
HARNESSING BANDIT ONLINE LEARNING TO LOW-LATENCY FOG COMPUTING

Tianyi Chen and Georgios B. Giannakis

Dept. of ECE and DTC, University of Minnesota, USA

ABSTRACT
This paper focuses on the online fog computing tasks in the Internet-
of-Things (IoT), where online decisions must flexibly adapt to the
changing user preferences (loss functions), and the temporally un-
predictable availability of resources (constraints). Tailored for such
human-in-the-loop systems where the loss functions are hard to
model, a family of bandit online saddle-point (BanSP) schemes are
developed, which adaptively adjust the online operations based on
(possibly multiple) bandit feedback of the loss functions, and the
changing environment. Performance here is assessed by: i) dynamic
regret that generalizes the widely used static regret; and, ii) fit that
captures the accumulated amount of constraint violations. Specifi-
cally, BanSP is proved to simultaneously yield sub-linear dynamic
regret and fit, provided that the best dynamic solutions vary slowly
over time. Numerical tests on fog computing tasks corroborate that
BanSP offers desired performance under such limited information.

Index Terms— Computation offloading, fog computing, Inter-
net of Things, online learning, bandit convex optimization.

1. INTRODUCTION

Internet-of-Things (IoT) envisions an intelligent infrastructure of
networked smart devices offering task-specific monitoring and con-
trol services [1]. Leveraging advances in embedded systems, con-
temporary IoT devices are featured with small-size and low-power
designs, but their computation and communication capabilities are
limited. Along with other features of IoT, such as extreme hetero-
geneity and unpredictable dynamics, the need arises for innovations
in network design and management to allow for adaptive online
service provisioning, subject to stringent delay constraints.

From the network design vantage point, fog is viewed as a
promising architecture for IoT that distributes computation and
communication closer to the IoT users, along the cloud-to-things
continuum [2]. In the fog computing paradigm, service provisioning
starts at the network edge, e.g., smartphones, and high-tech routers,
and only a portion of tasks will be offloaded to the cloud for further
processing (a.k.a. computation offloading) [3]. Existing approaches
for computation offloading mainly focus on static or stationary
settings [4, 5]; see also [4, 6]. Nevertheless, static settings cannot
capture the changing IoT environment, and the stationarity com-
monly assumed in stochastic optimization may not hold in practice,
especially when involving human participation as in IoT.

Indeed, the primary goal of this paper is an algorithmic pur-
suit of online network optimization suitable for emerging tasks in
IoT. Focusing on such algorithmic challenges, online convex op-
timization (OCO) is a promising methodology for sequential tasks
with well-documented merits, especially when the sequence of costs
varies in a possibly adversarial manner [7]. Tailored for fog com-
puting setups, OCO with time-varying constraints was first studied

This work was supported by NSF 1509040, 1508993, and 1711471.

in [8], along with its adaptive variant in [9], and the optimal regret
bound in this setting was first established in [10]. Yet, the approaches
in [8–10] remain operational under the premise that the loss func-
tions are explicitly known, or, their gradients are readily available.
Clearly, none of these two assumptions can be satisfied, because i)
the loss function capturing user dissatisfaction, e.g., service latency
or reliability, is hard to model; and, ii) even if modeling is possible
in theory, the low-power IoT devices may not afford the complexity
of running learning tools such as deep neural networks “on-the-fly.”

In this context, alternative online schemes have been advocated
leveraging point-wise values of loss functions (partial-information
feedback) rather than their gradients (full-information feedback).
They are termed bandit convex optimization (BCO) in machine
learning [11, 12]. Building on full-information precursors [8–10],
the present paper broadens the scope of BCO to the regime with
time-varying constraints, and proposes a class of online algorithms
termed online bandit saddle-point (BanSP) approaches.

In a nutshell, relative to existing works, the main contributions
of the present paper are summarized as follows.

c1) We formulate the fog computing tasks as a BCO problem, by
generalizing the standard BCO framework with only time-varying
costs [11], to account for both time-varying costs and constraints.

c2) We develop a novel BanSP algorithm to tackle this BCO
problem, and analytically establish that the BanSP solver yields si-
multaneously sub-linear dynamic regret and fit, given that the varia-
tion of per-slot minimizers grows sub-linearly with time.

c3) Simulations demonstrate that the BanSP solvers have com-
parable performance relative to full-information alternatives.

