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Abstract—Outlier detection is a key technique in data ming
and machine learning fields. The deviating characters of
outliers make huge detrimental effects on the learning tasks.
A lot of algorithms are therefore proposed to handle outliers
from different perspectives, such as distance, density, angle and
so on. Among these approaches, the density-based methods
achieve better performance, but also suffer from huge time
complexity. Recently, in order to accelerate the speed and
improve the performance, the subsampling ensemble method
attracts much attention, which has a reasonable theoretical
interpretation and high performance. However, existing work
only gives the partial picture of outlier detection via row-
sampling, the effective portfolio of bi-sampling is still void.
In light of this, we propose the general outlier detection
framework via bi-sampling, Bi-Sampling Outlier Detection
(BSOD) and provide the effective portfolios of the row and
column-sampling ratios in a theoretical way. In addition, the
benefits of BSOD are fully illustrated in terms of ensemble
diversity and divide-and-conquer. Further we employ LOF
within BSOD as BI-LOF to conduct extensive experiments.
In general, on 30 synthetic and 17 real-world data sets we
thoroughly explore the characteristics of BI-LOF with different
numbers of instances, features, nearest neighbors, validate
the theoretical analysis of BSOD condition on synthetic data
sets, and show obvious advantages over other state-of-the-art
algorithms in terms of low and high dimensional real-world
data sets. And finally we use BI-LOF to conduct image outlier
detection and show high quality and stableness of BI-LOF.
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I. INTRODUCTION

Outlier detection or anomaly detection is a hot topic
in data mining and machine learning areas [1, 13, 44],
especially in the era of big data. Robustness analysis plays
crucial roles for real-world applications [30–32], such as
credit card fraud identification, network intrusion detection,
valuable user mining. In these cases, we are more interested
in outliers for their higher values. In other cases, outliers
generate from noise disturbance or equipment fault, which
should be removed first since the deviating characters of
outliers make huge detrimental effects on the learning tasks.

To handle outliers, three strategies are proposed. (1) Some
methods are designed to be naturally robust to outliers.
These methods focus on specific tasks, such as image
reconstruction [24, 34], robust clustering [11]. (2) Some
methods apply outlier correction to modify outliers to good
training instances [14, 16]. (3) Some methods remove out-
liers first then conduct the learning tasks [4, 12, 38–40]. The
first two kinds belong to application-related or task-driven

methods, and recent years have witnessed various outlier
detection approaches of the third kind, including statistic-
based methods [2], cluster-based methods [10, 11], density-
based methods [9, 37] and angle-based methods [21, 36].
Among these methods, density-based methods attract a lot
of increasing attention. Usually this kind of methods assigns
a score to each instance and ranks the score for top K outlier
candidates. Especially the methods from local perspective
can handle multi-density data sets and identify the outliers
located between different clusters. Local Outlier Factor
(LOF) [8] is one of classic local outlier detection methods,
which calculates the local density via averaging the density
of its neighbors. Along this line, variants of the local outlier
model include LoOP [19], LOCI [35], LDOF [41]. Although
local outlier detection methods outperform other methods
in terms of accuracy, the high time and space complexity
precludes themselves to handle large-scale data sets.

Some scholars also apply ensemble method to improve the
performance of outlier detection. With the success of ensem-
ble methods [26–29], Lazarevic and Kumar [22] leveraged
feature bagging to generate diversity sub data sets, conducted
outlier detection on each sub data set and combines these
scores via breadth-first approach. Further, Zimek et al. [43]
used instance sampling method to detect outliers and first
uncovered the theoretical foundation why the ensemble
learning is conductive to outlier detection. However, such
interpretation is misleading; as reported in [3], row-sampling
can only increase the distance between inliers and outliers
by the same rate, but it fails to enlarge the rank between
them. Besides, all these existing studies only give the partial
picture by row-sampling or column-sampling and the more
general effective portfolio of bi-sampling is missing.

In order to accelerate the speed of local outlier meth-
ods and derive the theoretical analysis of bi-sampling for
outlier detection, we propose the general outlier detection
framework via bi-sampling, Bi-Sampling Outlier Detection
(BSOD). First, dimension reduction is applied via column-
sampling, then some instances are selected via row-sampling
to build the neighborhood set. Next we build the distance
matrix to find nearest neighbors. Different from traditional
nearest neighbors which finds neighbors in all data except
itself, here we only find neighbors in the selected instances.
Next we apply LOF as the core outlier detection algorithm
within BSOD and call it BI-LOF to assign a score to each
instance. We repeat the above process several times to obtain
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the set of basic results and then fuse these basic results
into the final one. Based on the framework, we conduct a
theoretical analysis of BSOD, derive the condition of BSOD
and showcase the effective portfolios of row sampling and
column sampling ratios for outlier detection. In addition,
we find that column-sampling falls into infeasible area of
BSOD condition so that it suffers from bad performance.
Through extensive experiments, we systematically explore
the impact factors of BI-LOF on 30 synthetic data sets such
as the number of instances, features and nearest neighbors
and row-and-column sampling ratios, validate the theoretical
conclusion of BSOD condition, and demonstrate BI-LOF
can generate competitive results with high efficiency com-
pared to the state-of-the-art outlier detection algorithms on
17 real-world data sets. It is worth noting that (1) column-
sampling suffers from bad performance on low dimensional
data sets, however, it performs high results on high dimen-
sional data sets, (2) for row-sampling, on the contrary, it
achieves high quality results on low dimensional data sets
and becomes struggled on high dimensional data sets, (3)
our method keeps consistently high performance on both
low and high dimensional data sets. Moreover, we also
validate our framework in image outlier detection domain
to illustrate the effectiveness and stableness of BI-LOF. Our
contributions are highlighted in the following aspects:

∙ We propose Bi-Sampling Outlier Detection framework
and derive the condition of BSOD in a theoretical way
to illustrate the effective portfolios of row and column-
sampling ratios to enlarge the gap between outliers and
inliers.

∙ Benefits of BSOD are fully analysed in terms of ensem-
ble diversity and divide-and-conquer. BSOD not only
gains more meaningful density but also improves the
performance with less time and space cost as well. At
the same time, large-scale and high dimensional data
sets can be decomposed into several small sub data sets
which can be handled in a separate and independent
way.

