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Abstract—High-throughput technologies have enabled us to
rapidly accumulate a wealth of diverse data types. These multi-
view data contain much more information to uncover the
cluster structure than single-view data, which draws raising
attention in data mining and machine learning areas. On
one hand, many features are extracted to provide enough
information for better representations; on the other hand, such
abundant features might result in noisy, redundant and irrele-
vant information, which harms the performance of the learning
algorithms. In this paper, we focus on a new topic, multi-
view unsupervised feature selection, which aims to discover the
discriminative features in each view for better explanation and
representation. Although there are some exploratory studies
along this direction, most of them employ the traditional
feature selection by putting the features in different views
together and fail to evaluate the performance in the multi-
view setting. The features selected in this way are difficult to
explain due to the meaning of different views, which disobeys
the goal of feature selection as well. In light of this, we intend
to give a correct understanding of multi-view feature selection.
Different from the existing work, which either incorrectly
concatenates the features from different views, or takes huge
time complexity to learn the pseudo labels, we propose a novel
algorithm, Robust Multi-view Feature Selection (RMFS), which
applies robust multi-view K-means to obtain the robust and
high quality pseudo labels for sparse feature selection in an
efficient way. Nontrivially we give the solution by taking the
derivatives and further provide a K-means-like optimization
to update several variables in a unified framework with the
convergence guarantee. We demonstrate extensive experiments
on three real-world multi-view data sets, which illustrate the
effectiveness and efficiency of RMFS in terms of both single-
view and multi-view evaluations by a large margin.

Keywords-Multi-view Learning; Feature Selection; Robust
Clustering

I. INTRODUCTION

Nowadays high dimensional data are ubiquitous in many
areas such as text, images, speeches and videos, etc. Many
features are extracted to provide enough information for
better representations; on the other hand, such abundant
features might result in noisy, redundant and irrelevant
information, which harms the performance of the learning
algorithms. It is very appealing to apply partial features
to achieve better performance, which is the goal of fea-
ture selection. Especially, many real-world data sets have
multiple representations with heterogeneous views [1], [35],
[5], [36], [7], [8]. For example, images can be presented
in gray level and Fourier coefficient, the news might be

raised by different media and the literary works might have
multiple translations in different languages. These multi-
view data provide much richer information to uncover the
intrinsic structure, which has been widely recognized that
the multi-view learning reduces the noise, improves statis-
tical significance and obtains more refined and higher-level
information [31], [29], [12]. Therefore, these multi-view data
also provide new chances for effective feature selection.

Feature selection aims to employ partial original features
for the certain task, which is a widely used technique in
data mining and machine learning areas [13], [24], [23],
[37]. It is important to note that different from feature
transformation, such as well-known PCA [18] and Deep
Learning [9], which generate new features via linear or non-
linear transformation, feature selection only applies partial
original features for the learning tasks. Clearly, features
after selection provide more interpretation, which is widely
used in various applications [16], such as gene expression
analysis [25], text mining [11] and image processing [2]. Ac-
cording to the availability of labels, the existing algorithms
on this topic can roughly be divided into supervised fashion
and unsupervised fashion.

Usually supervised feature selection applies label infor-
mation to guide the feature selection process [26]; when it
comes to unsupervised feature selection, the main challenge
is to find appropriate evaluation criteria instead of labels.
Such criteria are conductive to explore the intrinsic cluster
structure and usually pseudo labels are learnt to guide the
feature selection in a supervised fashion [3], [34], [19].

Unfortunately, most of the tradition unsupervised fea-
ture selection algorithms can only handle the single-view
data and fail to evaluate the performance in the multi-
view setting. Nowadays data are gathered from different
representations so that multi-data becomes a new research
point. Multi-view data provide much more information to
uncover the hidden cluster structure than single-view data.
It is highly risky to put the features from multi-view together
and apply the single-view feature selection methods because
the feature spaces and scales are different in each view,
furthermore the selected features by this way are difficult
to interpret and further analyse, which disobeys the goal of
feature selection [10], [15]. In [10], they used the neighbour-
hood matrices from different views for pseudo labels; [15]
incorporated discriminative analysis to preserve the clus-
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ter structure. Incorrectly, both of them selected from the
concatenating features. [30] employed multi-kernel spectral
analysis for pseudo labels and applied it on each single view
features. However, how to obtain the robust pseudo labels
in an efficient way still remains a big challenge.

In this paper, we propose the Robust Multi-view Feature
Selection (RMFS) algorithm to handle the above challenge.
It is crucial to obtain high quality pseudo labels to guide the
process of unsupervised feature selection [21], [20], [22].
Compared with existing multi-view unsupervised feature
selection methods, RMFS not only provides robust and high
quality pseudo labels by robust multi-view K-means for
feature selection, but also can be solved in an efficient
way. Besides, we jointly generate pseudo labels and learn
the feature selection in a one-step framework. Then we
give a solution by taking the derivative of each unknown
variables one by one; further nontrivially by introducing
an augmented matrix, a K-means-like optimization solution
is designed to simultaneously update several variables in a
neatly mathematical way. Recall that most of unsupervised
feature selection methods need eigenvector decomposition,
which requires 𝑂(𝑛3) for the pseudo labels, here 𝑛 is the
number of data points and becomes struggled to handle
large-scale data sets. How to efficiently conduct feature
selection on multi-view data is one of our motivations. Our
contributions are highlighted in the following three folds:

∙ We propose a novel Robust Multi-view Feature Selec-
tion approach, which provides robust and high quality
pseudo labels from multi-view learning to guide the
feature selection process and has much lower time
complexity than existing methods.

∙ An efficient algorithm is designed to handle the non-
smooth non-convex loss function with convergence
guarantee. Further, a K-means-like optimization solu-
tion is designed to update several variables in a unified
framework.

∙ Experimental results demonstrate the superior results of
RMFS compared with several state-of-the-art methods
on both single-view and multi-view evaluations.

The rest of this paper is organized as follows. In Sec-
tion II, we discuss about related work in terms of unsu-
pervised feature selection and multi-view feature selection.
We demonstrate the motivation, the problem we address
and the objective function in Section III. Following this,
two solutions are provided in Section IV. One is by taking
the derivatives, the other is by a K-means-like optimization.
Extensive experiments are demonstrated in Section V. We
conclude this paper in Section VI.

II. RELATED WORK

Here we illustrate the related work in terms of unsuper-
vised feature selection and multi-view feature selection and
highlight the differences between the existing works and
ours.