2. FOG COMPUTING WITH BANDIT FEEDBACK

In this section, we introduce the fog computing setting, and formu-
late its computation offloading task as a bandit learning problem.

2.1. Fog Computing Setting

Consider a mobile network with a sensor layer, a fog layer, and a
cloud layer [2, 13]. The sensor layer contains heterogeneous low-
power IoT devices (e.g., wearable watches and smart cameras),
which do not have enough computational capability, and usually
offload their collected data to the local fog nodes (e.g., smartphones
and high-tech routers) in the fog layer for further processing [14].
The fog layer consists of N nodes in the set N := {1, . . . , N}
with moderate processing capability; thus, part of workloads will
be collaboratively processed by the local fog servers to meet the
stringent latency requirement, and the rest will be offloaded to the
remote data center in the cloud layer [4]; also see Fig. 1.

Per time t, each fog node n collects data requests bnt from
all its nearby sensors. Once receiving these requests, node n
has three options: i) offloading the amount znt to the remote
data center; ii) offloading the amount ynkt to each of its nearby



Healthcare

Smart home

Smart cities

Computation capability Service latency 

Sensor layer Fog layer Cloud layer

Fig. 1. A diagram of hierarchical fog computing framework.

node k for collaborative computing; and, iii) locally process-
ing the amount ynnt according to its resource availability. The
optimization variable xt in this case consists of the cloud of-
floading, local offloading, and local processing amounts; i.e.,
xt := [z1t , . . . , z

N
t , y

11
t , . . . , y

1N
t , . . . , yN1

t , . . . , yNNt ]>. Assuming
that each fog node has a data queue to buffer unserved workloads,
the instantaneously served workloads (offloading plus processing)
is not necessarily equal to the data arrival rate. Instead, a long-term
constraint is common to ensure that the cumulative amount of served
workloads is no less than the arrived amount over time
T∑
t=1

gnt (xt) :=

T∑
t=1

(
bnt +

∑
k∈N in

n

yknt −
∑

k∈Nout
n

ynkt − znt − ynnt

)
≤ 0

(1)
whereN in

n andN out
n represent the sets of fog nodes with in-coming

links to node n and those with out-going links from node n, respec-
tively. The bandwidth limit of communication link (e.g., wireline)
from fog node n to the remote cloud is z̄n; the limit of the transmis-
sion link (e.g., wireless) from node n to its neighbor k is ȳnk, and
the computation capability of node n is ȳnn. With x̄ collecting all
the aforementioned limits, the feasible region can be expressed by
xt∈X :={0≤xt≤ x̄}.

Performance is assessed by the user dissatisfaction of the online
processing and offloading decisions, e.g., aggregate delay [1, 13].
Specifically, as the computation delay is usually negligible for data
centers with thousands of high-performance servers, the latency for
cloud offloading amount znt is mainly due to the communication
delay, which is denoted as a time-varying cost cnt (znt ) depending
on the unpredictable network congestion during slot t. Likewise,
the communication delay of the local offloading decision ynkt from
node n to a nearby node k is denoted as cnkt (ynkt ), but its mag-
nitude is much lower than that of cloud offloading. Regarding the
processing amount ynnt , its latency comes from the computation de-
lay due to its limited computational capability, which is presented as
a time-varying function hnt (ynnt ) capturing the dynamic CPU capa-
bility during the computing processes. Per slot t, the network delay
ft(xt) aggregates the computation delay at all nodes plus the com-
munication delay at all links, namely

ft(xt) :=
∑
n∈N

(
cnt (znt ) +

∑
k∈Nout

n
cnkt (ynkt )︸ ︷︷ ︸

communication

+ hnt (ynnt )︸ ︷︷ ︸
computation

)
. (2)

Clearly, the explicit form of functions cnt (·), cnkt (·), and hnt (·) is

unknown to the network operator due to the unpredictable traf-
fic patterns [15]; but they are convex (thus ft(xt) is convex)
with respect to their arguments, which implies that the marginal
computation/communication latency is increasing as the offload-
ing/processing amount grows.