∙ Experimental results show BI-LOF is very effective
and efficient compared to other state-of-the-art outli-
er detection methods even with only 10% row and
column-sampling ratios and 10 ensemble members.
This indicates that we can use less time and space
resources to achieve superior performance compared to
other outlier detection methods.

The rest of the paper is organized as follows. We discuss
related work in Section II and derive the condition of
BSOD and analyse the benefits of BSOD in Section III.
Experimental results on both synthetic and real-world data
sets are provided in Section IV, then we conclude the paper
in Section V.

II. RELATED WORK

Generally speaking, outlier detection can be roughly
generalized into three categories due to the availability of
labels, supervised learning, semi-supervised learning and
unsupervised learning. In supervised learning and semi-
supervised learning, outlier detection is formulated into a
classification problem. However, in most cases, we have to
resort to unsupervised outlier detection due to lack of label
information. Therefore we focus on unsupervised outlier
detection in the following.

In unsupervised outlier detection, we calculate a score
for each point and rank the scores or set a threshold for
finding top 𝐾 outlier candidates. Many algorithms have been
proposed to measure the similarity among instances. The
distance-based notion of outliers is the first database-oriented
approach in the area of unsupervised outlier detection [17].
Along this line, model-based methods [2], density-based
methods [9, 37], angle-based methods [21, 36], cluster-
based methods [10, 11] are included to enrich this kind
study. These methods are also known as 𝑔𝑙𝑜𝑏𝑎𝑙 methods
in which the computed scores use the information of all
other instances. Another kind of methods is 𝑙𝑜𝑐𝑎𝑙 methods.
This kind of methods make uses of nearest neighbors to
calculate the score for each instance. The most classic
local outlier detection algorithm is LOF [8], which con-
siders local density scores via averaging the density of
k-nearest neighbors. Variants of the local outlier model
includes LoOP [19], LOCI [35], LDOF [41]. Although these
local outlier detection methods achieve better performances
compared to global ones, it needs too much computational
resources to calculate the similarity or dissimilarity matrix
between instances, which precludes themselves to handle
large scale data sets. More details can be found in the
surveys [13, 44].

Besides, much research has aimed to improve the effi-
ciency of unsupervised outlier detection by approximation
or pruning techniques for mining top K outliers [5, 6, 15].
Sampling approach is another way to accelerate. Kollios et
al. applied the biased sampling to generate subspace and
transfer the problem into a small-size one [18]. Kriegel et al.
proposed an axis-based method SOD to project the instances
into each attribute and calculated the distance between each
instance and the center point [20]. Recent years have wit-
nessed the huge success of ensemble learning [25], especial-
ly in the classification and clustering domains. Lazarevic and
Kumar combined sampling approach and ensemble method
to conduct outlier detection [22]. Several basic results are
obtained by employing outlier detection algorithm on the
sub data generated by random feature selection and then
they fused the basic results into the final one by averaging.
Further, Zimek et al. used instance sampling methods to
detect outliers and first uncovered the theoretical foundation
why the ensemble learning is conductive to outlier detec-
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tion [43]. However, such interpretation is misleading; as
reported in [3], row-sampling can only increase the distance
between inliers and outliers by the same rate, but it fails
to enlarge the rank between them. In addition, all existing
studies only show the partial picture by row-sampling or
column-sampling, the theoretical analysis of bi-sampling
outlier detection is heavily needed.

In addition, with the rich data collected from multi-
sources, multi-view outlier detection catches increasing at-
tentions, which aims to detect the instances exhibiting dif-
ferent behaviors in different views [23, 33, 42]. Multi-view
outlier detection is not the problem we address here; thus,
we do not include these studies in this paper.

In order to accelerate the speed of local outlier methods
and derive the theoretical analysis of bi-sampling for outlier
detection, we propose the general outlier detection frame-
work via bi-sampling BSOD, and provide the condition for
choosing effective portfolios of row and column-sampling
ratios.

III. BI-SAMPLING OUTLIER DETECTION ENSEMBLE

In this section, we first give two assumptions of outlier
detection based on expectation distance in order to enlarge
the gap between outliers and inliers. During the analyses
of the condition of BSOD, we cancel one assumption and
derive the effectiveness of portfolios for row and column
sampling ratios. Then the benefits of BSOD are fully illus-
trated in ensemble diversity and divide-and-conquer. Finally,
we showcase the framework and methods of BSOD.

A. Condition of BSOD

Since outliers are far away from others, we expect to
enlarge the gap between inliers and outliers via bi-sampling.
To depict the distance, we introduce the definition of Expec-
tation Distance [7].

Definition 1: Expectation Distance. Given a point and
its sphere of radius 𝑟 in a 𝑑-dimensional Euclidean space,
containing 𝑛 data points uniformly distributed within the
sphere, the expected Euclidean distance from the point to
its 𝑘−nearest neighbour 𝐸{𝑑𝑘} is given by:

𝐸{𝑑𝑘} = 𝑟

(
𝑘

𝑛

) 1
𝑑

. (1)

Based on Eq. 1, we analyse the expectation distance after
sampling. Let 𝜆 ∈ (0, 1] be the row-sampling ratio, or
instance sample ratio, and 𝜙 ∈ (0, 1] be the column-sampling
ratio, or the feature sample ratio. Then we have expectation
distance of row-sampling 𝐸𝑟𝑠{𝑑𝑘}, expectation distance of
column-sampling 𝐸𝑐𝑠{𝑑𝑘} and expectation distance of bi-
sampling 𝐸𝑏𝑠{𝑑𝑘} as follows.

𝐸𝑟𝑠{𝑑𝑘} = 𝑟

(
𝑘

𝜆𝑛

) 1
𝑑

and 𝐸𝑐𝑠{𝑑𝑘} = 𝑟

(
𝑘

𝑛

) 1
𝜙𝑑

. (2)

𝐸𝑏𝑠{𝑑𝑘} = 𝑟

(
𝑘

𝜆𝑛

) 1
𝜙𝑑

. (3)

Based on the definition of 𝐸𝑟𝑠{𝑑𝑘} and 𝐸𝑐𝑠{𝑑𝑘}, then
we give the following Theorem 1 to demonstrate the change
after row-sampling and column-sampling.

