
GUILeak: Tracing Privacy Policy Claims on User Input Data
for Android Applications

Xiaoyin Wang
Xue Qin

University of Texas at San Antonio

{xiaoyin.wang, xue.qin}@utsa.edu

Mitra Bokaei Hosseini
Rocky Slavin

University of Texas at San Antonio

{mitra.bokaeihosseini, rocky.slavin}@utsa.edu

Travis D. Breaux
Carnegie Mellon University

breaux@cs.cmu.edu

Jianwei Niu
University of Texas at San Antonio

jianwei.niu@utsa.edu

ABSTRACT

The Android mobile platform supports billions of devices across

more than 190 countries around the world. This popularity coupled

with user data collection by Android apps has made privacy protec-

tion a well-known challenge in the Android ecosystem. In practice,

app producers provide privacy policies disclosing what information

is collected and processed by the app. However, it is difficult to trace

such claims to the corresponding app code to verify whether the

implementation is consistent with the policy. Existing approaches

for privacy policy alignment focus on information directly accessed

through the Android platform (e.g., location and device ID), but are

unable to handle user input, a major source of private information.

In this paper, we propose a novel approach that automatically detects

privacy leaks of user-entered data for a given Android app and de-

termines whether such leakage may violate the app’s privacy policy

claims. For evaluation, we applied our approach to 120 popular

apps from three privacy-relevant app categories: finance, health, and

dating. The results show that our approach was able to detect 21

strong violations and 18 weak violations from the studied apps.

CCS CONCEPTS

•Software and its engineering → Software verification and

validation;

KEYWORDS

Mobile privacy policy, Android application, User input

ACM Reference format:

Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin, Travis D.

Breaux, and Jianwei Niu. 2018. GUILeak: Tracing Privacy Policy Claims on

User Input Data for Android Applications. In Proceedings of ICSE ’18: 40th

International Conference on Software Engineering , Gothenburg, Sweden,

May 27-June 3, 2018 (ICSE ’18), 11 pages.

DOI: 10.1145/3180155.3180196

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, Gothenburg, Sweden

© 2018 ACM. 978-1-4503-5638-1/18/05. . . $15.00
DOI: 10.1145/3180155.3180196

1 INTRODUCTION

Mobile applications (apps) are becoming increasingly perva-

sive. By June 2017, the Google Play Store surpassed three million

apps [1], and the Android platform held 85% of the smartphone OS

market share [2]. Among these apps, some categories of apps can be

particularly privacy-sensitive. In 2015, health apps were downloaded

by 58% of mobile phone users [17]. Such apps collect information

on body measurements, diet, exercise, and medical treatment, among

others. Similarly, 73% of the personal finance app Mint’s 20 million

users pay their balances every month through the app [3].

With ease of access to personal information and the large scale of

mobile app deployment, developers need better tools to help protect

user privacy. Google encourages app developers to provide users

with privacy policies [26], however, innovation and competition

among mobile app developers can introduce inconsistencies between

the application code and privacy policies. Unlike security threats

where malicious developers hoard personal data, the privacy threat

motivating our work is the developer who unintentionally collects

personal data without informing the policy author, or where the

software changes over time to yield and outdated policy.

Prior work by Slavin et al. [26] and Zimmeck et al. [33] traced pri-

vacy policy statements about the collection of platform information

to application program interface (API) calls using static program

analysis. These API calls concern personal information that is au-

tomatically collected from the device, such as user location, device

identifiers, contact information, and sensor data. This prior work

is limited, because it does not account for personal data that users

provide directly through an app’s graphical user interface (GUI).

Figure 1 shows an example where sensitive data is provided to the

app via the interface and is thus disconnected from any API call. In

Figure 1, the user manually enters the steps they have taken using

a text field. There are many ways, both static and dynamic, to ren-

der the field and link the information provided through the field to

program-level data types. Furthermore, the field itself may not have

tight constraints on the input values, making it difficult to determine

the information type.

These unaddressed, GUI-related challenges further widen the gap

between privacy policies and app-based data practices. To bridge

this gap, we identified two new technical challenges that we address

in this paper:

TC1: Vague and Unbounded Information Types for User In-

put Data. The information types automatically collected through

37

2018 ACM/IEEE 40th International Conference on Software Engineering

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin,

Travis D. Breaux, and Jianwei Niu
platform API methods are constrained to what is collectible by hard-

ware commonly shared across mobile devices. This constraint limits

the terminological space to only a few general category names (e.g.,

location, voice, camera). In contrast, developers can design novel

user interfaces that ask users to provide potentially any kind of infor-

mation, which includes unstructured and semi-structured personal

information in different formats and language types.

TC2: Varying GUI Implementation Techniques. Unlike plat-

form API method calls that can be detected by scanning the app byte

code, user interfaces can be implemented using static declarations in

resource files or programmatically in the code. Techniques, such as

SUPOR [13] and UIPicker [18], can be used to identify input views

(GUI views accepting user inputs) receiving sensitive user input, but

they do not map these views to relevant policy terms, nor do they

identify programmatically-generated input views.

In this paper, we present a novel technique to detect privacy-

policy violations on user-provided information for Android apps.

The approach maps each input view to policy terminology through

an ontology, and then performs static information flow analysis

to detect information flows that violate relevant policy statements.

To address TC1, for each input view in a new app, we use phrase

similarity measurements to map GUI labels together with its context

to ontology concepts. The ontology is then matched to the policy text.

To address TC2, we developed a GUI analysis technique to estimate

the structure of programmatically generated GUIs and collect all

GUI labels in the context of a given input view. Our analysis is based

on GATOR [24], an existing GUI analysis framework for Android.

To validate our approach, we focus on three app categories in

the Google Play Store: health, finance, and dating. These three

categories are important because they can require access to sensi-

tive personal information. Furthermore, the first two domains are

regulated by the Health Insurance Portability and Accountability Ac

(HIPAA) [23] and Gramm-Leach-Bliley Ac (GLBA) [11], respec-

tively. In our experiment, we collected 150 of the most popular apps

and their privacy policies (50 apps for each category), setting aside

20% of the apps for training. Using the privacy policies from the

training apps, we constructed an ontology for each of the three do-

mains. We then applied our approach to the remaining 120 apps and

detected 39 violations, which we manually confirmed by recording

the runtime network requests with the Xposed framework [5].

The contributions are as follows.

• We developed a novel GUI-analysis approach to detect inconsis-

tencies between the app’s code, collection behavior of user input

data and collection statements in mobile app privacy policies.

• Using crowd sourcing tools, we developed domain-specific pri-

vacy ontologies for three privacy-sensitive domains: health, fi-

nance, and dating.

• We experimentally evaluated the approach on 120 most popular

apps in the health, finance, and dating and detected 21 strong

violations and 18 weak violations.

This paper is organized as follows: Section 2 presents motivation

and an example; Section 3, describes our framework and approach;

Section 4 describes the evaluation, with the discussion in Section 5;

Section 6 includes related work; and we conclude with future work

in Section 7.

Figure 1: Screenshots from Pacer

2 MOTIVATING EXAMPLE
In this section, we demonstrate the difficulties of understanding

input views due to their varying implementations.