A. Unsupervised Feature Selection

For unsupervised feature selection, the main challenge
is to find an appropriate evaluation criteria or high quality
pseudo labels instead of true labels. Such criteria are con-
ductive to explore the intrinsic cluster structure and usually
pseudo labels are learnt to guide the feature selection in
a supervised fashion. By this means, unsupervised feature
selection can roughly be divided in three categories: filter,
wrapper, embedded approaches. Filter algorithms make use
of the proxy measurement to give a score to each fea-
ture [17], [14]; wrapper methods incorporate the feature
selection and the learning algorithm in a unified frame-
work [38], [14], [28]; embedded methods formalize the
feature selection as part of learning objective [17], [6].
Nowadays, the way to learn pseudo labels learnt for feature
selection is becoming more and more popular. For instance,
MCFS [3] employed spectral analysis and spare regression
to select discriminative features, UDFS [34] and NDFS [19]
jointly learned the pseudo labels and ℓ2,1-norm regular-
ization in a unified framework based on spectral learning.
Recently, Liu et al. proposed a consensus guided framework
for feature selection, which employed consensus clustering
to generate pseudo labels for feature selection [21].

B. Multi-view Feature Selection

Nowadays, data are collected by multi-sensors and have
several representations, which make multi-view learning a
hot research point and multi-view feature selection catches
raising attention. Different from single-view data, multi-view
date provide much more information to uncover the intrinsic
cluster structure. It is crucial to obtain high quality pseudo
labels as the feature selection criteria. [10] calculated the
neighborhood matrices from each view, then summed them
together for the pseudo labels; [15] incorporated discrimina-
tive analysis to preserve the cluster structure; [30] employed
multi-view spectral clustering and applied the pseudo labels
to select features for each view. Unfortunately, [10] and [15]
incorrectly concatenated the features from each view and
employed the tradition single-view feature selection tech-
niques; by this means, the selected features are not in the
same feature space so that the following clustering task on
the selected features is meaningless.

Different from existing work, we focus on unsupervised
multi-view feature selection and aim to provide a proper un-
derstanding for this scenario. Generally speaking we employ
the pseudo labels derived from efficient and robust multi-
view clustering to supervise the feature selection process
and evaluate the performance on the single-view and multi-
view settings.

III. ROBUST MULTI-VIEW FEATURE SELECTION

In this section, we first illustrate the notation, and then
discuss about our motivation. Finally the objective function
of Robust Multi-view Feature Selection is given.
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Table I
DEFINITION OF NOTATIONS

Notations Domain Description
𝑛 ℤ #Instance
𝑟 ℤ #View
𝑚(𝑣)

ℤ #Feature in the 𝑣-th view
𝐾 ℤ #Class

X(𝑣)
ℝ

𝑛×𝑚(𝑣)

Data matrix in the 𝑣-th view
H {0, 1}𝑛×𝐾 Indicator matrix

W(𝑣)
ℝ

𝑚(𝑣)×𝐾 Feature selection matrix for the 𝑣-th view

G(𝑣)
ℝ

𝐾×𝑚(𝑣)

Centroid matrix for the 𝑣-th view
C(𝑣)

ℝ
𝐾×𝐾 Alignment matrix for the 𝑣-th view

A. Notation

In this paper, we use bold uppercase and lowercase
characters to denote matrices and vectors, respectively. For
a matrix, A ∈ ℝ

𝑛×𝑚, A𝑖 represents the 𝑖-th row of A,
𝐴𝑖𝑗 denotes the (𝑖, 𝑗)-th element of A. A⊤, A−1 and A+

stand for the transpose, the inverse and the pseudo inverse
of a matrix A, respectively. ∣∣A∣∣F =

√∑𝑛
𝑖=1

∑𝑚
𝑗=1 𝐴

2
𝑖𝑗

is the Frobenius norm and its ℓ2,1 norm is defined as

∣∣A∣∣2,1 =
∑𝑛

𝑖=1

√∑𝑚
𝑗=1 𝐴

2
𝑖𝑗 , and tr(⋅) is the trace of a

squared matrix. I is the identity matrix. More definitions of
variables are reported in Table I.

B. Motivation

With the rapid development of techniques, it becomes
easy to collect the data from different aspects or views.
These multi-view data provide much richer information
to uncover the intrinsic structure, which has been widely
recognized that the multi-view learning reduces the noise,
improves statistical significance and obtains more refined
and higher-level information [31], [29], [12]. On one hand,
many features are extracted to provide enough information
for better representations; on the other hand, such abundant
features might result in noisy, redundant and irrelevant
information, which harms the performance of the learning
algorithms. It is very appealing to apply partial features to
achieve the same or better performance, which is the goal
of feature selection [17], [14]. Although there are some
exploratory studies in the multi-view feature selection, most
of them put all the features together and apply the single-
view feature selection methods [34], [19], [3]. This is of
high risk because the feature spaces from different views are
different and the selected features by such means are difficult
to explain, which disobeys the goal of feature selection.
Therefore, one of our motivations is to provide a correct
understanding for multi-view feature selection and evaluate
the performance in both the single-view and multi-view
settings.

C. Objective Function

It has been widely recognized that a sparse projection
with pseudo labels is successful to supervise the process
of the unsupervised feature selection. Thus, the pseudo
labels highly determine the quality of the selected features.
Nowadays, many real-world datasets have multiple repre-
sentations with heterogeneous views, which provide much
more complementary and rich information to uncover the
intrinsic structure. In light of this, we aim to utilize the
heterogeneous information from multiple view to generate
high quality pseudo labels for feature selection. A novel
algorithm Robust Multi-view Feature Selection (RMFS) is
proposed to jointly conduct clustering and sparse learning
in an efficient and robust way.

Let X = {X(1),X(2), ⋅ ⋅ ⋅ ,X(𝑟)} be the data with 𝑟
multiple representations or views, each view X(𝑣) contains
𝑛 instances and 𝑚(𝑣) features, for 1 ≤ 𝑣 ≤ 𝑟. The objective
of RMFS is as follows,

min
H,G,C,W

𝑟∑
𝑣=1

(𝛼(𝑣)∣∣X(𝑣) − HG(𝑣)∣∣2,1+

∣∣X(𝑣)W(𝑣) − HC(𝑣)∣∣2F + 𝛽∣∣W(𝑣)∣∣2,1),
(1)

where H ∈ {0, 1}𝑛×𝐾 is the 1-of-𝐾 coding indicator matrix
representing the pseudo labels, G(𝑣) ∈ ℝ

𝐾×𝑚(𝑣)

is the cor-
responding centroid matrix of X(𝑣), W(𝑣) ∈ ℝ

𝑛×𝐾 denotes
the feature selection matrix for 𝑣-th view and C(𝑣) ∈ ℝ

𝐾×𝐾

presents the alignment matrix between X(𝑣)W(𝑣) and H.
Our objective function consists of three terms. The first

part is to obtain the pseudo labels by the multi-view cluster-
ing, which is a variant of multi-view K-means with ℓ2,1 norm
to obtain a robust cluster structure [4]; the second term aims
to learn feature selection matrices and their corresponding
relationship and the last term is the common regularizer.
It is worthy to note that we adopt ℓ2,1 regularization on
W(𝑣) to guarantee that W(𝑣) is sparse in rows to achieve
the goal of feature selection. Multi-view feature selection is
a new raising topic, there exist few methods for multi-view
feature selection [30]. Different from them, our method has
two major differences. One is that we apply the variant of K-
means for multi-view clustering, which is more efficient and
robust for large-scale datasets instead of multi-view spectral
analysis. Another is that we use a crisp indicator matrix H
to represent the cluster structure instead of the soft feature-
class mapping matrix, which might suffer from mixed signs
and make itself an implicit and distorted representation, and
further degrade the performance of feature selection. Since
clustering result is orderless, the alignment matrix C(𝑣) is
needed to shuffle the class order in H.

