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Axionlike particles are promising candidates to make up the dark matter of the Universe, but it is
challenging to design experiments that can detect them over their entire allowed mass range. Dark matter in
general, and, in particular, axionlike particles and hidden photons, can be as light as roughly 10−22 eV
(∼10−8 Hz), with astrophysical anomalies providing motivation for the lightest masses (“fuzzy dark
matter”). We propose experimental techniques for direct detection of axionlike dark matter in the mass
range from roughly 10−13 eV (∼102 Hz) down to the lowest possible masses. In this range, these axionlike
particles act as a time-oscillating magnetic field coupling only to spin, inducing effects such as a time-
oscillating torque and periodic variations in the spin-precession frequency with the frequency and direction
of these effects set by the axion field. We describe how these signals can be measured using existing
experimental technology, including torsion pendulums, atomic magnetometers, and atom interferometry.
These experiments demonstrate a strong discovery capability, with future iterations of these experiments
capable of pushing several orders of magnitude past current astrophysical bounds.
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I. INTRODUCTION

The cold-dark-matter paradigm has been established as a
critical part of our understanding of cosmology, but the
fundamental nature of this dark matter remains unknown
[1]. Axions are among the most well motivated of the viable
dark-matter candidates, with many theories of beyond the
standard model physics including mechanisms that can
produce ubiquitous axions and other ultralight bosons with
the correct abundance to match the observed dark-matter
density [2–12]. The large parameter space where ultralight
bosons are good dark-matter candidates has inspired new
interest in experimental searches for axion and axionlike
searches [13–28] as well as other types of ultralight bosonic
dark matter [29–51], with many experiments in progress.

In particular, there has been renewed interest in these
types of ultralight dark matter with masses as low as
ma ∼ 10−22 eV. This fuzzy dark matter has a Compton
wavelength on the order of the size of dwarf galaxies,
which circumvents potential problems associated with
structure formation from standard cold dark matter
[52–59]. In addition, recent measurements suggest there
are slight excesses in the cooling of white dwarfs that could
be explained by the addition of ultralight axions [60]. It is
interesting to note axions with even lighter masses below
10−22 eV can also form a partial contribution to the total
dark-matter mass density [61,62]. This extreme ultralight
dark matter has been the focus of several recent exper-
imental proposals [42–44,46–50], but most have focused
on scalar dark matter and its couplings. In this paper, we
present several experiments that can be modified or created
to search for axions at the lightest masses, and evaluate
their potential to reach axion couplings several orders of
magnitude beyond current astrophysical bounds.
In this paper, we focus exclusively on axionlike particles

(which we refer to simply as axions for short), and focus on
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the nature and potential discovery of ultralight dark matter
composed primarily of these particles. An axion is created
as the Goldstone boson of a high-scale symmetry breaking,
so we expect it to have a derivative interaction with
fermions of the form

Lax ¼ gaψ̄ψ∂μaψ̄γμγ5ψ ; ð1Þ
where ψ is the fermion field, a is the axion field, and gaψ̄ψ is
the coupling constant of the axion field to the fermions,
which is inversely proportional to the energy scale of the
symmetry breaking. If the axion is ultralight (below∼1 eV),
then the phase space density of the dark matter implies there
must be many particles per cubic de Broglie wavelength.
Much like the large occupation of photons acts to form a
coherent electromagnetic wave, we expect that this large
number density of axions should act as a classical field, with
the particle oscillating around theminimum of its classically
quadratic potential with a frequency equal to its mass. The
field then takes the form aðt; x⃗Þ ∼ a0 cos ðEatþ p⃗a · x⃗Þ,
where Ea and p⃗a are the energy and momentum, respec-
tively, of the axion. The distribution of energy (and thus
frequency) is centered on themassma of the axion, but since
the axions are nonrelativistic andmoving at a velocity v, they
have a small spread in their energy set by the kinetic energy
of the axionmav2. We can understand the coherent effect of
the axion field by analyzing the nonrelativistic limit of the
above interaction, which gives rise to the following
Hamiltonian:

Hax ¼ −gaψ̄ψ∇⃗a · σ⃗ψ ; ð2Þ
where σ⃗ψ is the spin operator of the fermion field ψ . This
simplification of the Hamiltonian can be understood by
recognizing the Lagrangian in Eq. (1) as a magnetic dipole
moment operator, with a pseudomagnetic field defined by
the gradient (and momentum) of the axion field. This
pseudomagnetic field couples only to spin, and hence all
axion-coupled fermions precess around the direction of the
axion dark-matter momentum.
We assume the axion dark matter permeates throughout

the galaxy, and so this creates an “axion wind” that flows
through the Earth at the galactic virial velocity, v⃗ ∼ 10−3v̂.
The momentum of this wind thus can be calculated as

∇⃗a ∼ p⃗aa ∼mav⃗a0 cosmat. We can further simplify this
by recognizing that the energy density of this field can be
calculated as ρDM ¼ 1

2
m2

aa2, where ρDM ¼ ð0.04 eVÞ4 is
the established measured energy density of dark matter in
the Galaxy. Using these facts, we can further simplify the
Hamiltonian as

Hax ∼ gaψ̄ψa0maðv⃗ · σ⃗ψÞ cosmat

⇒ Hax ∼
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
v⃗ · σ⃗ψ cosmat: ð3Þ

We can see from this final Hamiltonian that this is
analogous to the coupling of spin to a pseudomagnetic field

of size B ∼ gaψ̄ψv
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
/γψ , where γψ is the gyromagnetic

ratio of the fermion. Since we are interested in the spin
precession of fundamental fermions and we do not know
the direction of the dark matter relative to the Earth, we take
v⃗ · σ⃗ ¼ 1

2
v on average (assuming the spins are collinear

with the axion field, and ignoring order 1 factors account-
ing for the rotation of the Earth). We then estimate the size
of axion-induced energy splitting per spin as

Hax ∼ 10−25 eV
�

gaψ̄ψ
10−10 GeV−1

��
v

10−3

�

×

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρDM

ð0.04 eVÞ4
s 1

A cosmat: ð4Þ

Although this is a small effect, making use of a large
number of coherent spins can greatly increase the potential
for direct detection through this channel, as previously
discussed for heavier axions with masses between 10−14

and 10−7 eV [22,23].
Experiments designed to search for spin-dependent vio-

lation of Lorentz invariance (LIV) are a natural starting point
for these ultralight axion searches. The LIV signal manifests
itself at lowest order through the nonrelativistic Hamiltonian
H ¼ bψ · σψ , where bψ is the overall energy shift that
quantifies the size of the local Lorentz violating field
[63,64]. We can immediately see a correspondence between
this energy shift bψ and the axion coupling gaψ̄ψv

