Extracting information types from Android layout code using sequence to
sequence learning

Mitra Bokaei Hosseini, Xue Qin, Xiaoyin Wang, and Jianwei Niu
University of Texas at San Antonio, San Antonio, TX, USA

Abstract

Android mobile applications collect information in various
ways to provide users with functionalities and services. An
Android app’s permission manifest and privacy policy are
documents that provide users with guidelines about what in-
formation type is being collected. However, the information
types mentioned in these files are often abstract and does
not include the fine grained information types being collected
through user input fields in applications. Existing approaches
focus on API calls in the application code and are able to
reveal what information types are being collected. However,
they are unable to identify the information types based on di-
rect user input as a major source of private information. In this
paper, we propose to direct apply natural language process-
ing approach to Android layout code to identify information
types associated with input fields in applications.

Introduction

Mobile apps are being used widely in domains where a lot
of privacy information is involved. According to a latest re-
port in May 2017, 58.23% of mobile phone users had down-
loaded a health-related mobile app by 2015 (Krebs and Dun-
can 2015), which can collect information on body measure-
ments, diet, exercise, and medical treatment, among others.
Similarly, Mint, one of the most popular personal finance
apps, serves more than 20 million users and 73% of them
pay their balances every month through the Mint. (min). To
protect privacy, mobile app users should better understand
how their personal information is collected, used and shared
by their apps.

With increased access to personal information and the
scale of mobile app deployment, the need for tools to help
developers to protect user privacy is increasingly important.
Google encourages app developers to provide users with pri-
vacy policies that describe how personal information is col-
lected from users (Slavin et al. 2016). These policies are
written in natural language and describe the data practices.
Such policies are also meant to fulfill legal requirements to
protect privacy, such as the GDPR in Europe, or FTC Act
in the US. However, innovation and competition among mo-
bile app developers challenges identifying the trace links be-
tween privacy polices and app code.

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Therefore, there is a need for automatic extraction of in-
formation types being collected through application code
that can be used for checking the consistency between the
code and the data practices in privacy policies.

Prior work by Slavin et al. (Slavin et al. 2016) and Zim-
meck et al. (Zimmeck et al. 2017) attempt to identify plat-
form information types collected through API calls with
static analysis. These API calls concern personal data that
is automatically collected from the device, such as sensor
data. However, these works are not focused on addressing
personal data that users provide directly through an app’s
user interface. Figure ?? shows an example where sensitive
data is provided to the app via the interface and is thus dis-
connected from any API call. These user-based inputs are
difficult to identify as they are both context-sensitive and can
vary in implementation from developer to developer, so that
they bring two new technical challenges as follows:

C1: Vague and Unbounded Information Types for
User Input Data. The information types automatically col-
lected through platform API methods are constrained to An-
droid API which is described by comprehensive documents
and information collected is well defined. These constraints
limit the terminological space to only a few general cate-
gory names (e.g., location, voice, etc.) In contrast, develop-
ers can design novel user interfaces that ask users to provide
potentially any kind of information, which includes unstruc-
tured and semi-structured personal information in different
formats and language types.

C2: Varying User Interface Structures. Unlike platform
API method calls that can be detected by scanning the app
byte code, user interfaces are implemented as Android lay-
outs using static declarations in XML code. The XML code
can be very complicated, with various view types, attributes,
and nested structures.

To address both challenges we propose an approach that
identifies the information types associated with user input
fields automatically. Our approach is based on the assump-
tion on the naturalness of Android layout code, so that it is
possible to directly apply natural language processing tech-
nique to the layout code, and extract the information types,
just as extracting semantics from natural language texts.
Specifically, given a decompiled Android app, first we ex-
tract the static layout files and we construct a context se-
quence for EditText view elements by analyzing the preced-

—_ =
—_ O O 0 NN NN R W =

R R R e e i
AU EORN~-S 0 ®a kR

| IS % w12:33
< Edit Envelope H
Envelope Name Budget Amount
0.00
Budget Period 0.00
Every year - Monthly

Due Date (optional)

>

[Hide on this device

Figure 1: User Interface Screenshots from Good Budget

ing views in the graphic user interface (GUI). Second, we es-
tablish a ground truth by asking human subjects to identify
information types related input fields in GUI. The context
sequence generated for each EditText element is then paired
with human interpretations of the user input field. This data
is used to train a sequence-to-sequence Long Short-Term
Memory (LSTM) model. Finally, given a context sequence
from user interface static layout, our trained sequence-to-
sequence model is used to identify the information type.
This paper is organized as follows: First, we provide a
motivating example on user provided information through
input fields; second, we discuss our proposed approach for
automatic extraction of information types from static lay-
outs; and finally, we provide our proposed experiment setup.

