and ‖Z− J‖2F < ε.
13: End
14: Return solutions θ, Z and E.

Updating E: E is calculated by minimizing L with respect
to E, while others are fixed. The optimal solution is to solve
the following subproblem LE, which is as follow:

arg min
E

λ

µ
‖E‖2,1 +

1

2
‖E− (Y− YZ + Q1/µ)‖2F. (8)

According to the Lemma 4.1 [Liu et al., 2013; Yang et al.,
2009], the solution of LE is E = Ψλ

µ
(Y−YZ+Q1/µ), where

Ψα(C) as follow:

E:j =

{
‖C:j‖2−α
‖C:j‖2 C:j , if ‖C:j‖2 > α,

0, otherwise.
. (9)

Updating Q1 and Q2: Lagrange multipliers are updated
by performing a gradient ascent as follow:

Q1 =Q1 + µ(Y− YZ− E), (10)
Q2 =Q2 + µ(Z− J). (11)

The procedure iterates five steps and the penalty parameter
until a stopping criteria is met. The whole optimization proce-
dure is summarized in Algorithm 1. After training the deep
encoder, the low-rank representations can be computed by this
deep encoder in linear time to n.

3.3 Complexity and Convergence.
The major computation of Algorithm 1 are Steps 4 and 6. The
complexity of Step 4 isO(n3) as we use the GD algorithm [Li
et al., 2015]. Based on LRR [Liu et al., 2013], the complexity
of Step 6 is O(nr2Y + r3Y), where rY is the rank of Y. The
whole complexity of Algorithm 1 is O(Tn3 + nr2Y + r3Y),
where T is the training epoch of training deep encoder, and n
is the number of sampling data points. T is less than 5 epochs.

Due to the non-smooth function and the nonlinear deep
encoder, it is difficult to theoretically prove the convergence.
Fortunately, there actually exist three sufficient conditions
for ensuring the convergence of Algorithm 1. The first two
conditions are that the dictionary matrix Y is of full column
rank, and the optimality gap produced in each iteration step
is monotonically decreasing [Liu et al., 2013]. The third
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condition is that any continuous activation function can be
approximated uniformly on compact by an over-three layers
deep encoder with enough hidden units [Ripley, 1996]. This
condition results in that the deep encoder can approximate the
low-rank representation by using the gradient descent algorith-
m [Haykin, 2009]. Notation that while using (7) to solve LZ,
we can move the steps 3-5 to end in Algorithm 1 for saving
the training iteration time.

4 Projective Low-rank Subspace Clustering
Suppose a big dataset X = [X1, · · · ,Xi, · · · ,Xk] ∈ Rd×m is
over-sufficiently drawn from a union of k subspaces Si, where
r � m, m =

∑k
i=1mi, r =

∑k
i=1 ri =

∑k
i=1 rank(Xi),

mi is the number of data points Xi of Si, and ri is the number
of the bases of Si. In this section, we create a Projective Low-
rank Subspace Clustering (PLrSC) scheme for clustering X
by using PLD, and give an universal approximation theorem to
recover the row space with bounded errors. The whole scheme
of clustering the big dataset X shown in Fig. 1 consists of
sampling, PLD, and fast spectral clustering (FSC).

Sampling is used to reduce the number of data points. We
assume that a small dataset Y = [Y1, · · · ,Yi, · · · ,Yk] ∈
Rd×n sampled from X is still sufficient, that is, ri � ni < mi,
where ri = rank(Yi) = rank(Xi) and ni is the number of
data points Yi. It leads to r � n < m, where n =

∑k
i=1 ni.

In many cases, X repeatedly drawn from a union of subspaces.
Thus, by using some sampling or clustering techniques, we
can always obtain the sampled dataset Y, which satisfies that,
for any x ∈ X and any small number η, there is a y ∈ Y such
that ‖y − x‖2 ≤ η. When n = m, η = 0. For simplicity,
we use the function randperm in matlab to implement two
sampling ways. In the first way, a small dataset Y is randomly
sampled from the whole dataset X if each subspace has the
similar number of data points. The second way is to randomly
choose Yi from the i-th subspace Xi for ensuring that every
subspace has the similar number in Y. Note that the sampling
method is not studied in this paper since we focus on PLD.