Aiming to minimize the accumulated network delay while serv-
ing all the IoT workloads in the long term, the optimal offloading
strategy in this mobile network is the solution of the following on-
line optimization problem (cf. (2))

min
{xt∈X ,∀t}

T∑
t=1

ft(xt), s. to (1), for n = 1, . . . , N. (3)

Comparing to the generic form (4), we consider an online fog com-
puting problem in (3), where the loss (network latency) function
ft(·) and the data requests {bnt } within slot t are not known when
making the offloading and local processing decision xt; after per-
forming xt, only the value of ft(xt) (a.k.a. loss) as well as the
measurements {bnt } are revealed to the network operator.

2.2. Optimal Computation Offloading via Bandit Learning

Targeting a light-weight online solution to the fog computing task
(3) with only limited information, our idea is to leverage emerging
bandit online learning tools to design algorithms with provable per-
formance guarantees. Akin to its full-information counterpart [7],
BCO can be viewed as a repeated game between a learner and na-
ture. To abstract the task, we consider that per slot t, a learner selects
an action xt from a known and fixed convex set X ⊆ Rd, and then
nature chooses not only a loss function ft(·) : Rd → R, but also a
time-varying penalty function gt(·) : Rd → RN . The later gives rise
to the time-varying constraint gt(x) ≤ 0, which is driven by the un-
known application-specific dynamics. Similar to the standard BCO
setting, only the value of ft(xt) at the queried point xt is revealed to
the learner here; but different from the standard BCO setting, besides
X , the constraint gt(x) ≤ 0 needs to be carefully taken care of. And
the fact that gt is unknown to the learner when performing her/his
decision, makes it impossible to satisfy in every time slot. Hence,
a more realistic goal here is to find a sequence of solutions {xt}
that minimizes the aggregate loss, and ensures that the constraints
{gt(xt) ≤ 0} are satisfied in the long term on average. Specifi-
cally, extending the BCO framework [11, 16] to accommodate such
time-varying constraints, we consider the following online problem

min
{xt∈X ,∀t}

T∑
t=1

ft(xt) s. to
T∑
t=1

gt(xt) ≤ 0. (4)

In the current setting, we assume that only the values of loss function
are available at queried points since e.g., its complete form related
to user experience is hard to approximate, but the constraint func-
tion is revealed to the learner as it represents measurable physical
requirements, e.g., data flow conservation constraints in (1).

3. ONLINE BANDIT SADDLE-POINT METHODS

To solve the problem in Section 2, a bandit online saddle-point
method will be developed, along with its performance guarantees.

3.1. Fog Computing with Partial Feedback

The key idea behind BCO is to construct (possibly stochastic) gradi-
ent estimates using the limited function value information [12, 17].



To begin with, we consider the case where the learner can only ob-
serve the function value of ft(x) at two points per slot t. The task
here remains to construct a (possibly unbiased) estimate of the gra-
dient using two feedbacks. The intuition can be revealed from the
one-dimensional case (d = 1): For a small constant δ > 0, the idea
of forward differentiation implies that the derivative f ′t at x can be
approximated by

f ′t(x) ≈ ft(x+ δ)− ft(x− δ)
2δ

(5)

where the approximation is due to δ > 0. Generalizing this approx-
imation to high dimensions, with a random vector u drawn from the
unit sphere (a.k.a. the surface of a unit ball), the scaled function
evaluations at perturbed points x+ δu and x− δu yield an estimate
of the gradient∇ft(x), given by [11]

∇ft(x) ≈ Eu

[
du

2δ

(
ft(x + δu)− ft(x− δu)

)]
. (6)

Hence, du
2δ

(
ft(x + δu)− ft(x− δu)

)
constructed by two function

evaluations can serve as a stochastic estimator of∇ft(x). Compared
with (5), the random vector u introduced in (6) intuitively allows the
gradient estimator to evaluate the directional derivative along every
possible direction on average.