1 <LinearLayout android:gravity="center_horizontak" ...>

2 <cc.pacer.androidapp.ui.common.fonts.TypefaceTextView

3 ... android:id="@id/title" ... />

4 <cc.pacer.androidapp.ui.common.fonts.TypefacedEditText

5 ... android:id="@id/et_content" ... />

6 <LinearLayout ...>

7 <Button ...

8 android:id="@id/btnLeft" ...

9 android:text="@string/btn_cancel" ... />

10 </LinearLayout>

11 </LinearLayout>

Listing 1: Partial Code from common input dialog.xml

1 const v2, 0x7f07011a

2 invoke-virtual {v1,v2}, Lcom/afollestad/materialdialogs/

MaterialDialog\$Builder;->title(I)Lcom/afollestad/

materialdialogs/MaterialDialog\$Builder;

3 move-result-object v1

Listing 2: Virtual Invoke Example in GoalSetCheckingInReqDialog.smali

1 <LinearLayout android:gravity="center_horizontak" ...>

2 <cc.pacer.androidapp.ui.common.fonts.TypefaceTextView ...

3 android:text="@string/goal_set_requirements" ... />

Listing 3: Partial Code from goal create details fragment.xml

Dynamic Layouts. A layout in the Android framework defines

the visual structure of the GUI including locations for views, buttons,

windows, and widgets. Layouts are defined in two ways: either using

XML to define the placements of elements, or they are created pro-

grammatically at runtime. The latter is necessary when layouts need

to be dynamically changed based on runtime states. These dynamic

layouts eliminate the need to pre-draw multiple GUIs. These two

methods can be combined flexibly. For example, a label or view can

be programmatically added to a statically defined layout (typically

after inflation).

The example in Figure 1 shows two GUI screenshots from Pacer,

a popular fitness app, depicting the GUI when a user creates a new

38

GUILeak: Tracing Privacy Policy Claims on User Input Data

for Android Applications

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

exercise goal. Besides editing goal descriptions and changing goal

types such as steps and diet, the user also needs to set the check-

in requirement by clicking the button in the red oval on the left

screenshot. The right screenshot shows the pop-up window that

appears after clicking this button. Here, users will be asked to type

in the desired number of check-in steps.

The right screenshot utilizes a combination of both static and

dynamic layouts. Listing 1 shows the static definition of the right

screenshot, which is a layout template defining the basic layout

structure and the font / style information. All the labels and IDs are

vaguely defined (e.g., Dialog title is undefined, and “et content” is

used as the view id of the input box). Thus this layout template can

be used in multiple places in the project for user input, and the labels

(e.g., Set Check-In Requirements for title) will be transferred from

the parent activity (e.g., the activity in the left screenshot) when the

dialog is opened.

Listing 2 shows the smali code (decoded Android bytecode) in

InputDialogFragment.smali which dynamically adds the

label for “Set Check-In Requirement”. The string is fetched at Line

1 as v2 with the id 0x7f07011a. Here, the id references the

appropriate string in string.xml based on the context. In Line

2, v2 is passed as a title resulting in “Set Check-In Requirement”

being dynamically defined as the title.

GUI Context. Just like the contexts in natural language para-

graphs, input views can only be well understood with neigh-

boring / ancestor views. In the right screenshot, without see-

ing the title, it is difficult to understand what is supposed to

be entered into the field. Furthermore, the left screenshot

that leads to the right dialog also provides context informa-

tion for the dialog. This invoking view can be found in the

resource layout file goal create details fragment.xml,

as shown in Listing 3, and the view’s label referring to

@String/goal set requirements.

GUI context is essential in understanding user input views and

mapping the views to privacy-policy phrases, but the dynamic im-

plementation of Android GUI makes identification of GUI context

difficult. In this paper, we propose input context analysis to handle

dynamic implementation and hierarchical mapping to map input

views to privacy policy phrases based on collected GUI context.

3 APPROACH
The overview of GUILeak is depicted as a data flow diagram (see

Figure 2), which consists of three stages: (a) the ontology construc-

tion stage (blue) creates a baseline ontology by extracting reusable

concepts from multiple privacy policies; (b) the app policy tracing

stage (green) yields phrases that describe data types that are collected

automatically or from the user directly based on a target app’s pri-

vacy policy; and (c) the GUI analysis stage (orange) that extracts the

input fields, field labels, and view identifiers from the input views,

which are then fed to data flow analysis (i.e., FlowDroid [6] is used

in GUILeak) as information sources.

The mappings are generated from the ontology, the data type

phrases, and the input view IDs and labels, and are used to detect

policy violations in the identified input data flows. The mappings

allow us to detect two kinds of gaps: (1) when the policy is too

abstract (e.g., it refers to ”personal information” when the app shares

your age and weight), and (2) when data types are collected and

Privacy
Policy

Privacy
Policies

Ontology
Extraction

Reusable
Ontology

Mobile
App

Data Phrase
Extraction

Input View
IDs & LabelsInput Context

Analysis

Input Views

FlowDroid
Analysis

Input Data
Flows

Similarity
Calculation

Data Type
Phrases

Framework Stages:
Ontology Construction App Policy Tracing App GUI Analysis

Violation
Detection

Mappings

Figure 2: Approach Overview

shared but they are not described in the policy. In this paper, we are

specifically interested in network-targeted input flows in which user

provided information flows to any network API method invocation.

We introduce the specific steps in the ontology construction in Sec-

tion 3.1, the input context analysis in Section 3.2, and the mapping

of policy phrases to GUI labels for violation detection in Section 3.3.

3.1 Ontology Construction
To construct the ontology, we perform two main steps: (1) con-

struct a privacy policy lexicon from information types extracted from

the privacy policies; and (2) identify semantic relationships among

phrases in the privacy policy lexicon to yield the ontology. The

ontology models three semantic relationships: the hypernym, which

is an ontological relationship from a more generic concept to a more

specific concept; the meronym, which is a relationship between a

whole and its parts; and the synonym, which is a relationship between

two concepts with nearly the same meaning. The ontology can be

used for automatic violation detection between privacy policies and

application code.

3.1.1 Extracting Information Type Phrases. The informa-

tion type phrase extraction step combines crowdsourcing, content

analysis, and natural language processing (NLP) to construct the

privacy policy lexicon. For our study, we first select five top applica-

tions in each of six sub-categories (personal budget, banks, personal

health, insurance-pharmacy, casual and serious dating) in Google

Play, to yield 30 total apps for the finance and health categories.

Next, we segment the privacy policies into 120 word paragraphs us-

ing the method described in [9], which yields annotation tasks from

each policy. Figure 3 shows an example annotation task, wherein

annotators are asked to annotate phrases based on the following

coding frame: User-Provided Information; Automatically Collected

Information; and Uncertain or Unclear.