PLD can learn a non-iterative deep encoder fde(·; θ) from
Y in the above section 3. Projective low-rank representations
of the big dataset X can be quickly computed by the deep
encoder fde(X; θ). Clearly, the complexity of non-iterations
deep encoder is linear in data point number m, that is, O(m).

FSC can fast perform the spectral clustering. In this pa-
per we employ the landmark-based spectral clustering (LSC)
[Cai and Chen, 2015] to cluster the projective low-rank rep-
resentations. The complexity of LSC is O(m). Algorithm 2
summarizes the whole procedure of performing our PLrSC
scheme. The complexity of Algorithm 2 is O(m).

Theoretical Analysis. In order to ensure the effectiveness
of PLD in Algorithm 2, we give a theorem to show that the
deep encoder can recover the row spaces of Y and X. For better
understanding the effectiveness, the big dataset X is divided
intom/n datasets X ∈ Rd×n. In fact, we can repeatedly select
some data points in X to make m/n an integer.

Theorem 1. Let the size of clear data Y0, noise data Y,
new clear data X0 and new noise data X be d × n, and the
rank of Y0 be r0. Suppose the skinny SVDs of Y0 and X0 are

Algorithm 2 PLrSC via PLD

1: Initialize: Large data matrix X, number m of subspaces.
2: randomly select Y from X,
3: learn a deep encoder fde(·; θ) by PLD,
4: fast calculate ZX by fde(X; θ),
5: perform LSC on ZX to segment X into m clusters.

Table 1: Datasets.

Data set # data points Dimension # classes
MNIST 70,000 784 10

MNIST-SC 70,000 3,472 10
NORB 48,600 2,048 5

respectively U0Σ0VT0 and U0Σ0VT0 , ‖X0 − Y0‖F ≤ nη and
‖X − Y‖F ≤ nη. Given any continuous function g (sigmoid,
tanh or ReLU), λ > 0, and ε > 0, there exist parameters
θ = {W2,W3} such that

‖fde(Y0; θ)− V0VT0 ‖F < ε, (12)

‖fde(Y; θ)− V0VT0 ‖F < ε+ min{d, n}+ r0, (13)

‖fde(X0; θ)− V0VT0 ‖F < ε+ nα0η +O(η), (14)

‖fde(X; θ)− V0VT0 ‖F < ε+ min{d, n}+ r0
+ nαη +O(η), (15)

where α0 = ‖Y†0V‖F + ‖∂fde(Y0;θ)
∂Y0

‖F, α = ‖Y†V‖F +

‖∂fde(Y0;θ)
∂Y0

‖F, Y†0 and Y† are the pseudoinverses of Y0 and

Y, V = I− V0VT0 , and O(η) is a higher-order infinitesimal.
For Y0 (or Y) as the input data in (1), (12) (or (13)) nat-

urally implies that fde(Y0; θ) (or fde(Y; θ)) universally ap-
proximates to the exact (or bounded) recovery of the row
space identified by V0VT0 . Moreover, when X0 (or X) is close
to Y0 (or Y), (14) (or (15)) also implies that fde(X0; θ) (or
fde(X; θ)) universally approximates to the bounded recovery
of the row space identified by V0VT0 . Moreover, an experi-
ment verifies the deep encoder effectively approximates to the
low-rank recovery of row space in the right picture of Fig. 2.

5 Experiments
In this section, several experiments were conducted to verify
the best results of our PLrSC. First, we described the three
real-world datasets. Second, many state-of-art methods and
evaluation metric were introduced. Finally, we verified the
effectiveness of PLD and the clustering results.