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
, so

we expect the LIV signal to be identical to the axion signal in
the zero axion mass limit. These same experiments, includ-
ing spin-polarized torsion pendulums and atomic magne-
tometers, can then be used with little to no modification to
search for slowly varying axion fields. We discuss for each
experiment how bounds on these measured values can be
interpreted in terms of limits on the axion coupling.
In this paper, we study the experimental effects of

axionlike particles at the lowest axion masses, i.e.
ma ∼ 10−14–10−22 eV, including the mass range of fuzzy
dark matter. In this mass regime, the axion field oscillates at
frequencies from 100 nHz (roughly an inverse year) to
100 Hz, and so the axion signal is modulated at exper-
imentally accessible time scales. The experiments consist of
many measurements each with an inverse time scale T−1

meas
that is usually within the frequency range of interest in this
paper. For the lowest axion masses ma ≪ T−1

meas, and the
axion signal is essentially constant over an individual
measurement. In this case, the axion-induced precession
would vary across measurements, with the variation appear-
ing at the axion Compton frequency. At the other end of the
frequency range, where ma ≫ T−1

meas, the axion signal
oscillates many times per measurement and requires tech-
niques with sub-Tmeas resolution to extract.
We discuss several existing experiments that, with some

modifications and optimizations, can be used to search for
axion dark matter at the extreme ultralight frontier. We note
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that while the idea that torsion balances and atomic
comagnetometers can be used to search for axion dark
matter has been previously mentioned [65,66], here we go
through a full consideration of the reach of these experi-
ments, and the shape of our full sensitivity is different than
previous claims. In particular, in contrast to previous work,
we find that these techniques can be used to search for
axion dark matter significantly beyond the astrophysical
bounds. It is also interesting to note that a nucleon spin
precession measurement for dark matter has recently been
performed [28], which, although it does not reach beyond
the astrophysics bounds, does present the first dedicated
analysis for this type of coupling in this mass range.
For consistency, we demonstrate projected sensitivities

for all experiments after 1 year of integration based on
current and potential future experimental parameters, with
optimistic assumptions about the possibility of removing
backgrounds. In Sec. II, we discuss spin-polarized torsion
pendulum searches. In Sec. III, we discuss high-precision
atomic magnetometers. In Sec. IV, we propose a new
experiment to search for axions based on existing atom
interferometry technology. In Sec. V, we discuss the pos-
sibility to extend the searches described above to vector dark
matter. We conclude in Sec. VI with a discussion of the
landscape for new experiments designed to detect axions.

II. TORSION PENDULUM

The axion signal manifests itself as a spin precessing
around the direction of the axion velocity vector. The most
classically intuitive observable is a torque on the spin that is
proportional to the axion coupling. We can estimate the
torque per spin from the Hamiltonian in Eq. (2) as a cross
product between the direction of the axion field and the spin
of the particle. For a macroscopic object made up of Np
aligned spins, we thus have a total torque on the object of

τ⃗ψ ∼ gaψ̄ψNp
1

2
v⃗

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
cosmat: ð5Þ

For typical dark-matter parameters and experimental sizes,
the size of this signal is roughly

τ ∼ 10−2 eV

�
gaψ̄ψ

10−10 GeV−1

��
Np

1023

��
v

10−3

�

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDM

ð0.04 eVÞ4
r �

cosmat: ð6Þ

This effect thusmanifests itself as a small torque on amaterial
with a large spinmoment. In this section, we discuss how this
effect manifests itself in the spin-polarized torsion balance at

the University of Washington, and discuss strategies to
search for the axion using this experiment [67–70].

A. Torsion pendulum searches

The spin-polarized torsion pendulum at the University of
Washington is an ideal instrument to look for the spin-
coupled axion, as it contains a large net spin moment and
minimal magnetic moments. To achieve this, the pendulum
is made from a clever combination of two magnetic
materials that have different spin polarizations at the same
magnetization. The pendulum contains a total number of
polarized electron spins Np ∼ 1023 and a magnetic moment
of less than 10−5 J/G, making the experiment sensitive to
the gaee coupling [67].
Similar to the experiment proposed in [44] to search for

ultralow-mass scalar and vector dark matter, a torque due to
the oscillating axion field appears at six different frequen-
cies corresponding to the combination of the axion fre-
quency νa ¼ ma/2π, the turntable frequency νTT, and the
Earth rotation frequency ν⊕,

νsig ¼ νa � νTT þ
8<
:

þν⊕

0

−ν⊕

9=
;: ð7Þ

The coefficients of this signal are given in Eq. (5). The
axion signal appears at frequencies set by fundamental
physics, allowing it to be more easily distinguished from
systematic backgrounds like gravity gradients, magnetic
field drifts, and turntable tilt [67]. Since the torsion
pendulum is typically not limited by the read-out system,
a broadband search over the axion dark-matter frequency
space is most appropriate.
The fundamental noise limit from the experiment comes

from two primary contributions: thermal noise from the
fiber (which dominates at low axion frequencies) and
angular read-out noise from the laser read-out system
(which dominates at high frequencies). The thermal noise
power for the fiber takes the form

Pth ¼
4Tκ

2πνsigQ
; ð8Þ

where T is the temperature of the fiber, κ is the fiber torsion
constant, and Q is the quality factor of the fiber. Rotating
the balance places νsig ∼ νTT for all axion frequencies
below νTT, greatly reducing the thermal noise in searches
for low-frequency signals. For existing balances we have
typical thermal noise levels of

ffiffiffiffiffiffiffi
Pth

p
∼ 4 × 104

eVffiffiffiffiffiffi
Hz

p ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
T

300 K

��
κ

0.185 erg/rad

��
1 mHz
νsig

��
2000

Q

�s
: ð9Þ
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At a turntable frequency of νTT ∼ 1 mHz, this corresponds
to a thermal noise of

ffiffiffiffiffiffiffi
Pth

p
≃ 10−15 N · m/

ffiffiffiffiffiffi
Hz

p
. In the case

of νa > νTT, we have νsig ∼ νa, and so the thermal fiber noise
is even lower at this higher frequency. The thermal noise can
be reduced by rotating the table at higher frequencies,
reducing the temperature of the system, or using lower-
noise fibers that have smaller κ or larger Q.

The read-out noise takes the form

Pτ ¼ I2ð2πÞ4
�
ðν2sig − ν20Þ2 þ

ν40
Q2

�
Pθ; ð10Þ

where I is the moment of inertia of the pendulum, ν0 is the
resonance frequency of the apparatus, and Pθ is the noise
power for the angular read-out. Using existing experimental
parameters for the angular read-out system and assuming
the frequency of the axion dominates over the frequency of
the pendulum, we can also estimate the size of the read-out
noise [67],

ffiffiffiffiffiffi
Pτ

p
∼ 2 × 105

eVffiffiffiffiffiffi
Hz

p ×

�
I

10−4 kg · m2

��
νsig
1 Hz

�
2

×

� ffiffiffiffiffiffi
Pθ

p

10−9 rad/
ffiffiffiffiffiffi
Hz

p
�
: ð11Þ

The noise from the angle read-out increases quadratically
with frequency above ν0, and so rapidly becomes the
leading noise source above the resonance frequency of the
pendulum. To optimize the two noise sources over the total
frequency range, the turntable frequency should be located
where the thermal noise and angular read-out noise are
equal, but in practice it is often slightly lower than that due
to experimental constraints. The turntable frequency should
be lower than or near the resonance frequency of the
pendulum to suppress unwanted rotational modes due to
imperfections in the turntable.
Due to these constraints, it is important to note how the

noise scales with the size of the torsion pendulum.
Assuming the density of the material stays constant, both
the signal and the thermal noise are proportional to the total
mass of the pendulum, since the torsion constant of a fiber
scales with the square of the mass it can support. Since the
read-out noise scales with the pendulum moment of inertia,
smaller pendulums have improved signal to noise at high
frequencies.
In this analysis we assume that the torsion pendulum

remains the same size for all future iteration, with
I≃10−4 kg ·m2, κ¼ 0.185 erg/rad, and resonance frequency
of ν0 ≃ 5 mHz. Current experiments take νTT ≃ ν0/10,
but for future experiments, this can be pushed up closer to
νTT ≃ ν0 [67].