The user-provided information annotations describe types explic-

itly stated in the policies. However, policies do not always mention

how or from whom they collect the information. For example, in

Figure 3, it is unclear how “information” is collected. To build

the privacy policy lexicon, we consider both annotations coded as

user-provided information, and uncertain or unclear, in case the

policy author described the user-provided collection in an unclear

manner. We collect annotations by recruiting five crowd workers

from Amazon Mechanical Turk (AMT) to annotate each 120-word

39

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin,

Travis D. Breaux, and Jianwei Niu

Figure 3: Example of Crowd Sourced Policy Annotation Task

paragraph of the combined 30 privacy policies. Because this anno-

tation task differed from [9], we also collected annotations for the

same tasks from the authors to evaluate the crowd worker lexicon.

Among all annotations collected, we only add annotations to the

lexicon where two or more annotators agreed on the annotation. This

decision follows the study which shows high precision and recall for

two or more annotators [9]. In the next step, we applied an entity

extractor [8] to the selected annotations to itemize the information

types into unique entities. Finally, the unique information types are

added to the finance, health, or dating lexicon depending on which

sub-category they belong to.

3.1.2 Identifying Semantic Relationships. Hypernymy is the

most common relation found in privacy polices. For example, the

concept “personal information” can be used to generalize more spe-

cific concepts, such as: “credit card information” or “medications.”

Therefore, it is important to identify the semantic relationships be-

tween the information types found in policies to account for how

policies can generally refer to a code-level collection of a more

specific information type, as opposed to when those policies omit

any mention of the collection practice. To address this issue, we

constructed separate ontologies from the finance, health, and dating

lexicons. These lexicons share a small number of phrases supporting

our decision on constructing individual ontologies for each domain.

The ontologies are constructed using the heuristics below [12]:

• Hypernym: C � D, which means concept D is a general category

of C, e.g., “password” is a kind of “authentication information.”

• Meronym: C Part Of D, which means concept C is a part of con-

cept D, e.g., “email message” is a part of “email.”

• Modifiers: C1 C2 � C2 and, C1 C2 � C1 in f ormation, which

means concept C1 is modifying concept C2, e.g., “mobile phone

number” is a kind of “phone number” and “mobile information.”

• Plural: C ≡ D, which means conceptC is a plural form of concept

D, e.g., “addresses” is equivalent to “address.”

• Synonym: C ≡ D, which means concept C is a synonym of con-

cept D, e.g., “geo-location” is equivalent to “geographic location.”

• Thing: C1 ≡ C1 in f ormation, when conceptC has logical bound-

aries and can be composed of other concepts, e.g., “name” is

equivalent to “name information.”

• Event: C1 ≡ C1 in f ormation, when conceptC describes an event,

e.g., “usage” is equivalent to “usage information.”

Semantic relationship identification begins with an ontology,

wherein each lexicon phrase is subsumed by the � concept and no

other relationship exists between phrases. Next, two analysts follow

four steps (see [12]): (1) they create two copies of the initial ontol-

ogy KB1 and KB2, one for each analyst; (2) each analyst individually

compares each phrase pair, and creates hypernymy, meronymy, or

synonymy axiom between concepts when an appropriate relationship

is found based on the above heuristics; (3) the two analysts compare

their axioms in KB1 and KB2 to identify missing axioms and to

compute the degree of agreement. Agreement is measured using

the chance-corrected inter-rater reliability statistic Fleiss’s Kappa;

and (4) finally, two analysts meet to investigate the disagreements

and reconcile the axioms in KB1 and KB2. The analysts re-calculate

agreement after each reconciliation to measure the improvement due

to reconciliation. Identifying semantic relationships is a heuristic-

based procedure, wherein each analyst develops their own heuristics

or rules for identifying relationships. Once all disagreements are

reconciled, the two KBs are equivalent and each one can be used in

GUILeak.

3.2 Input Context Analysis
The input context analysis stage serves to extract user input views

and their contextual GUI labels from the app code. In GUILeak, we

adapt GATOR [24] to generate a statically-estimated GUI view hier-

archy, which includes the input identifier, layout, and form elements

for each Android activity and dialog. GATOR is a program analysis

toolkit for Android that takes the app as its input and produces an

estimated XML hierarchy of activities and dialogs. GATOR first

generates an event flow graph from code and then iteratively tra-

verses the graph to add views to activities / dialogs (by scanning

Android API methods that add views) until a fix point is reached.

For our goal, GATOR has three limitations. First, GATOR does

not distinguish between input views and other GUI views, so we

need to identify and link input views to the API method invocations

receiving user input. Second, although GATOR properly collects and

inserts the text views holding GUI labels in the generated hierarchy, it

often cannot provide the GUI label values because they are generated

at runtime. Thus, we must trace string values back to the string

constants defined elsewhere in the code. Third, as shown in Section 2,

common dialogs can be used to receive user input. While GATOR

analyzes these dialogs as separate units, they must be linked back to

their parent activities so more context information can be extracted.

The resulting GUI view hierarchies can represent the complete input

context. We next introduce how we address these limitations.

3.2.1 Input View Extraction. The first input context analy-

sis step is to extract the API method invocation that receives user

input from an input view, such as <android.widget.EditText:

android.text.Editable getText()>. These invocations serve

as the sources in the following information flow analysis. To support

this extraction, we carefully reviewed all API methods in subclasses

of the Android framework View class, and identified 12 API meth-

ods that receive user inputs. The list of these methods is available

in our anonymized project website [4]. It is also possible that apps

acquire user input implicitly through navigation events, especially

when the input is an enumerated type. For example, while static

40

GUILeak: Tracing Privacy Policy Claims on User Input Data

for Android Applications

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

button labels are not user input, a health app may ask a user to click

on either a “Male” or “Female” button, which leads to different

subsequent user interfaces. In our research, we focus on the user

input views such as text boxes and check boxes, and plan to extend

the approach in future to include latent user input.

Next, we insert the user-input-receiving API methods into the

view objects contained in the GATOR-generated GUI view hierar-

chy. This is achieved by inserting code into the view object scanning

component of GATOR, so that the user-input-receiving API method

invocations are added to the view objects as attributes when a view

object is scanned by GATOR. These user-input-receiving API meth-

ods are configured into FlowDroid [6] as source API methods. By

observing the user data flow within the application from sources to

sinks, we can recognize whether the data has been collected from

the input-receiving API methods and shared with remote sinks on

the Internet. In our analysis, we use the network sinks in SUSI [22].

3.2.2 Input Label Analysis. The second input context anal-

ysis step is to extract GUI labels in the context of an user input

view. In this step, we apply existing string analysis technique [10]

to the arguments of all API method invocations that set text to GUI

views, such as <android.widget.Button: void setText(

java.lang.CharSequence)>. Then, we break the value estima-

tion of each argument into a set of strings, so that they can be directly

used in the subsequent mapping step. We also link the setText()

method invocations to GUI views in the view hierarchy using the

same approach mentioned in Section 3.2.1

3.2.3 Dialog Insertion. Finally, we insert the dialogs into

their parent activities, which allows us to identify the dialog ti-

tles and GUI labels in the context of each parent. Specifically,

we scan the code for dialog-showing method invocations (e.g.,

<android.app.DialogFragment: void show(...)) and

leverage the points-to analysis results from GATOR to discover

the dialog types (e.g., GoalSetCheckingInReqDialog). Next, in-

side the dialog declaration, we collect all the text-setting method

invocations in the corresponding builder class and, outside the dialog

declaration, we collect all the text-setting methods invoked on the di-

alog object. The collected text-setting method invocations are added

to the dialog object as attributes. Then GUILeak acquires possible

arguments of the text-setting methods with input label analysis, and

add them to the view hierarchy of the dialog. Finally, the dialog itself

is added as an attribute to the view whose event handlers (identified

by GATOR) transitively call the dialog-showing method invocation.