Building upon this intuition, consider a bandit version of the
online saddle-point iteration, for which the primal update becomes

x̂t+1 = P(1−γ)X

(
x̂t − α∇̂2

xLt(x̂t,λt)
)

(7)

where (1 − γ)X := {(1 − γ)x : x ∈ X} is a subset of X , γ ∈
[0, 1) is a pre-selected constant depending on δ, and the two-point
Langragian gradient is given by

∇̂2
xLt(x̂t,λt) := ∇̂2ft(x̂t) +∇gt(x̂t)>λt. (8)

At slot t, the stochastic gradient is ∇̂2ft(x̂t) := dut
2δ

(
ft(x̂t+δut)−

ft(x̂t−δut)
)
, where the function values are evaluated on two points

around the learning iterate x̂t, namely, x1,t := x̂t+δut and x2,t :=
x̂t − δut with ut again drawn uniformly from the unit sphere S :=
{u ∈ Rd : ‖u‖ = 1}. Furthermore, the projection is performed on
a smaller convex set (1 − γ)X in (7), which ensures feasibility of
the perturbed x1,t,x2,t ∈ X . The dual update of BanSP is given by

λt+1 =
[
λt + µ(gt(x̂t) +∇>gt(x̂t)(x̂t+1 − x̂t))

]+
(9)

where µ is again the stepsize, and the learning iterate x̂t rather than
the actual decision xt is used in this update. Here (9) is updated
along the first-order approximation of gt(x̂t+1) at x̂t [10, 18].

With the insights gained so far, the next step is to endow the
BanSP with more than two function evaluations [11]. With M > 2
points, the gradient estimator is obtained by querying the function
values over M points near x̂t. These points include xm,t := x̂t+
δum,t, 1≤m≤M − 1, and the learning iterate xm,t := x̂t, where
um,t is drawn from S. Specifically, the gradient becomes (cf. (7))

∇̂Mx Lt(x̂t,λt) := (10)

d

δ(M − 1)

M−1∑
m=1

(
ft(x̂t+δum,t)−ft(x̂t)

)
um,t +∇gt(x̂t)>λt

where we define the M -point stochastic gradient as ∇̂Mft(x̂t) :=
d

δ(M−1)

∑M−1
m=1

(
ft(x̂t+δum,t)−ft(x̂t)

)
um,t. At the price of extra

computations, simulations will validate that the BanSP with multi-
point feedback enjoys improved performance. The BanSP approach
is summarized in Algorithm 1.

Algorithm 1 BanSP for low-latency fog computing
1: Initialize: primal iterate x̂1, dual iterate λ1, parameters δ and
γ, and proper stepsizes α and µ.

2: for t = 1, 2 . . . do
3: The learner plays the perturbed actions {xm,t}Mm=1 based

on the learning iterate x̂t.
4: The nature reveals the losses {ft(xm,t)}Mm=1 at queried

points, and the constraint function gt(x).
5: The learner updates the primal variable x̂t+1 by (7) with the

gradient estimated by (8) for M = 2, or, (10) for M > 2.
6: The learner updates the dual variable λt+1 via (9).
7: end for

3.2. Optimality and Feasibility of BanSP

In response to the quest for improved benchmarks in this dynamic
setup with constraints, two metrics are considered here: dynamic re-
gret and dynamic fit. The notion of dynamic regret has been recently
adopted in [19,20] to assess performance of online algorithms under
time-invariant constraints. For our BCO setting of (4), we adopt

Regd
T :=

1

M

T∑
t=1

M∑
m=1

E [ft(xm,t)]−
T∑
t=1

ft(x
∗
t ) (11)

where the actual loss per slot is averaged over the losses of M ac-
tions (queried points), E is taken over the sequence of random ac-
tions (due to δu perturbations), and the benchmark is now formed
via a sequence of best dynamic solutions {x∗t } for the instantaneous
cost minimization problem subject to the instantaneous constraint,
namely, x∗t ∈ arg minx∈X ft(x) s. to gt(x) ≤ 0.

Regarding feasibility of decisions generated by a BCO algo-
rithm, the notion of dynamic fit will be used to measure the accu-
mulated violation of constraints [21], that is

FitdT :=

∥∥∥∥∥
[

1

M

T∑
t=1

M∑
m=1

gt(xm,t)

]+∥∥∥∥∥. (12)

Note that the dynamic fit is zero if the accumulated violation
1
M

∑T
t=1

∑M
m=1 gt(xm,t) is entry-wise less than zero. The long-

term constraint implicitly assumes that the instantaneous constraint
violations can be compensated by the later strictly feasible decisions,
and thus allows adaptation of online decisions to the unknown dy-
namics. Under this broader BCO setup, an ideal online algorithm is
the one that achieves both sub-linear dynamic regret and fit. A sub-
linear dynamic regret implies “no-regret” relative to the dynamic
solution on the long-term average; i.e., limT→∞Regd