IV. OPTIMIZATION ALGORITHM

The difficulties of solving the proposed objective function
in Eq. 1 lies in two points. One is that two terms involve
ℓ2,1-norm, which is non-smooth; another point is that H is
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a binary indicator matrix, rather than a continuous variable.
In light of this, we propose a new algorithm to handle the
above challenges in an efficient way.

A. Solution by Derivative

Here we take the derivative of each continuous variables
alternatively for continuous variables and apply the exhaus-
tive search for the binary variable.

Fixed others, Update G(𝑣). Only the first term contains
G(𝑣), we have

𝒥 (𝑣) = tr((X(𝑣) − HG(𝑣))⊤D(𝑣)(X(𝑣) − HG(𝑣))), (2)

where D(𝑣) ∈ ℝ
𝑛×𝑛 is the diagonal matrix defined as,

D(𝑣)
𝑖𝑖 =

1

2∣∣e(𝑣)𝑖 ∣∣
, (3)

where e(𝑣)𝑖 is the 𝑖-th row of X(𝑣)−HG(𝑣). Then taking the
derivative of 𝒥 (𝑣) with G(𝑣) and setting it to 0, we get

∂𝒥 (𝑣)

∂G(𝑣)
= −2H⊤D(𝑣)X(𝑣) + 2H⊤D(𝑣)HG(𝑣) = 0. (4)

Then we can update G(𝑣) as follows,

G(𝑣) = (H⊤D(𝑣)H)−1H⊤D(𝑣)X(𝑣). (5)

Fixed others, Update C(𝑣). Similar to the update rule of
G(𝑣), C(𝑣) only occurs in the second term. Then we have

𝒬(𝑣) = tr((X(𝑣)W(𝑣)−HC(𝑣))⊤(X(𝑣)W(𝑣)−HC(𝑣))). (6)

Taking the derivative of 𝒬(𝑣) with C(𝑣), we get

∂𝒬(𝑣)

∂C(𝑣)
= −2HXW(𝑣) + 2H⊤HC(𝑣). (7)

Setting Eq.7 to 0, we have the update rule of C(𝑣),

C(𝑣) = (H⊤H)−1HXW(𝑣). (8)

Fixed others, Update H. H is the binary indicator matrix.
Thus we assign each instance to every cluster and find the
label to minimize the objective function.

min
H𝑖

𝑟∑
𝑣=1

𝛼(𝑣)∣∣X(𝑣)
𝑖 − H𝑖G

(𝑣)∣∣22 + ∣∣X(𝑣)
𝑖 W(𝑣) − H𝑖C

(𝑣)∣∣22.
(9)

Since H is a crisp indictor matrix, we have only one non-
zero element in H𝑖, therefore we do the exhaustive search
to find the optimal cluster label.

Fixed others, Update W(𝑣). Let ℒ(𝑣) = ∣∣X(𝑣)W(𝑣) −
HC(𝑣)∣∣F + 𝛽∣∣W(𝑣)∣∣2,1, we have

∂ℒ(𝑣)

∂W(𝑣)
= 2X(𝑣)⊤(X(𝑣)W(𝑣) − HC(𝑣)) + 𝛽F(𝑣)W(𝑣), (10)

where F(𝑣) is diag( 1

2∣∣W(𝑣)
1 ∣∣2

, ⋅ ⋅ ⋅ , 1

2∣∣W(𝑣)

𝑚(𝑣)
∣∣2
). When

∂ℒ(𝑣)

∂W(𝑣) = 0, we have the update rule for W(𝑣).

Algorithm 1 Robust Multi-View Feature Selection

Input: X = {X(1), ⋅ ⋅ ⋅ ,X(𝑟)}: data matrix with 𝑟 views;
𝑟: number of views;
𝐾: number of clusters;
𝛼(𝑣), 𝛽: trade-off parameters;

Output: H: indicator matrix;
G(𝑣): centroid matrix for the 𝑣-th view;
W(𝑣): feature selection matrix for the 𝑣-th view;
C(𝑣): alignment matrix for the 𝑣-th view;

1: Initialize H, G(𝑣), W(𝑣) and C(𝑣);
2: repeat
3: For each view, calculate D(𝑣) by Eq. 3;
4: For each view, fix others, update G(𝑣) by Eq. 5;
5: For each view, fix others, update C(𝑣) by Eq. 8;
6: Fix other, update H by Eq. 9;
7: For each view, fix others, update W(𝑣) by Eq. 11;
8: until the objective value in Eq. 1 is unchanged;
9: return H, G(𝑣), W(𝑣) and C(𝑣);

10: For 𝑣-th view, sort all 𝑚(𝑣) features according to
∣∣W(𝑣)

𝑖 ∣∣2 in descending order and select the certain
number of ranked ones.

W(𝑣) = (X(𝑣)⊤X(𝑣) + 𝛽F(𝑣))−1X(𝑣)⊤HC(𝑣). (11)

Fixed others, Update D(𝑣). The update rule for D(𝑣) is
given in Eq. 3.

In sum, we iteratively update these unknown variables
and summarize the algorithm for Eq. 1 in Algorithm 1.
After obtaining the feature selection matrix W, for each
view we sort all 𝑚(𝑣) features according to ∣∣𝑊 (𝑣)

𝑖 ∣∣2 in
a descending order and select the certain number of top
ones. Since we do not use labels during the training process,
clustering is employed for evaluating the performance of
selected features.

B. K-means-like Solution

In Algorithm 1, we update the auxiliary matrices G and
C for each view and update the pseudo labels H. Besides,
there are a lot of matrix inverse and multiplication, which
is time consuming. Can we update these variables together
in a more efficient way?