In Listing 4, we show a sample dialog insertion result from the

extended GATOR; minor details were omitted for space. In the

example, we see that the dialog layout was inserted into the parent

activity as a sub view of the TextView with title “Set Check-In

Requirements.”

3.3 Mapping and Violation Detection

Mobile app privacy policies serve to inform users about which

kinds of personal information are collected by apps. Thus, we

consider violations as errors of omission in that the policy failed to

notify the user about a specific, collected information type.

We adopt the definition of violation proposed by Slavin et al. [26],

which consists of: weak violation, which occurs when a policy

refers to a vague or abstract information type that semantically

includes a more specific type that was omitted from the policy; and

strong violation, which occurs when the type is completely omitted

from the policy. For example, if an app shares a user’s medicine

intakes, it would be considered a weak violation if the policy only

states, “we collect medical information. . . .” If the policy neglects to

mention medical information as a collected type, then this omission

is classified as a strong violation.

1 <View ... title="Set Check-In Requirements">

2 <View ... title="NO_TITLE">

3 ...

4 <View idName="et_content" ... getValueOp=

5 "[<android.widget.EditText:android.text.Editable getText

()>]"

6 />

7 <View ... title="Steps"/>

8 </View>

9 </View>

Listing 4: Partial Code of Dialog Insertion Result

When detecting strong and weak violations, for a input view

v whose collected information is sent to network, we first check

whether v can be mapped to a concept word c in the ontology.

If so, v is considered an input view collecting sensitive informa-

tion, and we further check whether c and c’s ancestors in the on-

tology appear in the privacy policy. If neither c nor c’s ancestors

appear, a strong violation is detected, and if any of c’s ancestors

appear but c does not appear, a weak violation is detected. Slavin et

al. [26]’s work uses the similar strategy, but since they focus only

on information-accessing API methods, they pre-define a mapping

from each API method to a concept work (e.g., mapping the method

getLastKnownLocation() to the concept location). Such a pre-

defined mapping is impossible for user-input data, because each app

has its own set of input views and they are unknown before analysis

of the app. Thus, the core technical challenge we face here is how to

map an input view to a concept word in the ontology. Our approach

is to develop the conceptual similarity calculation and hierarchical

mapping as presented in following two subsections.

3.3.1 Concept Similarity. User-provided information types,

including GUI labels, are relatively unbounded as compared to

platform information types studied by Slavin et. al [26]. Thus,

we consider two well-adopted similarity measurements to map GUI

labels to ontology phrases: WordNet similarity [16] and Cosine

similarity [25]. WordNet, which is a popular lexical database used

in natural language processing, calculates similarity only for single-

word pairs. To accommodate information type phrases that consist

of multiple words, we propose a simple greedy alignment as follows:

given phrasesA and B, we align the word pairs (one inA and the other

in B) that have the highest single-word similarity in WordNet, and

then perform the alignment recursively until no more words in either

A or B remain. For Cosine similarity, we convert the two phrase into

two word vectors and apply the standard Cosine similarity formula.

Each mapping between a policy phrase and a GUI Label exists, if

the similarity between the phrases, labels and the concept are higher

than a given threshold, which is a parameter of our approach. We

report results from evaluating this approach under different similarity

thresholds in Section 4.

3.3.2 Hierarchy Mapping. Unlike API methods, which have

explicit meanings, the meaning of user input views are implicit

and can be understood only from the context of the view. The

41

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin,

Travis D. Breaux, and Jianwei Niu

Figure 4: Illustration of Hierarchical Mapping

input view id can equate to an informative descriptions, but is often

inadequate. In our motivating example, the view id of the input box

is “et content”, which is too generic to be meaningfully mapped to an

ontology concept. Even in three domains (health, finance and dating),

and with unbounded user inputs, one still cannot exhaustively iterate

all information type phrases for inclusion in the ontology.

To address this issue, we develop a novel mapping strategy that

leverages the larger input context, including GUI labels, which we

call hierarchical mapping. In contrast, we refer to the strategy of

mapping only the label / id of an input view to concept words as node

mapping. Our intuition is that, similar to ontologies, the input view

hierarchy conveys information about concept relationships between

GUI labels. For example, an activity with the title “Transaction In-

formation” may contain multiple user input boxes about transaction

time, source account, etc, which all are potential sub-concepts of

transaction information in an ontology. Therefore, when mapping

user input views to ontology phrases, we use not only the input view

ID and label, but also its ancestor view IDs and labels in the view

hierarchy.

As shown in Figure 4, we first collect the IDs and labels of all

ancestor views for a given input view (light blue views). Next, we

collect the view IDs and labels that are sibling views immediately

before any collected ancestor views (the dark blue view), because

sibling views may contain input view labels of their own. We refer

to these collected IDs and labels, collectively, as ancestor labels.

If an input view ID and label cannot be directly mapped to any

ontology concept, we further map the ancestor labels to the ontology.

Notably, the hierarchical mapping would presumably increase recall

due to fewer false negatives, however, at the cost of additional false

positives and lower precision. Our evaluation shows that the false

positives are less significant when compared with the improvement

in recall.

4 EVALUATION

We evaluate the approach using 150 apps collected from the

Google Play with privacy policies in three categories: finance, health,

and dating. Within finance and health, we examined apps regulated

by GLBA and HIPAA, respectively, and unregulated apps for per-

sonal budgeting and personal health. In dating, we explored apps

for serious dating, which often requires elaborating user profiles,

and casual dating, which includes anonymous chat apps. It should

be noted that, health, finance and dating are categories defined in

Google Play Market. To be representative, we further classify each

category to two sub-categories (personal / institution for finance, fit-

ness / medical for health, and serious / casual for dating). To acquire

Table 1: Lexicon analysis

Health Finance Dating Overall

Total HITs 141 52 141 334

Average Words per HIT 105 102 116 108

Total Annotations - Crowd Workers 739 309 868 1,916

Total Annotations - Authors 456 198 508 1,162

Total Unique Information Types 197 112 262 490

Annotation Time 34.7 13.1 36 84

the 150 apps, in the listed apps in each category at Google Play, we

scan from the top until we collect 25 apps with privacy policies for

each sub-category. Finance and health apps was collected in Jan

2017, and dating apps were collected in July 2017.

The highest ranked 25 apps that have privacy policies were se-

lected for each category from Google Play using the category name

as the search word. To build our three domain ontologies, we chose

the five apps with longest privacy policies from each sub-category

(in total 10 apps per category, 30 apps in total). The remaining 120

apps comprise the test set. All data, including the ontologies, links

to apps and privacy policies, GUI XML files, anonymized survey

responses and the violation detection tool can be downloaded at our

anonymized project website [4].

Our empirical evaluation tries to answer the following three re-

search questions.

