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ABSTRACT

We propose a novel unsupervised learning algorithm that makes use of image fusion to efficiently cluster remote
sensing data. Exploiting nonlinear structures in multimodal data, we devise a clustering algorithm based on a
random walk in a fused feature space. Constructing the random walk on the fused space enforces that pixels are
considered close only if they are close in both sensing modalities. The structure learned by this random walk
is combined with density estimation to label all pixels. Spatial information may also be used to regularize the
resulting clusterings. We compare the proposed method with several spectral methods for image fusion on both
synthetic and real data.
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1. INTRODUCTION

Unsupervised learning of data is a major problem in machine learning, and is necessary in the case that human
guidance is impractical, particularly when the data set size renders human-guided training infeasible. One of the
most significant unsupervised learning problems is the clustering problem, in which the data is to be partitioned
and labeled according to their partition element. A wide variety of clustering techniques have been proposed
in the literature, with differing theoretical guarantees and computational burdens. Classical methods include
k-means,' 2 hierarchical methods,"* density-based methods,® and mode-based methods.® % In order to achieve
accurate and robust empirical performance, feature extraction is often combined with classical methods, which
allows an algorithm to make clustering decisions based only on the most important features in the data, as
determined by the feature extractor. In particular, spectral methods'''1? construct graphs representing data,
and use the spectral properties of the graph weight matrix or graph Laplacian to produce features that encode
patterns and structure in the data. It is of crucial significance to develop unsupervised methods that not only
perform well on real-world data, but enjoy low computational complexity with regards to the number of data
points and number of dimensions in the dataset.

Unsupervised learning is of particular importance in remote sensing, where the volume of data acquired is
rapidly exceeding human analysis capacity. Indeed, remote sensing sensors collect far more data than can be
manually analyzed by humans. A particular instance of the clustering problem in remote sensing is when two
or more sensors record data derived from the same scene. This allows for data fusion of signals that captures
complementary aspects of the underlying scene. The use of multiple sensors can lead to significant improvement
in a variety of remote sensing tasks,'3 ' by incorporating complementary information. One may consider data
fusion as a preprocessing step to clustering in which the goal is to cluster data according to the features captured
by multiple sensors. In order for such unsupervised learning to be meaningful, the fused clustering algorithm
must synthesize disparate information from its input sensors in a principled manner.
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In this article, we propose a clustering method for data realized as multiple measurements of the same underlying
object, that is, a data-fusion clustering algorithm. The proposed method exploits non-linear structure in the
fused data-space as well as its density, in order to identify modes, which are subsequently used for clustering. Our
algorithm is demonstrated on synthetic and real remote sensing datasets, revealing the suitability of the proposed
method and illustrating its competitive empirical performance against related spectral clustering algorithms
which combine the two data sources in various ways. The article outline is as follows. In Section 2, we provide
a detailed review of the diffusion maps construction, which is a crucial component of the proposed method. In
Section 3, we present the main contribution of the paper, the fused diffusion learning (FDL) algorithm, which
generalizes the recent diffusion learning algorithm?® for data fusion. We conduct experiments with the FDL
algorithm and comparison methods on synthetic and real remote sensing data in Section 4. Finally, we conclude
and discuss related research directions in Section 5.