B. Sensitivity estimate

We can estimate the strength of the axion field coupling
we are sensitive to in these experiments by knowing the

total integration time and how the noise scales with time.
We use the noise scaling as derived in [22], which takes into
account the coherence time of the axion dark matter
τ ≃ 106/ma, and a total integration time of T int ∼ 1 year.
Combining the signal estimate in Eq. (5) with the

background estimate in Sec. II A, we find the exclusion
sensitivity of the torsion pendulum to the axion assuming a
signal-to-noise (SNR) ratio ∼1. Since there is no a priori
theoretical guess of the axion mass, the detection sensitivity
(which requires much higher SNR) is further reduced by
the large number of frequencies that must be tested. To
estimate the exclusion sensitivity, we analyze these noise
sources for the current experimental parameters (current),
near-term improved parameters (upgrade), and some opti-
mistic future parameters involving a cryogenic torsion
balance (future). These parameters are described in
Table I. Note that the result from the current analysis is
similar to the limit on DC LIV as measured in [67], which
bounded the electron coupling to the Lorentz violating field
of be < 3.4 × 10−22 eV. This corresponds to a coupling of
gaee ≃ 1.5 × 10−7 GeV−1, which differs slightly from the
plot due to our optimistic assumptions about integra-
tion time.
We plot this sensitivity over a range of masses in Fig. 1

and compare it to the astrophysical bounds on the axion
coupling from white dwarf cooling [71]. The sensitivity can
be understood in two different regimes separated by the
turntable frequency. We see that the experiment is particu-
larly sensitive to low-mass axions, including down to the
lower mass limit of 10−22 eV. In this region, the ultralight
axion appears almost as a DC effect, so the noise is
dominated by the thermal fiber noise. We can see from
Eq. (7) that because νa < νTT, the signal appears at side-
bands of the primary turntable frequency. The noise of the
system is set by the fiber thermal noise at νTT, leading to a
sensitivity that is independent of the axion mass. When
νa > νTT, the noise is set by the fiber thermal noise at νa,
which improves with increasing frequency. In this range the
ability to operate with νTT > ν0 would improve sensitivity
across the entire low-frequency range. Once νa > ν0, the

TABLE I. Parameter estimates for various runs of the torsion
pendulum. Current estimates are for the balance at the University
of Washington used in the measurements reported in [67].
Upgrade estimates are with the same pendulum, but with
upgrades the group is planning for the next few years. Future
estimates push the physical limits of what may be possible with a
torsion pendulum technique, assuming several improvements that
have not yet been experimentally demonstrated.

Current Upgrade Future

T (K) 300 300 6
Q 2000 106 108ffiffiffiffiffiffi
Pθ

p
(rad/

ffiffiffiffiffiffi
Hz

p
) 10−9 10−12 10−18

νTT (mHz) 0.5 0.5 5
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signal oscillates more rapidly than the pendulum can
respond, and so the measurement of the pendulum twist
angle limits the sensitivity of the experiment [as shown
in Eq. (10)].
For masses ma > Q/T int, we are limited by the finite

coherence time of the axion dark matter. The total signal
sensitivity thus decreases with the quarter root of the
total integration time. For our particular integration
time, this transition occurs at ma ∼ 10−17 eV, as indicated
by the corresponding kink in Fig. 1. For higher masses, the
sensitivity becomes dominated by the read-out noise, so
the noise scales with frequency like ν−2.25 (from the
combined effect of the time scaling with the read-out
noise, as demonstrated by the second kink around
10−14 eV for the bottom curve). The experiment quickly
loses sensitivity to higher masses. However, this mass
range is covered by other experiments [23], so there is only
a small amount of axion parameter space that is not
covered (this space should be completely covered if
optimistic projections for torsion pendulum improvements
can be met).
We find that current experimental parameters do not

quite reach the astrophysical limits, but that future experi-
ments could allow for significant reach beyond these
bounds. The future of torsion pendulum experiments allows

for significant improvement in technology beyond opti-
mization of the different thermal/read-out noise parameters.
With the experimental parameters considered here, the
optimal turntable frequency is quite far above the resonance
frequency of the pendulum, so the low-frequency noise can
be further reduced through optimization of the pendulum
size. Furthermore, a potential improvement in signal gain
could be to use superconducting magnets on the torsion
pendulum rather than rare-earth magnets, as this would
increase the total number of spins/mass by up to a factor
of 5.

III. ATOMIC MAGNETOMETERS

The Larmor precession of spin-coupled axion dark
matter can also be directly observed using high-precision
magnetometers. High-precision atomic magnetometers
have emerged within the past few years as powerful
alternatives to conventional SQUID magnetometers, reach-
ing comparable sensitivities in the range of 1 fT/

ffiffiffiffiffiffi
Hz

p
.

Since atomic magnetometers involve the precise measure-
ment of atomic spins, they can also probe new fields that
couple directly to spin. To accurately separate the anoma-
lous signal from the magnetic effects, these experiments
typically measure the precession of two different species of
atoms with different spin in the same volume. These
sensitive comagnetometers are well suited for searches
for axion dark matter that couples to nuclear spin.
For our analysis, we consider two different magnetom-

eters that were used to search for anomalous couplings to
spin associated with LIV violation, a search similar to a
search for low-frequency spin-coupled axion dark mat-
ter [72,73].

(i) Electron-nucleon comagnetometer at Princeton
University.

(ii) Nucleon-nucleon comagnetometer at Physikalisch-
Technische Bundesanstalt.

We review both experiments and their relative similarities
and differences, and propose analysis strategies for search-
ing for low-mass axions using the currently existing setups.
For both experiments, we also reinterpret the bounds placed
on static LIV parameters as bounds on the axion coupling at
the lowest frequencies, with an upper frequency bound set
by the inverse integration time of the experimental shots.
These bounds are calculated specifically for both experi-
ments and are plotted alongside projected axion sensitiv-
ities given by noise limits and a total integration time
of 1 year.

A. Electron-nucleon comagnetometer

The experiment functions as a self-compensating
comagnetometer by exploiting the interaction between
the electron spins in K and the nuclear spins in 3He.
The densities and polarization of the two species are
arranged such that small changes in the background

FIG. 1. Estimate of the exclusion sensitivity reach of the spin-
polarized torsion pendulum for the gaee coupling over an
integration time of 1 year. The different iterations of the experi-
ment have improved thermal and read-out noise parameters as
given in Table I. White dwarf and red giant cooling observations
currently favor excess cooling in the ∼10−9–10−10 coupling
strength range, making this a particularly interesting target range
for experiments [60]. We have the expected behavior for the
lowest frequencies due to the flat frequency response of the fiber
noise. For higher frequencies, the sensitivity begins to fall off
slowly due to coherence time of the axion, and then more quickly
once the sensitivity is dominated by the angle read-out noise. All
curves are expected sensitivity curves, and, in particular, the
current line is not currently a limit; it is only a projection for
where current technology could reach given the assumptions laid
out in the text.
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magnetic field are canceled. However, the electron and
neutron spins have different couplings to a new spin
interaction, and so the influence of the new spin inter-
actions does not cancel in the comagnetometer. This
produces a nonzero atomic transverse polarization which
can then be read out through measuring the optical rotation
of a polarized probe laser traversing the cell. This produces
a relative polarization of [72]