• RQ1: What is the effort required and resulting quality from

constructing an ontology?

• RQ2: What are the quantity and type of privacy-policy violations

in apps, if any?

• RQ3: How do different similarity calculations and thresholds,

and mapping strategies, affect violation detection?

4.1 Ontology Evaluation

In response to research question RQ1, we report the effort and

quality of extracting the lexicon, before reporting effort and quality

of constructing the ontology construction. The effort to construct an

ontology consists of the time to extract the lexicons from the poli-

cies and the time to identify semantic relationships in the lexicons.

Table 1 shows the total HITs to collect information type annotations,

average word count per HIT, total annotations collected from crowd

workers and authors, total unique information types extracted, and

combined annotation time for authors and crowd workers.

Overall, the average time to extract an information type from a

privacy policy in health, finance and dating is 10.6 minutes, 7.0 min-

utes, and 8.4 minutes, respectively. This time includes the additional

time from author annotations needed to evaluate the method.

The lexicon quality is measured by the consensus between author

and crowd worker annotations as measured by extracted, unique in-

formation types. In health, the authors and crowd workers agreed on

105/198 unique information types. In addition, the authors missed 55

information types that the crowd workers annotated, and the crowd

workers missed 34 information types that the authors annotated. In

finance, all annotators agreed on 69/112 information types, crowd

workers annotated an additional 20 types, whereas authors annotated

an additional 23 types. In dating domain, all annotators agreed on

135/262 information types, crowd workers annotated additional 76

information types and authors annotated 51 additional unique in-

formation types. Overall, the crowd workers generally identified

18-29% more information types, and authors generally identified

17-20% more types. The consensus was 52-62% of types extracted.

42

GUILeak: Tracing Privacy Policy Claims on User Input Data

for Android Applications

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

In addition to comparing annotator performance, we compared

the lexicon coverage across each domain. The health and finance lex-

icons share 32/278 phrases, health and dating share 45/415 phrases,

and finance and dating share 27/347 phrases. This is an overlap of

only 8-12% across three domains, which is due to the differences in

policy focus and application features.

Separate ontologies were constructed for each domain where

two analysts individually identify semantic relationships between

phrases in a lexicon in one domain, followed by a reconciliation

step to remove conflicts between annotators. To evaluate the quality

of the ontology, we used Fleiss’s Kappa to measure the degree of

agreement above chance before and after each reconciliation step

[9]. The average time per analyst to identify semantic relationships

in health, finance and dating was 6 hours, 5 hours and 8 hours,

respectively. The average time to reconcile disagreements were 3.7

hours, 2 hours and 5 hours, respectively.

In health, the resulting KB1 and KB2 for the two analysts contain

951 and 920 axioms, respectively. We obtained these results after

two rounds of comparisons and reconciliations. The first comparison

produced 491 axioms in disagreement and reconciliation reduced

the disagreements to 78 axioms. The Fleiss Kappa after the first and

second reconciliations were 0.77 and 0.80, respectively. In finance,

the resulting KB1 and KB2 for the two analysts contain 590 and 582

axioms, respectively. The first comparison produced 292 axioms

in disagreement and reconciliation reduced the disagreements to

43 axioms. The Fleiss Kappa after the first and second reconcili-

ations were 0.83 and 0.92, respectively, showing a larger increase

in agreement. In dating domain, the resulting KB1 and KB2 for the

two analysts contain 1,049 and 1,289 axioms, respectively. The first

comparison produced 569 axioms in disagreement and reconciliation

reduced the disagreements to 146 axioms. The initial Fleiss Kappa

before reconciliation was 0.17 which was increased to 0.79 after the

first round of reconciliation.

To evaluate the ontology construction method, two different au-

thors, who we call examiners, independently applied the construction

method to the finance lexicon. The Fleiss Kappa value comparing

the analyst- and examiner-constructed ontologies was 0.54. On in-

spection, the disagreement is comprised of 148/474 axioms. Among

the 148 axioms, 74 axioms can be inferred using a syntactic analyzer,

which automates the process of ontology construction by inferring

semantics from lexicon phrases based on their syntax, alone (e.g.,

plural-singular forms that are equivalent for our purposes). Re-

solving the 74 axioms with a syntactic analyzer yileds a Kappa of

0.75 between the analysts and examiners. Among the unresolved

differences, the examiners found hypernymy relationships missed

by the analysts, such as “deposited checks,” which are a kind of

“transaction.” We believe these differences are due to (1) the various

interpretations of phrases by analysts and examiners; (2) the fatigue

of comparing phrases; (3) and recency effects that both analysts and

examiners experienced during ontology construction [21].

4.2 Ground Truth

The research questions RQ2 and RQ3 depend on a ground truth-

the correct number of true violations in the training set. Three

challenges must be addressed to establish this ground truth.

First, it is impossible to know all of the true positives, and thus

it is impossible to measure recall. To address this challenge, we

Figure 5: User Interface Input Field Tagging Task

adopt relative recall [26], which equates the set of true positives

to all violations that are detectable with available techniques. In

our approach, this violation set results from applying all variants

of our approach to the test set, and taking the union of detected

violations. Second, the true mapping from GUI labels to the ontol-

ogy is comprised of the range of input field names acceptable to

human interpretation, which can vary. To address this challenge, for

each violation detected by any variant of our approach, we first use

crowd sourcing to elicit the generally acceptable names of user input

fields. Then, we followed rigorous steps to map the crowd worker

interpretations of field names to the ontology concepts. Third, the

information flows reported by FlowDroid need to be validated with

runtime observation of information leaks to the network. We validate

the information flows using the Xposed framework. In total, our

ground truth construction consists of 21 strong violations and 18

weak violations from 19 apps of the test set.

4.2.1 Eliciting GUI Input Field Types. We first analyzed 53

input field labels and found that only 33.9% percent correctly de-

scribe the field type. To elicit input field types from crowd workers,

we designed a free listing survey [7], in which workers were asked

to identify the information type that describes the information en-

tered into the app through a specific GUI input field, shown in a

red circle in the screenshot (see Figure 5). Each survey consists of

3-5 screenshots, and we surveyed 53 input fields from 19 apps. We

recruited 30 participants per survey using Amazon Mechanical Turk

to yield 393 HITs. Participants of the surveys were located in the

United States with an overall HIT approval rating greater than 95%.

We obtained 30 information types per input field. Because there

are multiple ways to describe the same concept, we pre-processed the

results to more easily compare elicited types as follows: (a) rewrite

prepositional phrases into noun phrases, e.g. “amount of money” is

rewritten to “money amount;” (b) remove possessives, e.g., “user’s

current medication” is changed to “user current medication;” (c) re-

placing “your” with “user”, e.g., “setting your own pace” is changed

to “setting user own pace;” and (d) remove hyphens, e.g., “e-mail”

is changed to “email.” These steps are similar to porter stemming

in natural language processing, were verb conjugation is removed

to make verb comparisons easier [19, 20]. After pre-processing, we

combine similar type names for each field and calculate the type

name frequency, which is the number of workers who provided each

43

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin,

Travis D. Breaux, and Jianwei Niu

Figure 6: Mapping

syntactically unique type name per field. Finally, for each field, we

select the most frequent type name, which remains linked to a set

containing the less frequent type names for that field. This set can be

used to expand the interpretation of information types for the same

input field, and also can be used to map the GUI input field to the

ontology, which is described next in Section 4.2.2.