T /T = 0;
and a sub-linear dynamic fit indicates that the online strategy is also
feasible on average; i.e., limT→∞ FitdT /T = 0.
(as1) Functions ft(x) and gt(x) are convex, ft(x) is bounded by
F over X , and ft(x) and gnt (x) have bounded gradients; that is,
‖∇ft(x)‖ ≤ G, and maxn ‖∇gnt (x)‖ ≤ G.
(as2) For a small constant γ, there exists a constant η > 0, and an
interior point x̃ ∈ (1− γ)X such that gt(x̃) ≤ −η1, ∀t.
(as3) With B := {x ∈ Rd : ‖x‖ ≤ 1} denoting the unit ball, there
exist constants 0 < r ≤ R such that rB ⊆ X ⊆ RB.

Assumption (as1) is typical in OCO with both partial-information
feedback [21–23]; (as2) is Slater’s condition modified for our
BCO setting, which guarantees the existence of a Lagrange mul-
tiplier [24]; and, (as3) requires the action set to be bounded within
a ball that contains the origin. When (as3) appears to be restrictive,
it is tantamount to assuming X is compact and has a nonempty in-
terior, because one can always apply an affine transformation (a.k.a.
reshaping) on X to satisfy (as3); see [23, Section 3.2].



Under these assumptions, we are on track to provide upper
bounds for the dynamic regret and fit of the BanSP solver. Proofs of
results in this paper are available in the online version [18].

Theorem 1 Suppose (as1)-(as3) are satisfied, and consider α, µ, δ,
γ defined in (7)-(9), and constants F , G, r, R defined in (as1)-(as3).
Then BanSP with two-point feedback has dynamic regret bounded by

Regd
T ≤

R

α
V (x∗1:T ) +

R2

2α
+2µG2R2T+αd2G2T

+γGRT (1 + ‖λ̄‖)+2δGT (13)

where ‖λ̄‖ := maxt ‖λt‖, and the accumulated variation of the
per-slot minimizers x∗t in (11) is given by V (x∗1:T ) :=

∑T
t=1 ‖x

∗
t −

x∗t−1‖. In addition, the dynamic fit in (12) is bounded by

FitdT ≤
‖λ̄‖
µ

+
G2
√
NT

2β
+δG

√
NT

+β
√
NT

(
α2d2G2+α2G2‖λ̄‖2

)
. (14)

In this case, if we choose the stepsizes as α = µ = O(T−
1
2 ), and

set the parameters as β = T
1
2 , δ = O(T−1), and γ = δ/r, then

the BanSP solvers yield dynamic regret and fit bounded by

Regd
T =O

(
V (x∗1:T )T

1
2

)
and FitdT = O

(
T

1
2
)

(15)

where V (x∗1:T ) is the variation of the per-slot minimizers x∗t .

Theorem 1 establishes that the dynamic regret and fit are sub-
linear if V (x∗1:T ) = o(T

1
2 ). As a special case of Theorem 1, by

confining x∗1 = · · · = x∗T so that V (x∗1:T ) = 0, the dynamic regret
(15) reduces to the static ones, which correspond to O(

√
T ) in the

two-point case. This pair of bounds markedly improves the regret
versus fit tradeoff in [21], and matches the order of regret in [11,12],
which are the best possible ones that can be achieved by efficient
algorithms even in the BCO setup without the long-term constraints.
For BanSP with M > 2, improved bounds can be proved without
changing the order of regret and fit, but they are omitted for brevity.

4. NUMERICAL EVALUATION

Consider the fog computing task with N = 10 nodes and a cloud
center. Each fog node has an outgoing link to the cloud, and two
outgoing links to two nearby fog nodes for local collaborative com-
puting. For a communication link offloading loads from node n to k,
the offloading limit is ȳnk = 10, the local computation limit at node
n is ȳnn=50, and the fog-cloud offloading limits {z̄n} are all set to
100. The online cost (a.k.a. service latency) in (2) is specified by

ft(xt) :=
∑
n∈N

(
ep

n
t z

n
t +
∑
k∈Nout

n
lnkynkt + lnn(ynnt )2

)
(16)

where pnt = 0.015 sin(πt/96) + 0.05, n ∈ N\{4, 5}, pnt =
0.045 sin(πt/96) + 0.15, n ∈ {4, 5}, and the local coefficients
are set to lnk = 8/ȳnk and lnn = 8/ȳnn. Regarding the data ar-
rival rate bnt , it is generated according to bnt = qn sin(πt/96) + νnt ,
with qn and νnt uniformly distributed over [40, 50] and [45, 55] for
n ∈ N\{1, 2, 3}