Px ¼ Pe
zγeT2ðβe − βNÞ; ð12Þ

where Pe
z is the average polarization of the electrons in

the cell (set to be 0.5 for optimal magnetometer perfor-
mance), T2 is the spin relaxation time, and β is the
“effective” magnetic field of the anomalous interaction.
This transverse polarization corresponds to the total
phase accrued by a precessing spin with Larmor fre-
quency γeβ after some spin relaxation time T2 (roughly
3 ms for K). In this form, we can interpret the effective
magnetic field from the relation γψβ ¼ gaψψv

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
,

so we can see that we have two contributions to
this effective magnetic field, one from the electron
axion coupling, and another from the nuclear axion
coupling.
Since the axion field is oscillating, the signal size is the

total phase due to the axion during the relaxation time of the
atoms. The total transverse polarization is then

Px ¼ Pe
zγe

�
gaee
γe

−
gaNN
γN

�
v

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
ma

sinmaT2; ð13Þ

where γe, γN are the electron and neutron gyromagnetic
ratios, respectively. Equation (13) explicitly shows how this
experiment is sensitive to both the electron and nucleon
coupling. If we assume that gaee ∼ gaNN, the effect from the
axion-electron coupling is 103 times smaller than the effect
from the axion-nuclear coupling. Thus, we treat gaNN as the
primary measurement for this experiment, although, in
principle, this experiment is also sensitive to gaee with
reduced sensitivity.
For ma ≪ T−1

2 , the magnetometer sensitivity approxi-
mates the steady state DC response of the magnetometer,
and so previous searches for LIV using K-3He comagne-
tometers give us an estimate of the sensitivity of this
technique for ultralight axions. For ma ≫ T−1

2 , the dark-
matter induced precession changes directions multiple
times within a single relaxation time, and so the experiment
is only sensitive to the amplitude of the oscillation, which
decreases as m−1

a .
Using typical experimental and theoretical parameters,

we can estimate the size of the amplitude of these
oscillations. To show the relevant features of both regimes,
we estimate the size of the signal at the dark-matter mass
ma ≃ T−1

2 ≃ 2π × 50 Hz,

Px≃2×10−9
�
Pe
z

0.5

��
γe

1.2×10−8 eV/T

��
1.3×10−11 eV/T

μN

�

×

�
gaNN

10−10 GeV−1

��
v

10−3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDM

ð0.04 eVÞ4
r

×

�
2π×50Hz

ma

�
: ð14Þ

Using Eq. (14), we can easily estimate both the maximum
signal size of the comagnetometer as well as how it
decreases for higher axion masses.
The sensitivity of the comagnetometer as of 2011 is

listed as δB ∼ 1 fT/
ffiffiffiffiffiffi
Hz

p
, which corresponds to a polari-

zation sensitivity of δPx ∼ 10−71/
ffiffiffiffiffiffi
Hz

p
. This sensitivity is

largely limited by various sources of technical noise. The
shot-noise limited magnetic field sensitivity is quoted as
δPx ¼

ffiffiffiffiffiffiffiffiffiffiffi
T2/N

p
, where N is the total number of atoms in the

volume of the cell (in this experiment, 1.3 × 1016 K atoms
and 1.9 × 1022 He atoms). In an ideal experiment running at
the shot-noise limit, this would allow phase sensitivity of
δPx ∼ 5 × 10−101/

ffiffiffiffiffiffi
Hz

p
, a factor of nearly 200 improve-

ment over the current limitation. The noise limit imposed
by the projection of the transverse magnetization as
discussed in [23] is about an order of magnitude or so
below this shot-noise limit, and has the same scaling with
atomic density as the shot noise so it should not be a
limiting factor.
The greatest systematic effect limiting the measurement

is the gyroscopic pickup of the rotation of the Earth. Due to
the fact that the atoms are in an inertial reference frame,
they experience a torque of τ ¼ Lν⊕ ¼ μβ, so they expe-
rience an effective magnetic field of β ¼ ν⊕/μ at a
frequency of ν⊕. However, the measurement of the axion
is helped by the fact that in frequency space, this effect is
located at a specific frequency set by fundamental physics,
which naturally separates it from other laboratory frequen-
cies. As long as the overall background noise can be
controlled below the shot-noise level, these sideband
frequencies should be distinguishable from the gyroscopic
systematic effect. Further discussion of this point is
in Sec. A.
We can interpret the DC LIV limit measured in [72]

as a limit on a low-mass axion coupling. As described,
this experiment ran for two separate runs, each of
roughly one month periods. Any effect of an axion
with a period greater than this integration time has an
identical signature to a DC LIV violating effect. The
measured bound of bN < 3.7 × 10−33 GeV can thus be
interpreted as a limit on a low-mass axion coupling of
gaNN ≲ 1.6 × 10−9 GeV−1. This low-frequency limit is
plotted in Fig. 2. This result can still be used to
establish bounds on axion masses of higher frequencies,
but we leave the details of these bounds to a dedicated
experimental analysis.
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Using the theoretical shot-noise limit described above,
we can make an optimistic projection of the sensitivity to
the axion coupling gaNN shown in Fig. 2, where we take a
total integration time of 1 year and assume optimistic
background removal techniques. The total reach of the
nuclear coupling should reach past the astrophysics
bounds set by SN1987A cooling [71] by almost 2 orders
of magnitude, providing the best bound on this coupling.
With further experimental improvements to allow the
magnetometer to run at shot-noise limited sensitivity,
we can see from the projected line in Fig. 2 that this
bound can be improved almost down to the level of
fa ∼ 1011 GeV, demonstrating strong sensitivity to high
energy effects.

B. Nucleon-nucleon comagnetometer

The 3He—129Xe comagnetometer has a substantially
different design to the comagnetometer described above,
but has similar sensitivity to LIV measurements. This
comagnetometer functions by having colocated samples
of 3He and 129Xe vapor in a cell whose nuclear spins are
polarized along a holding field. The nuclear spins are then
tipped perpendicular to and precess around the holding
field, and the oscillating magnetic field generated by the
precessing nuclear magnetic moments is then measured

using a SQUID, with ∼1 fT/
ffiffiffiffiffiffi
Hz

p
sensitivity. The strength

of the guiding magnetic field is chosen such that the two
samples have precession frequencies on the order of 10 Hz,
which is low enough to allow for long interrogation times
but still above the low-frequency vibrational noise picked
up by the SQUID detector [73].
To remove the effects of magnetic field drifts in

the laboratory, a weighted frequency difference is calcu-
lated as Δν ¼ νHe −

γHe
γXe

νXe. With perfect compensation,
this weighted frequency difference should cancel all
magnetic field drifts in the laboratory, leaving a null signal
(except for systematic effects, e.g. chemical shift). This
allows for a precise measurement of anomalous spin
couplings which would not cancel in this weighted differ-
ence. This has been used to search for LIV couplings by
measuring sidereal variations in Δν [73]. We discuss two
separate methods for analyzing an oscillating signal at low
and high frequencies, but these two methods naturally
merge into each other and thus are only represented
together in Fig. 2.