The answer is positive. Let A(𝑣) = (𝛼(𝑣)D(𝑣))1/2, where
D(𝑣) is defined in Eq. 3. Then we can rewrite the objective
function as follows.

min
H,G,C,W

𝑟∑
𝑣=1

(𝛼(𝑣)∣∣A(𝑣)X(𝑣) − A(𝑣)HG(𝑣)∣∣2F+

∣∣X(𝑣)W(𝑣) − HC(𝑣)∣∣2F + 𝛽∣∣W(𝑣)∣∣2,1).
(12)

Next we update all the unknown variables except W(𝑣) in
a one-step framework.
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Fixed A(𝑣) and W(𝑣), Update others. The subproblem
is related to the first two terms. Let 𝒵 =

∑𝑟
𝑖=1 𝒵(𝑣), with

𝒵(𝑣) = ∣∣A(𝑣)(X(𝑣) − HG(𝑣))∣∣F + ∣∣X(𝑣)W(𝑣) − HC(𝑣)∣∣2F
= ∣∣[A(𝑣)X(𝑣) X(𝑣)W(𝑣)]− [A(𝑣) I]H[G(𝑣) C(𝑣)]∣∣2F.

(13)

Next we build three matrices for each view as follows.

U(𝑣) = [A(𝑣) I],

R(𝑣) = [A(𝑣)X(𝑣) X(𝑣)W(𝑣)],

V(𝑣) = [G(𝑣) C(𝑣)].

(14)

Then we have the concatenated matrices of all 𝑟 views
as U = [U(1), ⋅ ⋅ ⋅ ,U(𝑟)], R = [R(1), ⋅ ⋅ ⋅ ,R(𝑟)] and V =
[V(1), ⋅ ⋅ ⋅ ,V(𝑟)]. By the following theorem, we provide
an efficient way to update these variables in a unified
framework.

Theorem 1. Given the concatenated matrices U,R and V
built by Eq. 14, we have the following equivalency:

min𝒵 ⇔ min
H,V

∣∣U+R − HV∣∣2F. (15)

Proof: According to Eq. 13 and 14, we have

𝒵 =

𝑟∑
𝑖=1

𝒵(𝑟)

=
𝑟∑

𝑖=1

∣∣[A(𝑣)X(𝑣) X(𝑣)W(𝑣)]− [A(𝑣) I]H[G(𝑣) C(𝑣)]∣∣2F

=
𝑟∑

𝑖=1

∣∣R(𝑣) − U(𝑣)HV(𝑣)∣∣2F

= ∣∣R − UHV∣∣2F = ∣∣U(U+R − HV)∣∣2F.
(16)

Since U is a constant, we complete the proof.

Remark 1. Theorem 1 gives a new insight to update 2𝑟+1
variables in a unified framework. If we take a close look of
Eq. 15, the right side is just the standard K-means, which
indicates that we can directly use the simplest clustering
algorithm to finish the update. All the information of G(𝑣)

and C(𝑣) is summarized in the matrix V.

Remark 2. The K-means is conducted on the new matrix
U+R. Here it is worthy to note that U consists of 2𝑟 diagonal
matrices, therefore the pseudo inverse of U takes little time.

Remark 3. Compared with the update rules in Algorithm 1,
we can see that the pseudo labels H is only updated once
with all the information from different views. It indicates that
the pseudo labels H is generated or updated in a consensus
way.

Fixed others, Update W(𝑣). Here we can still use the
update rule in Eq. 11 to update W(𝑣) for each view.

We summarize the alternative solution for Robust Multi-

Algorithm 2 Robust Multi-View Feature Selection

Input: X = {X(1), ⋅ ⋅ ⋅ ,X(𝑟)}: data matrix with 𝑟 views;
𝑟: number of views;
𝐾: number of clusters;
𝛼(𝑣), 𝛽: trade-off parameters;

Output: H: indicator matrix;
G(𝑣): centroid matrix for the 𝑣-th view;
W(𝑣): feature selection matrix for the 𝑣-th view;
C(𝑣): alignment matrix for the 𝑣-th view;

1: Initialize H, G(𝑣), W(𝑣) and C(𝑣);
2: repeat
3: Build the concatenated matrices U,R and V by

Eq. 14;
4: Run K-means on U+R to obtain H, G(𝑣) and C(𝑣);
5: For each view, fix others, update W(𝑣) by Eq. 11;
6: until the objective value in Eq. 1 is unchanged;
7: return H, G(𝑣), W(𝑣) and C(𝑣);
8: For 𝑣-th view, sort all 𝑚(𝑣) features according to

∣∣W(𝑣)
𝑖 ∣∣2 in descending order and select the certain

number of ranked ones.

view Feature Selection in Algorithm 2.

C. Discussion and Analysis

Finally we will give the convergence study of Algorithm 2
by the following theorem.

Theorem 2. The objective function value of Eq. 1 con-
tinuously decreases by the alternative updating rules in
Algorithm 2.

Proof: In the above solution, we decompose the opti-
mization problem of Eq. 1 into two subproblems. The con-
vergence is guaranteed if both sub problems make the objec-
tive function value continuously decrease. One is to update
the pseudo labels H and some other auxiliary variables; the
other is to update the feature selection matrix W(𝑣). Since we
transform the first subproblem into a K-means optimization
problem, which has the good convergence property, in the
following we focus on the second subproblem.

When other variables are fixed, for the 𝑣-th view, let W =
W(𝑣), F = F(𝑣) and Ω(W) = ∣∣XW(𝑣) − HC(𝑣)∣∣2F, in the
𝑡-th iteration, we have

W𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛W Ω(W𝑡) + 𝛽tr(W⊤
𝑡 F𝑡W𝑡)

⇒ Ω(W𝑡+1) + 𝛽tr(W⊤
𝑡+1F𝑡W𝑡+1) ≤ Ω(W𝑡) + 𝛽tr(W⊤

𝑡 F𝑡W𝑡)

⇒ Ω(W𝑡+1) + 𝛽
𝑚∑
𝑖=1

∣∣(w𝑡+1)𝑖∣∣22
2∣∣(w𝑡)𝑖∣∣2 ≤ Ω(W𝑡) + 𝛽

𝑚∑
𝑖=1

∣∣((w𝑡)𝑖∣∣22
2∣∣(w𝑡)𝑖∣∣2

⇒ Ω(W𝑡+1) + 𝛽∣∣W𝑡+1∣∣2,1 − 𝛽(∣∣W𝑡+1∣∣2,1 −
𝑚∑
𝑖=1

∣∣((w𝑡+1)𝑖∣∣22
2∣∣(w𝑡)𝑖∣∣2 )

≤ Ω(W𝑡) + 𝛽∣∣W𝑡∣∣2,1 − 𝛽(∣∣W𝑡∣∣2,1 −
𝑚∑
𝑖=1

∣∣(w𝑡)𝑖∣∣22
2∣∣(w𝑡)𝑖∣∣2 ).
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According to the lemma in [27], we have

∣∣W𝑡+1∣∣2,1−
𝑚∑
𝑖=1

∣∣((w𝑡+1)𝑖∣∣22
2∣∣(w𝑡)𝑖∣∣2 ≤ ∣∣W𝑡∣∣2,1−

𝑚∑
𝑖=1

∣∣(w𝑡)𝑖∣∣22
2∣∣(w𝑡)𝑖∣∣2

(17)
Then we have

Ω(W𝑡+1) + 𝛽∣∣W𝑡+1∣∣2,1 ≤ Ω(W𝑡) + 𝛽∣∣W𝑡∣∣2,1 (18)

Therefore, we prove the objective function value will contin-
uously decrease during the subproblem for updating W(𝑣).
Similarly, the objective function value will also continuously
decrease when updating other feature selection matrices. In
sum, the objective function value of Eq. 1 continuously
decreases by the alternative updating rules in Algorithm 2
and we finish the proof.