4.2.2 Mapping. We follow a three step approach to map the

true input field type names to the ontology concepts: (1) for each

elicited name, we look for the exact match of the name in the ontol-

ogy. If the match is found, we map the name to the matched concept

in the ontology; (2) if we cannot find the exact match, (a) we break

the name into separate words and create a phrase superset, which

includes any combination of the individual words from the name.

Next, we look for the exact match of the phrases in the superset with

concepts in the ontology. If we find an exact match, we map the orig-

inal name via this phrase to the matching concept in the ontology;

and (b) we identify the purpose for the GUI input field name using

existing concepts in the ontology, if a matching concept is found for

the purpose, we match the name to that concept. (3) If we cannot

find a related concept for the name using steps (1) or (2), we use the

context of the screen where the input field is present in the app. The

context provides guides to find related ontology concepts to the name.

Figure 6 shows the mapping for elicited names from the input field in

Figure 5. The phrase “bill due date” fails to find an exact match in the

finance ontology in step (1), but after word tokenization in step (2)

produces the word set S = {bill ,due,date}. Next, the superset of S

yields T = {bill ,due,date,billdue,billdate,duedate,billduedate}.

Finally, the generated name “date” from the superset matches “date”

in the finance ontology. In step (3), the purpose for “bill due date”

yields matches for “account information” and “credit card infor-

mation.” In a second example, we were unable to find matching

concepts for “cycle length” using the two first steps. Therefore,

using the context of the screen that contains the GUI input field

and the application itself, we found that “cycle length” is related to

“menstrual information” and not “exercise information.” Therefore,

we mapped “cycle length” to “health information.” This process was

performed by the authors who voted on the final result to construct

the ground truth.

4.2.3 Validation with Xposed. We validated the FlowDroid

results by implementing a runtime tool to “hijack” the apps with

detected violations. To do so, we created a module that utilized

the Xposed framework, which is depicted in Figure 7. The Xposed

framework can modify compiled Android apps at runtime. Xposed

takes advantage of the Zygote Android daemon, from which all

Android apps are forked. By overwriting the process with its own,

the framework is able to insert hooks into the bytecode of the app

allowing the module to perform custom code before and after hooked

Figure 7: Xposed Parameter Reporter Module

method calls. The integration of the module with the app at run

time can be seen in the figure starting from the top right box. The

module is loaded by the Xposed framework at boot time and thus is

transferred into Zygote (which Xposed replaces). When the app is

started, the process is forked from Zygote and the module persists

within the app’s bytecode along with the hooks included for detection

of the sinks. Our module inserts custom code before invocations

of network sink API methods, and the code simply writes the input

parameters for the sinks to a log file. This allows us to trigger the

leak of data at runtime and verify that the GUI input values were

leaked by reviewing log files.

4.3 Violation Detection Results

We designed several variants of our approach based on different

concept similarity calculations, similarity thresholds, and mapping

strategies, which we evaluated using the ground truth. We use

precision, relative recall and F-score as our metrics. In our exper-

iment, we consider two similarity measurements: WordNet (WN)

and Cosine similarity (Cos). We consider two mapping strategies:

node-mapping (Node), wherein only the ID and label of the input

view is considered, and hierarchical-mapping (Hier), where IDs and

labels of all ancestor input views are considered. This yields four

approach variants by combing techniques: Hier+WN, Hier+Cos,

Node+WN, Node+Cos.

The violation detection results are presented in Figure 8. In

each sub-figure, we compare the four variants on different similarity

thresholds (0-1), with the legend on the right top corner of the chart.

The figures in row 1 compare the precision, relative recall, and F-

score on strong violations respectively. The figures in row 2 compare

the precision, relative recall, and F-score, respectively, on violations

with strict violation types (e.g., strong violations are detected as

strong, and weak violations are detected as weak). The figures in

row 3 compare the precision, recall, and F-score on violations with

general types, respectively. By general types, we mean a violation

is considered correctly detected if a true violation is detected but

the predicted type is wrong (e.g., strong violations detected as weak,

and weak violations detected as strong).

From Figure 8, we have the following observations. First, with

a 0.8 similarity threshold, our hierarchical-mapping-based variants

can achieve 60% F-score and 65% recall for strong violations, 53%

F-score and recall for strict type violation detection, and 84% F-score

and 86% recall for general violation detection, where violation-type

errors are ignored so better results are achieved.

Second, hierarchical-mapping variants (solid lines) perform much

better (on average, improved by 20 percent in recall, and 13 percent

in F-score) than node-mapping variants in both recall and F-score,

44

GUILeak: Tracing Privacy Policy Claims on User Input Data

for Android Applications
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
tr

o
n
g
 P

re
c
.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
tr

o
n
g
 R

e
c
.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
tr

o
n
g
 F

-S
c
o
re

Hier+WN

Hier+Cos

Node+WN

Node+Cos

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
tr

ic
t

P
re

c
.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
tr

ic
t

R
e
c
.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
tr

ic
t

F
-S

c
o
re

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G
e
n
e
ra

l
P
re

c
.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G
e
n
e
ra

l
R

e
c
.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G
e
n
e
ra

l
F
-S

c
o
re

Figure 8: Comparison of Technique Variants under Different Similarity Thresholds

while the precision of the two techniques are similar. This obser-

vation confirms our intuition that the incorporation of context GUI

labels greatly improve the violation detection results (note that recall

is more important than precision in this scenario, as long as the

precision difference is small).

Third, as the similarity threshold increases, the effectiveness of

WordNet-based variants improves while the effectiveness of Cosine-

based variants reduces. With the similarity threshold around 0.8,

all variants are close to their best performance (F-score). One ex-

planation for this observation is that WordNet often provides high

similarity scores to words that are not closely related in the domain,

but which may be closely related in other domains such as bank and

river. Thus, increasing the similarity threshold reduces these false

positives. By contrast, Cosine similarity requires matching exact

words, and a high similarity threshold will result in losing matches

between GUI labels and ontology concept names.

Examples. We hereby describe some real examples about privacy

violations. To avoid legal issues, we do not reveal the name of

apps described. One example of strong violation was found in

one of the top pregnancy related health apps with more than 50

million installs. We found that the app sends information about

cycles and medicines taken to their servers, but it does not mention

sharing this information in the privacy policy. Other strong violations

include the unmentioned collection of food and weight information

from two diet apps, and the unmentioned collection of insurance

information from a pregnancy tracking app, etc. By contrast, a weak

violation was found in a top personal budgeting app with more than

1 million installs. We found that this app sends the bill due date

information to the server, but it is not directly mentioned in the

privacy policy, although “transactions” as a more general concept

phrase is mentioned in the policy. Other interesting weak violations

include steps goals and steps taken for exercise in a fitness app (only

exercise information is mentioned), etc.

