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Abstract: While Langevin integrators are popular in the study of equilibrium properties of complex1

systems, it is challenging to estimate the timestep-induced discretization error: the degree to which2

the sampled phase-space or configuration-space probability density departs from the desired target3

density due to the use of a finite integration timestep. In [1], Sivak et al. introduced a convenient4

approach to approximating a natural measure of error between the sampled density and the target5

equilibrium density, the KL divergence, in phase space, but did not specifically address the issue of6

configuration-space properties, which are much more commonly of interest in molecular simulations.7

Here, we introduce a variant of this near-equilibrium estimator capable of measuring the error in8

the configuration-space marginal density, validating it against a complex but exact nested Monte9

Carlo estimator to show that it reproduces the KL divergence with high fidelity. To illustrate its utility,10

we employ this new near-equilibrium estimator to assess a claim that a recently proposed Langevin11

integrator introduces extremely small configuration-space density errors up to the stability limit at12

no extra computational expense. Finally, we show how this approach to quantifying sampling bias13

can be applied to a wide variety of stochastic integrators by following a straightforward procedure to14

compute the appropriate shadow work, and describe how it can be extended to quantify the error in15

arbitrary marginal or conditional distributions of interest.16

Keywords: Langevin dynamics; Langevin integrators; KL divergence; nonequilibrium free energy;17

molecular dynamics integrators; integrator error; sampling error; BAOAB; VRORV; OBABO; OVRVO;18

VVVR; Bussi-Parrinello; shadow work; integrator error19
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1. Introduction48

Langevin dynamics [2] is a system of stochastic differential equations which describes the behavior49

of condensed phase systems subject to random weak collisions with fictitious bath particles at thermal50

equilibrium. In this article we are concerned with the efficient numerical simulation of the Langevin51

dynamics system. The equations governing the ith atom of an N-body Langevin system are52

ẋi = vi, (1)

v̇i = −m−1
i ∇xi

U(x)− γ vi + σm−1/2
i Ẇi. (2)

Here, xi and vi denote the position vector and velocity vector of the ith particle of the system (typically53

each is a vector in <3), mi is the particle mass, and U(x) is the total potential energy, assumed to be54

a function of all the coordinates, x = (x1, x2, . . . , xN). The constant σ2 ≡ 2kBT γ quantifies the rate55

of heat exchange with the bath, where kBT denotes the thermal energy per degree of freedom, γ is56

the collision rate (with dimensions of inverse time), and Wi(t) is a standard 3-dimensional Wiener57

process [3,4]. It is easily shown that Langevin dynamics preserves the canonical distribution with58

stationary density59

π(x, v) ∝ e−βE(x,v) ∝ e−βU(x)e−βK(v), (3)
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where β ≡ (kBT)−1 is the inverse temperature, E(x, v) is a separable energy function E(x, v) =60

U(x) + K(v), and K(v) = vT Mv/2 is the kinetic energy in which M is a diagonal matrix constructed61

from the masses. We assume that the system (1)-(2) is ergodic, meaning that the canonical density is62

the unique stationary distribution; almost all stochastic paths consistent with (1)-(2) will sample the63

canonical distribution with density (3).64

On a computer, approximating the solution of equations (1)-(2) requires discretizing these65

equations in time to produce a finite-timestep Langevin integrator which can be iterated to compute66

equilibrium or dynamical properties [5]. A wide variety of schemes have been proposed for this67

discretization [6–15]. For compact presentation of integration methods, we recast the equations (1)-(2)68

in vectorial form:69

ẋ = v,

v̇ = M−1∇U(x)− γ v + σM−1/2 Ẇ. (4)

Popular numerical methods for integrating (4) can then be viewed as defining Markov chains on70

the phase space (x, v), with (xk+1, vk+1) defined in relation to (xk, vk) where the subindex k from this71

point forward should be taken to be a timestep index. Assuming ergodicity, these schemes provide a72

practical means of sampling the equilibrium distribution.73

Until now, assessing whether specific integrators sample the true equilibrium density with greater74

fidelity than others in specific settings has relied on computing low-dimensional marginal distributions75

of specific observables perceived to be sensitive to configuration-space sampling errors [16], such as76

radial distribution functions, marginal distributions of internal coordinates [17], or the configurational77

temperature [14,18,19]. While it is clear that some observables are more sensitive to errors in78

configuration-space density than others (Figure 3), and the error in the observables of interest is79

paramount for a particular application, this highlights the risk of using the error in a single physical80

property as a surrogate for judging integrator quality, as the error in other observables of interest may81

be large despite small error in the test observable.82

To evaluate numerical Langevin integrators, there would be great utility in a computable, universal83

measure of the bias they introduce in specific concrete settings, such that low error in this measure84

ensures low error in all observables of interest. There is currently no computable measure of the total85

configuration-sampling bias for concrete choices of integrator parameters and target system.86

Controlling the magnitude of the integrator-induced sampling bias is crucial when computing87

quantitative predictions from simulation. Following [20], we assume that the numerical method88

samples an associated probability density ρ(x, v) which differs from the exact canonical probability89

density π(x, v) of (3). Because ρ does not have a closed-form, easily computable expression1, it is90

difficult to quantify the error introduced by a given choice of timestep or integrator. We will show91

how, for a particularly useful measure of error, we can circumvent this problem and develop a simple,92

effective approach to measuring error in complex molecular systems. Our focus in the sequel is on93

the error in configurational averages. We therefore introduce the notation ρx and πx to indicate the94

position-dependent configurational marginal densities of ρ and π.95

KL divergence as a natural measure of sampling bias96

An ideal measure of the discrepancy between the sampled distribution ρx and the equilibrium

distribution πx should be “universal” in the sense that driving that measure to zero implies that error

1 The concept of a shadow Hamiltonian has been used to embed this density in a canonical density context, but the shadow
Hamiltonian cannot be directly computed, though some approaches to approximate it via expansion (generally requiring
higher-order derivatives than gradients) have been proposed—see [21], Chapter 3 of [4], and references therein.
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in any expectation also goes to zero. It should also be defined for all densities, and not rely on a

system-specific choice of observables. One such measure is the Kullback-Leibler (KL) divergence,

DKL(p‖q) ≡
∫

dx p(x) ln

(
p(x)

q(x)

)
. (5)

The KL divergence is defined and non-negative for any pair of distributions on the same support, and97

DKL(p‖q) = 0 if and only if p = q almost everywhere.98

In [1], Sivak and colleagues demonstrated how to approximate the KL divergence of the sampled99

distribution ρ from the target distribution π over the full phase-space distribution, DKL(ρ‖π), in terms100

of a work-like quantity—the shadow work—that is readily computable for a large family of Langevin101

integrators (Figure 1a). This estimator depends only on the ability to draw samples from π and to102

measure a suitable work-like quantity. This method was applied in [1] to measure the phase-space103

sampling bias introduced by a particular Langevin integrator (OVRVO) on periodic boxes of TIP3P104

water [22].105

Since the velocity marginal is not generally of interest, and since some integrators are thought to106

preserve the configuration marginal of the target distribution with higher fidelity than the phase-space107

joint distribution, we sought to generalize the technique to estimate the KL divergence of the sampled108

configuration-space marginal, DKL(ρx‖πx). Below, we show how a simple modification of the estimator109

described in [1] can achieve this goal, and illustrate how this provides a useful tool for measuring the110

integrator-induced error in configuration-space densities for real molecular systems.111

2. Numerical discretization methods and timestep-dependent bias112

There are several possible ways to discretize Langevin dynamics. A flexible approach to this task

is via operator splitting, where the Langevin system is split into components, for example,

[
ẋ

v̇

]
=

[
v

0

]