1. Low-frequency analysis

Like in the previous experiment described above, a static
anomalous spin-coupling term caused by a DC LIV term
has been the subject of an analysis using this comagne-
tometer. Due to the rotation of the lab about the earth axis
during a sidereal day, variations of the weighted frequency
difference Δν with the Earth rotation frequency ν⊕ are
expected for a static offset as a result of LIV. The total
strength of the LIV term can then be found by fitting Δν to
the Earth’s rotation frequency and measuring the amplitude
of the oscillation.
An ultralow mass axion dark matter interaction would

cause the weighted frequency difference Δν to oscillate due
to the combined effects of the laboratory rotating relative to
the axion field and the oscillation of the axion field itself.
To search for this oscillation, one would measure Δν as a
function of time and fit ΔνðtÞ at the combined frequencies
ν⊕ and νa. For axions with low frequencies νa < ν⊕, we can
expect to perform a similar analysis of measuring the
amplitude of oscillations, but now with a long-term search
for the combined Earth and axion frequency.
The result of the LIV study previously performed was an

overall bound on the nucleon coupling to the Lorentz
violating field of bN⊥ < 3.7 × 10−32 GeV. Like before, this
bound can be directly transferred to axion-nuclear inter-
actions, which gives us a bound on the coupling of
gaNN < 1.6 × 10−8 GeV−1, for frequencies below the
inverse total integration time of the experiment of 130 h.
This is shown as a shaded bound in Fig. 2. More recently,
this experiment has published a stricter bound on this
coupling [74], but these results are currently still under
review. This measurement was limited by systematic drifts
in the weighted precession frequency, but for future
iterations, we assume that these systematics can be

FIG. 2. Estimate of the exclusion sensitivity reach of the two
different magnetometers to the gaNN coupling over an integration
time of 1 year assuming phase-noise limitation. Current bounds
from the DC LIV analyses are reinterpreted as bounds on this
coupling for frequencies below the total inverse integration time
of the experimental shots [72,73]. For the projected sensitivities,
we have the expected behavior for the lowest frequencies, where
this effect acts like the DC LIV signal. For higher frequencies, the
sensitivity begins to fall off slowly due to coherence time of the
axion dark matter and the nuclear spin precession. Note that for
the projected sensitivities we have assumed that systematic
uncertainties can be overcome and that these experiments can
run at their noise limit. Further improvements come to both
experiments by improving relaxation times and densities of the
particles involved in the experiment.
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overcome and we can measure at the noise limit associated
with the precession frequencies.
We note that this is not necessarily a hard limit on the

coupling strength. A stronger coupling could have been
missed for several reasons, including that at the time when
the experiments were made the axion mass induced
oscillation might have been in a phase of low amplitude,
or the angle between axion wind and quantization axis of
the spins might have been unfavorable. For determining a
reliable upper limit for the coupling, a series of measure-
ments must be made, at various magnetic field orientations
and at various times during the year. Using the noise limits
of the comagnetometer presented in the LIV analysis, we
can make a projected limit on the low-frequency bound of
this comagnetometer using a total integration time of 1 year,
as shown in Fig. 2.

2. High-frequency analysis

For higher frequencies, the analysis to search for these
axions must take a different approach, where the axion-
nucleus interaction is identified by the presence of side-
bands around the Larmor precession frequency. In the
“sidebands in Larmor frequency induced by axions”
(SILFIA) detection concept, the comagnetometer is com-
posed of one nuclear spin and the SQUID. With SILFIA,
we can make use of the long relaxation time of a single
nucleus like He of up to 100 h to obtain a good signal-to-
noise ratio when searching for variations in the frequency
of the oscillating transverse magnetization. Here we present
an overview, with more details presented in a separate
publication [75].
Typically, the SQUID measures an oscillating mag-

netization due to the precession of the atoms as
BðtÞ ¼ BT cos ð2πνHetÞ, where BT is the field generated
by the transverse magnetization of the precessing
spins, set by the number of spins in the cell. In practice
this amplitude BT decays by e−1 over the course of the
relaxation time, which causes a broadening of the
frequency. For simplicity, we ignore this effect in this
analysis. The oscillation of the precession frequency due
to the presence of the axion dark matter generates a
SQUID signal of the form

BðtÞ¼BT cos

�
2πνHetþ

1

2

Z
t

0

gaNNv
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
sinmat0dt0

�
:

ð15Þ

This is a frequency modulation of the Larmor
precession signal which in the frequency domain results
in a peak of amplitude BT at νHe, and two first-order
sidebands with amplitude BTgaNNv

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
/2ma at frequen-

cies νHe �ma/2π. In the time domain, the signal can be
approximated by the superposition of three oscillations,

BðtÞ ≃ BT

�
cosð2πνHetÞ

þ gaNNv
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
2ma

ðcos½ð2πνHe þmaÞtþ ϕþ�

þ cos½ð2πνHe −maÞtþ ϕ−�Þ
�
: ð16Þ

In Eq. (16), sidebands of higher order are ignored, so that
this presentation resembles the result of an amplitude
modulation. As long as these sidebands are above the
noise floor, gaNN can be measured by comparing the size of
the sideband peak to the Larmor peak. When ma/2π < νHe,
the sidebands should appear as two distinct lines around the
precession frequency. For ma/2π > νHe, we expect to see
the axion signal appear as two split lines separated by twice
the precession frequency and centered around the axion
frequency. As shown in Eq. (16), we expect this signal to
fall off like m−1

a , as expected from merging with the low-
frequency analysis. A most important feature of this
detection scheme is that artifact sidebands that are gen-
erated by some magnetic interference can be identified in
the spectrum of the SQUID signal by the presence of a peak
at the frequency of the interference.
The amplitude BT is determined by the observed nuclear

magnetic moment and the number of polarized nuclei in the
sample. The best typical values for this amplitude are on the
order of BT ∼ 100 pT. For this analysis, we take the noise
floor from the SQUID at δB ∼ 1 fT/

ffiffiffiffiffiffi
Hz

p
. The total signal

time is set by the minimum of the transverse spin relaxation
time and the coherence time of the axion interaction,
i.e. T ¼ minðT2;

ma
Q Þ.

The requirement for these sidebands to be sufficiently
resolved is that the sidebands are well separated from the
much higher primary peak, i.e. by several times the line-
width. In a perfect scenario, the carrier peak has a Fourier-
limited width of π/T2, where T2 ¼ 100 h is the longest
observed relaxation time of 3He. In practice, however, the
carrier peak is limited by the temporal stability time of the
static magnetic field over the measurement time, which
limits the linewidth to a few mHz. This can be overcome by
improving the magnetic field control down to the Fourier
limit. This limits the effective range of the sideband search
to axions of frequency νa > 10 mHz, below which the low-
frequency analysis naturally takes over.

3. Sensitivity estimate

The potential sensitivity of the techniques described
above is shown in Fig. 2. For this analysis we have assumed
more modern numbers for the transverse magnetization
amplitude and for the SQUID noise than in [73] improving
on δB by a factor of 3 and BT by a factor of 2, as well as
assuming that the systematic uncertainties associated with
previous LIV measurements can be overcome and this
experiment is only noise limited. This explains the large
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increase in sensitivity from the 2010 LIV measurement and
the projected measurement.
Like in the previous experiments, we assume a total

integration time of T int ¼ 1 year. For axion coherence
times less than this integration time, we are able to add
the successive shots coherently since we can keep track of
the sidereal phase of the recordings. We thus assumewe can
run individual shots up to the relaxation time T2, which we
take to be the limiting Xenon coherence time of T2 ¼ 8 h,
and then run N ¼ T int/T2 shots, allowing the signal to build
as

ffiffiffiffi
N

p
. As expected, we find that the method is flat at the

lowest frequencies below T−1
2 , where the low-frequency

axion mimics the DC behavior, and then begins rising like
m−1

a . There is a second kink in the sensitivity around
10−17 eV, where the coherence time of the axion is less
than the total integration time, causing the signal to fall off
by an additional quarter root. The overlap between the low-
frequency and high-frequency analysis is expected given
that the two analyses are effectively time-domain and
frequency-domain analyses of the same data.
For future analyses, the noise of the SQUID detection

system has been reduced down to δB ∼ 160 aT
ffiffiffiffiffiffi
Hz

p
[76].