Next we give the analyses of the computational com-
plexity of RMFS. When updating the pseudo labels, it
has the similar time complexity with traditional K-means,
𝑂(𝑛𝐾𝑟(𝑚+𝐾𝑟)), where 𝑚 =

∑𝑟
𝑖=1 𝑚

(𝑣), 𝑛 is the number
of data points; when updating W(𝑣), it takes 𝒪((𝑚(𝑣))3).
Therefore, the total time cost is 𝑂(𝐼𝑛𝐾𝑟(𝑚 + 𝐾𝑟) +
𝐼
∑𝑟

𝑣=1(𝑚
(𝑣))3), where 𝐼 is the number of iteration. Recall

that for these methods which apply the spectral analysis for
pseudo labels, the eigenvector-decomposition is indispens-
able. They require 𝑂(𝑛3) for the pseudo labels and struggle
to handle large-scale data sets.

Compared to the model in [30], the main difference is
how to get the pseudo labels from the multi-view data.
They employed the multi-kernel spectral analysis, while in
our paper multi-view K-means is used for the consensus
partition. The benefits lie in three aspects. One is that the
ℓ2,1-norm makes K-means robust to outliers and provides
the high quality pseudo labels, the second point is that
eignevector decomposition is replaced by the linear K-
means, which dramatically decreases the time complexity
and the last point is that we can involve all the variables
except the feature selection matrices in a unified K-means
optimization framework.

V. EXPERIMENTS

In this section, we demonstrate extensive experimental
results on three widely used multi-view data sets. Besides
the comparison with single-view feature selection and multi-
view feature selection methods in terms of effectiveness and
efficiency, we also show the high performance of RMFS on
the multi-view clustering setting. Finally, the convergence
study of RMFS also verifies the correctness of Theorem 2.

A. Experimental Setup

Three public multi-view data sets are used for evaluating
the proposed method. The details of these data sets can be
found in Table II.

Table II
EXPERIMENTAL DATA SETS

View Digits Movie MINIST-USPS
1 Pixel(240) Keywords(1878) MNIST(256)
2 Fourier(74) Actors(1398) USPS (256)
#Instances 2000 617 1630
#Classes 10 17 10

∙ Digits1 is a handwritten digit dataset from UCI repos-
itory. Each data point is represented by grey pixel and
Fourier coefficient.

∙ Movie2 is a dataset has been extracted from IMDb3 to
have two data matrices descibing the same movies. It
has been used in co-clustering tasks, the main goal is to
find the genre of the movies, combining the information
from the two matrices (keywords and actors).

∙ MNIST-USPS4 is a combination of two data sets
MNIST and USPS. Both of them are the grayscale
images of 0 through 9 Two data sets are combined
together as two views in a multi-view data sets.

Since no label information is used during the training
process, we make use of the clustering framework to evaluate
the performance in the single-view and multi-view setting.
Unsupervised feature selection on multi-view data is a
raising topic, so that there are few studies on this area.
To our best knowledge, MVFS [30] is the most related
competitive algorithm to our setting. The following are
several competitive algorithms.

∙ MaxVar ranks the features by their variances and
selects the ones with large variances.

∙ LS [14] explores the local manifold structure and picks
up the features which have the most consistency with
Gaussian Laplacian matrix.

∙ MCFS [3] employs the spectral analysis and spare
regression for the pseudo labels and uses the pseudo
labels to rank the features.

∙ UDFS [34] builds a joint framework to learn the
discriminative analysis and feature selection together.

∙ NDFS [19] selects the discriminative features by apply-
ing the Nonnegative spectral analysis with ℓ2,1-norm
regularization.

∙ MVFS [30] generates pseudo labels by multi-view
spectral analysis to guide the feature selection for each
view.

∙ RMFS. Our proposed method based on robust multi-
view learning.

Following the setting of other works [3], [14], [19],
[34], we set the number of neighborhoods to be 5 for
LS, MCFA, NDFS when building the Laplacian graph. The

1http://archive.ics.uci.edu/ml/datasets.html
2http://lig-membres.imag.fr/grimal/data.html
3http://www.imdb.org
4http://www.cs.nyu.edu/∼roweis/data.html
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Table III
PERFORMANCE OF DIFFERENT ALGORITHMS ON Digits MEASURED BY ACCURACY AND 𝑁𝑀𝐼 .

View Percentage
Accuracy

MaxVar LS MCFS UDFS NDFS MVFS RMFS
0.1 0.5641 ± 0.0579 0.6548 ± 0.0227 0.6259 ± 0.0333 0.5703 ± 0.0329 0.6458 ± 0.0279 0.6519 ± 0.0383 0.6711 ± 0.0337
0.3 0.6040 ± 0.0475 0.6307 ± 0.0480 0.6113 ± 0.0402 0.5710 ± 0.0401 0.5825 ± 0.0588 0.6416 ± 0.0608 0.6689 ± 0.0337

View1 0.5 0.5759 ± 0.0567 0.6096 ± 0.0503 0.6366 ± 0.0490 0.5349 ± 0.0533 0.5597 ± 0.0480 0.6300 ± 0.0406 0.6548 ± 0.0563
0.7 0.5883 ± 0.0450 0.5803 ± 0.0536 0.6220 ± 0.0370 0.5759 ± 0.0455 0.5184 ± 0.0499 0.6120 ± 0.0522 0.6344 ± 0.0399
0.9 0.5709 ± 0.0562 0.6024 ± 0.0520 0.5611 ± 0.0574 0.5776 ± 0.0597 0.5245 ± 0.0497 0.5738 ± 0.0494 0.5957 ± 0.0181
0.1 0.5891 ± 0.0315 0.5224 ± 0.0495 0.6095 ± 0.0359 0.4008 ± 0.0209 0.3911 ± 0.0243 0.5503 ± 0.0395 0.6361 ± 0.0815
0.3 0.6991 ± 0.0447 0.6053 ± 0.0413 0.6756 ± 0.0458 0.4855 ± 0.0248 0.5499 ± 0.0486 0.6270 ± 0.0487 0.6863 ± 0.0412