2. BACKGROUND ON DIFFUSION GEOMETRY

We propose an algorithm that compares distances between points with diffusion distances.?' 23 This nonlinear,
graph-based distance has been applied to problems ranging from analysis of dynamical systems,?? 24726 to semisu-
pervised learning,?” 28 to data fusion,??3° to latent variable separation,3''3? to the physical sciences.3334 Let
{z,}N | = X C RP be a discrete set of data points. The diffusion distance between z,y € X, denoted d;(x,y),
is determined by the underlying geometry of X as computed by diffusion processes on X. It is particularly useful
when the data lies close to a low-dimensional set (say, of dimension d < D), as it can be shown to depend
uniquely on the intrinsic geometry and independent of the embedding in the ambient space. The parameter ¢
enjoys an interpretation as the time length of the diffusion process. The computation of d; requires constructing
an undirected, weighted graph G with vertices corresponding to the points of X and weighted edges given by
an N x N weight matrix W (z,y) = e~ I"=v13/" if € NN,(y) for some suitable choice of ¢ and W (z,y) = 0
otherwise, with NN (z) the set of k-nearest neighbors of y in X with respect to Euclidean distance. Under
mild assumptions, a fast nearest neighbors algorithm such as cover trees® yields W in time quasilinear in N for
k = O(log(NN)). The degree of z is deg(x) := }_, . x W(x,y). A Markov diffusion, which corresponds to a random
walk on G, has an N x N transition matrix P(z,y) = W (z,y)/deg(z) . Given an initial probability distribution
pu € RN on X, the vector uP? is the probability over states at time ¢t > 0. As t increases, this diffusion process
on X evolves according to the connections between the points encoded by P, that is, according to the geometry
of X. This Markov chain has a stationary distribution 7(z) = deg(2)/3_,c x deg(y).

The diffusion distance at time t is df (z,y) = e x (P* (2, u) — P*(y,u))?dp(w) /7 (u). The computation of d;(x,y)
involves summing over all paths of length ¢ connecting « to y, so d;(x, y) is small when z,y are strongly connected
in the graph, and large when x,y are weakly connected in the graph. The spectral decomposition of P allows to
derive fast algorithms to compute d;: the matrix P admits, under mild assumptions,?? a spectral decomposition
with eigenvectors {®,} | and eigenvalues {\,}_;, where 1 = A\; > [\a| > --- > |Ay|. The diffusion distance
can then be written as

N

Blry) =3 N (@u(x) — Bay))? M)

The weighted eigenvectors {\!,®,, }N_ may consequently be interpreted as new data-dependent coordinates of X,
which are almost geometrically intrinsic.?!'2? Euclidean distance in these new coordinates is diffusion distance

on G.

Assuming the underlying graph G is connected, |A,| < 1 for n > 1. Hence, |\?!| < 1 for large ¢ and n > 1, so
that the sum (1) may truncated at some suitable 2 < M < N, depending on the decay of the eigenvalues. In
our experiments, M was set to be the value at which the decay of the eigenvalues {)\,})_; began to taper off,
i.e. the “kink” in the eigenvalue plot; this is a standard heuristic for such metrics.2> The subset {\! ®, } .,
used in the computation of d; is a dimension-reduced set of diffusion coordinates. In this sense, the mapping
z = (M@ (7), \®o(),..., A ,Par(2)) is a dimension reduction mapping of the ambient space RP to RM.



Moreover, the truncation reduces the computational complexity by requiring the algorithm to compute only
M < N eigenvectors.

3. THE FUSED DIFFUSION LEARNING ALGORITHM

We propose to fuse two separate remotely sensed data sources as follows. Suppose there are two sensors which
produce data X; = {z1}V | RP1 Xy = {22}V | C RP2 from a common underlying scene. Here, N is the
number of pixels and D; are the number of dimensions in the data. We assume that the data sets X; are
registered, so that there is a bijective correspondence between x} <» z2. While we assume N is constant across
the datasets, we allow for Dy # Ds. Allowing for the data to be of different dimensions is important in remote
sensing, where multispectral and high dimensional data are much higher dimensional than optical or lidar digital

elevation models.

Let K be the number of clusters in the data, assumed known or estimated a priori. Our algorithm proceeds
in two major steps: mode identification and labeling of points. As in the recently proposed diffusion learning
algorithm,?® we consider diffusion processes on the data. However, in the method proposed in this article, the
diffusion process used for learning is built on the fused data space corresponding to a weighted concatenation of
X, and X,. This allows for both datasets to contribute to the geometry of the underlying graph, thus leading
to more precise learning of the scene.