Further improvements come about from increased densities
of He andXe in the cell, which increases the amplitude of the
transverse magnetization oscillation, in turn increasing the
axion signal. These magnetometers show extreme sensitivity
to these axions, allowingus to set limits past the astrophysical
bounds within current experimental parameters.

IV. ATOM INTERFEROMETRY

The spin coupling of the atoms to the axion field not only
induces classically intuitive effects such as Larmor preces-
sion, but also induces a phase shift as the atoms evolve due to
the presence of the modified Hamiltonian. These atomic
phase shifts are naturally measured using atom interferom-
etry, where the phase shift can be measured by interfering
atoms in different spin states. This type of spin interferometry
has not yet been demonstrated, but there are several systems
that naturally lend themselves to this type of measurement.
Furthermore, the additional degree of freedom provided by
measurements of different spin states allows us to construct
different interferometers at once, which we can exploit to
cancel off many noise sources to measure at the shot-noise
limit. In this section we discuss a specific implementation of
this type of atom interferometer, describe a potential strategy
for removing sources of noise, and discuss the sensitivity of
this type of experiment to an ultralight axion field.
The phase shift from the axion field can be understood to

lowest order as a differential phase shift between two atoms
in different spin states mS;1 and mS;2. After some inter-
rogation time T, this phase shift takes the form

Δϕ ¼ ðmS;1 −mS;2ÞgaNN
v

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
ma

sinmaT: ð17Þ

A natural candidate for this search is the 1S0 − 3P0

optical clock transition in alkaline-earth atoms, including
Ytterbium and Strontium. This type of interferometer has
recently been proposed to search for gravitational waves
[77] and for scalar dark matter [50], so this analysis is a
natural extension into pseudoscalar dark matter. The
fermionic isotopes of these elements have nuclear spin
that arises from a combination of neutron spin and neutron
angular momentum, which causes a hyperfine splitting of
both of the clock states into a manifold of different spin
states, where the stretched hyperfine states are the spin-up
and spin-down states of the neutron spin. The phase shift
can then be measured between the 1S0ðmS ¼ � 1

2
Þ state and

the 3P0ðmS ¼∓ 1
2
Þ state.

A. Experimental proposal

1. Standard broadband analysis

As described in the first section, we expect the axion dark
matter to create a spurious phase shift on a spin due to the
precession of the spin around the axion field. This phase shift
can be measured using atom interferometry by interfering
two atoms in different nuclear spin states, allowing us to
probe the gaNN coupling. For this analysis, we focus on the
interferometer proposed in [77] that is based on 87Sr, which
has a a nuclear spin of I ¼ 9

2
. From the nuclear shell model,

we know that this means that the nucleus is in a well-defined
nucleon spin state for the stretched states, mI ¼ � 9

2
, where

we have mN ¼ � 1
2
[78]. We have a total spin difference of

Δm ¼ 1, which we would expect for the coupling of the
axion to any fundamental fermion.
The presence of an oscillatory phase shift naturally

separates the analysis of the phase shift into two distinct
regions: ma < 1

T, where the interferometer does not
integrate over enough time to allow a complete period
of the axion field, and ma >

1
T, where the phase shift

undergoes multiple oscillations during the interferometer
interrogation. These two regions have qualitatively differ-
ent behavior. Modern atom interferometry experiments
can achieve interrogation times of T ∼ 1 s, so we can
estimate the maximum phase shift at the dark-matter mass
ma ¼ 2π × T−1 ≃ 2π × 1 Hz,

Δϕ ∼ 2 × 10−10
�
ΔmS

1

��
gaNN

10−10 GeV−1

�

×

�
v

10−3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDM

ð0.04 eVÞ4
r �

2π × 1 Hz
ma

�
: ð18Þ

For masses below the inverse free-fall time, only a small
portion of the total axion period contributes to the phase
shift. We can approximate the phase shift above by

ϕ ≃ v
ffiffiffiffiffiffiffiffi
2ρDM

p
ma

ðmaTÞ ¼ v
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
T. We expect the phase shift

should be independent of axion mass and should grow with
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larger interrogation times. For masses above the free-fall
time, the axion undergoes multiple periods during the
interrogation, so we are only sensitive to the amplitude
of the phase shift oscillation, which scales with the axion
mass asm−1

a . We expect to quickly lose sensitivity to higher
mass axions. This method also produces cusps located at
maT ¼ nπ, but in practice, these cusps can be avoided by
running the interferometer with different interrogation
times between runs.

2. High-frequency resonant analysis

We can potentially improve this experiment by taking
advantage of the multiple oscillations of the axion field
through an interferometric sequence that transitions between
the spin states at the frequency of the axion, allowing the
phase shift to accumulate. This is done by using a laser to
transfer the atom population between the spin-upmN ¼ þ 1

2

and the spin-down state mN ¼ − 1
2
. If the frequency of the

spin flipping is equal to the axion mass, then we can flip
the sign of the phase shift after each oscillation to allow the
phase shift to build up over the coherence time of the axion.
Experimentally, this spin flipping can be accomplished in
submillisecond time scales, allowing us to probe up to 1 kHz
(∼10−13 eV) axion masses.
The integration time for the resonant experiment is set for

the purposes of these estimates by the requirement that we
want to probe adecade of axionmasses in the same integration
time as the broadband experiment (T int ∼ 1 year). This allows
us to probe a few decades of axion masses in a reasonable
amount of time. The time spent in each bin is thus
tbin ¼ T int

NQeff
, where N is the range of masses traversed

(N ¼ 10 for a decade of masses) and Qeff is the effective
width of each bin. This is taken to beQeff ¼ min ð106; maT

π Þ.
In practice, for the masses of interest, maT

π < 106, so this is
our limiting binwidth.We have tbin ¼ π

NmaT
T int. This causes

the sensitivity to fall off likem−1/2
a , improving the sensitivity

to higher masses as compared to the broadband case.
However, this method is also limited by the number of
pulses that the interferometer can make within the integra-
tion time before atom loss becomes significant. For realistic
atom number losses, we take this number to be Oð103Þ.

B. Noise-cancellation scheme

Atom interferometry is plagued by several major noise
sources, the most prominent of which for this analysis are
background magnetic fields and laser phase noise. To
observe an axion with a coupling of gaNN ∼ 10−10 GeV−1,
the background magnetic field that must be controlled at a
level of δB ¼ 10−15 T, which is difficult, although manage-
able with magnetic shielding (see further discussion of this
point in the Appendix). However, the degrees of freedom
provided by the different hyperfine states allow us to make
multiple measurements to subtract out these noise sources.

In this section we propose a method for removing these
sources of noise through interferometryonmultiple spin state
transitions.
The phase measurement of interest between the

1S0ðmN ¼ � 1
2
Þ state and the 3P0ðmN ¼∓ 1

2
Þ state is propor-

tional to the axion signal, to laser phase noise, and to
magnetic field backgrounds according to the relative
Zeeman coefficient between the two states, which has a
size gS þ gP ∼ 160 Hz/G. We want to make many simulta-
neous measurements to reduce these backgrounds.
While making the axion phase measurement, we can

simultaneouslymeasure themagnetic field with the same set
of atoms by using the same 1S0-3P0 transition but using states
of the same spin, i.e. 1S0ðmN ¼ � 1

2
Þ − 3P0ðmN ¼ � 1

2
Þ.