4.4 Threats to Validity

On construct validity, the claim that a mobile app violates a pri-

vacy policy requires a semantic mapping between the code and a

corresponding policy statement. The mapping consists of informa-

tion type phrases in policies, labels of input fields in mobile app input

views, information flows extracted from source code, and formal

ontology concepts that align these artifacts. To address this threat,

we crowd sourced the identification of relevant policy phrases and

for information types of input fields as seen by potential users. In the

construction of the lexicon and ontology, we computed inter-rater

reliability and compared results across crowd workers and two sets

of authors, called analysts and examiners. The method results show

a high, above-chance agreement and the method reveals specific

sources of disagreement.

On internal validity, the lexicons were constructed from two or

more annotators, which yield information types that are acceptable

to a subset of annotators, but not all annotators. The liberal interpre-

tation may have skewed our results to include more false positives,

in which a privacy policy phrase has a statistically narrower interpre-

tation accepted by the general population than what was accepted in

the ontology. In addition, the existing frameworks (e.g., FlowDroid

and GATOR) also have deficiencies in precision and recall, which

are inherited by our framework. For example, FlowDroid’s per-

formance on DroidBench, a benchmark repository of mobile apps,

yields 93% recall and 86% precision on data leak detection [6]. To

address this threat, we carefully reviewed the flows reported by these

frameworks when evaluating the precision and recall of our overall

approach.

45

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin,

Travis D. Breaux, and Jianwei Niu
External validity concerns how well our framework generalizes

to other mobile apps and domains. In our study, we chose three

different domains aimed at highlighting cross-domain differences:

health, finance and dating. In addition to different information types,

apps in this domains also present different kinds of input forms and

views that were designed to meet different domain-specific features

(e.g., diet and exercise versus bank account balances versus social

networks).

5 DISCUSSION

Bytecode Analysis and Monitoring. Security and privacy re-

search aims to address a specific threat, which in our case is the

carelessness of software developers to recognize privacy policy vi-

olations in code. Therefore, we assume that these developers have

access to the source code, to which they can apply source code anal-

ysis and instrumentation techniques. However, in our approach, we

choose to perform bytecode analysis and platform-based monitoring,

based on the following three reasons. First, our approach allows di-

rect analysis and monitoring of unmodified APK files, which extends

access to our framework to a broader community as a third-party

service. Thus, developers, project managers, or even regulators can

use the framework without access to the source code to check for

policy violations. Second, platform-based monitoring is independent

from app code changes, which is easier for developers who would

not need to re-instrument their code after changes to the app. Third,

the existing tools Soot and Xposed reduce the technical difficulty

of performing bytecode analysis and platform-based monitoring in

comparison to source code analysis and instrumentation.

Limitations on data types. Our approach employs FlowDroid

for information flow analysis and SUSI for network sinks. These

tools have limitations when detecting flows and network requests

involving encrypted data and files. For example, our approach cur-

rently cannot detect when the user-provided data is stored in a file

and sent out through a network request. With respect to encryp-

tion, we consider HTTPS API methods as sinks and, if encryption

is performed through HTTPS, our approach can detect the viola-

tion. However, if the data is encrypted within the app, FlowDroid

may not be able to track the data through data encrypting methods.

We believe these limitations can be addressed by improvements so

information flow analysis.

6 RELATED WORK

To our knowledge, GUILeak is the first approach that uses data

flow analysis to verify consistency between app-collected data and

privacy policy text with regard to application code and user input.

The following are related works in the area of Android data flow

analysis and privacy policies.

Slavin et al. [26] and Zimmeck et al. [33] used similar approaches

to detect privacy policy violations in Android apps based on Android

API calls. Such an approach is useful in identifying leaks where

the API calls collect personal information from a mobile device. Yu

et al. [30] developed an approach to detect policy violations with

more advance data flow models. There are also works on describing

information manipulation behavior of applications. DESCRIBEME,

developed by Zhang et al. [32], is another tool that automatically

generates security-centric description and bridges the gap between

permissions and descriptions. It helps end users to better understand

what information types have been collected through permissions. Yu

et al. [31] developed a novel approach to generate privacy policy text

from application code and permission profile. Different from these

approaches which focus on privacy information collected from API

methods, GUILeak can detect violations on information collected

from GUI. By mapping privacy-policy phrases to user input views,

we are able to go beyond Android API-based violation detection and

identify potential violations involving user input. Furthermore, the

API-based approach relies on developer documentation for the map-

ping whereas policies are not typically written by developers. For our

approach, privacy-policy phrases are mapped with a user-oriented

perspective which is closer to the language of privacy policies, which

we assert is more relevant since privacy policies are written with an

intent to be understood by end users.

Existing efforts on GUI-related information collection explore

various facets of privacy and security. AsDroid [15] match text from

GUI components to top-level functions in order to detect clandestine

behavior. Their work targets functions by identifying suspicious

permissions. In contrast, our work compared the consistency be-

tween privacy policies and user input via GUI components which

are based on native code. This allows our approach to not be limited

by the coarse granularity of Android permissions. SUPOR [13]

and UIPicker [18] identify sensitive input views to which sensitive

information can be entered. Compared with these efforts, (1) besides

detecting unusual information collections, GUILeak further checks

whether the information collection is mentioned in the privacy policy

based on ontology and mapping techniques to map GUI views to

privacy terms, and (2) on code analysis, GUILeak adapts Gator to

extract contexts of input fields in dynamically generated dialogs and

layouts as shown in Section 2. In contrast, SUPOR and UIPicker

extract context from static layout xml files.

BIDTEXT [14] is a tool for reporting the propagation of label set

variables corresponding to sensitive text labels to sinks. It examined

text labels from either code or GUI and relied on a keyword set to

determine the sensitiveness of computed texts. But BIDDTEXT is

not able to solve our problem because it does not try to map sensitive

labels to phrases in the privacy policies. On input label analysis, gen-

eralized taint analysis [27, 28] and collaborative hybrid analysis [29]

are existing approaches to locate user-visible constant strings. Com-

pared with these approaches, our GUI analysis component needs to

further differentiate labels corresponding to input views.

7 CONCLUSION

In this paper, we proposed a novel approach to detect privacy

policy violations due to leak of user input data. To address the

two technical challenges (infinite mapping and various GUI im-

plementation), we adapted the GATOR framework, and developed

hierarchical-mapping-based violation detection. We apply our ap-

proach on three important domains (finance, health and dating) and

detected 21 strong violations and 18 weak violations in 120 pop-

ular apps from the domains. Our experiment shows that our best

technique variant can achieve a F score of 84% on general violation

detection with proper similarity threshold set.

ACKNOWLEDGMENT. The authors are supported in part by NSF

Awards CNS-1330596, CCF-1464425, CNS-1748109, NSA Grant

on Science of Security, and DHS grant DHS-14-ST-062-001.