Theorem 1: Expectation distance would increase after
row-sampling; on the contrary, expectation distance would
decrease after column-sampling.
Proof. Due to

𝐸{𝑑𝑘}
𝐸𝑟𝑠{𝑑𝑘} =

𝑟
(
𝑘
𝑛

) 1
𝑑

𝑟
(

𝑘
𝜆𝑛

) 1
𝑑

= 𝜆
1
𝑑 < 1. (4)

Since 0 ≤ 𝜆 ≤ 1, we obtain 𝐸{𝑑𝑘} < 𝐸𝑟𝑠{𝑑𝑘}. Similarly,
we have the following equation for column-sampling

𝐸{𝑑𝑘}
𝐸𝑐𝑠{𝑑𝑘} =

𝑟
(
𝑘
𝑛

) 1
𝑑

𝑟
(
𝑘
𝑛

) 1
𝜙𝑑

=

(
𝑘

𝑛

) 1
𝑑− 1

𝜙𝑑

> 1. (5)

That means 𝐸{𝑑𝑘} > 𝐸𝑐𝑠{𝑑𝑘} according to 0 ≤ 𝜙 ≤ 1. We
complete the proof. □

Although it is easy to show that row-sampling increases
expectation distance, on the contrary, column-sampling de-
creases expectation distance, we do not know the change
of expectation distance after bi-sampling 𝐸𝑏𝑠{𝑑𝑘}. Further-
more, Theorem 1 gives the foundation of outlier detection
via sampling and leads to the following assumptions to
analysis the conditions for BSOD.
Assumptions of outlier detection via sampling: When ap-
plying sampling to detect outliers, it should satisfy one of
following conditions in order to enlarge the gap between
inliers and outliers:

∙ The expectation distance of outliers should rise faster
than the one of inliers if expectation distance goes up.

∙ The expectation distance of outliers should drop slower
than the one of inliers if expectation distance goes
down.

In the assumptions of outlier detection via sampling,
the key part is to measure the change rate of expectation
distance. In addition, bi-sampling is a more general case
of row-sampling and column-sampling. Thus, we we give
the definition of Change Rate of Expectation Distance of
bi-sampling in Definition 2.

Definition 2: Change Rate of Expectation Distance for
bi-sampling. Δ𝐸{𝑑𝑘} is the change rate of the expectation
distance 𝐸𝑑𝑘

for bi-sampling by

Δ𝐸{𝑑𝑘} =
𝐸𝑏𝑠{𝑑𝑘}
𝐸{𝑑𝑘} . (6)

Due to Definition 2, we derive the relationship between
inliers and outliers on the change rate of expectation distance
for bi-sampling in Theorem 2.
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Theorem 2: Given one inlier and one outlier containing
𝑛1 and 𝑛2 points (𝑛1 > 𝑛2) respectively in its corresponding
sphere of radius 𝑟, we have Δ𝐸𝑖𝑛{𝑑𝑘} < Δ𝐸𝑜𝑢𝑡{𝑑𝑘}.
Proof. According to Definition 2, we have

Δ𝐸𝑖𝑛{𝑑𝑘}
Δ𝐸𝑜𝑢𝑡{𝑑𝑘} =

𝐸𝑖𝑛
𝑏𝑠 {𝑑𝑘}

𝐸𝑖𝑛{𝑑𝑘} ⋅ 𝐸
𝑜𝑢𝑡{𝑑𝑘}

𝐸𝑜𝑢𝑡
𝑏𝑠 {𝑑𝑘}

=
𝐸𝑖𝑛
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𝐸𝑜𝑢𝑡
𝑏𝑠 {𝑑𝑘} ⋅ 𝐸

𝑜𝑢𝑡{𝑑𝑘}
𝐸𝑖𝑛{𝑑𝑘}

=
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) 1
𝜙𝑑

⋅
(
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) 1
𝑑

=

(
𝑛2

𝑛1

) 1
𝜙𝑑− 1

𝑑

.

(7)

According to Eq. 7, 𝜙 is less than 1 and given 𝑛1 > 𝑛2, we
have Δ𝐸𝑖𝑛{𝑑𝑘} < Δ𝐸𝑜𝑢𝑡{𝑑𝑘} for bi-sampling and finish
the proof. □

Remark 1: In above analysis, for expectation distance,
row-sampling makes it increase, column-sampling drops it
and the change is uncertain for bi-sampling. However, for
the change rate of expectation distance, the change rate of
expectation distance of outliers is always larger than or equal
the one of inliers no matter which sampling strategy is used.

Remark 2: In the existing literature, Zimek et al. [43]
used row-sampling to detect outliers, which means 0 < 𝜆 <
1 and 𝜙 = 1, then Δ𝐸𝑖𝑛{𝑑𝑘} = Δ𝐸𝑜𝑢𝑡{𝑑𝑘}. That is to
say, when applying row-sampling, the change of expectation
distance of inliers and outliers can be kept in the same rate.
Instead we can make the change rate of expectation distance
of inliers and outliers different via bi-sampling. It is useful
to enlarge the gap between inliers and outliers. Especially
in this case, we make the change of outliers faster than the
one of inliers. It is worthy to note that the change rate ratio
between inliers and outliers has no relationship with the row-
sampling ratio 𝜆, instead the column-sampling ratio 𝜙 is the
intrinsic factor to enlarge the gap ratio between inliers and
outliers.

Theorem 2 indicates that the change rate of expectation
distance of outliers is always larger than the one of inliers via
bi-sampling. Therefore, we can cancel the second assump-
tion of BSOD and focus on the first one. We will illustrate
the concrete condition in Theorem 3.