These two measurements have equal contributions from
the laser phase, while having equal and opposite magnetic
field phase information with a Zeeman coefficient of
gS − gP. Both contributions can then be measured through
symmetric and antisymmetric combinations of these
measurements, allowing us to subtract off the different
contributions. The magnetic field contribution must be
subtracted according to the relative Zeeman coefficients,
but since gsþgp

gs−gp
∼Oð1Þ, we know that the size of themagnetic

field signal is of the same order of magnitude in both
measurements.
Since all measurements are shot-noise limited, we can

subtract out each of the noise contributions at a sufficient
level to measure the signal. With adequate magnetic
shielding as discussed in the Appendix, the magnetic field
noise does not limit the axion measurement for a coupling
gaNN ≃ 10−10 GeV−1, but smaller couplings require this
subtraction scheme. It is important to note that making all
measurements reduces the effective shot noise of the
measurement by a factor of

ffiffiffi
3

p
due to the reduction in

the effective number of atoms, but this can be overcome by
increasing the number of atoms in the interferometer
sequence. We leave a dedicated experimental proposal
for this noise-cancellation scheme to future study.

C. Sensitivity estimate

With this noise-cancellation scheme in mind, we can thus
calculate the sensitivity of the atom interferometer using the
shot-noise limit of δϕ ¼ 1ffiffiffi

N
p , whereN is the number of atoms

per second. For this analysis, we take N ¼ 108 atoms/s,
giving a shot noise of δϕ ¼ 10−4 rad/

ffiffiffiffiffiffi
Hz

p
. We find the

sensitivity in Fig. 3, assuming a total integration time of
1 year. We plot the sensitivity for both the resonant and
broadband experiments to demonstrate their relative sensi-
tivity for current atom interferometers with interrogation
times of T ∼ 1 s. We also plot the sensitivity for resonant
future atom interferometers that are in development as
gravitational wave detectors. These proposals include both
a ground-based atom interferometerwith interrogation times
up to T ¼ 10 s, and a space-based atom interferometer with

PETER W. GRAHAM et al. PHYS. REV. D 97, 055006 (2018)

055006-10



an extremely long baseline that allows for interrogation times
of up to T ¼ 100 s. Both of these proposals also include the
possibility of using an increased shot repetition rate of up
to 10 Hz, effectively increasing the shot noise to δϕ≃
3 × 10−5 rad/

ffiffiffiffiffiffi
Hz

p
. These are all plotted in Fig. 3, showing

that this improves the sensitivity to the axion by up to 2 orders
of magnitude, probing past the astrophysical bounds.
We find that this experiment is particularly sensitive to

axions right around the transition mass of ma ¼ π
T. Below

this mass, the interferometer is only sensitive to the total
phase accumulated during the interrogation time. Right
above the transition mass, we see that the broadband and
resonant experiment have nearly the same sensitivity, but
the resonant experiment quickly provides greater sensitivity
despite the loss of integration time. The resonant experi-
ment shows strong sensitivity for several decades after the
transition point, at least up to the second kink where the
limited number of laser pulses becomes an issue.
Further improvements include “bouncing” the atoms in

the interferometer to increase the effective interrogation
time, as well as spin squeezing to improve the signal-
to-noise ratio towards the Heisenberg limit. Current sque-
ezing experiments have demonstrated squeeze factors offfiffiffiffi
N

p
∼ 100, providing large signal boosts as well as relaxing

the requirement on atom number [79]. These squeezing
techniques have not yet been demonstrated in the context of
atom interferometry, but in an optimistic scenario, we could
expect at least an order of magnitude improvement from
squeezing.

V. VECTOR COUPLINGS

This oscillating spin coupling is not unique to the axion,
as it can arise from any operator that couples an external
classical field to fermions. In particular, this same coupling
can arise from the coupling of a spin-1 vector, commonly
known as the hidden photon. These couplings take similar
forms to the axion couplings described above, and thus the
related plots look identical to those in the previous section,
as we show below. In particular, we focus on the dimen-
sion-5 electric and magnetic dipole moment operators due
to their similarity to the axion operator, and on the kinetic
mixing term induced at one loop by this operator.
First we consider the magnetic dipole moment operator,

which couples the hidden photon field to the spins of
electrons or nucleons. Following the example of the
magnetic dipole moment operator for photons, we can
write this coupling in the Lagrangian as

L ⊃ gAψψF0
μνψ̄σ

μνψ ; ð19Þ

where F0
μν ¼ ∂μA0

ν − ∂νA0
μ, i.e. the field strength of the

hidden photon field, and ψ stands for either an electron or
nucleon. Under the same assumption as in the axion case
that the hidden photon field can be modeled as a classical
wave and following the standard formulation of the
electromagnetic field strength tensor, we can estimate
the size of the hidden electric and magnetic fields as
E0 ∼ B0/v ∼

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
. This then allows us to approximate

this coupling in terms of a nonrelativistic Hamiltonian,

H ≃ gAψψ B⃗ 0 · σ⃗ψ ∼ gAψψ
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
v⃗ · σ⃗: ð20Þ

From Eq. (20) it is clear that the sensitivities of our
experiments for the coupling gAψψ are identical to those for
the axion spin couplings we have already considered. The
primary difference is the current bounds on this coupling
that exist from astrophysical sources. We can estimate
similar astrophysics bounds as for the axion by considering
the influence of hidden photons on the cooling rates of
stars. The processes that contribute to this cooling rate are
identical for this particular axion and hidden photon
coupling. In fact, the cross section for the hidden photon
processes is exactly twice that of the axion processes due to
the multiple polarization states of the hidden photon [80].
The bounds shown in the plots above are thus strengthened
only by a factor of

ffiffiffi
2

p
. Thus the plots for hidden photon

dark matter should look very similar to those for the axion,
Figs. 1–3 above.
Much like the magnetic dipole moment, there is also an

associated electric dipole moment term for the hidden
photon. For a normal photon, the electric dipole moment
coupling to spin vanishes due to CP symmetry. However,
because the hidden photon could also be CP violating, we
can just as easily have an electric dipole term for the hidden
photon. Again following the form of the electric dipole

FIG. 3. Estimate of the exclusion sensitivity reach of the atom
interferometer for the gaNN coupling over an integration time of
1 year. Again, we see a flat frequency response at low frequencies
due to the effective DC response of the phase shift. The signal
reduces at higher frequencies in the broadband experiment as the
phase shift is only sensitive to the amplitude of the oscillations.
This can be improved with a resonant experiment that amplifies
the phase shift at the axion frequency, which then falls off due to
the amount of time spent in each frequency bin. Future experi-
ments are primarily improved by reducing shot noise and
increasing interrogation time of the experiment.
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moment operator for photons and using our same assump-
tions for the hidden photon as above, we model this
interaction as

L ⊃ gAψψF0
μνψ̄γ5σ

μνψ

⇒ H ≃ gAψψ E⃗ 0 · σ⃗ψ ∼ gAψψ
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
v⃗ · σ⃗ψ /v: ð21Þ

For a hidden photon, since we know that E0 ∼
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
, the

size of the signal is no longer suppressed by the velocity of
the dark matter. We would expect the signal from a hidden
photon electric dipole coupling to be 103 times bigger than
that of the magnetic dipole coupling. All of the sensitivity
curves shown above would then be pushed down by 3
orders of magnitude. However the astrophysical bounds are
the same as those for the magnetic dipole coupling, giving
our experiments a much larger reach beyond current
constraints in this electric dipole coupling.
In addition to the direct dipole moment measurements,

this operator induces kinetic mixing effects between the
photon and the hidden photon through loop diagrams. This
coupling can cause anomalous oscillating electromagnetic
effects that have been the subject of other experiments
[36,37]. This kinetic mixing coupling term can be diagon-
alized into the form