Motivating Example

In this section, we give a real example showing how GUI
views, especially user input views can be constructed from
layout file. In the Android framework, a layout defines the
visual structure of the GUI, such as locations for views, but-
tons, windows, and widgets.

<LinearLayout android:id=
"@id/trans_message_header">
<TextView android:id=

"@id/trans_message_text"/>

<TextView android:id="Qid/name_label"
android:text=
"@string/edit_envelope_envelope_name"/>

<TextView android:id="@id/amount_label"

android:text="@string/edit_envelope_budget"/>

<EEBAAutoCompleteTextView
id="Q@id/name" />

android:id="@id/amount"

android:
<EditText
android:hint="@string/amount_hint"/>
<TextView android:id="@id/period_label"
android:text="@string/envelope_period_label"/>
<TextView android:id="@id/helper_text_amount"
android:text="0.00" />
<Spinner android:id="Qid/period"
android:prompt="@string/period_prompt"/>
<TextView android:id="Qid/helper_text_period"
android:text="@string/period_text_monthly"/>

</LinearLayout>

28
29

31
32
33
34
35

Mobile _’{ Input Context Context
App Code Analysis Sequence
Sequence to
Legend: Sequence
g Input Learnin
Process
Artifact (sequence) Information

Type Phrase

Figure 2: Identifying information type phrases from Ul con-
text analysis

<LinearLayout android:id="Qid/extra_fields">
<TextView android:id="Q@id/due_date_label"
android:text="Q@string/due_date_label"/>
<LinearLayout>
<EditText android:id="Qid/due_date" android:text=""/>

<CheckBox android:id="@id/local_hidden"/>

<TextView android:text="@string/edit_envelope_hide"/>

Listing 1: Partial Code from edit_envelope.xml

Layouts Layouts allow developers to pre-draw the GUIs
and reduce the overhead at runtime which can be extracted
by decompiling the app’s APK files. Static layout files con-
tain the structure of pre-drawn GUISs, view ids as well as all
the text labels we can see from the GUIs. Listing 1 shows
the partial code of edit_ envelope.xml, which is the
static layout file of Figure 1.

In listing 1, lines 6-8 refer to a TextView element that
corresponds to “Envelope Name” field label in Figure 1.
This element also has two attributes: android:id for
identfication purposes; and android:text which con-
tains a reference to string.xml file including the ac-
tual text user observes on the GUIs. Lines 28-29 refer to a
TextView View corresponding to “Due Date” field label in
Figure 1. This View also has two attributes: android:id
for identification purposes; and android:text which
contains a reference to string.xml file including the ac-
tual text user observes on the GUISs.

GUI Context. Just like natural language text, input views
can only be well understood with neighboring/ancestor
views. For the circled input field in figure 1 which relates
to line 31 in listing 1, without considering the context “en-
velope” only “due date” can be inferred as the information
type. If the privacy policy contains the collection of “bill in-
formation” or “envelope information”, the automatic consis-
tency checkers fail to trace “due date” to “envelope informa-
tion” without further context information. Therefore, GUI
context is essential in understanding user input information
types. In this paper, we propose a learning model on GUI
context to infer the proper information type for user input
fields.

Proposed Approach

We present the overview of our approach in figure 2 which
consists of two main steps: (1) given a mobile app de-
compiled code, the graphical user interface (GUI) analy-
sis extracts the layout XML code and constructs a con-
text sequence for each input field (TextView) which in-
cludes the id, text, and hint attributes of the TextView,
and the id, text, and hint attributes of all views preceding
the TextView in the layout XML file; (2) The sequence-
to-sequence learning component takes a sequence that rep-
resents an input field context and map it to a target sequence
of words that represents an information type phrase. The re-
sults from these two steps are shown as artifacts in figure 2.
We next present the details for each step in the following two
sub-sections.