Theorem 3: Given bi-sampling increases expectation dis-
tance so that 1 < Δ𝐸𝑖𝑛{𝑑𝑘} < Δ𝐸𝑜𝑢𝑡{𝑑𝑘}, the gap be-
tween inliers and outlies after bi-sampling will be enhanced.
Proof. According to Eq. 6, we have 𝐸𝑏𝑠{𝑑𝑘} =
Δ𝐸{𝑑𝑘}𝐸{𝑑𝑘}. Then it follows that

𝐸𝑜𝑢𝑡
𝑏𝑠 {𝑑𝑘} − 𝐸𝑖𝑛

𝑏𝑠 {𝑑𝑘}
= Δ𝐸𝑜𝑢𝑡{𝑑𝑘}𝐸𝑜𝑢𝑡{𝑑𝑘} −Δ𝐸𝑖𝑛{𝑑𝑘}𝐸𝑖𝑛{𝑑𝑘}
= Δ𝐸𝑖𝑛(𝐸𝑜𝑢𝑡{𝑑𝑘} − 𝐸𝑖𝑛{𝑑𝑘}) + (Δ𝐸𝑜𝑢𝑡 −Δ𝐸𝑖𝑛)𝐸𝑜𝑢𝑡{𝑑𝑘}
> Δ𝐸𝑖𝑛(𝐸𝑜𝑢𝑡{𝑑𝑘} − 𝐸𝑖𝑛{𝑑𝑘})
> 𝐸𝑜𝑢𝑡{𝑑𝑘} − 𝐸𝑖𝑛{𝑑𝑘}.

(8)

We complete the proof. □

Remark 3: When 1 < Δ𝐸𝑖𝑛{𝑑𝑘} < Δ𝐸𝑜𝑢𝑡{𝑑𝑘}, the gap
between outliers and inliers will enlarge; however, under
other conditions, like Δ𝐸𝑖𝑛{𝑑𝑘} < Δ𝐸𝑜𝑢𝑡{𝑑𝑘} < 1 or
Δ𝐸𝑖𝑛{𝑑𝑘} < 1 < Δ𝐸𝑜𝑢𝑡{𝑑𝑘}, the enlarged gap cannot
be always guaranteed. Thus, the first assumption is just the
sufficient condition of BSOD. From Theorem 3, we cancel
one assumption and finally have the following corollary.

Corollary 1: If bi-sampling makes the expectation dis-
tance of points increase, the gap between inliers and outliers
will be enhanced to distinguish the outliers from inliers.

Therefore, how to make expectation distance of all in-
stances increase via bi-sampling is the core part of BSOD.
Theorem 4 gives the guidance of choosing effective portfo-
lios of row-sampling and column-sampling ratios.

Theorem 4: Let the row-sampling ratio 𝜆 ∈ (0, 1] and the
column-sampling ratio 𝜙 ∈ (0, 1], if it satisfies that 𝑘(1−𝜙) ≥
𝜆𝑛(1−𝜙), then 𝐸𝑏𝑠{𝑑𝑘} ≥ 𝐸{𝑑𝑘} holds, where 𝐸𝑏𝑠{𝑑𝑘}
and 𝐸{𝑑𝑘} are the expectation distance of a point with bi-
sampling or not, 𝑘 is the 𝑘-nearest neighbor of the point, 𝑛
is the number points within the sphere of radius 𝑟.
Proof. When 𝑘(1−𝜙) ≥ 𝜆𝑛(1−𝜙), we have

𝑘(1−𝜙) ≥ 𝜆𝑛(1−𝜙)

⇒ 1

𝜙𝑑
ln

((
𝑘

𝑛

)1−𝜙

⋅ 1
𝜆

)
≥ 0

⇒ 1

𝜙𝑑
ln

(
𝑘

𝜆𝑛

)
− 1

𝑑
ln

(
𝑘

𝑛

)
≥ 0

⇒ ln

(
𝑟

(
𝑘

𝜆𝑛

) 1
𝜙𝑑

)
− ln

(
𝑟

(
𝑘

𝑛

) 1
𝑑

)
≥ 0

⇒ ln

(
𝐸𝑏𝑠{𝑑𝑘}
𝐸{𝑑𝑘}

)
≥ 0

⇒ 𝐸𝑏𝑠{𝑑𝑘} ≥ 𝐸{𝑑𝑘}.

(9)

We complete the proof. □
Remark 4: Through bi-sampling, the change direction

of expectation distance is uncertain; however, Theorem 4
uncovers the relationship between 𝜆 and 𝜙 to make the
expectation distance increase. Under the above circumstance,
we can enlarge the gap between inliers and outliers via bi-
sampling.

Remark 5: Zimek et al. [43] used row-sampling to detect
outliers, which means 0 < 𝜆 < 1 and 𝜙 = 1, Theorem 4
degenerates into 𝜆 ≤ 1, which always holds for row-
sampling. In this paper, we give the more general framework
via bi-sampling, which shows that the row-sampling is only
a special case of BSOD. However, the column-sampling is
not an effective strategy for outlier detection. We also verify
this point in the experimental section.
Based on Theorem 2, 3 and 4, we finally give the sufficient
condition of BSOD for outlier detection.

Corollary 2: If bi-sampling is conductive to outlier de-
tection, the portfolios of row-sampling ratio 𝜆 and column-
sampling ratio 𝜙 satisfy that 𝑘(1−𝜙) ≥ 𝜆𝑛(1−𝜙).
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Table I
TIME COMPLEXITY ANALYSIS

Strategy Build Distance Matrix Find Nearest Neighbors Calculate Density Total Time Complexity
Basic 𝑂(𝑑𝑛2) 𝑂(𝑛2) 𝑂(𝑛) 𝑂(𝑑𝑛2 + 𝑛2 + 𝑛)
Row-sampling 𝑂(𝜆𝑑𝑛2) 𝑂(𝜆𝑛2) 𝑂(𝑛) 𝑂(𝑡(𝜆𝑑𝑛2 + 𝜆𝑛2 + 𝑛))
Column-sampling 𝑂(𝜙𝑑𝑛2) 𝑂(𝑛2) 𝑂(𝑛) 𝑂(𝑡(𝜙𝑑𝑛2 + 𝑛2 + 𝑛))
Bi-sampling 𝑂(𝜙𝜆𝑑𝑛2) 𝑂(𝜆𝑛2) 𝑂(𝑛) 𝑂(𝑡(𝜙𝜆𝑑𝑛2 + 𝜆𝑛2 + 𝑛))

B. Benefits of BSOD

We continue to analysis the benefits of BSOD in ensemble
diversity and divide-and-conquer.