︸︷︷︸
R

+

[
0

−M−1∇U(x)

]

︸ ︷︷ ︸
V

+

[
0

−γ v +
√

2γ (βM)−1/2Ẇ

]

︸ ︷︷ ︸
O

(6)

where each component can be solved “exactly” (in the sense of distributions) for a small time increment.113

The label O indicates that the corresponding part of the splitting has the form of an Ornstein-Uhlenbeck114

process. The labels of the deterministic parts, R and V, have been chosen to reflect the deterministic115

updates of position and velocity, respectively; this notation has been used in some previous articles [23,116

24]. Note that in the articles of Leimkuhler and Matthews [4,14], the Langevin equations are cast117

in position-momentum form instead of position-velocity form and the labels A, B are then used to118

indicate the deterministic updates of positions and momenta, respectively. The choices of components119

of the splitting we use here are not the only options. For example the Stochastic Position Verlet method120

[25] groups together both of the contributions V and O. Other splitting-based methods for Langevin121

dynamics are discussed for example in [26–28].122

Once a splitting is defined, the propagator eL∆t can be approximated as a Trotter factorization, i.e.123

a product of the propagators corresponding to the individual components, defining thus a family of124

numerical methods indexed by the string indicating the order of appearance of these individual terms.125

For example, we would use OVRVO to refer to the composition method,126

eL∆t ≈ eLOVRVO∆t = eLO
∆t
2 eLV

∆t
2 eLR∆teLV

∆t
2 eLO

∆t
2 . (7)

Due to the lack of commutativity of the operators, equality between the true propagator and the127

Strang splitting is only achieved in the limit ∆t → 0, i.e., for vanishing timestep. However, in the case128

of splitting methods as defined above, it is possible to analyze the error in the effective probability129

distribution sampled by the finite timestep method [29].130
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Figure 1. A simple nonequilibrium protocol allows measurement of the KL divergence in phase

and configuration space close to equilibrium. Simple nonequilibrium protocols can be used in

complex molecular systems to rapidly estimate—utilizing the Crooks fluctuation theorem—the

KL divergence of sampled Langevin densities from equilibrium. In both panels, the x-axis is the

number of steps taken so far in the length-2T protocol, and 〈wshad〉π indicates the average (reduced,

unitless) shadow work accumulated over T steps of Langevin dynamics, initialized from equilibrium

((x0, v0) ∼ π). (a) The original scheme described in Sivak et al. [1] to measure the KL divergence

between the sampled phase-space density ρ and the equilibrium phase-space density π. 〈wshad〉ρ is the

average shadow work accumulated over T steps of Langevin dynamics, initialized from the integrator’s

steady state ((x0, v0) ∼ ρ). (b) The modified scheme introduced here to measure the KL divergence in

the configuration-space marginal density between the marginal sampled configuration-space density ρx

and marginal equilibrium density πx. 〈wshad〉ω is the average shadow work accumulated over T steps

of Langevin dynamics, where the initial configuration is drawn from the integrator’s steady state, and

the initial velocities are drawn from equilibrium (x0 ∼ ρx, v0 ∼ π(v|x0)). We denote this distribution

ω(x, v) ≡ ρx(x)π(v|x). The top row schematically illustrates “distance from equilibrium”, with y-axis

ticks for DKL(π‖π) = 0, DKL(ω‖π) ≤ DKL(ρ‖π). The bottom row illustrates the average work (here,

just shadow work) accumulated throughout each protocol.
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The advantage of the splitting approach is that each component propagator, eLRτ , eLVτ , and eLOτ ,131

has a straightforward interpretation in terms of arithmetic operations:132

R : eLRτ :

[
∆x

∆v

]
=

[
v

0

]
τ (8)

V : eLVτ :

[
∆x

∆v

]
=

[
0

−M−1∇U(x)

]
τ (9)

O : eLOτ :

[
∆x

∆v

]
=

[
0

(a(τ)− 1)v +
√

1 − a(τ)2 (βM)−1/2 ξ

]
(10)

where a(τ) = e−γτ and ξ ∼ N (0, 1)3N is a vector of standard normal random variables drawn for each133

degree of freedom in each O step.134

By chaining the operations in the order specified by the splitting string, we can unroll them into135

the sequence of mathematical updates needed to implement one cycle of the integrator for a total time136

∆t. For VRORV, for example, translating the splitting string into the appropriate sequence of update137

equations in (8)–(10) produces the following equations for one complete integrator timestep:2138

vk+1/4 = vk −
∆t

2
M−1∇U(xk)

xk+1/2 = xk +
∆t

2
vk+1/4

vk+3/4 = a1 vk+1/4 +
√

1 − a2
1 (βM)−1/2 ξk+1/2

xk+1 = xk+1/2 +
∆t

2
vk+3/4

vk+1 = vk+3/4 −
∆t

2
M−1∇U(xk+1) (11)

Due to the different naming convention they adopt, this is referred to as the “BAOAB” method in the139

work of Leimkuhler and Matthews [4,14].140

As another example, the Langevin integrator of Bussi and Parrinello [12] corresponds to the141

splitting OVRVO; this splitting is also known as velocity Verlet with velocity randomization [24] due to142

its use of a velocity Verlet integrator core (substeps VRV) [30].143

While both the VRORV and OVRVO discrete time integration schemes reduce to the same stochastic144

differential equations in the limit that ∆t → 0, they can behave quite differently for finite timesteps145

(∆t > 0), especially for timesteps of practical interest for atomistic molecular simulation.146

Langevin integrators introduce sampling bias that grows with the size of the timestep147

In many types of molecular simulations, only configuration-space properties are of interest. The148

configurational canonical density is defined by marginalization, viz,149

πx(x) =
∫

dv π(x, v) ∝ e−U(x). (12)

In practice, the velocities are simply discarded in computations while the positions are used to estimate150

configuration-dependent properties.151

The continuous-time Langevin equations of motion (4) possess the target equilibrium density π (3)152

as their unique stationary density, suggesting that, at least in principle, temporal averages along153

2 The subscripts 1/4, 1/2, etc., have no relation to intermediate physical times, and are used solely to denote the sequence of
intermediate computational steps.
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Langevin trajectories can be used to approximate averages with respect to the equilibrium distribution.154

However, numerical simulations with a finite timestep ∆t > 0 will generally sample a different155

distribution, which we will denote by ρ(x, v), which implicitly depends on timestep ∆t. The156

discrepancy between the distributions ρ and π will grow with the size of ∆t according to some157

power law (e.g., O(∆t2) or O(∆t4)). For sufficiently large stepsize (typically inversely proportional158

to the fastest oscillatory mode present) the discretization will become unstable, but the value of the159

stepsize for which the bias is unacceptable may occur well below the molecular dynamics stability160

threshold [14].161

Note that this phenomenon is completely separate from numerical issues introduced by162

finite-precision arithmetic on digital computers, which introduces roundoff error in mathematical163

operations; here, we presume that computations can be carried out to arbitrary precision, and analyze164

only the effects of time discretization. The timestep-dependent bias is also unrelated to the Monte165

Carlo or sampling error which is due to finite approximation of the long-term average of a given166

quantity.167

In Figure 2, we illustrate a few key behaviors of this stepsize-dependent sampling bias in a168

simple quartic 1D system. Note that: (1) the numerically sampled distribution deviates from the target169

distribution, (2) this deviation increases with timestep ∆t, and (3) the deviation in phase space (x, v)170

may be different than the deviation in configuration space only (x).171

It has been proposed that some integrators of Langevin dynamics (particularly the VRORV172

aka “BAOAB” integrator of Leimkuhler and Matthews) preserve the configuration distribution with173

significantly greater fidelity than other equal-cost integration algorithms [14,31,32], a property that174

could have significant ramifications for the efficiency of sampling given fixed computational budgets.175