⋃
{4, 5}, and qn ∈ [32, 40], νnt ∈ [36, 44], n ∈

{1, 2, 3}, and qn ∈ [20, 25], νnt ∈ [22.5, 27.5], n ∈ {4, 5}. Notice
that the scales of pnt and bnt vary between nodes, mimicking hetero-
geneity of real IoT systems; and the periods of pnt and bnt correspond

10 20 30 40 50

Number of fog nodes

0

200

400

600

800

1000

A
v

er
ag

e 
fi

t

MOSP

Cloud-only

Fog-only

BanSP (M=2)

BanSP (M=5)

Fig. 2. Impact of network size on dynamic fit per fog node.

10 20 30 40 50

Number of fog nodes

0.5

1

1.5

2

A
v

er
ag

e 
co

st

×10
4

MOSP

Cloud-only

Fog-only

BanSP (M=2)

BanSP (M=5)

Fig. 3. Impact of network size on average network cost.

to a 24-hour interval with slot duration 7.5 minutes. When the pa-
rameters of BanSP need to be adjusted in each test, they are set to
γ = 0.05, and δ = 0.05 forM ≥ 2. Finally, BanSP is benchmarked
by: i) the full-information MOSP method in [8] that takes gradient-
based update; ii) the heuristic cloud-only approach that offloads all
data requests to the cloud; and, iii) the heuristic fog-only approach
that processes all requests locally without collaboration.

The performance of all schemes is evaluated under different
number of fog nodes (i.e., network size). For each algorithm, the
fit averaged over all fog nodes and time is presented in Fig. 2, and
the cost (i.e., network delay) averaged over the time is shown in Fig.
3. Clearly, without collaborative computing between fog and cloud,
the cloud- and fog-only schemes have much higher network delays.
The average delay and fit of BanSP variants with multiple function
evaluations are comparable to those of the full-information MOSP
as the network size grows. An interesting observation here is that
as the number of fog nodes increases, the performance gain of the
BanSP solver with a large M becomes more evident; see e.g., Fig.
3. This implies that for a larger network, BanSP benefits from more
bandit information to learn and track the network dynamics.

5. CONCLUSIONS

In this paper, fog computation offloading under partial information
was formulated as an online bandit learning task with both adver-
sarial costs and constraints. Different from existing work in bandit
settings, the focus was on a broader setting where part of the con-
straints are revealed after taking actions, and are also tolerable to in-
stantaneous violations but have to be satisfied on average. An online
bandit saddle-point (BanSP) approach was developed, and its online
performance was rigorously analyzed. It was shown that the BanSP
solver can simultaneously yield sub-linear dynamic regret and fit, if
the dynamic fog offloading solutions vary slowly over time.



6. REFERENCES

[1] Farzad Samie, Vasileios Tsoutsouras, Sotirios Xydis, Lars
Bauer, Dimitrios Soudris, and Jörg Henkel, “Distributed QoS
management for Internet of Things under resource constraints,”
in Proc. Intl. Conf. on Hardware/Software Codesign and Sys-
tem Synthesis, Pittsburgh, PA, Oct. 2016, pp. 1–10.

[2] Mung Chiang and Tao Zhang, “Fog and IoT: An overview of
research opportunities,” IEEE Internet Things J., vol. 3, no. 6,
pp. 854–864, 2016.

[3] Farzad Samie, Vasileios Tsoutsouras, Lars Bauer, Sotirios Xy-
dis, Dimitrios Soudris, and Jorg Henkel, “Computation of-
floading and resource allocation for low-power IoT edge de-
vices,” in Proc. World Forum Internet Things, Dec. 2016, pp.
7–12.

[4] Pavel Mach and Zdenek Becvar, “Mobile edge computing:
A survey on architecture and computation offloading,” IEEE
Comm. Surveys & Tutorials, 2017, to appear.