Ensemble diversity. BSOD also enjoys the benefit from
ensemble diversity. Let 𝑑(𝑥) be the observed 𝑘−nearest
neighbors distance of 𝑥, ˆ𝑑(𝑥) be the true 𝑘−nearest neigh-
bors distance of 𝑥 and 𝑣(𝑥) be the residual between the
observed and true distance, we have

𝑑(𝑥𝑖𝑛)− 𝑑(𝑥𝑜𝑢𝑡)

= ˆ𝑑(𝑥𝑖𝑛)− ˆ𝑑(𝑥𝑜𝑢𝑡)︸ ︷︷ ︸
𝛼

+ 𝑣(𝑥𝑖𝑛)− 𝑣(𝑥𝑜𝑢𝑡)︸ ︷︷ ︸
𝛽

. (10)

Although 𝛼 > 0, it is unknown about the signal of 𝛼+𝛽 due
to the residual. It might inverse the density ranking between
inliers and outliers. When it comes to BSOD, we run the
whole process several times and then ensemble these results
by average. Thus, the diversity of ensemble helps to alleviate
the problem. Let 𝑥′ be the new data produced by BSOD, we
have

𝐸[𝑑(𝑥′𝑖𝑛)− 𝑑(𝑥′𝑜𝑢𝑡)]

= 𝐸[ ˆ𝑑(𝑥′𝑖𝑛)− ˆ𝑑(𝑥′𝑜𝑢𝑡) + 𝑣(𝑥′𝑖𝑛)− 𝑣(𝑥′𝑜𝑢𝑡)]

= 𝐸[ ˆ𝑑(𝑥′𝑖𝑛)− ˆ𝑑(𝑥′𝑜𝑢𝑡)] + 𝐸[𝑣(𝑥′𝑖𝑛)]− 𝐸[𝑣(𝑥′𝑜𝑢𝑡)].

(11)

If 𝑣(𝑥) obeys a 𝑁(0, 𝜖) gaussian distribution, we have the
above equation less than zero. By making use of the diversity
of different results, the negative effect of residual might be
alleviated so that the ensemble process will enhance the
robustness and accuracy of outlier detection. Note that the
number of ensemble members is a core factor to control the
stability. From the experimental conclusion, 10 ensemble
members are enough to pursue a satisfactory and stable
result. It is worthy to note that if all the data points are
scaled by 2, there is no change to the traditional outlier
detection methods. However, the gap between inliers and
outliers increases, which leads to a better chance to pursue
higher performance via diverse ensemble members.

Indeed increasing the expectation distance will also in-
crease the variance of the model; however, this is not the
main problem addressed in this paper. Readers who are
interested in this issue, please refer to [3], which provides
some techniques to lower the variance.

Divide-and-conquer. One of our motivations is to accelerate
the speed of the density-based outlier detection methods.
Although this kind of methods achieves better performance
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Figure 1. Relationship between 𝜆 and 𝜙 for BSOD condition.

than others, it needs the similarity or distance matrix to find
nearest neighbors, which is very time-consuming for large-
scale data sets. Therefore, how to decompose a large data
set into several small pieces and keep high quality at the
same time is very appealing.

Fortunately, BSOD shows a promising candidate for out-
lier detection on large scale data sets. Corollary 2 gives
effective portfolios for row and column-sampling ratio to
conduct outlier detection via bi-sampling. We draw the
effective portfolios of 𝜆 and 𝜙 in Figure 1. The part above the
cure is the feasible region. As Figure 1 shows, row-sampling
strategy is represented by the horizontal line with 𝜙 = 1,
which validates the effectiveness of [43] in a theoretical way
and column-sampling strategy is denoted by the vertical line
with 𝜆 = 1, which falls into the infeasible area and suffers
from worse performance. In later experimental part, we also
verify this point on low dimensional data sets.

By taking a closer look at Figure 1, there exist some
portfolios of 𝜆 and 𝜙 are both small to satisfies the BSOD
condition to conduct divide-and-conquer strategy, even when
the value of 𝑘/𝑛 is very small, like 0.1. This indicates that
BSOD can decompose a large and high dimensional data
set into several small and low dimensional sub data sets via
bi-sampling, and then the outlier detection process can be
conducted separately and independently.

C. Framework and Method

Here we illustrate the framework of BSOD and provide
its corresponding analyses. Let 𝑋 be the data matrix with 𝑛
instances and 𝑑 features, and 𝜆 ∈ (0, 1] be the row-sampling
ratio, 𝜙 ∈ (0, 1] be the column-sampling ratio. The overall
framework consists of four phases as follows:

∙ Phase i-Column sampling: We first use column sam-
pling to conduct dimension reduction and obtain a sub
data 𝑋𝑐 with 𝑛 instances and 𝜙𝑑 features.
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∙ Phase ii-Row sampling: On 𝑋𝑐, we employ row sam-
pling to select some instances for the neighborhood set
and obtain a sub data 𝑋𝑐𝑟 with 𝜆𝑛 instances and 𝜙𝑑
features.

∙ Phase iii-Outlier detection: If we apply some outlier
detection methods on the sub data sets, only some
selected instances are assigned a score and the majority
of the instances are discard. Here we expect to calculate
a score for each instance. Therefore, we build a 𝑛×𝜆𝑛
distance matrix between 𝑋𝑐 and 𝑋𝑐𝑟, i.e., we find the
nearest neighbors for each data instance in the sub data
𝑋𝑐𝑟, rather than the all data set 𝑋𝑐. And then outlier
detection method is used to score each data instance.

∙ Phase iv-Ensemble results: The above process is repeat-
ed by 𝑡 times, then we calculate the average of several
results via multi bi-sampling to obtain the consensus
result.