However, as the formal arguments for this “superconvergence” property rely on a high-friction176

limit, it is unclear how large the friction coefficient needs to be in practice for the argument to177

apply. Formal descriptions of the error are typically generic, in that they do not provide guidance178

on precisely which ∆t introduces a tolerable amount of bias for a particular system, and they do not179

provide a way to predict how other choices, such as mass matrix modifications (e.g., hydrogen mass180

repartitioning) [17,33–35], will affect the error for a system of interest.181

3. Estimators for KL divergence and the configurational KL divergence182

3.1. Near-equilibrium estimators for KL divergence183

By using work averages, Sivak and Crooks [36] derived a near-equilibrium estimator for the KL

divergence between an arbitrary distribution ρ and the equilibrium distribution π:

DKL(ρ‖π) ≈ 1

2

(
〈w〉π;Λ̃ − 〈w〉π,Λ;Λ̃

)
(13)

=
1

2

(
〈w〉π;Λ̃ − 〈w〉ρ;Λ̃

)
. (14)

Here 〈· · · 〉p;Λ̃ indicates an average over the dynamical ensemble produced by initialization in184

microstates sampled from density p and subsequent driving by protocol Λ̃ that is the time-reversal185

of protocol Λ. The expectation 〈w〉π,Λ;Λ = 〈w〉ρ;Λ̃ represents a procedure in which initial microstates186

are sampled from an initial density ρ = (π, Λ) prepared by sampling π and applying protocol187

Λ; the expectation is subsequently computed by averaging the work during the application of the188

time-reversed protocol Λ̃ over many realizations of this sampling process. Note that this is distinct189

from 〈w〉π;Λ̃, the expectation where the initial sample is selected from π and the work is measured190

during the execution of time-reversed protocol Λ̃.191

Sivak, Chodera, and Crooks [1] demonstrated how to apply this estimator when ρ is the biased

(nonequilibrium) stationary distribution resulting from protocol Λ, the repeated application of a

particular numerical Langevin integrator for sufficiently long to reach steady state. In particular,
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Figure 2. Comparison of Langevin integrators in terms of phase-space and marginal distributions.

For a simple 1D system with the quartic potential U(x) = x4, the error in sampled phase-space

density ρ and its marginal density ρx grows as a function of timestep ∆t. However, different Langevin

integrators (OVRVO and VRORV shown here) derived from symmetric Strang splittings can lead

to drastically different error structures in phase space, which can induce fortuitous cancellation of

error in the marginal distribution under certain circumstances (VRORV), see [20]. In the top row, we

illustrate the definition of the 1D system (left: the potential energy function, U(x) = x4; middle: the

equilibrium marginal density over configuration space, πx(x) ∝ e−βU(x); right: the equilibrium joint

distribution over phase space π(x, v)). In the middle row, we illustrate the increasing discrepancy between

the sampled distribution ρ and the equilibrium distribution π, for both the full phase-space and the marginal

configuration space, as a function of timestep ∆t, for the given model problem and the particular choice

of the Bussi-Parinello Langevin integrator OVRVO (7). Here the difference between exact and discrete

configurational measures are plotted above the contours of the phase space density, for four values of

the stepsize ∆t =[0.43, 0.66, 0.88, 1.1]. In the bottom row, we illustrate the timestep-dependent error in

a similar way for another integrator VRORV (11).
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because the numerical Langevin integrator is symmetric (so Λ̃ = Λ) and because the time-independent

Hamiltonian produces no explicit protocol work (so w = wshad), in this case the KL divergence is

approximately

DKL(ρ‖π) ≈ 1

2

(
〈w〉π;Λ − 〈w〉ρ;Λ

)
(15)

=
1

2

(
〈wshad〉π;Λ − 〈wshad〉ρ;Λ

)
, (16)

the halved difference of two work averages: the work 〈wshad〉π required to drive from equilibrium π192

into the steady state ρ, and the steady-state work 〈wshad〉ρ expended over the same length of time, but193

starting in ρ (Figure 5a)3.194

3.2. A simple modification to the near-equilibrium estimator can compute KL divergence in configuration space195

In this study, we are especially interested in the configuration-space marginal distribution

ρx ≡
∫

dv ρ(x, v). The KL divergence DKL(ρx‖πx) between the respective configuration-space

marginal distributions ρx and πx ≡
∫

dv π(x, v) equals DKL(ω‖π), the KL divergence between the

full equilibrium distribution π and the distribution

ω(x, v) ≡ ρx(x)π(v|x) , (17)

that differs from π only in its x-marginal:196

DKL(ω|π) =
∫

dx dv ω(x, v) ln

[
ω(x, v)

π(x, v)

]
(18)

=
∫

dx dv ρx(x)π(v|x) ln

[
ρx(x)π(v|x)
πx(x)π(v|x)

]
(19)

=
∫

dx ρx(x)

[∫
dv π(v|x)

]
ln

[
ρx(x)

πx(x)

]
(20)

=
∫

dx ρx(x) ln

[
ρx(x)

πx(x)

]
(21)

= DKL(ρx‖πx) (22)

This distribution ω is reached via an augmented protocol Λ′ consisting of the original protocol

Λ (repeated application of the numerical Langevin integrator) followed by final randomization

of velocities according to the equilibrium conditional distribution π(v|x). Thus we construct an

3 In the limit that ∆t → 0, this relation is exact, since DKL(ρ‖π) → 0 and both 〈wshad〉π;Λ → 0 and 〈wshad〉ρ;Λ → 0.
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analogous near-equilibrium estimator of DKL(ω‖π) based on average the average shadow work wshad

accumulated by trajectories initiated from the respective distributions:

DKL(ρx‖πx) = DKL(ω‖π) (23)

≈ 1

2

(
〈wshad〉π;Λ̃′ − 〈wshad〉π,Λ′ ;Λ̃′

)
(24)

=
1

2

(
〈wshad〉π;Λ̃′ − 〈wshad〉ω;Λ̃′

)
(25)

=
1

2

(
〈wshad〉π;Λ̃ − 〈wshad〉ω;Λ̃

)
(26)

=
1

2
(〈wshad〉π;Λ − 〈wshad〉ω;Λ) (27)

=
1

2
(〈wshad〉π − 〈wshad〉ω) . (28)

Equation (25) follows from (26) because applying the time-reversed protocol Λ̃′ (velocity randomization197

followed by repeated application of the numerical Langevin integrator) to π or to ω is equivalent198

to applying Λ̃: π and ω already have velocity distributions randomized according to π(v|x), and199

the velocity randomization step does no work. In equation (28), we suppress the explicit protocol200

dependence, since henceforth all work averages will be averaged over the same protocol Λ.201

Compared to the full-distribution KL divergence, the configuration-only KL divergence replaces202

the second work average 〈wshad〉ρ with 〈wshad〉ω , computing the expectation of the shadow work over203

a modified initial density constructed from the nonequilibrium steady-state configuration distribution204

but with Maxwell-Boltzmann velocity distribution π(v|x). Practically, this corresponds to drawing205

samples from the nonequilibrium steady-state ρ and replacing the velocities v with an i.i.d. sample206

from π(v|x). The modified procedure is depicted schematically in Fig. 1b.207

3.3. Comparison of phase-space error for different integrators208

We first applied the original near-equilibrium method of Sivak et al. [1] to measure the209

timestep-dependent phase-space error introduced by four common Langevin integrators on a210

molecular mechanics model system (a cluster of 20 TIP3P waters [22] in a harmonic restraining211

potential), for a range of timesteps ∆t between 0.1 and 8.0 femtoseconds (0.1 fs, 0.5 fs, 1.0 fs, . . . , 7.5 fs,212