We begin by concatenating the two datasets into a fused dataset. In order to ensure that the two datasets are
valued equally in the fusion, we weight them by a balancing coefficient A = || X1 ||Fwo/ || X2]|Fro, Where || A|Fro
denotes the Frobenius norm of a matrix A. Let X = {x,})_, be the concatenated data matrix, where r, =
(xL, \22). Note that this construction requires that the datasets to be fused have the same number of points,
which may be a limit in practice for remote sensing data captured at very different spatial resolutions. This is
could be addressed through image superresolution.

The algorithm for learning the modes of the classes is summarized in Algorithm 3.1. It first computes an empirical
density for each point z, with a kernel density estimator: p(z,) = po(xn)/zzzl po(xm), where po(x,) =
Zx ENNy(zn) e~llzn—emlz/of The Gaussian kernel density estimator enjoys strong theoretical guarantees! 36
but certainly other estimators may be used. Once the empirical density p is computed for every point, the modes
of the HSI classes are computed by combining density with diffusion distances. Let p; be the time-dependent
quantity that assigns, to each pixel, the minimum diffusion distance between the pixel and a point of higher

empirical density:

min  di(x,, T T arg max; p(x;
Be(wn) = I R :
maxg, . dt(xmxm)a Ip = arg maxip(xi)

where di(z,, ) is the diffusion distance between x,,, z,, at time ¢. In the following we will use the normalized
quantity pi(x,) = pi(x,)/ max,,, pr(zm). The modes of the HSI are computed as the points z7, ...,z yielding
the K largest values of the quantity Di(z,) = p(x,)p:(x,). Such points should be both high density and far in
diffusion distance from any other higher density points, and can therefore be expected to be modes of different
distributions. This method provably detects modes correctly under suitable distributional assumptions on the
data.?” We note that all notions of distance here are in the fused data space.

Once the modes are detected, each is given a unique, arbitrary label. All other points are labeled using these
mode labels in a two-stage process, described in Algorithm 3.2. In the first stage, running in order of decreasing
empirical density, the spatial consensus label of each point is computed by finding all labeled points within
distance rs > 0 in the spatial domain of the pixel in question; call this set NN;® (x,). If one label among NN,
occurs with relative frequency > .5, that label is the spatial consensus label. Otherwise, no spatial consensus
label is given. In detail, let LsPatial = {4 | . € N N (Zn), Tm # ©n} denote the labels of the spatial neighbors



Algorithm 3.1: Fused Mode Detection Algorithm
3.1.1 Input: Xy = {0V Xo = {22} K; t.

3.1.2 Compute scaling c%nlstant A = [| X1 [[rvo/ | X2 Fro-

3.1.3 Compute concatenated dataset {z,})_; = X, x, = (z}, \22).

3.1.4 Compute the empirical density p(x,) for each z,, € X.

3.1.5 Compute {p;(z,)}2_;, the diffusion distance from each point to its nearest neighbor in diffusion distance
of higher empirical density, normalized.

3.1.6 Set the learned modes {z}}X, to be the K maximizers of D;(z,,) = p(x,)p:(zn).
a7 Output: {afHE {p(en) iy, {pe(@n) 121

within radius r,. Then the spatial consensus label of xz; is

Hynlyn=F, yn €L}
spatial __ {ka > .5,

‘LiPatial‘ (2)
0 (no label), else.
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After a point’s spatial consensus label is computed, it’s spectral label is computed as its nearest neighbor in the
spectral domain, measured in diffusion distance, of higher density. The point is then given the overall label of the
spectral label unless the spatial consensus label exists (i.e. is # 0 in (2)) and differs from the spatial consensus
label. In this case, the point in question remains unlabeled in the first stage. Note that points that are unlabeled
are considered to have label 0 for the purposes of computing the spatial consensus label, so in the case that
most pixels in the spatial neighborhood are unlabeled, the spatial consensus label will be 0. Hence, only pixels
with many labeled pixels in their spatial neighborhood can have a consensus spatial label. In this first stage, a
label is only assigned based on spectral information, though the spatial information may prevent a label from
being assigned. Upon completion of the first stage, the dataset will be partially labeled. In the second stage, an
unlabeled point is given the label of its spatial consensus label, if it exists, or otherwise the label of its nearest
spectral neighbor of higher density.