L ⊃ −eJμEMðAμ þ εA0
μÞ; ð22Þ

where Aμ is the standard photon operator, A0
μ is the hidden

photon operator, and JμEM is the electromagnetic current.
The photon couples to the current through the standard
coupling e, while the coupling to the hidden photon is
suppressed by an additional factor of ε, which quantifies the
degree of kinetic mixing between the hidden photon and
the standard model. There is a minimum natural size to this
coupling (without tuning),

ε ∼ 10−10
�

gaNN
10−10 GeV−1

�
log

�
Λ
mA0

�
; ð23Þ

where mA0 is the mass of the hidden photon and Λ is the
scale of the theory cutoff. The largest possible hierarchy of
scales would be for Λ ∼Mpl and mA0 ∼ 10−22 eV, which
gives log Λ

mA0
∼ 100. If we use this formula to translate the

current bounds on ε for our mass range, they are substan-
tially weaker than the astrophysical bounds we have
already plotted and thus irrelevant.
It is also possible that these experiments could directly

bound a hidden photon that has only the kinetic mixing
[resulting in Eq. (22)]. In this case, the kinetic mixing can
induce a hidden magnetic dipole moment down from the
standard model value for each fermion by a factor of ε.
Inside a shield, the hidden photon dark matter looks like an
effective magnetic field [37]. Thus all comagnetometry is
not useful and we would simply have to rely on magnetic

shielding to distinguish this from background magnetic
noise, which is nontrivial. To compute the sensitivity of any
of our experiments to this kinetic mixing of the hidden
photon we can use the following formula to convert
sensitivities on gaψ̄ψ from above to sensitivities on ε:

ε ∼
mψ

α
vmA0Lexpgaψ̄ψ ; ð24Þ

where Lexp is the rough size of the magnetically shielded
region. Using this estimate, the most optimistic future
experiments will get roughly to the astrophysical bound
from heating of the interstellar medium [81].

VI. CONCLUSIONS

Ultralight, axionlike dark matter has recently attracted a
great deal of attention. While several axion dark-matter
experiments exist, none are sensitive to masses below
10−13 eV (∼102 Hz). This range is theoretically well
motivated, including for example the possibility of fuzzy
dark matter which may resolve problems in structure
formation. In this paper, we have described how the
low-mass frontier of axion dark matter produces effects,
including a time-oscillating torque and a variation in spin-
precession frequency, that can be probed using existing
experimental techniques. The frequency and direction of
these effects are defined by fundamental physics, allowing
these experiments to better distinguish this dark-matter
signal from normal laboratory backgrounds.
We have found three possible, high-precision experi-

mental techniques to search for axion dark matter in this
mass range. Torsion balances, atomic magnetometers, and
atom interferometers can all be used to detect the effects of
axion dark matter on the spins of electrons or nuclei.
Torsion balances and atomic magnetometers have already
placed constraints on static Lorentz invariance violation,
allowing us to reinterpret these bounds as bounds on axion
dark matter. The potential sensitivity of these techniques is
shown in Figs. 1–3. These experiments are rapidly improv-
ing in sensitivity, and future iterations will soon be able to
push beyond the astrophysical bounds into uncharted
territory for axion dark matter.
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APPENDIX: MAGNETIC FIELD BACKGROUNDS

The primary background in all of these experiments is
due to magnetic fields, which couple to spin according to
the magnetic moment of the particular fermion. Roughly,
we can estimate the necessary magnetic field noise sup-
pression by calculating the size of the minimum magnetic
field necessary to mask the axion signal, and requiring that
the total measured noise within the signal window is
smaller than this limit. In other words, we require

δBnoise ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
B × max

�
ma

Q
;
π

T2

�s
≤ δBsig ¼

gaψψ ∇⃗a · σ⃗ψ
μψ

:

ðA1Þ

Knowing the size of the signals as described above, we
can calculate the required magnetic field noise suppression
(and thus the level of magnetic shielding required) for each
experiment. We can invert the above expression to solve for
the noise spectrum PB and compare this to measured
background levels [82,83] for a fixed value of the coupling,
which we take to be gaNN ¼ 10−10 GeV−1. For the back-
ground magnetic field, we assume that the noise reaches a
DC limit at 10−7 T, which has been demonstrated by many
experiments. To calculate the bandwidth of the experiment,
we use a total signal time of T ¼ minðQma

; T intÞ, which leads
to the kink seen at 100 mHz.
For the experiments in question, we can calculate the size

of the magnetic field effect by using the magnetic moment
of the particular experiment (i.e. the magnetic moment of
the particle in question) and by accounting for comagne-
tometry effects that reduce the overall magnetic field
background noise. For the torsion pendulum, the comag-
netometry effect is already taken into account in the
reduction of the overall magnetic moment of the torsion
pendulum down to 10−5 J/G [67]. For the K-He magne-
tometer, the comagnetometry effect has been measured as
having a further suppression of the noise of 104 for the
electron magnetic moment [72,84]. For the He-Xe mag-
netometer, the comagnetometry is difficult to quantify
simply, as it is dependent on the time-dependent drifts in
the magnetic field. However, for simplicity, we assume a
constant conservative shielding factor of 102 on the nuclear
magnetic moment as demonstrated by the measurement in

[73]. The comagnetometry measurement for atom interfer-
ometry as described in Sec. IV is only a theoretical
measurement and has not been characterized, so we cannot
accurately model it in this analysis. However, we can see
that even in the absence of comagnetometry, the shielding
requirements for atom interferometry are still achievable
with current technology.
We can further reduce the size of the magnetic fields

using external magnetic shielding. Using the measurement
of background magnetic fields [82,83], and accounting for
comagnetometry effects above, we can estimate the shield-
ing factor required to measure a signal at the gaNN ¼
10−10 GeV−1 level. These shielding factors are shown in
Fig. 4 compared to a realistic shielding factor that has been
demonstrated by state-of-the-art μ-metal shields. For this
comparison, we plot measured shielding values for various
frequencies (shown by the solid line) and then project them
down to lower frequencies (shown by the dashed line) [82].
As shown in the figure, all experiments have a required

shielding factor below realistic levels, indicating that all of
the mentioned experiments can be successfully shielded to
measure a coupling of gaNN ¼ 10−10 GeV−1. Measurements
of smaller coupling require more shielding, and these levels
can be easily understood from scaling the lines in the figure.

FIG. 4. This figure shows the magnetic shielding required
for each experiment to measure a signal of coupling strength
gAψψ ∼ 10−10 GeV−1, assuming a typical background magnetic
field noise spectrum as measured in [82,83]. Existing reduction of
the noise due to comagnetometry effects is specific to each
experiment and is discussed in the text. This is compared to the
maximum demonstrated shielding in purple as measured for high
frequencies (solid line) and projected down to lower frequencies
(dashed line) based on typical static shielding factors. Since all of
the experiments mentioned here have a required shielding factor
below the maximum level, this shows the magnetic field noise
can be successfully suppressed to measure this coupling strength.
Further coupling measurements require more stringent back-
ground control, which can be scaled from the plot. These are only
rough approximations to the magnetic shielding; further analysis
is required for each dedicated experiment to better understand
how to control the magnetic field backgrounds.
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