8.0 fs). As illustrated in Figure 5a, while this approach can resolve statistically significant differences213

among schemes, none of the four integrator splitting schemes offers a considerable reduction in phase214

space error. This may be unsurprising, as none of these integrator schemes, when Metropolized, are215

known to provide a significant reduction in acceptance rates, which depend in some manner on the216

induced phase-space sampling error (Figure 8a; see Section 4 for more details about the relationship217

between Metropolized acceptance rates and KL divergence). Consistent with the results of [1], the218

phase-space error appears to scale approximately as O(∆t4).219

3.4. Comparison of configurational KL divergence for different integrators220

Figure 5b shows that the measured KL divergence between the configuration-space marginals ρx221

and πx can be drastically different among the four integrator schemes, and in some cases grow much222

more slowly than the associated phase-space sampling error (Fig. 5a). In particular, for VRORV, the223

error in the x-marginal is very nearly zero for the entire range of feasible timesteps, and it can be run224

at ∆t ≈ 6 fs while introducing the same amount of configuration error as other methods at ∆t ≈ 2 fs.225

This is consistent with prior findings [4,14], which showed the VRORV scheme introduces very little226

error in the average potential energy and multiple other system-specific observables.227

We also note that for the OVRVO scheme, DKL(ρx‖πx) ≈ DKL(ρ‖π) over the range of measured228

timesteps (Fig. 5), consistent with prior findings that estimates of DKL(ρ‖π) tracked well with several229

measures of configuration-sampling error [1].230
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Figure 4. KL divergence is a natural measure of sampling error, although system-specific

observables display different sensitivities to sampling error. Even for the simple double-well

potential considered in Figure 3, configuration-space properties display different sensitivities to

sampling error, motivating the use of a “universal” error measure, such as the KL divergence. The top

left panel illustrates the double-well potential energy function from Figure 3, and the top center panel

shows the resulting marginal equilibrium density, πx, at β = 1. The bottom left panel shows, as a

function of ∆t, growth in the magnitude of the error in average potential energy, |〈U〉ρ − 〈U〉π |, which

has been used previously as a sensitive measure of sampling error [14]. The bottom center panel shows

the error in the apparent free energy difference between the two wells as a function of ∆t. Note that the

timestep-dependent behavior of these two observables imply different rankings of integrator fidelity

that may mislead one into believing error in all observables remains low with increasing timestep.

However, as is clear here, just because an integrator introduces low timestep-dependent error in one

observable does not mean that the method will introduce low error in another observable: for example,

OVRVO preserves the well populations as accurately as VRORV, but introduces much larger errors

in the average potential energy. The right column summarizes the growth in timestep-dependent

error, as measured by the KL divergence. While all four integrators introduce comparable levels of

∆t-dependent error in the phase-space distribution, they induce dramatically different magnitudes of

error in the configuration-space marginal.
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Figure 5. Using the near-equilibrium approximation, some numerical methods introduce far less

configuration-space bias in molecular mechanics models than others. The results here are reported

for a small cluster of rigid TIP3P waters, described in more detail in the Detailed Methods section, and

illustrated in the leftmost panel. On the x-axis is the timestep ∆t, measured in femtoseconds (fs). On

the y-axis is the estimated KL divergence DKL. (a) The error over the joint distribution on DKL(ρ‖π).

(b) The error over the configuration-space marginal DKL(ρx‖πx). Each colored curve corresponds to a

numerical scheme for Langevin dynamics. The shaded region is the mean ± 95% confidence interval.

3.5. Influence of the collision rate231

The results reported above are for a single, relatively weak collision rate of 1 ps−1. This collision232

rate was selected, following prior work [14], because it is low enough that barrier-crossing and233

conformational exploration should be fast, but large enough that low errors are observed empirically234

for configuration-space averages. As the formal “superconvergence” properties of VRORV were235

derived in the high-friction limit [14,31,32], it is worth considering how robustly the splitting VRORV236

introduces low configuration-space error at various collision rates. Additionally, as the collision rate237

goes to zero, We would expect the differences between pairs of the schemes that are equivalent upon238

removal of the O step (such as OVRVO and VRORV) to become smaller as the collision-rate goes to239

zero.240

In Figure 6, we report near-equilibrium estimates of DKL (as in Figure 5) over a range of collision241

rates spanning γ from 0.1–100 ps−1. Strikingly, the configuration-space error introduced by VRORV242

remains low over this entire range, while other integrators (such as OVRVO) display a significant243

sensitivity to collision rate. In general, increasing collision rate increases phase- and configuration-space244

error for all integrators for which differences can statistically be differentiated, though the effect is245

modest over several orders of magnitude relative to the sensitivity with respect to timestep. For each246

condition, 50000 protocol samples were collected (one half the number of samples used in Figure 5), and247

the protocol length was 2000 steps (twice the protocol length used in Figure 5). Figure A7 demonstrates248

that this result is robust to protocol length for all collision rates considered.249

3.6. Comparison with reference methods validates the near-equilibrium estimate250

The accuracy of the near-equilibrium approximation introduced by Sivak et al. is largely251

unexplored. While the near-equilibrium approximation is computationally and statistically appealing,252

it is important to validate the accuracy of the approximation over the practical timestep ∆t range253

of relevance to molecular simulation. In particular, it is unknown whether the near-equilibrium254

approximation produces an over-estimate or under-estimate of the KL divergence, or how accurate the255

approximation is for high-dimensional systems. Further, it is unknown whether any bias introduced256

by the approximation is uniform across different numerical methods for Langevin dynamics.257

How well does the near-equilibrium estimator approximate the true KL divergence of relevant258

timestep ranges? The task of validating the near-equilibrium approximation is numerically challenging,259
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since we are unaware of exact estimators for DKL(ρ‖π) that remain tractable in high dimensions4. In260

the case of simple fluids, approximate methods are available that express the KL divergence in terms261

of a series of N-body correlations (as in [38]), typically truncating to two-body correlation functions262

(i.e., comparing the radial distribution functions). However, in general we do not know the effect of263

truncating the expansion, since the successive terms in the series do not necessarily have decreasing264

magnitude.265

To validate the near-equilibrium estimate of the KL-divergence, we attempt to “sandwich”266

it between two reference estimates that are unlikely to substantially over- or under-estimate the267

KL-divergence, and verify that the proposed method is consistent. In Section 3.6.1, we derive268

an asymptotically exact nested Monte Carlo method, that is computationally inefficient and an269

under-estimate in practice. In Section 3.6.2, we note that the results from the nested Monte Carlo270

method can be reprocessed to yield an over-estimate. In Section 3.6.3, we compute both, and compare271

with the near-equilibrium estimator.272

3.6.1. Practical lower bound from nested Monte Carlo273

First, we will derive an exact expression for the KL divergence between ρ and π in terms of274

quantities that we can measure, then discuss practical challenges that arise when using this expression,275

and under what conditions it becomes impractical. We start by writing the KL divergence as an276

expectation over ρ (30), since we cannot evaluate ρ(x, v) pointwise, but we can draw samples (x, v) ∼ ρ.277

DKL(ρ‖π) =
∫

dx dv ρ(x, v) ln

[
ρ(x, v)

π(x, v)

]
(29)

=

〈
ln

[
ρ(x, v)

π(x, v)

]〉

ρ

(30)

=

〈
ln

[
π(x, v)〈e−w〉x,v;Λ̃

π(x, v)

]〉

ρ

(31)

=
〈
ln〈e−w〉x,v;Λ

〉
ρ

(32)

≈ 1

N

N

∑
i=1

(
ln

M

∑
j=1

1

M
e−wij

)
(33)