Algorithm 3.2: Spectral-Spatial Labeling Algorithm

8.2 Inputs {2} Ny {27 1y (@) Foys 7.

3.2.2 Assign each mode a unique label.

3.2.3 Stage 1: Iterating through the remaining unlabeled points in order of decreasing density among unlabeled
points, assign each point the same label as its nearest spectral neighbor (in diffusion distance) of higher
density, unless the spatial consensus label exists and differs, in which case the point is left unlabeled.

3.2.4 Stage 2: Iterating in order of decreasing density among unlabeled points, assign each point the consensus

spatial label, if it exists, otherwise the same label as its nearest spectral neighbor of higher density.
3.2.5 Output: Labels {y,}Y_,.

High density points are expected to be labeled according to their spectral properties, for two reasons. First, high
density points are likely to be near the cores of distributions in real data, which are expected to correspond to
spatially homogeneous regions. Second, points of high density are labeled before points of low density, so it is
not likely for high density points to have many labeled points in their spatial neighborhoods. This means that
the spatial consensus label is unlikely to even exist for these points. Conversely, points of low density may be at
the boundaries of the classes, and are hence more likely to be labeled according to their spatial neighbors. We
remark that the incorporation of spatial information into HSI learning is justified by the fact that HSI typically
show some amount of spatial regularity. Indeed, if a pixel’s nearest spatial neighbors all have the same class
label, it is likely that the pixel has this same label.'6:3846 In practice, the spatial information regularizes and
improves performance, but it cannot take the place of the specific information content of the sensor, which is
generally more salient than the spatial properties of the image.



The proposed method, combining Algorithms 3.1, 3.2 is called spectral-spatial fused diffusion learning (FDLSS).
In our experimental analysis, the significance of the spectral-spatial labeling scheme is validated by comparing
DLSS against a simpler method, called diffusion learning (DL ). This method learns class modes as in Algorithm
3.1, but labels all pixels simply by requiring each point have the same label as its nearest spectral neighbor of
higher density. In this sense, FDLSS is a smoothed version of FDL; indeed, the spatial regularization smoothes
out some of the speckling that can occur in unsupervised learning of remotely sensed images.

4. EXPERIMENTAL ANALYSIS

In order to validate the efficacy of FDLSS, we qualitatively evaluate its performance on synthetic and real
datasets. We also compare the clustering generated by the proposed method with those generated by related
algorithms, which seek to cluster data using operators on graphs.

4.1 Experimental Data

We first consider a synthetic dataset in which there are four clusters to be learned. However, the two sets of
measurements provided are both incomplete for accurate learning of the underlying classes, thus motivating
the necessity of data fusion. We then consider two real remote sensing data sets, which capture an underlying
scene with different sensing modalities. The 2013 IEEE GRSS data fusion contest data* consists of lidar and
hyperspectral data capturing a scene of the University of Houston and neighboring urban areas in Houston, TX,
USA. The lidar data is realized as a digitial elevation model (DEM). It was captured on June 22, 2012, and
recorded at an average height of 2000 feet above ground. The HSI data consists of 144 spectral bands in the 380
to 1050 nm range. The 2000 IEEE GRSS data fusion contest data consists of multispectral and panchromatic
images captured over Hasselt, Belgium in 1999. The multispectral image consists of 7 spectral bands at spectral
resolution ranging from 450 to 2350 nm and a spatial resolution ranging from 30 to 60, while the panchromatic
sensor has a spectral resolution of 520-900 and a fine spatial resolution of 15m.