We also analysis the time complexity of different sam-
pling strategies in Table I. The differences among differ-
ent sampling strategies lie in building distance matrix and
finding nearest neighbors. Column-sampling decreases the
time cost in the phase of calculating distance matrix, while
row-sampling and bi-sampling drop the time complexity in
both building distance matrix and finding nearest neighbors.
Especially for bi-sampling the time saving is very appealing,
for instance bi-sampling runs 100 faster than no sampling
when 𝜆 = 𝜙 = 10%. Compared with the no-sampling
strategy, these sampling methods are easy to run in parallel.
It is worthy to note that 𝜙 and 𝜆 can be both small to make
the framework effective. Although the row-sampling and bi-
sampling have similar time complexity, the advantage of bi-
sampling will outstand in terms of high dimensional data.

IV. EXPERIMENTAL RESULTS

In this part, we systematically explore the impact factors
of BI-LOF on synthetic data sets, such as the number of
instances, the number of features, the number of nearest
neighbors and row-and-column sampling ratio, validate the
theoretical condition of BSOD. On real-world data sets, we
demonstrate BI-LOF can generate competitive results with
superior efficiency compared to the state-of-the-art outlier
detection algorithms. Finally, we apply BI-LOF on image
outlier detection and show the effectiveness and stableness
of BI-LOF.

A. Experimental Settings

Data. For synthetic data sets, we simulate 30 data sets
with different the number of instances and features for
statistical assessment. The number of instances 𝑛 varies from
1000, 2000, 10000 to 50000 and the number of feature 𝑑
varies from 20, 100, 200, 500, 1000 to 2000. Each synthetic
data set consists of 𝑐 clusters (c is randomly selected from
5 to 10) and each instance 𝐷𝑐 obeys a Gaussian model
𝐷𝑐 ∼ 𝑁(𝜇𝑐,Σ𝑐) with 𝜇𝑐 = (𝜇1

𝑐 , 𝜇
2
𝑐 , ⋅ ⋅ ⋅ , 𝜇𝑑𝑐) and Σ𝑐 =

Table II
EXPERIMENTAL REAL-WORLD DATA SETS

Data set #Instances #Features #Classes #MinClass #MaxClass
𝑏𝑢𝑝𝑎 345 6 2 145 200
𝑐𝑚𝑐 1473 9 3 333 629
𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠 768 20 8 50 120
𝑖𝑟𝑖𝑠 150 4 3 50 50
𝑙𝑒𝑡𝑡𝑒𝑟 20000 16 26 734 813
𝑝𝑎𝑔𝑒𝑏𝑙𝑜𝑐𝑘 5445 10 5 28 4913
𝑝𝑒𝑛𝑑𝑖𝑔𝑖𝑡𝑠 10992 16 10 1055 1144
𝑠𝑎𝑡𝑖𝑚𝑎𝑔𝑒 4436 36 6 415 1072
𝑦𝑒𝑎𝑠𝑡 1484 8 10 5 463
𝑐𝑎𝑐𝑚𝑐𝑖𝑠𝑖 4663 14409 2 1460 3203
𝑐𝑟𝑎𝑛𝑚𝑒𝑑 2432 41681 2 1033 1398
𝑐𝑙𝑎𝑠𝑠𝑖𝑐 7094 41681 4 1033 3203
𝑚𝑚 2521 126373 2 1133 1388
𝑟𝑒𝑖𝑣𝑒𝑤𝑠 4069 126373 5 137 1388
𝑠𝑝𝑜𝑟𝑡𝑠 8580 126373 7 145 3412
𝑆𝑡𝑎𝑛𝑓𝑜𝑟𝑑 𝐷𝑜𝑔𝑠 12000 12000 120 100 100

(𝜎𝑖𝑗𝑐 )𝑑×𝑑, in which 𝜇𝑐 ∼ 𝑈(−10, 10) and 𝜎𝑖𝑗𝑐 ∼ 𝑈(0.1, 1).
Then we calculate the Mahalanobis distance with 𝜇𝑐 and
Σ𝑐 between the data instance 𝐷𝑐 and its corresponding

cluster center 𝐷𝑀
𝑐 =

√
(𝐷𝑐 − 𝜇𝑐)⊤Σ−1

𝑐 (𝐷𝑐 − 𝜇𝑐), which
obeys 𝐷𝑀

𝑐 ∼ 𝜒2(𝑑). Thus, we label the instances beyond
0.975 fractile as outliers. By these means, we generate 2.5%
outliers for each data sets. The settings is the same with [43],
except that we use larger scale synthetic data sets.

For real-world data sets, we choose 10 low dimensional
data sets from UCI machine learning repository1, 6 high
dimensional text data sets from CLUTO2 and “Stanford
Dogs” image data sets also is included to validate the
effectiveness of BSOD in different domain3. For each data
sets, we use the largest cluster as inliers. For outliers we do
not use the smallest cluster as outliers, because the smallest
cluster might also present density cluster structure, which
should not be regarded as outliers. We neither randomly
select instances from the rest as outliers, because that kind
of outliers is easily to be detected. Instead we randomly
select 10 instances in the smallest cluster as outliers. Note
that since the MinClass of 𝑦𝑒𝑎𝑠𝑡 is only 5, we choose
these 5 instances as outliers. Table II shows some important
characteristics of 17 real-world data sets.

Tools. In this paper, we aim to uncover the effective
portfolio of bi-sampling for density-based outlier detection;
therefore, we include several density-based outlier detection
for comparison. As [43] reported, LOF [8], LoOP [19]
and LDOF [41] presented consistently conclusions when
employed to validate the effectiveness of row-sampling.
Therefore, we only select Local Outlier Factor (LOF) [8]
as core outlier detection algorithm, other outlier detection
algorithms based on local density are also suitable for
bi-sampling outlier detection framework. Then we apply
different sampling strategies via LOF, there come the LOF
via bi-sampling (BI-LOF), the LOF via row-sampling (RS-

1http://archive.ics.uci.edu/ml/.
2http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview.
3http://vision.stanford.edu/aditya86/ImageNetDogs/.
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(a) 𝑑 = 20
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(b) 𝑑 = 200
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(c) 𝑑 = 2000

Figure 2. Performance with different number of instances on synthetic data by AUC.
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(a) 𝑛 = 1000
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(b) 𝑛 = 10000
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(c) 𝑛 = 50000

Figure 3. Performance with different number of features on synthetic data by AUC.
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(a) 𝑛 = 1000
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(b) 𝑛 = 5000
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(c) 𝑛 = 10000

Figure 4. BI-LOF performance with different number of neighbors on synthetic data by AUC.