We note that the inner ratio of nonequilibrium steady-state to equilibrium densities, ρ(x, v)/π(x, v),278

can be expressed in terms of 〈e−w〉x,v;Λ̃—the average of exponentiated nonequilibrium work measured279

under the application of the time-reversed protocol Λ̃ starting from (x, v) (31). Λ denotes the protocol280

used to generate ρ from a sample from π—in this case, T applications of the Langevin integrator step281

kernel; Λ̃ denotes the time-reverse of this protocol. Since the protocol we apply to generate ρ from π is282

time-symmetric for integrators derived from symmetric Strang splittings5, we can substitute Λ = Λ̃. In283

the final step, we substitute a simple Monte Carlo estimator of that average, in terms of work samples284

wij, where wij is the jth reduced (unitless) work measurement collected from initial condition i. Here,285

N is the number of initial conditions sampled (i.e., the number of “outer-loop” samples), and M is the286

number of work samples (i.e., the number of “inner-loop” samples) collected at each initial condition287

(xi, vi) ∼ ρ.288

4 Spatial discretization or density estimation are infeasible, due to curse of dimensionality. There are direct estimators of the
KL divergence based on Euclidean nearest-neighbor distances that perform well in some high-dimensional settings (e.g.,
[37]), but Euclidean distance is an unsuitable metric on molecular configurations.

5 Note that applying this methodology to non-symmetric integrators (where the sequence of operations for the integrator its
time-reverse are not identical) would require modifications to this scheme, as well as the manner in which shadow work is
computed.
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Related nested estimators have been proposed in the literature. Notably, an estimator for the289

nonequilibrium entropy S(ρ) ≡ −
∫

dx ρ(x) ln ρ(x) in terms of work averages is given in equation 18290

of [39], and this can in turn be used to estimate the desired KL divergence if we also have suitable291

estimates for the equilibrium entropy S(π).292

The required work values wij can be easily computed from simulations. To sample an initial293

condition (xi, vi) from ρ, we simply run the Langevin integrator of interest for a sufficient number of294

steps to sample a new uncorrelated configuration from the nonequilibrium steady-state sampled by295

the integrator. To compute the work accumulated from a given starting condition, we use the notion of296

shadow work [23]. For numerical methods constructed from symmetric Strang splittings involving the R,297

V, and O operations described above, we simply need to compute the sum of the total energy changes298

during the deterministic substeps (i.e., the potential energy change during deterministic updates of299

the position variables, and the kinetic energy change during deterministic updates of the momentum300

variables). For convenience, we use reduced (unitless) energies and work values throughout, where301

factors of kBT have been removed, without loss of generality. See Detailed Methods (Section 6.4) for a302

detailed description on how shadow work can be computed from this family of Langevin integrators303

in general.304

Like the near-equilibrium scheme, this nested scheme can be modified analogously to305

measure the configuration-space error in isolation, by initializing instead from the distribution306

ω(x, v) ≡ ρx(x) π(v|x), allowing us to compute DKL(ω‖π), a quantity that is identical to DKL(ρx‖πx)307

(see 3.2). Specifically, to measure the full KL divergence, we sample initial conditions from the Langevin308

integrator’s steady state: (xi, vi) ∼ ρ. To measure configuration-space-only KL divergence, we draw309

initial configuration from the integrator’s steady state, and velocities from equilibrium: xi ∼ ρx,310

vi ∼ π(vi|xi). Note that, for constrained systems, π(v|x) is not independent of x, and care must be311

taken to eliminate velocity components along constrained degrees of freedom before measuring the312

contribution of the integrator substep to the shadow work (see Detailed Methods).313

We note that the nested plug-in Monte Carlo estimator of the KL divergence is asymptotically exact314

only when both N (the number of “outer-loop” samples) and M (the number of “inner-loop” samples)315

go to infinity. For a finite number of samples, the nested estimator will produce an under-estimate316

of the KL divergence. To see this, note that the nested estimator is a simple average of many likely317

underestimates, so it should itself be an underestimate. More specifically, although the outer-loop318

expectation can be approximated without bias (since samples can be drawn from ρ), each of the319

inner-loop expectations is an exponential average (log〈exp(−w)〉), which we will underestimate when320

we plug in a finite sample of w’s (for the same reasons that the EXP estimator for free energies is biased321

[40] – To leading order, that under-estimate is related to the variance of w [40], which here grows322

rapidly with ∆t as shown in Figure A2).323

In practice, we use a simple adaptive scheme (described in detail in Section 6.6) that draws inner-324

and outer-loop samples until uncertainty thresholds are met, which should minimize the magnitude325

of this bias.326

3.6.2. Practical upper bound from Jensen’s inequality327

A simple, but practically useful, upper bound for the KL divergence can be obtained from the328

application of Jensen’s inequality, 〈ln x〉 ≤ ln〈x〉, to (32):329

DKL(ρ‖π) = 〈ln〈e−w〉x,v;Λ〉ρ (34)

≤ ln〈〈e−w〉x,v;Λ〉ρ (35)

= ln〈e−w〉ρ;Λ . (36)
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The analogous inequality for the configuration-space marginal is330

DKL(ρx‖πx) = DKL(ω‖π) (37)

= 〈ln〈e−w〉x,v;Λ〉ω (38)

≤ ln〈〈e−w〉x,v;Λ〉ω (39)

= ln〈e−w〉ω;Λ . (40)

This provides a particularly convenient upper bound on the KL-divergence, since it can be computed331

by reprocessing work samples collected from the nested Monte Carlo scheme6.332

3.6.3. Sandwiching the KL divergence to validate the near-equilibrium estimate333

We compared these three estimates of the KL divergence on the molecular mechanics system334

introduced in Figure 5, and confirmed that the near equilibrium estimate falls between the likely over-335

and under-estimate for all four integrator schemes, over a range of feasible timesteps (Figure 7, and in336

log-scale in Figure A5). We conclude that the near-equilibrium approximation is empirically reliable337

for measuring integrator bias on molecular mechanics models for practical timesteps.338

4. Relation to GHMC acceptance rates339

What is the relationship between the bias introduced by an integrator at steady state, and the340

acceptance rate of the corresponding Metropolized integrator? Specifically, why not construct a341

Metropolized version of VRORV to guarantee samples are drawn appropriately from the equilibrium342

target density π(x)? Following [3,41], we can construct an exact MCMC method that uses one or more343

steps of Langevin dynamics as a proposal, by using344

α ≡ min{1, e−wshad} (41)

as the acceptance criterion. The resulting method is called generalized hybrid Monte Carlo (GHMC),345

and eliminates time-discretization error at the cost of increasing sample autocorrelation (see also the346

comments in Section 6.3). A natural question arises: if an uncorrected Langevin integrator introduces347

low configuration-space error, is the rejection rate of the corresponding Metropolis-corrected method348

also low?349

To answer this question, we estimated the GHMC acceptance rate at all conditions for which we350

have estimated steady-state DKL. Given a collection of equilibrium samples (described in Section 6.3),351

we can efficiently estimate the acceptance rate of an MCMC proposal by taking the sample average of352

the acceptance ratio α over proposals originating from equilibrium, (x0, v0) ∼ π.353

We compared the GHMC acceptance rate to the histogram-based DKL estimates for the 1D354

double-well system in Figure 8. There does not appear to be a consistent relationship between DKL355

and acceptance rate across the four schemes. Notably, the GHMC rejection rate can be extremely356

“conservative” for splittings such as VRORV.357

Next, we compared the GHMC rejection rate with the near-equilibrium DKL estimates for the358

water cluster considered in Figure 9. A similar pattern is recapitulated in this molecular mechanics359

model as in the 1D system—there is not a consistent relationship between configuration-space bias360

introduced by a Langevin integrator and the rejection rate of its corresponding GHMC method.361