Datasets: We conducted experiments on three large scale
datasets shown in Table 1. A brief description of the datasets
is listed below. MNIST2 contains 70,000 training and testing
examples with 28× 28 pixel greyscale images of handwritten
digits 0-9. MNIST-SC is a variant of MNIST. We follow the
settings [You et al., 2016], and compute the feature vectors of
each image by using a scattering convolution network [Bruna
and Mallat, 2013]. Each feature vector is of size 3,472, which
is a concatenation of coefficients in each layer of the network
and is dropped to 500 dimensions by PCA. NORB3 contains

2http://yann.lecun.com/exdb/mnist/
3http://www.cs.nyu.edu/ ylclab/data/norb-v1.0-small/
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Low-rank Representation Predictive Low-rank Decomposition (Ours)

Figure 2: Illustrations of projective low-rank representations on MNIST-SC with 10 classes. Left: Representations produced by LRR on 500
samples. Right: Representations computed by deep encoder learned from PLD on 2,000 samples.
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Figure 3: (A), (B), (C) and (D) show ACC (%) and NMI (%) with different hidden units, parameter λ, layers and sampling data points on
MNIST-SC. (E) plots the convergence of approximated accuracy between low-rank representation and deep encoder.

images of 3D object toys belonging to 5 generic categories:
four-legged animals, human figures, airplanes, trucks, and
cars. There are 48,600 images combined the training samples
with test samples. The original 2 × 96 × 96 images were
subsampled to 2× 32× 32, and reduced to 500 by PCA.

5.1 Baseline Methods and Evaluation Metric.
We used the following algorithms as baseline methods.

LRR [Liu et al., 2013] is to construct the similarity graph
by learning low-rank representations and segment this graph
by Normalized Cuts (NCut) [Shi and Malik, 2000]).

FSC is to fast build an similarity matrix for segmenting
the data points, such as Nyström [Chen et al., 2011], and
landmark-based spectral clustering (LSC) [Cai and Chen,
2015]. Nyström was used to learn an approximate eigen-
decomposition of the whole similarity matrix, and NyströmO
[Chen et al., 2011] was constrained in the orthogonal eigen-
vectors. LSC [Cai and Chen, 2015] selected a few data points
to build the similarity matrix. LSC-K used k-means to select
the landmarks, while LSC-R was random.

Sampling-Clustering-Classification (S-C-C) is a scalable
clustering strategy. Based on LRR, sparse subspace cluster-
ing (SSC) and least square regression (LSR), select+LRR
(selLRR), select+SSC (selSSC) [Wang et al., 2014], scalable
LRR (SLRR), scalable SSC (SSSC) and scalable LSR (SLSR)
[Peng et al., 2016] are to sample a few data points to cluster
the sampling data points, and then learn a linear classifier or
CRC to segment the rest data.

PLrSC is our scalable clustering scheme in a pattern of
“Sampling-PLD-FSC”. We also sample a few data points to
train a deep encoder by PLD for fast computing the low-rank
representations, and employ LSC-K to segment the data points.
Similarly, predictive sparse decomposition (PSD) [Gregor and
LeCun, 2010], denoising autoencoder (DAE) [Vincent et al.,
2010], robust principal component analysis encoder (RPCAec)
[Sprechmann et al., 2015] and latent LRR (latLRR) [Liu and
Yan, 2011] are used to learn sparse and low-rank codes.

Clustering results are measured by using Clustering Accu-

Table 2: Effectiveness of PLD compared with LRR on MNIST-SC
(randomly selected 1200 samples).

ACC NMI coding time (s)
PLrSC (ours) 88.6±3.96 81.4±3.50 0.025

LRR [Liu et al., 2013] 86.1±5.49 81.0±3.08 16.36

racy (ACC) [Cai and Chen, 2015] and Normalized Mutual
Information (NMI) [Cai and Chen, 2015] between the clus-
tering label and the ground truth label. ACC and NMI range
from 0 to 1. A higher value reveals a better clustering result.
All experiments were implemented in MATLAB R2015a and
run on a Linux machine with 2.7 GHz CPU, 24GB memory.
For each data set, the final results were reported as the average
and variance of 10 times repetition.