LOF) [43], the LOF via column-sampling (CS-LOF) [22]
and LOF itself as baseline. The default settings are as
follows: the row-sampling ratio 𝜆 = 10% and the column-
sampling ratio 𝜙 = 10% for BI-LOF, the row-sampling
ratio 𝜆 = 10% for RS-LOF and the column-sampling ratio
𝜙 = 10% for CS-LOF. The repeated times for BI-LOF, RS-
LOF and CS-LOF are all 10 and we set 3-nearest neighbors
for these methods as recommended in [43]. Note that BI-
LOF, RS-LOF and CS-LOF run 10 times and return the
average result, while LOF only runs one time due to its
certainty.

Metric. Since we have the label information, here we use
ROC-AUC, which is widely used in outlier detection.

Environment. All the experiments were run on a Win-
dows Server Standard platform of 64-bit edition, which has
two Intel Xeon x7550 2.0GHz*8 CPUs and 32GB RAM.

B. Performance on Synthetic Data sets

In this part, we first use synthetic data to explore the
characteristics of BI-LOF, especially in terms of the per-
formance with different number of instances, features and
nearest neighbors. Then we validate the theoretical analysis
of BSOD condition in Corollary 2.

1) Impact of the number of instances: First, we investi-
gate the impact of the number of instances. Figure 2 shows
the performance of these four algorithms with different
number of instances and fixed feature number 20, 200

and 2000 respectively. We can see that BI-LOF, RS-LOF
and LOF have good performance on synthetic data sets,
which validates the effectiveness of bi-sampling and row-
sampling strategies. By taking a closer look at Figure 2, both
BI-LOF and RS-LOF slightly outperform LOF; however,
CS-LOF obviously performs worse compared with other
methods, especially when the number of instances is huge in
Figure 2(c). Recall that the BSOD condition in Corollary 2,
we can find that RS-LOF with 𝜆 = 10% is in the feasible
area, instead CS-LOF with 𝜙 = 10% is not a feasible
solution so that it suffers from detrimental performance. For
these outliers which LOF can easily detect, BI-LOF and
RS-LOF can also accomplish the same tasks where BI-LOF
requires less computational resources than RS-LOF.

2) Impact of the number of features: Next, we explore
the impact of the number of features. Figure 3 shows the
performance of these four algorithms with different number
of features and fixed instance number 1000, 10000 and
50000 respectively. Figure 3 has the similar trends with
Figure 2. It can be seen that BI-LOF, RS-LOF and LOF
still have good ability to detect outliers when the number of
features increase; however, the performance of CS-LOF is
much worse in the circumstance of few features, and goes
up with the increasing features, which is still worse than
other algorithms. This is because more features enhance
the discriminative ability for CS-LOF. Generally speaking,
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(a) 𝑑 = 20 (b) 𝑑 = 200 (c) 𝑑 = 2000

Figure 5. Performance of BI-LOF with different sampling ratio on
synthetic data with 𝑛 = 10000 by AUC.

Figure 3 also shows the consistency with the condition
of BSOD. For BI-LOF and RS-LOF, the sampling ratios
of 𝜆 and 𝜙 are both in the feasible region; however, the
sampling ratios of CS-LOF fall into the infeasible region.
That is the reason that BI-LOF and RS-LOF outperform
LOF, instead CS-LOF has worse results than LOF. So far,
it seems that CS-LOF always returns the worst results
among these four algorithms. However, when it comes to
high dimensional data sets, the performance of CS-LOF has
dramatic improvement, which will be illustrated later.

3) Impact of the number of neighbors: In the following,
we study the factor of the number of neighbors of BI-
LOF. Figure 4 shows the BI-LOF performance with different
number of nearest neighbors on synthetic data sets. On
all these data sets with different number of instances and
features, the performance keeps high and stable within the
number of neighbors less than certain threshold and goes
down beyond the threshold. Such phenomena also occur
on other methods. This is reasonable when the number of
neighbors is too large, the radius of the data points would
include too many false neighbors to harm the detection
performance. It is worthy to note that the performance of
BI-LOF is satisfactory when the number of neighbors is very
small. Thus, we set 3-nearest neighbors as default setting,
which has two purposes, one is to have the same setting for
comparison, the other is to save the computational cost.

4) Impact of the portfolio of sampling ratio: Finally, we
use synthetic data to validate the correctness of the condition
of BSOD. Figure 5 shows the heat maps of the performance
with different portfolios of sampling ratios 𝜆 and 𝜙 on three
data sets, where the red parts mean better results and the
blue parts indicate worse results. The top right points denote
the results by LOF. It is easy to see that these figures have
validated Theorem 4. It is worthy to note that Theorem 4
gives the sufficient condition of BSOD, which guarantees the
effectiveness of bi-sampling. From Figure 5, we can see that
the practical boundaries are much wider than the sufficient
condition. In addition, BI-LOF with 𝜆 = 10% and 𝜙 = 10%
has almost equal results with RS-LOF with 𝜆 = 10% and
𝜙 = 100%; that is to say, although the result generated
by RS-LOF has substantial improvement than LOF, we can
use less information and less computation cost and achieve
matchable results via BI-LOF.

Table III
TIME EXECUTION ON HIGH DIMENSIONAL DATA SETS (BY SECOND)

Time
BI-LOF RS-LOF CS-LOF LOF
10 times 10 times 10 times 1 times

𝑐𝑎𝑐𝑚𝑐𝑖𝑠𝑖 7.86 16.62 67.15 8.15
𝑐𝑙𝑎𝑠𝑠𝑖𝑐 11.09 24.15 73.19 14.43
𝑐𝑟𝑎𝑛𝑚𝑒𝑑 8.01 26.25 104.66 24.43

𝑚𝑚 15.03 87.76 294.44 63.22
𝑟𝑒𝑣𝑖𝑒𝑤𝑠 14.54 72.72 297.75 64.37
𝑠𝑝𝑜𝑟𝑡𝑠 81.41 544.13 1016.62 1002.66

C. Performance on Real-world Data sets

Figure 6(a) shows the results on 10 low dimensional real-
world data sets. Generally speaking, BI-LOF and RS-LOF
still have better performance than CS-LOF and LOF in all 10
data sets. BI-LOF achieves the best results on 6 data sets and
draws a tie on 𝑖𝑟𝑖𝑠 data set with RS-LOF. RS-LOF gets the
best results 3 times, which indicates the effectiveness of BI-
LOF on low dimensional real-world data sets. Admittedly
RS-LOF achieves better results than BI-LOF on pendigits
by a large margin, the major goal of this paper is to derive
the effect portfolios for bi-sampling to improve the original
outlier detection algorithm LOF, rather than to beat other
outlier detection methods. Note that RS-LOF is also a special
case of the BSOD condition. From this view, we can see
that BI-LOF outperforms LOF on all 10 data sets, which
demonstrates the great effectiveness of BI-LOF.