This complicates the decision of whether to Metropolize or not. As noted in Section 6.3, incurring362

even a small rejection rate in GHMC can have a large effect on statistical efficiency, due to the effect of363

6 Note that when we approximate this bound with a finite number of samples, we will underestimate it for the reasons
mentioned in Section 3.6.1. However, since we are pooling all work samples, the magnitude of this underestimate should be
much smaller than for the inner-loop underestimates in Section 3.6.1 above, and we expect the magnitude of this bias to be
negligible compared with the effect of invoking Jensen’s inequality.
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momentum flipping. An open challenge is to construct Metropolis criteria for GHMC that might be364

less “wasteful” for Langevin splittings that introduce low configuration-space bias. One possibility is365

to use a multi-proposal Metropolization procedure to correct estimates of equilibrium expectations, as366

done in [42].367

5. Discussion368

We have introduced and validated a work-based estimator of the KL divergence over the369

configuration-space marginal sampled by Langevin dynamics. We demonstrated that we could370

use this estimator to measure differences between the timestep-dependent configuration-sampling371

error introduced by each member of a small class of Langevin integrators on molecular mechanics372

models. Work-based estimators are especially attractive for biomolecular systems, since expectations373

over work distributions are often tractable when other approaches are not.374

Reliable estimates of KL divergence using the work-based estimator considered here require375

knowledge of the time to reach nonequilibrium steady state. This near-equilibrium approach requires376

that the user select a trajectory length T sufficiently large to reach the nonequilibrium steady state, or377

else the KL divergence estimate could be substantially biased. Opposing the choice of large T is the378

variance of the estimate, since the contribution of the steady-state work to the variance of the estimate379

grows as T. Taken together, this suggests the smallest time T that produces unbiased estimates is380

optimal. In our calculations, it was sufficient to use a protocol that was twice the average collision381

time, but in general this choice should be validated for the system under study. One way to do this, for382

example, is to perform the same computation for T and 2T and ensure estimates are concordant to383

within statistical error.384

Generating equilibrium samples from π(x, v) can be difficult for large, complex molecular systems.385

The near-equilibrium method requires access to a large number of independent samples from the386

equilibrium distribution of the system under study. In this work, we used extra-chance HMC [41,43]387

to construct a large cache of independent equilibrium samples, amortizing the cost of equilibrium388

sampling across the many integrator variants (described in Section 6.3). In cases where we would389

like to compare a large number of integrator variants on the same system, this can be an acceptable390

cost, but in other cases, it may be prohibitive. It is unknown whether we can relax this requirement391

in practice, and use only samples in “local equilibrium,” since integrator error may be dominated by392

local features of the energy landscape. An alternative would be that, if the primary contributions to393

the dissipation process that drive integration errors arise from high-frequency motions, adding a weak394

restraint to parts of the system under study (such as a biological macromolecule) may also allow rapid395

assessment of integrator schemes in a region of configuration space where estimates can be easily396

converged. We have not yet tested this hypothesis, but if it is possible to relax the requirement of i.i.d.397

equilibrium samples and retain accurate estimates, then the method will be much cheaper to apply in398

difficult settings.399

5.1. Future directions400

The validation of the near-equilibrium estimate makes it possible to apply the technique to a401

systematic comparison of sampling bias in integrator variants and biomolecular systems. Although402

we considered only four Langevin integrators here, this approach can be applied to any stochastic403

integrator for which the relative path action can be computed (see [44] for examples of how to compute404

the relative action for stochastic integrators not necessarily derived from operator splitting).405

Independently, the work-based estimate for ln[ρx(x)/π(x)] we used in the expensive lower bound406

(Section 3.6) could be useful for other analyses. For example, an estimate of ln[ρx(x)/π(x)] could407

be used to interpret what features of x are most distorted by integrator bias, e.g., by checking which408

features of x are most predictive of extreme values of ln[ρx(x)/π(x)].409

We also note that nothing about the derivation is specific to the partition between configuration410

degrees of freedom and velocities. We could also use this method to measure the KL divergence over411
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any subset S of the state variables z = (x, v), provided we can sample from the conditional distribution412

for the complementary subset S′ of the state variables: π(zS′ |zS). To measure KL divergence over the413

configuration variables, we need only sample from the conditional distribution of velocities given414

positions, which is typically tractable. Provided that the required conditional distribution is tractable,415

this method could also prove useful in contexts other than measuring integrator error.416

Finally, in this study we have only considered sampling the canonical ensemble (NVT; constant417

temperature, particle number, and volume), but the isothermal-isobaric ensemble (NpT; constant418

temperature, particle number, and pressure) also has wide practical relevance. In OpenMM, the419

isothermal-isobaric ensemble is simulated by alternating between sampling the canonical ensemble420

(using thermostatted dynamics, such as Langevin dynamics), and periodically sampling the volume421

using a molecular-scaling Monte Carlo barostat. For sufficiently infrequent barostat proposals, the422

bias introduced by interaction between the finite-timestep Langevin integrator and the volume423

perturbations is expected to be minimal, so applying the proposed near-equilibrium method is expected424

to approximate well the overall sampling bias7.425

6. Detailed methods426

All code used in this paper, along with a manifest of all conda-installable prerequsites and version427

numbers needed to run the code, is available at https://github.com/choderalab/integrator-benchmark428

under the permissive Open Source Initiative approved MIT license.429

A byproduct of this work is a flexible implementation of Langevin integrators derived from430

operator splitting for the GPU-accelerated OpenMM molecular simulation framework [45], also431

available under the MIT license in the openmmtools library: https://github.com/choderalab/432

openmmtools. This implementation allows the user to specify a Langevin integrator using a splitting433

string (like OVRVO) and can automatically compute shadow work for each splitting.434

6.1. One-dimensional model system: Double well435

For illustration and to have a model system where the exact DKL was readily computable using436

histograms, we constructed and analyzed a double-well model in 1D. The potential energy function of437

this model is U(x) ≡ x6 + 2 cos(5(x + 1)), illustrated in Figure 4. We implemented the four Langevin438

schemes under study using Numba 0.35.0 [46] for use with 1D toy models. We used a temperature of439

β = 1, a collision rate of γ = 10, and a mass of m = 10. For these conditions, we found a maximum440

stable timestep of approximately ∆t = 0.7. Histogram-based estimates of the configuration-space441

density and phase-space density used 100 bins per dimension, where the bin edges were set by442

bounding box of a trial run at the maximum ∆t. The equilibrium density of each bin was computed443

using numerical quadrature (using the trapezoidal rule, numpy.trapz). The KL divergence between a444

given ρ and π was then computed using scipy.stats.entropy on the histogram representation.445

6.2. Model molecular mechanics system: A harmonically restrained water cluster446

As noted, the exact Monte Carlo method involves exponential work averages, resulting in a447

statistical inefficiency that grows rapidly with both the size of the system and the distance from448

equilibrium. Since we are interested in identifying whether the near-equilibrium approximation breaks449

down over the timestep ∆t range of interest to molecular simulations, it is important to be able to450

compute a reliable estimate of DKL far from equilibrium. Thus, we aim to select the smallest system451

we think will be representative of the geometry of molecular mechanics models generally in order to452

allow the exact estimate to be computable with reasonable computing resources.453