[5] Feng Wang, Jie Xu, Xin Wang, and Shuguang Cui, “Joint
offloading and computing optimization in wireless powered
mobile-edge computing systems,” IEEE Trans. Wireless Com-
mun., Feb. 2017, submitted.

[6] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and
Khaled B Letaief, “Mobile edge computing: Survey and re-
search outlook,” arXiv preprint:1701.01090, Jan. 2017.

[7] Martin Zinkevich, “Online convex programming and gener-
alized infinitesimal gradient ascent,” in Proc. Intl. Conf. on
Machine Learning, Washington D.C., Aug. 2003.

[8] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex op-
timization approach to proactive network resource allocation,”
IEEE Trans. Signal Processing, Jan. 2017 (revised), Available:
https://arxiv.org/abs/1701.03974.

[9] T. Chen, Y. Shen, Q. Ling, and G. B. Giannakis, “Online learn-
ing for “thing-adaptive” fog computing in IoT,” in Proc. of
Asilomar Conf., Pacific Grove, CA, Oct. 2017.

[10] Michael J Neely and Hao Yu, “Online convex optimization
with time-varying constraints,” arXiv preprint:1702.04783,
Feb. 2017.

[11] Alekh Agarwal, Ofer Dekel, and Lin Xiao, “Optimal algo-
rithms for online convex optimization with multi-point bandit
feedback.,” in Proc. Annual Conf. on Learning Theory, Haifa,
Israel, 2010, pp. 28–40.

[12] John C Duchi, Michael I Jordan, Martin J Wainwright, and An-
dre Wibisono, “Optimal rates for zero-order convex optimiza-
tion: The power of two function evaluations,” IEEE Trans.
Inform. Theory, vol. 61, no. 5, pp. 2788–2806, May 2015.

[13] Gilsoo Lee, Walid Saad, and Mehdi Bennis, “An online sec-
retary framework for fog network formation with minimal la-
tency,” arXiv:1702.05569, Apr. 2017.

[14] Houfeng Huang, Qing Ling, Wei Shi, and Jinlin Wang, “Col-
laborative resource allocation over a hybrid cloud center and
edge server network,” Journal of Computational Mathematics,
2017, to appear.

[15] Baruch Awerbuch and Robert D Kleinberg, “Adaptive routing
with end-to-end feedback: Distributed learning and geometric
approaches,” in Proc. ACM Symp. on Theory of Computing,
Chicago, IL, June 2004, pp. 45–53.

[16] Ohad Shamir, “An optimal algorithm for bandit and zero-order
convex optimization with two-point feedback,” Journal of Ma-
chine Learning Research, vol. 18, no. 52, pp. 1–11, 2017.

[17] Yurii Nesterov and Vladimir Spokoiny, “Random gradient-free
minimization of convex functions,” Foundations of Computa-
tional Mathematics, vol. 17, no. 2, pp. 527–566, Apr. 2017.

[18] T. Chen and G. B. Giannakis, “An online convex opti-
mization approach to proactive network resource allocation,”
IEEE J. Internet-of-Things, July 2017 (submitted), Available:
https://arxiv.org/pdf/1707.09060.

[19] Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and
Karthik Sridharan, “Online optimization: Competing with dy-
namic comparators,” in Intl. Conf. on Artificial Intelligence
and Statistics, San Diego, CA, May 2015.

[20] Eric C Hall and Rebecca M Willett, “Online convex optimiza-
tion in dynamic environments,” IEEE J. Sel. Topics Signal Pro-
cess., vol. 9, no. 4, pp. 647–662, June 2015.

[21] Mehrdad Mahdavi, Rong Jin, and Tianbao Yang, “Trading re-
gret for efficiency: Online convex optimization with long term
constraints,” Journal of Machine Learning Research, vol. 13,
pp. 2503–2528, Sep 2012.

[22] Elad Hazan, Amit Agarwal, and Satyen Kale, “Logarithmic
regret algorithms for online convex optimization,” Machine
Learning, vol. 69, no. 2-3, pp. 169–192, Dec. 2007.

[23] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan
McMahan, “Online convex optimization in the bandit setting:
gradient descent without a gradient,” in Proc. of ACM SODA,
Vancouver, Canada, Jan. 2005, pp. 385–394.

[24] Dimitri P Bertsekas, Nonlinear Programming, Athena scien-
tific, Belmont, MA, 1999.