4.2 Comparison Methods

In order to analyze the performance of FDL and FDLSS, we compare with several related methods. As a
benchmark, we compute cluster labels on each of the two data sources individually using spectral clustering.!?
The results on the separate data sets are expected to be poorer than those on the fused data, thus validating
the need to perform data fusion. We also consider clustering using the eigenvectors of a Markov transition
matrix Pap, which is constructed as the product of Markov transition matrices P;, P, on data sources 1 and 2,
respectively: Pap = Py P>. This method is known as alternating diffusion, and has been shown to be effective in
learning latent variables in certain settings.?"32 Unfortunately, the joint diffusion operator P is not stochastic,
and in fact does not admit a spectral decomposition in general, which imposes computational limitations on its
use. We also consider a method for combining Laplacian matrices constructed on separate data sources called
the power mean Laplacian.*”*® This method consists in computing graph Laplacians Lq, L» on the two data
sources separately, then combining them by taking their power mean: L, = (%(L‘ij + Lg)) / P where typically
p < 0. When p < 0, L, can correctly learn labels in a modified stochastic block model (SBM) in which L1, Lo
are individually insufficient.*® While the SBM is a major simplification of the real-world data setting, it suggests
that the power mean Laplacian could be a useful method for combining Laplacians generated from disparate
sensors. A major drawback of using matrix power Laplacians is its high computational complexity, even in cases
when Ly, Ly are individually sparse. Indeed, computing L, is generally O(N 3) for p < 0. Finally, we consider
spectral clustering with a kernel computed on the joint data space, balanced as in the FDLSS algorithm so that
the two sources contribute equally.

*http://www.grss-ieee.org/community/technical-committees/data-fusion/2013-ieee-grss-data-fusion-contest/
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4.3 Parameters

We set 0 = 1 in the construction of the underlying graph for diffusion distances, and used 100 nearest neighbors.
The diffusion time t was set to 30, and the cutoff M in the spectral expansion was set to be point at which
the eigenvalues had the largest drop. In the density computation, 20 nearest neighbors were used and the
scaling parameter o was set to be half the mean nearest neighbor distance. We set o = 1 for all spectral graph
constructions in the comparison methods, and also used 100 nearest neighbors.

4.4 Experimental Results
4.4.1 Synthetic Data

Images of the synthetic data and subsequent clustering results appear in Figure 1. These data were generated
pixel-wise as realizations of a Gaussian random variables. The data are 60 x 60, so N = 3600, D; = Dy = 1. The
means between each half of the respective sources differ substantially. In this example, we set K = 4, since there
are evidently 4 unique clusters. Clearly the underlying four clusters cannot be learned from either data source
individually, hence the poor labelings for running spectral clustering data sources 1 and 2 alone. We see that
spectral clustering with a joint kernel and FDL both achieve mostly accurate clustering. However, certain points
are anomalously labeled, due to high levels of noise at these pixels. Hence, the FDLSS with spatial regularity
is able to achieve a smoother labeling, by replacing the labels of these noise points with the labels of their near
spatial neighbors.
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Figumreml: F i;"stmrozjj, left to rzghi: Data source 1 ;mDatamsoilrcé 2; Spectral cmlus];fergngmoﬁn data source 1 ain()nz; §pec-
tral clustering on data source 2 alone; Alternating diffusion. Second row, left to right: Matrix power Laplacian,
p = —2; Matriz power Laplacian, p = —1; Joint kernel; FDL; FDLSS. In the synthetic data, by construction it
is not possible to learn the correct segmentation using either data source alone, as can be seen from the failure
to segment. On the other other hand, spectral clustering with a joint kernel, diffusion learning on the joint data
space, and spectral-spatial diffusion learning on the joint data space are all able to segment essentially correctly.
Note that the spatial regularization fizes some errors in labeling high-noise points, at the expense of some errors
on the class boundaries.