7 In [23], the error in phase space was measured for an ensemble of constant-volume Langevin trajectories with initial
conditions drawn from the isothermal-isobaric ensemble.
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To compare the proposed method with a reference estimator, we needed to select a test system454

which met the following criteria:455

1. The test system must have interactions typical of solvated molecular mechanics models, so456

that we would have some justification for generalizing from the results. This rules out 1D457

systems, for example, and prompted us to search for systems that were not alanine dipeptide in458

vacuum.459

2. The test system must have sufficiently few degrees of freedom that the nested Monte Carlo460

estimator remains feasible. Because the nested estimator requires converging many exponential461

averages, the cost of achieving a fixed level of precision grows dramatically with the standard462

deviation of the steady-state shadow work distribution. The width of this distribution is463

extensive in system size. Empirically, this ruled out using the first water box we had tried464

(with approximately 500 rigid TIP3P waters [22], with 3000 degrees of freedom). Practically,465

there was also a limit to how small it is possible to make a water system with periodic boundary466

conditions in OpenMM (about 100 waters, or 600 degrees of freedom), which was also infeasible.467

3. The test system must have enough disordered degrees of freedom that the behavior of work468

averages is typical of larger systems. This was motivated by our observation that it was469

paradoxically much easier to converge estimates for large disordered systems than it was to470

converge estimates for the 1D toy system.471

To construct a test system that met all of those criteria, we used a WaterCluster test system, which472

comprises 20 rigid TIP3P waters weakly confined in a central harmonic restraining potential with force473

constant K = 1 kJ/mol/nm2 applied to all atoms. This test system is available in version 0.14.0 of474

the openmmtools package [47]. Simulations were performed in double-precision using the Reference475

platform in OpenMM 7.2 [48] to minimize the potential for introducing significant round-off error due476

to finite floating point precision.477

6.3. Caching equilibrium samples478

To enable this study, we attempted to amortize the cost of collecting i.i.d. samples from each test479

system’s equilibrium distribution π and various integrator-and-∆t-specific distributions ρ. Since there480

are many different distributions ρ, and all are relatively small perturbations of π, we invest initial481

effort into sampling π exhaustively, and then we draw samples from each integrator-specific ρ by482

running the integrator of interest from initial conditions (x0, v0) ∼ π.483

For each test system, we pre-computed a large collection of K = 1000 equilibrium samples484

πx(x) ≈ πcache(x) ≡ 1

K

K

∑
k=1

δ(x − x(k)) (42)

using extra-chance Hamiltonian Monte Carlo (XC-HMC)[41,43], implemented as a CustomIntegrator in485

OpenMM [48]. In brief, XC-HMC is a strategy to reduce the adverse effects of momentum flipping on486

sampling autocorrelation times in GHMC. GHMC uses Langevin integration of Hamiltonian dynamics487

as a proposal mechanism, and accepts or rejects each proposal according to a Metropolis criterion.488

Whenever the Metropolis test fails, the proposal is rejected and the momentum must be reversed;489

this is necessary to maintain detailed balance[3,49], but can lead to extremely large autocorrelation490

times when the acceptance rate is not sufficiently close to 100% (see [43] for empirical examples and491

further discussion). In “extra-chance” HMC [41,43], rather than immediately flipping the momentum492

whenever the Metropolis criterion fails, the proposal trajectory is instead extended to generate a new493

proposal, and another (suitably modified) Metropolis criterion is checked. For suitable choices of494

parameters (length of trajectory proposal, timestep, number of extra chances, length of “extra-chance”495

trajectories), this strategy can virtually eliminate the effect of momentum flipping, at the cost of496

increasing the average length of proposal trajectories.497
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Our initial experiments (on larger systems than reported here) suggested that the cost of collecting498

uncorrelated samples using GHMC without “extra-chances” was prohibitive, since we needed to make499

the timestep extremely small (around 0.1–0.25 fs) to keep the acceptance rate sufficiently near 100%500

that the effect of momentum flipping was acceptable. Instead, we equilibrated for approximately 1 ns501

(105 XC-HMC iterations, 10 steps per XC-HMC proposal trajectory, 15 extra-chance trajectories per502

iteration, 1 fs per timestep) from an energy-minimized starting structure. We then saved one sample503

x(i) every 104 XC-HMC iterations afterwards.504

To draw an i.i.d. sample from π(x, v), we draw a sample x uniformly from πcache, and then sample505

v from the equilibrium distribution of velocities conditioned on x, v ∼ π(x|v). (In the presence of506

holonomic constraints, the velocity distribution is not independent of the configuration distribution.507

For example, if bond lengths involving hydrogen atoms are constrained, the velocity of a hydrogen508

minus the velocity of the bonded heavy atom cannot have any component parallel to the bond.)509

To draw an i.i.d. sample from ρ, we draw an i.i.d. sample from π and then simulate Langevin510

dynamics for a large number of steps. We tested using 1000 steps, (1/γ)/∆t steps, and (2/γ)/∆t511

steps.512

6.4. Computing shadow work for symmetric Strang splittings513

Here, we demonstrate how to compute the appropriate shadow work for a given discrete-timestep514

Langevin integration scheme. We note that the log-ratio of forward and reverse conditional path515

probabilities under specific time-discretizations of Langevin dynamics has been calculated in many516

prior works, such as [10,42,50]. While there has been a great deal of confusion in the literature about517

how nonequilibrium work should be computed [51], fortunately, there is an unambiguous mechanical518

(if tedious) approach to the computation of the appropriate work-like quantity.519

Assemble the sequence of all steps and substeps of an integrator cycle into a trajectory Z. For520

example, for OVRVO, we have521

Z ≡ {z0
O−→ z1

V−→ z2
R−→ z3

V−→ z4
O−→ z5} (43)

where zn ≡ (xn, vn) are phase-space points. Let Z̃ denote the time-reversal of all substeps of Z with all522

velocities negated,523

Z̃ ≡ {z̃5
O−→ z̃4

V−→ z̃3
R−→ z̃2

V−→ z̃1
O−→ z̃0} (44)

where z̃n = (xn,−vn) denotes negating the velocity of phase-space point zn.524

To compute the reduced, unitless shadow work w[Z], we use the definition of work that satisfies525

the Crooks fluctuation theorem for starting with a sample from the target equilibrium density π(z0)526

and taking one integrator cycle step (eqn 4 of [1]):527

w[Z] = ln
P[Z|Λ]

P[Z̃|Λ̃]
+ ∆ feq (45)

where the target equilibrium density is π(z) = e f−h(z), f is a log normalizing constant (dimensionless528

free energy), h(z) ≡ u(x) + t(v) is the reduced Hamiltonian, u(x) the reduced potential, and t(v)529

the reduced kinetic energy [52]. The quantity P[Z̃|Λ̃] denotes the probability of generating the530

time-reversed trajectory Z̃ by starting with z̃5 drawn from the target equilibrium density π(z̃5) (and531

not the nonequilibrium steady state) and applying the reverse sequence of integrator operations Λ̃,532

which is identical to the forward sequence of integrator operations Λ because the integrators we533
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consider here are symmetric. Since the Hamiltonian is time-independent, the free energy change534

∆ feq = 0, and this simplifies to535

w[Z] = ln
P[Z|Λ]

P[Z̃|Λ̃]
= ln

π(z0)

π(z̃5)

P[Z|z0]

P[Z̃|z̃5]
(46)

= ln
e f−h(z0)

e f−h(z̃5)
+ ln

P[Z|z0]

P[Z̃|z̃5]
(47)

= ∆h[Z] + ln
P[Z|z0]

P[Z̃|z̃5]
(48)

Computation of the shadow work then proceeds by simple mechanical algebra by computing the log536

ratio of conditional path probabilities in the last term.537

For the family of integrators considered here (symmetric Strang splittings of the propagator,538

composed of R, V, and O steps), the shadow work has an especially simple form:539

w[Z] = ∆h[Z]− ∆q[Z] (49)

where ∆h is the total change in reduced Hamiltonian, and ∆q is the total change in reduced heat across540

each of the O substeps. We note that accumulation of the shadow work during integration requires no541

extra force evaluations, and simply requires knowledge of the potential energy at the beginning and542

end of the integrator cycle as well as the changes in kinetic energy for each O substep.543