CS-LOF does not perform well on the above experiments;
however, the advantage of CS-LOF is obviously observed
on high dimensional data sets. Figure 6(b) shows the results
of these four algorithms on 6 high dimensional real-world
data sets. On 𝑐𝑎𝑐𝑚𝑐𝑖𝑠𝑖 and 𝑐𝑙𝑎𝑠𝑠𝑖𝑐 data sets, BI-LOF,
RS-LOF and CS-LOF detect all the outliers; on the other
data sets, we can see the performance of RS-LOF drops
sharply compared with its performance on low dimensional
data sets and the performance of CS-LOF goes up. Due
to high dimensionality, the distance between any data pair
trends to be equal, which heavily harms the performance of
RS-LOF. Instead, the column-sampling of CS-LOF can be
regarded as a dimension reduction technique, which helps to
alleviate such difficulty. As for BI-LOF, high performance
can be guaranteed no matter on low dimensional or high
dimensional data sets, thanks to the inheritance of good
properties from both row and column-sampling.

Moreover, the advantage of BI-LOF in terms of time
execution outstands when it comes to high dimensional
data sets. Table III gives the time execution of these four
algorithms on these 6 data sets. Although BI-LOF runs 10
times, it is still the fastest one in these four algorithms.
Especially, the time saving of BI-LOF is huge on 𝑠𝑝𝑜𝑟𝑡𝑠
data sets compared to others. BI-LOF is almost 6 times faster
than RS-LOF and 12 times faster than CS-LOF and LOF.
Since each run is independent, we can easily run BI-LOF in
parallel to further speed up.
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Figure 6. Performance on real-world data by AUC.
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Figure 7. Performance of BI-LOF with different repeated times on image data by AUC.

D. BSOD for Image Outlier Detection

Finally, we apply BI-LOF in the image outlier detection to
validate its performance on different domain. The “Stanford
Dogs” image data set contains 120 kinds of different kinds
of dogs and each kind of dogs has 100 images. We select
all images from one kind of dogs as inliers and 10 images
from other kind as outliers. As can be seen in Table IV,
BI-LOF and RS-LOF have obvious advantages than other
algorithms. CS-LOF do not work well partly because the
dimension of the image data sets is not as high as text
data sets. And BI-LOF outperforms RS-LOF on all data sets
except the last one. Despite the fact that BI-LOF only has
subtle improvement over RS-LOF, taking the efficiency into
account, it is very appealing in real-world applications.

On 𝐶ℎ𝑒𝑤/𝑊𝑎𝑙𝑘𝑒𝑟 ℎ𝑜𝑢𝑛𝑑 data set, BI-LOF hits 5 true
outliers in top 10 candidates and the images with two dogs
and different colors result in the wrong decision of BI-LOF.
These conditions can also be regarded as outliers to some
extent since other inliers only contain one dog in one image;
and on 𝑁𝑜𝑟𝑓𝑜𝑙𝑘 𝑡𝑒𝑟𝑟𝑖𝑒𝑟/𝐺𝑖𝑎𝑛𝑡 𝑠𝑐ℎ𝑛𝑎𝑢𝑧𝑒𝑟 data set, BI-
LOF hits 7 true outliers in top 10 candidates. If we enlarge
the number of candidates to 20, BI-LOF achieves 80% and
100% accuracy on these two data sets respectively.

So far, we set the number of repeated times of BI-LOF as
10, which aims to compare with RS-LOF and CS-LOF in a
fair way. Here we explore the impact of repeated times of
BI-LOF. Figure 7 shows the performance of BI-LOF with
different repeated times. As can be seen, the performance
goes slight up and the violation becomes narrow with the
increase of repeated times. The phonomania are consistent
on all these three data sets. This indicates two points: the
repeated time is a key factor to control the stability of
BI-LOF, and even at few repeated times such as 10, the
performance of BI-LOF is still satisfactory.

Table IV
PERFORMANCE ON IMAGE DATA SETS BY AUC

Inliers / Outliers
BI-LOF RS-LOF CS-LOF LOF
10 times 10 times 10 times 1 times

Chew / Walker hound 0.9097 0.9010 0.5130 0.5800
Sussex spaniel / Borzoi 0.9239 0.9220 0.6070 0.6250
Kerry blue terrier / Cairn 0.9181 0.8810 0.4650 0.4620
Australian terrier / Otterhound 0.8262 0.8010 0.6180 0.6120
Norfolk terrier / Giant schnauzer 0.9765 0.9800 0.6010 0.6600

V. CONCLUSION

In this paper, we apply bi-sampling on outlier detection,
derive the condition of BSOD in a theoretical way, and anal-
yse the benefits of BSOD in terms of ensemble diversity and
divide-and-conquer. The effective portfolios of low row and
column-sampling ratios are demonstrated to enlarge the gap
between outliers and inliers so that a large-scale and high di-
mensional data set can be decomposed into several sub data
sets separately and independently. Further we employ LOF
within BSOD as BI-LOF to conduct extensive experiments.
In general, we thoroughly explore the characteristics of BI-
LOF with different number of instances, features, nearest
neighbors on synthetic data sets, validate the theoretical
analysis of BSOD condition, and show obvious advantages
over other algorithms in terms of low and high dimensional
real-world data sets. And finally we use BI-LOF to conduct
image outlier detection and show high quality and stableness
of BI-LOF.
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