5.2 Effectiveness and Parameter Analysis.
Before reporting clustering results, clustering time and param-
eter analysis, we first verify the effectiveness of our proposed
PLD as PLrSC is built by PLD. PLD is to approximate low-
rank codes learned from LRR by training a deep encoder. To
verify this approximation, the first experiment is to compare
our algorithm with LRR. Due to the limited space, we only
select 1,200 training samples on MNIST-SC to conduct this
experiment as LRR is nearly impossible to preform clustering
on whole MNIST-SC. The results in Table 2 show that PLD
has better ACC and NMI than LRR by 2.5% and 0.4% im-
provement. Furthermore, Fig. 3 (E) plots the convergence of
approximated accuracy, and Fig. 2 illustrated the predictive
low-rank representations calculated by the deep encoder.

The regularization parameter γ and the learning rate η are
easy to set γ = 1 and η = 0.001 or 0.0001 in this paper.
Particularly, we focus on the effects of λ, hidden units and
layers, which are important to the proposed method, because
λ controls the sparse term, and hidden units and layers restrict
the power of deep encoder. Fig. 3 (A) shows PLrSC gets
the best results when the number of hidden units was 2000 in
the three-layer deep encoder in PLD. Fig. 3 (B) reveals that
when λ = 0.1 PLrSC reaches the best ACC and NMI. Fig. 3
(C) indicates that PLrSC achieves the good results when the
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Table 3: ACC (%) and NMI (%) on large scale datasets. The randomly selected number of samples in MNIST-SC, MNIST and NORB are
500, 2000, 3000. The final results were reported as the average and variance of 10 times repetition.

MNIST-SC (500) MNIST (2000) NORB (3000)
ACC NMI ACC NMI ACC NMI

Fast Spectral Clustering (FSC)
Nyström [Chen et al., 2011] 70.8±7.56 64.2±3.58 52.7±1.46 47.4±0.38 37.1±0.84 18.7±0.59

NyströmO [Chen et al., 2011] 71.0±7.43 63.9±3.65 52.1±3.48 46.9±1.49 37.3±0.88 18.9±0.25
LSC-R [Cai and Chen, 2015] 81.2±1.06 73.9±1.11 58.5±4.19 55.8±2.65 43.3±2.29 27.6±2.33
LSC-K [Cai and Chen, 2015] 85.9±0.34 80.2±0.45 68.3±4.99 67.7±2.29 45.5±1.35 30.9±0.52

Sampling-Clustering-Classification (S-C-C)
selSSC [Wang et al., 2014] 74.7±5.58 69.9±2.93 55.2±1.63 54.4±2.19 36.0±3.36 18.9±6.75
selLRR [Wang et al., 2014] 75.4±4.31 69.2±2.27 55.4±5.11 52.1±2.50 40.6±0.18 21.5±0.21
SLSR [Peng et al., 2016] 75.4±5.60 70.6±2.91 54.1±1.56 48.1±0.87 39.9±0.31 20.6±0.15
SLRR [Peng et al., 2016] 79.7±0.68 76.5±1.44 50.0±3.87 49.1±2.27 40.1±0.74 21.6±0.81
SSSC [Peng et al., 2016] 78.9±4.88 76.4±3.25 54.9±1.89 49.9±1.15 39.3±2.00 15.1±3.06

Sampling-Projective Coding-Fast Clustering (S-PC-FC)
DAE [Vincent et al., 2010] 88.0±5.90 82.4±2.80 68.9±3.71 65.6±1.67 36.8±3.79 17.1±4.49

PSD [Gregor and LeCun, 2010] 79.0±3.06 77.3±2.10 50.1±1.79 43.7±0.38 41.3±3.46 24.4±2.43
latLRR [Liu and Yan, 2011] 88.8±5.85 83.1±2.47 53.2±2.38 49.5±1.21 39.0±0.45 21.6±0.99

RPCAec [Sprechmann et al., 2015] 71.0±5.44 64.6±4.06 54.6±5.95 52.2±4.16 45.3±0.97 31.2±2.53
PLrSC (ours) 95.8±0.18 89.6±0.31 71.1±2.98 68.1±1.51 50.3±1.61 36.5±3.66

number of layers is 3 in PLD. Fig. 3 (D) shows ACC and NMI
with different numbers of sampling data points, and there are
similar results when the number is over 400.