View2 0.5 0.7228 ± 0.0670 0.6615 ± 0.0380 0.7266 ± 0.0801 0.5549 ± 0.0378 0.6351 ± 0.0496 0.6611 ± 0.0650 0.7739 ± 0.0723
0.7 0.7276 ± 0.0758 0.7068 ± 0.0702 0.7074 ± 0.0731 0.6107 ± 0.0423 0.6914 ± 0.0537 0.6822 ± 0.0689 0.7590 ± 0.0494
0.9 0.7079 ± 0.0795 0.6840 ± 0.0596 0.6781 ± 0.0614 0.6291 ± 0.0306 0.6767 ± 0.0610 0.7131 ± 0.0670 0.7788 ± 0.1091

𝑁𝑀𝐼
0.1 0.5683 ± 0.0237 0.4949 ± 0.0143 0.5990 ± 0.0255 0.5552 ± 0.0160 0.5970 ± 0.0217 0.5897 ± 0.0138 0.6061 ± 0.0163
0.3 0.5873 ± 0.0235 0.4864 ± 0.0327 0.6113 ± 0.0194 0.5570 ± 0.0195 0.5726 ± 0.0277 0.6394 ± 0.0165 0.6283 ± 0.0095

View1 0.5 0.5632 ± 0.0230 0.4865 ± 0.0382 0.6258 ± 0.0212 0.5558 ± 0.0252 0.5619 ± 0.0221 0.6290 ± 0.0228 0.6402 ± 0.0416
0.7 0.5681 ± 0.0162 0.4586 ± 0.0334 0.5958 ± 0.0132 0.5754 ± 0.0188 0.5287 ± 0.0172 0.6110 ± 0.0242 0.6207 ± 0.0304
0.9 0.5609 ± 0.0229 0.4647 ± 0.0320 0.5690 ± 0.0255 0.5802 ± 0.0254 0.5317 ± 0.0168 0.5836 ± 0.0253 0.6042 ± 0.0318
0.1 0.5551 ± 0.0124 0.3767 ± 0.0312 0.5998 ± 0.0108 0.3915 ± 0.0132 0.3953 ± 0.0102 0.5759 ± 0.0269 0.6866 ± 0.0230
0.3 0.6577 ± 0.0205 0.4823 ± 0.0300 0.6801 ± 0.0254 0.4871 ± 0.0099 0.5537 ± 0.0187 0.6655 ± 0.0272 0.7243 ± 0.0296

View2 0.5 0.6846 ± 0.0328 0.5457 ± 0.0340 0.7169 ± 0.0362 0.5578 ± 0.0141 0.6438 ± 0.0179 0.6943 ± 0.0325 0.7389 ± 0.0350
0.7 0.7105 ± 0.0363 0.5998 ± 0.0618 0.7177 ± 0.0365 0.6394 ± 0.0226 0.7046 ± 0.0270 0.7080 ± 0.0364 0.7508 ± 0.0591
0.9 0.7013 ± 0.0412 0.5823 ± 0.0507 0.7069 ± 0.0333 0.6409 ± 0.0195 0.6957 ± 0.0307 0.7247 ± 0.0372 0.7423 ± 0.0362
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Figure 1. Performance comparison between MVFS and RMFS on single-view evaluation with different ratios.

sparse parameter is set to 0.01 for those methods employing
pseudo label to guide the feature selection. For MVFS and
RMFS, the weight of each view is equal for simplicity. The
numbers of selected feature ratio vary from 10% to 90%
with 20% intervals. Since no label information is involved
during the training process, we evaluate the performance
in the clustering scenario. Specially, we employ k-means
by MATLAB with the true cluster number on the selected
features and evaluate the performance by the external mea-
surement. For each algorithm, we run 50 times and report
the average result and standard deviation.

Two widely used external cluster validity metrics are
used to fully evaluation the performance, Accuracy and
Normalized Mutual Information (𝑁𝑀𝐼) [32]. Accuracy is
a measure derived from classification, which needs the
mapping between the obtained partition and ground truth.
𝑁𝑀𝐼 measures the mutual dependence between obtained
cluster labels and ground truth, followed by a normalization
operation to make sure 𝑁𝑀𝐼 range from 0 to 1. Both of
them are positive measurements, which indicate that the
larger value stands for better performance. The computation

of these two metrics are as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑𝑛
𝑖=1 𝛿(𝑠𝑖,𝑚𝑎𝑝(𝑟𝑖))

𝑛
, (19)

where 𝑠𝑖 and 𝑟𝑖 are the predicted and true labels for the
𝑖-th data point, 𝛿(𝑥, 𝑦) equals one if 𝑥 = 𝑦 and equals zero
otherwise, and 𝑚𝑎𝑝(𝑟𝑖) is the permutation mapping function
that best aligns the clusters in the learnt partition with ground
truth.

𝑁𝑀𝐼 =

∑
𝑖,𝑗 𝑛𝑖𝑗 log

𝑛⋅𝑛𝑖𝑗

𝑛𝑖+⋅𝑛+𝑗√
(
∑

𝑖 𝑛𝑖+ log 𝑛𝑖+

𝑛 )(
∑

𝑗 𝑛𝑗+ log
𝑛+𝑗

𝑛 )
, (20)

where 𝑛𝑖𝑗 denotes the co-occurrence instance number in
the 𝑖-th cluster of the ground truth and 𝑗-th cluster of the
obtained partition and 𝑛𝑖+ and 𝑛+𝑗 are the cluster size of
the 𝑖-th cluster of the ground truth and 𝑗-th cluster of the
obtained partitions, respectively.

B. Performance and Analysis

Table III, IV and V show the performance of several fea-
ture selection methods in the single-view setting on Digits,
Moive and MNIST-USPS. The best results are highlighted by
bold fonts. Generally speaking, the results demonstrate two
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Table IV
PERFORMANCE OF DIFFERENT ALGORITHMS ON Movie MEASURED BY ACCURACY AND 𝑁𝑀𝐼 .

View Percentage
Accuracy

MaxVar LS MCFS UDFS NDFS MVFS RMFS
0.1 0.2184 ± 0.0152 0.2073 ± 0.0139 0.1995 ± 0.0137 0.1965 ± 0.0131 0.2169 ± 0.0148 0.1583 ± 0.0124 0.2257 ± 0.0157
0.3 0.2081 ± 0.0188 0.2170 ± 0.0106 0.2146 ± 0.0134 0.2035 ± 0.0118 0.2102 ± 0.0094 0.1884 ± 0.0190 0.2227 ± 0.0091