Input Context Analysis

In the GUI context analysis phase, we first decompile the
app’s APK files and extract all XML layout files' associated
with pre-drawn GUISs in the app. A layout XML file declares
the ViewGroups in the GUI. A View may 2 have multiple
attributes such as id and text. In our study, we only focus on
id, text, and hint attributes, since they are typically related
to the semantics of a view. Android provides seven types of
input controls * to help interact with app GUISs, including
button, checkbox, text fields, etc. In this research, we only
focus on EditText for user input analysis to identify the re-
lated information types. To construct the context sequence
for a target EditText View, we analyze the XML file and
gradually add IDs, text, and hints related to all the Views
preceding the target EditText View resulting in context se-
quence. Moreover, strings will be transformed to their corre-
sponding English phrases in textttstring.xml when adding to
context sequence. The following example shows the context
sequence extracted from listing 1 the EditText View with ID
due_date which should be mapped to “envelope due date”
through the learning process:

Context Sequence: {trans message header, trans message
text, name label, Envelope Name, amount label, Budget
Amount, name, amount, 0.00, period label, Budget Period,
helper text amount, period, Select a Budget Period, helper
text period, Monthly, extra fields, due date label, Due Date
(optional), due date}

Next we will introduce how to infer information types
using the extracted sequences using sequence to sequence
modeling.

Sequence-to-Sequence Modeling

Recurrent Neural Networks (RNNs) (Rumelhart et al. 1988)
and specifically Long Short-Term Memory (LSTM) mod-
els (Hochreiter and Schmidhuber 1997) are natural gener-
alization of feedforward neural networks used for process-
ing long sequential data such as sentences (Rumelhart et al.
1988; Werbos 1990). RNNs connect computational units of

"https://developer.android.com/guide/topics/ui/declaring-
layout.html

the network in a directed cycle such that at each time step
i, a unit in the RNN takes both the input of the current step
(i.e., the word; in the sequence), and the hidden state of the
same unit from the previous time step i-/ (Guo, Cheng, and
Cleland-Huang 2017). However, a standard RNN model can
map a source sequence to a target sequence whenever the di-
mensionality of the source and target is known ahead of time
(Sutskever, Vinyals, and Le 2014). To solve this problem,
Cho et al. proposed a model that uses two RNNs as encoder
and decoder which maps the source sequence to a fixed size
vector which is then mapped to a target sequence (Cho et al.
2014). However, RNNs are known for losing long term de-
pendencies between words in the source sequence (Bengio,
Simard, and Frasconi 1994) and therefore, LSTM networks
were introduced to preserve long term dependencies through
a memory cell vector in the recurrent unit (Hochreiter and
Schmidhuber 1997).

Information type phrases are comprised of sequence of
words with various lengths which are not known at the time.
To identify the information types from the GUI context se-
quences, we plan to use two LSTMs (Sutskever, Vinyals, and
Le 2014) which maps a source to a target sequence. First, we
encode the input sequence to a vector of fixed dimension that
includes the semantics of the input sequence using a multi-
layered LSTM. Next, we feed the input vector to another
LSTM which decodes the target sequence from the vector.

Figure 3 depicts all the elements of the sequence to
sequence learning model using two LSTMs. We now de-
scribe each part of the model in details. In the first step,
we present the source sequence as a vector of word tokens
(21,22, ...,xs), where x; corresponds to the ith word in the
source sequence. Next, each word is mapped to its vector
representation through Word Embedding layer (Mikolov et
al. 2013). We plan to learn the embedding vectors and build
the vocabulary from Wikipedia text as general corpus for
this work. The goal of our model is to estimate the condi-
tional probability p(y1, ..., y¢|x1, ..., xs), where (y1,...,y:)
is the target sequence with length ¢ which differs from the
source sequence length s. For this reason, the embedded
source vectors are sequentially fed into the LSTM units
which result in a single vector X representing the semantics
of the source sequence. Next, the model computes the prob-
ability of (y1, ..., y) with another LSTM network whose ini-
tial hidden state is set to X which represents the source se-
quence semantics:

p(yla ceey yt|1.17 ceey xs) = HZ:l p(y’b‘X7 Y1y ey yifl)

In this equation, p(y;|X,y1,...,yi—1) predicts each word
in the target sequence using the previous predicted words
and the source sequence semantics. This prediction is mod-
eled using a softmax classifier that assigns a probability to
all the words in the vocabulary and selects the word with the
highest probability as y;. It is also necessary that both source
and target sequences end with a special vector representa-
tion <EOS>, which enables the model to define a distribu-
tion over sequences of various length (Sutskever, Vinyals,
and Le 2014). In the final stage, the predicted (y1, ..., y:)

*https://developer.android.com/guide/topics/ui/overview.html#Layout is transformed to related word tokens (wy, ..., w;) using the

*https://developer.android.com/guide/topics/ui/controls.html

Word Embedding layer.