5.3 Clustering Results.
All clustering results on MNIST-SC, MNIST, and JCNORB
are shown in Table 3. From Table 3, we observe that our
approach (PLrSC) performs best among the existing methods.
Note that our result on MNIST-SC exceeded the state-of-art
ACC 93.8% [You et al., 2016] by more than 2%, and 94.3%
[Li et al., 2017a] by more than 1%. The former spends 1,680
seconds, while our model only takes 28 seconds. Moreover,
the latter only uses 6,000 data points.

Compared to RPCAed, DAE PSD and latLRR, PLrSC per-
forms best among all the fast coding methods although they
have the similar inference times. The important reason is that
PLrSC can effectively compute the predictive low-rank rep-
resentation by deep encoder in Fig. 2. In the experiments,
we use the best three-layer deep encoder in RPCAed, DAE
and PSD, while latLRR is self-restricted to a linear encoder.
In fact, PLrSC has higher ACC than the predictive methods
by average 15.4% (RPCAed), 12.1% (latLRR), 15.6% (PSD)
and 7.8% (DAE) improvement on the three datasets. PLrSC
also is better in NMI than the predictive methods by at least
9.7% improvement on average.

Compared to selLRR, selSSC, SLRR, SSSC and SLSR,
PLrSC’s performance is much better, since it makes at least
14.7% ACC and 15.7% NMI improvement in Table 3. The
important reason is that the ill clustering accuracy on the
selected samples leads to poor classification results, while
PLrSC quickly computes the low-rank codes and employs
LSC-K to segment the data points. Compared to LSC-K, LSC-
R, Nyström and NyströmO, fast coding is effective for FSC.
Actually, Table 3 shows that PLrSC also registers at leat 5.8%
ACC and 5.1% NMI improvement over FSC. This reveals that
fast low-rank representations is very important to FSC.

We report the coding and clustering time costs in Tables
2 and 4, respectively. From Table 2, we see that PLD is at
least 600 times faster than LRR in the coding time as it only

Table 4: Overall clustering time (s) compared to S-C-C.

MNIST-SC MNIST NORB
selSSC [Wang et al., 2014] 310.62 739.58 759.32
selLRR [Wang et al., 2014] 549.21 1569.15 2078.52
SLSR [Peng et al., 2016] 289.91 601.23 620.39
SLRR [Peng et al., 2016] 283.25 638.76 667.57
SSSC [Peng et al., 2016] 291.53 613.01 651.16

PLrSC (ours) 27.12 93.53 43.61

computes a non-iterative deep encoder. Furthermore, Table 4
also shows that PLrSC was at least 6 times faster than S-C-C
in the whole clustering time. Although PLrSC has the similar
clustering time to the other S-PC-FC methods, it achieves the
best results in Table 3. Compared to FCS, PLrSC needs a little
more time cost as it uses the deep encoder to fast compute
the low-rank codes. In fact, the coding time of PLrSC can be
ignored when increasing the number of data points.

6 Conclusions
In this paper we have proposed a fast low-rank coding mod-
el, named predictive low-rank decomposition (PLD), which
trained a deep encoder to approximate the low-rank codes. It
was solved by an alternating direction method and a gradient
descent algorithm. Based on PLD, we introduced a projective
low-rank subspace clustering (PLrSC) scheme to segment big
dataset. This scheme firstly sampled a few data points from
big datasets, learned a deep encoder by PLD, computed low-
rank codes of all data points by deep encoder, and employed
fast spectral clustering to cluster the low-rank codes for seg-
menting big dataset. Experimental results have verified that
PLrSC outperforms several state-of-the-art baseline methods.
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