View1 0.5 0.2115 ± 0.0103 0.2062 ± 0.013 0.2084 ± 0.0089 0.2103 ± 0.0074 0.2119 ± 0.0086 0.1875 ± 0.0174 0.2146 ± 0.0077
0.7 0.2176 ± 0.0104 0.1967 ± 0.0216 0.2093 ± 0.0095 0.2135 ± 0.0066 0.2107 ± 0.0074 0.1950 ± 0.0131 0.2173 ± 0.0094
0.9 0.2111 ± 0.0121 0.2110 ± 0.0143 0.2115 ± 0.0111 0.2114 ± 0.0062 0.2131 ± 0.0120 0.2043 ± 0.0099 0.2118 ± 0.0073
0.1 0.1391 ± 0.0075 0.1390 ± 0.0081 0.1414 ± 0.0054 0.1182 ± 0.0067 0.1144 ± 0.0097 0.1076 ± 0.0051 0.1504 ± 0.0097
0.3 0.1421 ± 0.0056 0.1437 ± 0.0050 0.1559 ± 0.0048 0.1233 ± 0.0049 0.1220 ± 0.0056 0.1136 ± 0.0072 0.1504 ± 0.0095

View2 0.5 0.1361 ± 0.0044 0.1349 ± 0.0047 0.1498 ± 0.0106 0.1306 ± 0.0074 0.1295 ± 0.0071 0.1184 ± 0.0071 0.1462 ± 0.0106
0.7 0.1361 ± 0.0083 0.1378 ± 0.0066 0.1453 ± 0.0080 0.1310 ± 0.0038 0.1334 ± 0.0064 0.1216 ± 0.0082 0.1467 ± 0.0117
0.9 0.1341 ± 0.0103 0.1374 ± 0.0075 0.1397 ± 0.0055 0.1340 ± 0.0077 0.1380 ± 0.0099 0.1265 ± 0.0086 0.1418 ± 0.0100

𝑁𝑀𝐼
0.1 0.2296 ± 0.0108 0.2026 ± 0.0171 0.2080 ± 0.0151 0.2061 ± 0.0137 0.2230 ± 0.0170 0.2238 ± 0.0205 0.2339 ± 0.0149
0.3 0.2392 ± 0.0133 0.2191 ± 0.0123 0.2235 ± 0.0130 0.2209 ± 0.0155 0.2302 ± 0.0104 0.2361 ± 0.0139 0.2466 ± 0.0136

View1 0.5 0.2404 ± 0.0124 0.2168 ± 0.0129 0.2326 ± 0.0089 0.2318 ± 0.0093 0.2413 ± 0.0119 0.2404 ± 0.0112 0.2538 ± 0.0168
0.7 0.2412 ± 0.0090 0.2112 ± 0.0200 0.2388 ± 0.0143 0.2402 ± 0.0112 0.2407 ± 0.0118 0.2418 ± 0.0123 0.2499 ± 0.0097
0.9 0.2508 ± 0.0138 0.2233 ± 0.0166 0.2448 ± 0.0106 0.2460 ± 0.0085 0.2446 ± 0.0114 0.2416 ± 0.0111 0.2511 ± 0.0117
0.1 0.1708 ± 0.0097 0.1811 ± 0.0089 0.1665 ± 0.0068 0.1344 ± 0.0051 0.1388 ± 0.0138 0.1326 ± 0.0088 0.1905 ± 0.0189
0.3 0.1789 ± 0.0119 0.1789 ± 0.0134 0.1734 ± 0.0087 0.1391 ± 0.0061 0.1550 ± 0.0080 0.1380 ± 0.0094 0.1877 ± 0.0129

View2 0.5 0.1648 ± 0.0121 0.1791 ± 0.0072 0.1677 ± 0.0098 0.1476 ± 0.0078 0.1645 ± 0.0075 0.1443 ± 0.0099 0.1831 ± 0.0136
0.7 0.1647 ± 0.0118 0.1821 ± 0.0121 0.1743 ± 0.0114 0.1763 ± 0.0132 0.1687 ± 0.0069 0.1454 ± 0.0092 0.1890 ± 0.0172
0.9 0.1651 ± 0.0167 0.1797 ± 0.0097 0.1772 ± 0.0084 0.1633 ± 0.0044 0.1755 ± 0.0112 0.1532 ± 0.0107 0.1846 ± 0.0175
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Figure 2. Performance comparison between MVFS and RMFS on multi-
view clustering evaluation.

representative scenarios between single-view and multi-view
feature selection. On Digits, multi-view feature selection
methods including MVFS and our proposed RMFS almost
outperform all other single-view feature selection methods
by a large margin within all selected feature ratios. For
example, RMFS exceeds NDFS by 8% and 14% in the 30%
setting of View-1 and View-2, respectively and RMFS ex-
ceeds UDFS by 12% and 20% in the 50% setting of View-1
and View-2 in terms of 𝑁𝑀𝐼 . That indicates the multi-view
data provide rich information so that high quality pseudo
labels derived from multi-view data give better guidance for
feature selection. On Moive, especially on MNIST-USPS,

multi-view feature selection methods struggle to compete
with single-view methods. This is mainly because the struc-
tures hidden in each view are inconsistent to each other,
which leads the multi-view methods to learn a moderate
structure heavily different from the ones learned from single-
view data. However, with more selected features, the perfor-
mance of multi-view feature selection methods consistently
increases. Although our method RMFS performs not well
on single-view evaluation on MNIST-USPS, the performance
will boost in the multi-view evaluation (we will show that
later).

Compared with the multi-view feature selection method
MVFS, Figure 1 shows the comparative results between
MVFS and RMFS on three data sets. It is obvious that
RMFS substantially exceeds MVFS in all the cases except
the one with 30% features on the View-1 on Digits. For
instance, RMFV has over 7%, 8%, 10% improvements
over MVFS in the View-2 on Digits with 30% selected
features, in View-1 on Movie with 10% selected features
and in View-1 on MNIST-USPS with 50% selected features.
This reveals that the robust K-means term is more effective
than multi-kernel spectral in learning pseudo labels. Other
than the robust cluster structure, our method also has the
linear time complexity during the subproblem updating H;
however, eignevector decomposition is indispensable, which
takes 𝑂(𝑛3) time complexity and prevents itself to handel
large-scale data sets.

Further, we evaluate the performance in multi-view set-
ting. Figure 2 shows multi-view clustering results based on
the portfolios of different feature ratios from two views
based on the multi-view clustering method [4]. We can see
that our proposed RMVC beats MVFS in all the combination
with different feature ratios from two views. It is worthy to
note that on Digits, the worst result of RMVC (𝑁𝑀𝐼 =
0.7129, with 10% features from View-1 and 10% features
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Table V
PERFORMANCE OF DIFFERENT ALGORITHMS ON MNIST-USPS MEASURED BY ACCURACY AND 𝑁𝑀𝐼 .