¢ 4 A

w; o w, Wi <EOS>
4 4 4
Word Embedding Mapping \
Fp e S— E— e
Y1 Y2 Yt
N 'Lﬁu """"" Lﬁv """"""""" Lé?iq """""" sT™M |
Unit ’ Unit P Unit Unit ‘
,,,,,,, f e A gy ,,,,,,,,,,,,,,,,,,,,,,+,,,,,,,,,,,,,,, prpmpp—
X Y1 Y2 Yt

Figure 3: Mapping source sequence to target sequence using two LSTM networks

Proposed Experiment Setup

We have constructed an initial dataset and we plan to expand
it and base our experiment on the expanded set. To elicit in-
put field types from crowd workers, we designed a free list-
ing survey (Bernard 2011), in which workers were asked to
identify the information type that describes the information
entered into the app through a specific Ul input field, shown
in a red circle in the screenshot (see Figure 1). Each survey
consists of 3-5 screenshots, and we surveyed 53 input fields
from 19 apps. We recruited 30 participants per survey using
Amazon Mechanical Turk to yield 393 HITs. Participants of
the surveys were located in the United States with an overall
HIT approval rating greater than 95%.

We obtained 30 information types per input field. Be-
cause there are multiple ways to describe the same con-
cept, we pre-processed the results to more easily compare
elicited types as follows: The pre-processing steps are simi-
lar to porter stemming in natural language processing, were
verb conjugation is removed to make verb comparisons eas-
ier (Porter 1980; 2001). After pre-processing, we combine
similar type names for each field and calculate the type name
frequency, which is the number of workers who provided
each syntactically unique type name per field. Finally, for
each field, we select the most frequent type name, which re-
mains linked to a set containing the less frequent type names
for that field.

We understand that 53 input fields is not a sufficient num-
ber for training the sequence to sequence model. However,
we believe we can extend this study to acquire a sufficient
number of training samples.

We also analyzed the 53 input fields and infer input types
by concatenating the file name and input field labels. The re-
sults was compared with the most frequent input types pro-
vided by crowd workers showing 33.9% match. This suggest
that a naive approach with local context is not effective.

Acknowledgment

The authors are supported in part by NSF Awards CNS-
1330596, CCF-1464425, CNS-1748109, NSA Grant on Sci-
ence of Security, and DHS grant DHS-14-ST-062-001.

References

Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning
long-term dependencies with gradient descent is difficult.

IEEE transactions on neural networks 5(2):157-166.

Bernard, H. R. 2011. Research methods in anthropol-
0gy: Qualitative and quantitative approaches. Rowman Al-
tamira.

Cho, K.; Van Merriénboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder-decoder for statis-
tical machine translation. arXiv preprint arXiv:1406.1078.

Guo, J.; Cheng, J.; and Cleland-Huang, J. 2017. Seman-
tically enhanced software traceability using deep learning
techniques. In Proceedings of the 39th International Con-
ference on Software Engineering, 3—14. IEEE Press.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735-1780.

Krebs, P., and Duncan, T. D. 2015. Health app use among
us mobile phone owners: A national survey. JMIR mHealth
uHealth 3(4):e101.

Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.

Mint by the numbers: Which wuser are you?,
https://blog.mint.com/credit/mint-by-the-numbers-which-
user-are-you-040616/. Accessed: 2017-08-23.

Porter, M. FE. 1980. An algorithm for suffix stripping. Pro-
gram 14(3):130-137.

Porter, M. F. 2001. Snowball: A language for stemming
algorithms.

Rumelhart, D. E.; Hinton, G. E.; Williams, R. J.; et al. 1988.
Learning representations by back-propagating errors. Cog-
nitive modeling 5(3):1.

Slavin, R.; Wang, X.; Hosseini, M. B.; Hester, J.; Krishnan,
R.; Bhatia, J.; Breaux, T. D.; and Niu, J. 2016. Toward
a framework for detecting privacy policy violations in an-
droid application code. In Proceedings of the 38th Interna-
tional Conference on Software Engineering, ICSE 16, 25—
36. New York, NY, USA: ACM.

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104-3112.
Werbos, P. J. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the IEEE
78(10):1550-1560.

Zimmeck, S.; Wang, Z.; Zou, L.; Iyengar, R.; Liu, B
Schaub, F.; Wilson, S.; Sadeh, N.; Bellovin, S. M.; and Rei-
denberg, J. 2017. Automated analysis of privacy require-
ments for mobile apps. In Network and Distributed System
Security Symposium NDSS.