46

GUILeak: Tracing Privacy Policy Claims on User Input Data

for Android Applications

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Google Play Statistics, https://www.statista.com/statistics/266210/number-of-

available-applications-in-the-google-play-store/. Accessed: 2017-08-23.
[2] International Data Corporation (IDC) Smartphone OS Market Share 2017 Q1,

http://www.idc.com/promo/smartphone-market-share/os. Accessed: 2017-08-23.
[3] Mint by the Numbers: Which User Are You?, https://blog.mint.com/credit/mint-

by-the-numbers-which-user-are-you-040616/. Accessed: 2017-08-23.
[4] UI Privacy Project Web Site, https://sites.google.com/site/uiprivacy2017/. Ac-

cessed: 2017-02-22.
[5] Xposed Framework, http://repo.xposed.com. Accessed: 2017-02-22.
[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. SIGPLAN Not. 49, 6 (Jun 2014), 259–269.
DOI:http://dx.doi.org/10.1145/2666356.2594299

[7] Harvey Russell Bernard. 2011. Research methods in anthropology: Qualitative

and quantitative approaches. Rowman Altamira.
[8] Jaspreet Bhatia and Travis D Breaux. 2015. Towards an information type lexicon

for privacy policies. In Requirements Engineering and Law (RELAW), 2015 IEEE

Eighth International Workshop on. IEEE, 19–24.
[9] Travis D Breaux and Florian Schaub. 2014. Scaling requirements extraction

to the crowd: Experiments with privacy policies. In Requirements Engineering

Conference (RE), 2014 IEEE 22nd International. IEEE, 163–172.
[10] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. 2003.

Precise Analysis of String Expressions. In Proc. 10th International Static Analysis

Symposium (SAS) (LNCS), Vol. 2694. Springer-Verlag, 1–18. Available from
http://www.brics.dk/JSA/.

[11] Senate Banking Committee. 1999. Gramm-Leach-Bliley Act. (1999). Public
Law 106-102.

[12] Mitra Bokaei Hosseini, Sudarshan Wadkar, Travis D Breaux, and Jianwei Niu.
2016. Lexical Similarity of Information Type Hypernyms, Meronyms and Syn-
onyms in Privacy Policies. In 2016 AAAI Fall Symposium Series.

[13] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu
Zhang, and Guofei Jiang. 2015. SUPOR: Precise and Scalable Sensitive User
Input Detection for Android Apps. In Proceedings of the 24th USENIX Conference

on Security Symposium (SEC’15). USENIX Association, Berkeley, CA, USA,
977–992. http://dl.acm.org/citation.cfm?id=2831143.2831205

[14] Jianjun Huang, Xiangyu Zhang, and Lin Tan. 2016. Detecting Sensitive Data
Disclosure via Bi-directional Text Correlation Analysis. In Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE 2016). ACM, New York, NY, USA, 169–180. DOI:http:
//dx.doi.org/10.1145/2950290.2950348

[15] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014.
AsDroid: Detecting Stealthy Behaviors in Android Applications by User Interface
and Program Behavior Contradiction. In Proceedings of the 36th International

Conference on Software Engineering (ICSE 2014). ACM, New York, NY, USA,
1036–1046. DOI:http://dx.doi.org/10.1145/2568225.2568301

[16] Adam Kilgarriff and Christiane Fellbaum. 2000. WordNet: An Electronic Lexical
Database. (2000).

[17] Paul Krebs and T. Dustin Duncan. 2015. Health App Use Among US Mobile
Phone Owners: A National Survey. JMIR mHealth uHealth 3, 4 (04 Nov 2015),
e101. DOI:http://dx.doi.org/10.2196/mhealth.4924

[18] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and XiaoFeng
Wang. 2015. UIPicker: User-input Privacy Identification in Mobile Applications.

In Proceedings of the 24th USENIX Conference on Security Symposium (SEC’15).
USENIX Association, Berkeley, CA, USA, 993–1008. http://dl.acm.org/citation.
cfm?id=2831143.2831206

[19] Martin F Porter. 1980. An algorithm for suffix stripping. Program 14, 3 (1980),
130–137.

[20] Martin F Porter. 2001. Snowball: A language for stemming algorithms. (2001).
[21] Leo Postman and Laura W Phillips. 1965. Short-term temporal changes in free

recall. Quarterly journal of experimental psychology 17, 2 (1965), 132–138.
[22] Siegfried Rasthofer, Steven Arzt, Ec Spride, Technische Universitt Darmstadt,

and Eric Bodden. 2014. A Machine-learning Approach for Classifying and
Categorizing Android Sources and Sinks. (Feb 2014).

[23] Health Resources and Services Administration. 1996. Health Insurance Portability
and Accountability Act. (1996). Public Law 104-191.

[24] Atanas Rountev and Dacong Yan. 2014. Static Reference Analysis for GUI
Objects in Android Software. In Proceedings of Annual IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization (CGO ’14). ACM, New
York, NY, USA, Article 143, 11 pages. DOI:http://dx.doi.org/10.1145/2544137.
2544159

[25] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model
for automatic indexing. Commun. ACM 18, 11 (1975), 613–620.

[26] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram
Krishnan, Jaspreet Bhatia, Travis D. Breaux, and Jianwei Niu. 2016. To-
ward a Framework for Detecting Privacy Policy Violations in Android Ap-
plication Code. In Proceedings of the 38th International Conference on Soft-

ware Engineering (ICSE ’16). ACM, New York, NY, USA, 25–36. DOI:

http://dx.doi.org/10.1145/2884781.2884855
[27] Xiaoyin Wang, Lu Zhang, Tao Xie, Hong Mei, and Jiasu Sun. 2009. Locating

need-to-translate constant strings for software internationalization. In Proceedings

of the 31st International Conference on Software Engineering. IEEE Computer
Society, 353–363.

[28] Xiaoyin Wang, Lu Zhang, Tao Xie, Hong Mei, and Jiasu Sun. 2009. Transtrl:
An automatic need-to-translate string locator for software internationalization. In
Proceedings of the 31st International Conference on Software Engineering. IEEE
Computer Society, 555–558.

[29] Xiaoyin Wang, Lu Zhang, Tao Xie, Yingfei Xiong, and Hong Mei. 2012. Automat-
ing presentation changes in dynamic web applications via collaborative hybrid
analysis. In Proceedings of the ACM SIGSOFT 20th International Symposium on

the Foundations of Software Engineering. ACM, 16.
[30] Le Yu, Xiapu Luo, Chenxiong Qian, Shuai Wang, and Hareton KN Leung. 2017.

Enhancing the description-to-behavior fidelity in android apps with privacy policy.
IEEE Transactions on Software Engineering (2017).

[31] Le Yu, Tao Zhang, Xiapu Luo, Lei Xue, and Henry Chang. 2017. Toward
Automatically Generating Privacy Policy for Android Apps. IEEE Transactions

on Information Forensics and Security 12, 4 (2017), 865–880.
[32] Mu Zhang, Yue Duan, Qian Feng, and Heng Yin. 2015. Towards Automatic

Generation of Security-Centric Descriptions for Android Apps. In Proceedings of

the 22Nd ACM SIGSAC Conference on Computer and Communications Security

(CCS ’15). ACM, New York, NY, USA, 518–529. DOI:http://dx.doi.org/10.
1145/2810103.2813669

[33] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu, Florian
Schaub, Shomir Wilson, Norman Sadeh, Steven M. Bellovin, and Joel Reidenberg.
2017. Automated Analysis of Privacy Requirements for Mobile Apps. In Network

and Distributed System Security Symposium NDSS.

47