View Percentage
Accuracy

MaxVar LS MCFS UDFS NDFS MVFS RMFS
0.1 0.4653 ± 0.0308 0.4089 ± 0.0204 0.4593 ± 0.0343 0.4207 ± 0.0307 0.4140 ± 0.0212 0.1851 ± 0.0104 0.2001 ± 0.0035
0.3 0.5209 ± 0.0637 0.5053 ± 0.0386 0.4941 ± 0.0315 0.4847 ± 0.0410 0.5140 ± 0.0458 0.3089 ± 0.0228 0.4109 ± 0.0250

View1 0.5 0.4953 ± 0.0506 0.4963 ± 0.0466 0.4867 ± 0.0274 0.5213 ± 0.0239 0.5046 ± 0.0496 0.4156 ± 0.0290 0.5148 ± 0.0390
0.7 0.5161 ± 0.0380 0.4927 ± 0.0437 0.5179 ± 0.0499 0.5206 ± 0.0583 0.5024 ± 0.0559 0.4955 ± 0.0598 0.5333 ± 0.0399
0.9 0.5006 ± 0.0415 0.5153 ± 0.0596 0.4826 ± 0.0476 0.5201 ± 0.0441 0.5081 ± 0.0347 0.5196 ± 0.0481 0.5558 ± 0.0405
0.1 0.6068 ± 0.0281 0.5126 ± 0.033 0.6009 ± 0.0347 0.2788 ± 0.0059 0.4923 ± 0.0123 0.4361 ± 0.0271 0.4426 ± 0.0231
0.3 0.6660 ± 0.0361 0.6124 ± 0.0275 0.6696 ± 0.0425 0.3837 ± 0.0142 0.5679 ± 0.0245 0.5911 ± 0.0283 0.5707 ± 0.0255

View2 0.5 0.6377 ± 0.0382 0.6666 ± 0.0160 0.6620 ± 0.0556 0.5163 ± 0.0295 0.6585 ± 0.0267 0.6351 ± 0.0253 0.6694 ± 0.0113
0.7 0.6763 ± 0.0332 0.6726 ± 0.0378 0.6823 ± 0.0249 0.5620 ± 0.0188 0.6706 ± 0.0615 0.6578 ± 0.0431 0.6889 ± 0.0480
0.9 0.6745 ± 0.0322 0.6664 ± 0.0295 0.6601 ± 0.0385 0.6103 ± 0.0408 0.6697 ± 0.0337 0.6657 ± 0.0329 0.6768 ± 0.0333

𝑁𝑀𝐼
0.1 0.4256 ± 0.0158 0.4003 ± 0.0124 0.4246 ± 0.0087 0.3373 ± 0.0091 0.3779 ± 0.0200 0.1225 ± 0.0161 0.1307 ± 0.0024
0.3 0.5196 ± 0.0252 0.4883 ± 0.0171 0.5176 ± 0.0119 0.4750 ± 0.0177 0.5196 ± 0.0226 0.2488 ± 0.0194 0.3743 ± 0.0157

View1 0.5 0.5010 ± 0.0273 0.5044 ± 0.0256 0.4977 ± 0.0203 0.5185 ± 0.0139 0.5076 ± 0.0281 0.3741 ± 0.0238 0.5171 ± 0.0220
0.7 0.5132 ± 0.0208 0.5069 ± 0.0190 0.5162 ± 0.0221 0.5217 ± 0.0254 0.5252 ± 0.0271 0.5133 ± 0.0254 0.5273 ± 0.0200
0.9 0.5098 ± 0.0277 0.5164 ± 0.0289 0.5074 ± 0.0230 0.5123 ± 0.0214 0.5063 ± 0.0146 0.5158 ± 0.0249 0.5270 ± 0.0170
0.1 0.5226 ± 0.0144 0.4556 ± 0.0138 0.5369 ± 0.0167 0.2354 ± 0.0055 0.4392 ± 0.0083 0.4462 ± 0.0310 0.3891 ± 0.0145
0.3 0.6094 ± 0.0185 0.5811 ± 0.0144 0.5951 ± 0.0206 0.3083 ± 0.0069 0.5261 ± 0.0090 0.5591 ± 0.0256 0.5164 ± 0.0081

View2 0.5 0.6227 ± 0.0119 0.6197 ± 0.0123 0.6093 ± 0.0206 0.4655 ± 0.0166 0.6132 ± 0.0130 0.5922 ± 0.0147 0.5940 ± 0.0110
0.7 0.6095 ± 0.0118 0.6084 ± 0.0204 0.6016 ± 0.0209 0.5202 ± 0.0112 0.6134 ± 0.0254 0.6087 ± 0.0193 0.6113 ± 0.0141
0.9 0.6069 ± 0.0167 0.6084 ± 0.0128 0.6013 ± 0.0163 0.5703 ± 0.0218 0.6043 ± 0.0215 0.5948 ± 0.0259 0.6108 ± 0.0139

Digits Movie MINIST−USPS
0

20

40

60

80

100

E
xe

cu
tio

n 
tim

e 
by

 s
ec

on
d

 

 

RMFS
MVFS

Figure 3. Execution time of RMFS and MVFS by second (10 runs).

from View-2) is much better than the the best result provided
by MVFS (𝑁𝑀𝐼 = 0.6154, with 30% features from View-
1 and 50% features from View-2) and RMFS outperforms
MVFS over 50% in terms of 𝑁𝑀𝐼 in the setting with 10%
features from View-1 and 90% features from View-2. Recall
that the performance of RMVC on single-view evaluation on
MNIST-USPS with low selected feature ratios is worse than
the one provided by single-view feature selection method.
When combining the selected features from different views,
the performance is boosted a lot. This indicates that our
method takes the features from all views into account and
the combination of the selected features is jointly to improve
the clustering performance.

In terms of efficiency, Figure 3 show the 10 runs execution
time of RMFS and MVFS on these three data sets using a PC
with two Intel Core i7 3.4GHz CPUs and 32 GB RAM. Our
proposed method runs faster than MVFS by a large margin.
This results from that multi-view K-means is employed to
obtain the pseudo labels instead of multi-kernel learning,
which needs the eigenvector decomposition. It indicates that
RMFS is suitable for multi-view feature selection on large-
scale data sets.
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Figure 4. Convergence study of RMFS on three data sets.

Finally we experimentally study the convergence of
RMFS to verify the correctness of Theorem 2 by Figure 4,
which shows the convergence curves of three data sets. Gen-
erally speaking, RMFS converges fast within 15 iterations,
which demonstrates high quality pseudo labels generated
from multi-view learning are conductive to accelerate the
convergence speed of RMFS. There is only one parameter
𝛽 in our model to control the sparsity. The parameter 𝛽 is
not very sensitive within [1𝑒− 3, 1𝑒+3]. Due to the limited
pages, we omit the parameter analysis here.

VI. CONCLUSION

In this paper, we proposed a novel algorithm named
Robust Muli-view Feature Selection (RMFS) for multi-view
unsupervised feature selection, which provided robust and
high quality pseudo labels from multi-view learning to guide
the feature selection process and had much lower time
complexity than existing methods. Further, a K-means-like
optimization solution was designed on an augmented matrix
to update several variables in a unified framework. Extensive
experiments on three real-world data sets revealed that the
effectiveness of RMFS in terms of both single-view and
multi-view evaluations and the fast convergence speed.
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