For OVRVO, this is544

∆h[Z] ≡ [u(x5) + t(v5)]− [u(x0) + t(v0)] (50)

∆q[Z] ≡ [t(v1)− t(v0)] + [t(v5)− t(v4)] (51)

We illustrate how to arrive at this result in detail for OVRVO below.545

6.5. Computation of shadow work for OVRVO546

For OVRVO, we can represent the forward and reverse of a single integrator cycle diagrammatically547

as548

Z ≡ {z0
O−→ z1

V−→ z2
R−→ z3

V−→ z4
O−→ z5} (52)

Z̃ ≡ {z̃5
O−→ z̃4

V−→ z̃3
R−→ z̃2

V−→ z̃1
O−→ z̃0} (53)

where z̃n = (xn,−vn) denotes negating the velocity of phase-space point zn.549

To compute the conditional path probability P[Z|z0], we write a transition probability density550

kernel for each substep:551

P[Z|z0] = KO(z0, z1)KV(z1, z2)KR(z2, z3)KV(z3, z4)KO(z4, z5) (54)

We can write the log ratio of conditional path probabilities as552

ln
P[Z|z0]

P[Z̃|z̃5]
= ln

KO(z0, z1)

KO(z̃1, z̃0)

KV(z1, z2)

KV(z̃2, z̃1)

KR(z2, z3)

KR(z̃3, z̃2)

KV(z3, z4)

KV(z̃4, z̃3)

KO(z4, z5)

KO(z̃5, z̃4)
(55)

The probability kernels KV and KR are both deterministic, so as long as we are considering a trajectory553

Z and its time-reverse Z̃ generated by a symmetric integrator splitting, the ratios involving these554

kernels are unity.555



Version July 22, 2018 submitted to Entropy 25 of 32

To compute the ratios involving KO kernels, we note that KO(z0, z1) perturbs the velocity556

according to the update equation557

v1 = a2v0 +
√

1 − a2
2(βM)−1/2 ξ (56)

where ξ is a random variate drawn from the unit normal density, which allows us to solve for the558

random variate required to propagate from z0 to z1,559

ξ = (1 − a2
2)

−1/2(βM)+1/2(v1 − a2v0) (57)

ξ ′ = (1 − a2
2)

−1/2(βM)+1/2(ṽ0 − a2ṽ1) (58)

where the probability density is given by560

p(ξ) ∝ e−
1
2 |ξ|2 . (59)

We can then rewrite the log ratio of O kernels as561

ln
KO(z0, z1)

KO(z̃1, z̃0)
= ln

p(ξ)

p(ξ ′)
(60)

= − βM

2(1 − a2)2

[(
|v1|2 − 2a2v1 · v0 + a2

2|v0|2
)
−
(
|v0|2 − 2a2v0 · v1 + a2

2|v1|2
)]

(61)

= − βM

2(1 − a2)2
(1 − a2)

2
(
|v1|2 − |v0|2

)
(62)

= −[t(v1)− t(v0)] (63)

Combining this with (49), this provides the overall work as562

w[Z] = [u(x5)− u(x0)] + [t(v5)− t(v0)]− [t(v1)− t(v0)]− [t(v5)− t(v4)] (64)

6.6. Variance-controlled adaptive estimator for KL divergence563

As noted in Section 3.6, the nested Monte Carlo estimator we use as an expensive, but in principle564

asymptotically exact, estimate of the KL divergence requires converging a separate exponential average565

ln〈e−w〉x,v;Λ for every sample (x, v) ∼ ρ or ω. It is obviously impossible to compute this exactly; any566

practical approach employing finite computational resources can only estimate this quantity to some567

finite statistical precision, and even then, the logarithm will induce some bias in the computed estimate568

for finite sample sizes. Here, we take the approach of setting a sensible target statistical error for this569

inner estimate, arbitrarily selecting 0.01, since we would like to resolve features in DKL larger than this570

magnitude. Notably, the difficulty in achieving this threshold increases exponentially as the width of571

the sampled distribution p(w) increases with increasing timestep ∆t.572

To determine the number of inner-loop samples required to meet this statistical error threshold, we573

periodically compute an estimate of σinner(x, v) = stddev(ln〈e−w〉x,v;Λ̂) from the available samples574

using standard first-order Taylor series propagation of uncertainty. We compare the estimated standard575

deviation with the user-defined threshold, and continue to draw samples until we meet the threshold576

or exceed the sample budget of 5 × 104 samples8. The scaling of computational effort with ∆t is shown577

in Figure A4.578

Choosing the inner-loop threshold is subtle. If the inner-loop threshold is chosen too large, then579

the resulting estimate will be very biased (the whole procedure only becomes unbiased in the limit that580

8 This limited the maximum CPU time spent collecting an “outer-loop” sample to approximately 2 hours—conditions where
this limit was met are colored grey in the lower panel of Figure 7.
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Figure A1. Shadow work distributions for the water cluster are approximately Gaussian for all

integrators examined. In all panels, solid lines and shaded regions denote Gaussian fits, while dots

denote histogram estimates. The top row depicts work distributions where initial conditions are

sampled from the nonequilibrium steady-state induced by the corresponding integrator and timestep

[(x, v) ∼ ρ]; these shadow work values are used to measure phase-space error in the near-equilibrium

estimates of DKL. The bottom row depicts work distributions where initial conditions are sampled

from the ω ensemble [x ∼ ρx, v ∼ π(v|x)]; these work values are used to estimate configuration-space

error in the near-equilibrium estimates of DKL.

σinner → 0). If the threshold is chosen too small, then the computational effort becomes prohibitive.581

Controlling the precision of the inner-loop estimates should also be expected to control their bias, since582

the bias of the inner-loop estimates is approximately σ2
inner/2M (see Section II.B, eqn. 8 in [40]), in the583

direction of under-estimating the DKL.584

To compute and report uncertainty in Figure 7, we use bootstrap resampling, rather than Taylor585

propagation. The data for each condition is a jagged array of sampled work values, where each row586

represents an “outer-loop sample” (i.e., a different initial condition (x, v) sampled from ρ (or ω)), and587

the length of each row is variable, reflecting the number of “inner-loop” samples required to estimate588

ln [ρ(x, v)/π(x, v)] (or ln [ω(x, v)/π(x, v)]) to the desired precision. To generate a single bootstrap589

sample, we resample first the rows uniformly with replacement, and then, within each row, resample590

the columns uniformly with replacement. The error bands for the “exact” estimator in Figure 7 are591

computed from 100 bootstrap samples per condition.592

Appendix A Statistics of shadow work distributions593

The exact expression for the KL divergence used for validation in Section 3.6 requires estimating594

the expectation of e−w averaged over p(w). Work distributions for various integrators and timesteps595

are plotted in Figure A1, and appear to be approximately Gaussian, as can be seen by comparison with596

Gaussian fits (solid lines). As expected, the width of the work distribution increases with increasing597

timestep, which can be seen more clearly in Figure A2, which plots the standard deviation of the work598

distribution as a function of timestep.599

While the near-equilibrium estimate will find the difficulty of reaching estimates of a given600

statistical precision grows linearly with the variance in p(w), the exact estimator must converge601

expectations of the exponentiated shadow work, which becomes exponentially difficult with increasing602

variance. This effect is illustrated in Figure A3, where we plot e−w along with the Gaussian fits to these603

work distributions.604
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