4.4.2 HSI and Lidar Data

Images of the real HSI and lidar data and clustering results appear in Figure 2. We see that there are objects
in one image not in the other, for example a road in the HSI scene and trees in the lidar scene. This is because
the information in a hyperspectral sensor is chemical, while a lidar sensor captures height information, which
suggests the merit in fusing these data sources for clustering. In order to make the data of tractable size for the



power mean Laplacian, a 100 x 100 subset of the full scene was used. So, N = 10000, D; = 144, Dy = 1. We set
K =10 in order to allow for rich segmentation of the scene.
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Figure 2: First row, left to right: HSI; lidar; Spectral clustering on HSI alone; Spectral clustering on lidar
alone; Alternating diffusion. Second row, left to right: Matrix power Laplacian, p = —2; Matriz power Laplacian,

p = —1; Joint kernel; FDL; FDLSS. In this scene, the HSI and lidar show different objects. Using either alone
to segment the scene yields insufficient segmentation. Of the fusion methods, only DL and DLSS on the fused
data provide adequate segmentation, and these results are actually comparable in this case, indicating that spatial
reqularization is not especially necessary for this data. In fact, the spatial regularization may even be damaging,
as can be seen from the disappearance of some highly elongated segments when using FDLSS, compared to DLSS.

4.4.3 Multispectral and Panchromatic Data

Images of the real multispectral and panchromatic data and clustering results appear in Figure 3. The multi-
spectral sensor enjoys a large range of electromagnetic resolution, but suffers from a low spatial resolution. On
the other hand, the panchromatic sensor has lower spectral resolution, but improved spatial resolution. This
suggests that more structure in the underlying scene can be learned through data fusion, than can be learned
from a separate analysis of the data sources. In order to make the data of tractable size for the power mean
Laplacian, a 100 x 100 subset of the full scene was used. So, N = 10000,D; = 7,D5 = 1. We set K = 10 in
order to allow for rich segmentation of the scene.

4.5 Computational Complexity

The computation of diffusion distances on the concatenated dataset is O(C%(D; 4+ D) N log(N)) where N is the
number of pixels and d is the intrinsic dimension of the concatenated dataset, thanks to the use of cover trees for
computing Euclidean nearest neighbors and truncating the spectral computation after M = O(1) eigenvectors.
The computation of density is O(C?%(D; + D3)Nlog(N)), since a nearest neighbors search is required for this
as well. The subsequent labelings and spatial regularizations are linear in N, so the overall complexity of the
proposed algorithm is O(C?%(Dy + D3)N log(N)). It is commonly the case that d, D1, Dy = O(1) with respect to
N, so that the overall complexity is O(N log(N)). Spectral clustering can be made to run comparatively fast,
though alternating diffusion and power mean Laplacian computations are considerably slower for large N.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we propose a novel algorithm that fuses and clusters disparate data. Building on the DL method,?°
we proposed to cluster points by considering density and random walks in the joint data space. The proposed
FDL method enjoys low computational complexity, and effectively clusters data in a variety of fusion settings.
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clustering on panchromatic alone; Alternating diffusion. Second row, left to right: Matrixz power Laplacian,
p = —2; Matriz power Laplacian, p = —1; Joint kernel; FDL; FDLSS. We see that for the multispectral and
panchromatic data, many methods are able to segment the route flowing through the center of the scene. The DL
method on the joint data space gives clustering results similar to the results for spectral clustering with the joint
kernel. However, adding spatial reqularization helps, as shown by the clearer segmentation results of DLSS.

The incorporation of spatial information in the FDLSS algorithm further improves results by smoothing the
clusters spatially.

The work in this article is essentially empirical, but an underlying mathematical model provides the basis for
the proposed FDL algorithm, namely that data points should be considered similar only if they are similar in
both of two different sensors. It is of interest to develop this theory, and in particular, to build a continuum of
models that interpolate from the regime in which points are similar if they are similar in data source 1 or data
source 2, and the regime in which points are similar if they are similar in data source 1 and data source 2. The
and-or dichotomy will suggest which method of graphical fusion is appropriate for particular learning tasks. A
related direction is the fusion of more than two data sources.
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