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Abstract

Motivation: Systems biology models are typically simulated using a single formalism such as ordinary
differential equations (ODE) or stochastic methods. However, more complex models require the coupling
of multiple formalisms since different biological concepts are better described using different methods,
e.g., stationary metabolism is often modeled using flux-balance analysis (FBA) whereas dynamic
changes of model components are better described via ODEs. The coupling of FBA and ODE frameworks
results in dynamic FBA models. A major challenge is how to describe such hybrid models coupling
multiple frameworks in a standardized way, so that they can be exchanged between tools and simulated
consistently and in a reproducible manner.

Results: This paper presents a scheme and implementation for encoding dynamic FBA models in the
Systems Biology Markup Language (SBML), thereby allowing to exchange multi-framework computational
models between software tools. The paper shows the feasibility of the approach using various example
models and demonstrates that different tools are able to simulate the hybrid models and agree on the
results. As part of this work, two independent implementations of a multi-framework simulation method
for dynamic FBA have been developed supporting such models: iBioSim and sbmlutils.
Availability: All materials and models are available from https://github.com/matthiaskoenig/dfba. The
tools used in this project are freely available: iBiosim at http:/www.async.ece.utah.edu/ibiosim and
sbmlutils at https:/github.com/matthiaskoenig/sbmlutils/.

Contact: myers@ece.utah.edu

1 Introduction such hybrid modeling efforts, and it demonstrates the successful exchange

In systems biology, mathematical modeling has been widely used to and reproducibility of such models between two simulation tools.

describe biological systems (Kitano, 2002). The resulting computational
models can be simulated and analyzed in silico and allow researchers 1.1 Multi-framework computational models
to make predictions which subsequently can be validated experimentally.
Furthermore, such models can provide insights in biological systems that
would be difficult to obtain in a wet lab. A key challenge, however, is

Various simulation and analysis methods have been developed in systems
biology, and depending on the biological question different methods are
preferred. Kinetic time-course simulation based on ordinary differential
equations (ODE) is often employed to observe the dynamics of the entities
in a model over time. Depending on the research question and biological

ensuring that these modeling efforts are reproducible and easily exchanged
between research groups such that and results can be validated and existing
models can be reused to build more complex models. To achieve these . . . L L
K system, such simulations can be either deterministic or non-deterministic
goals, standard model representation formats for the model exchange, (stochastic). Other simulation frameworks are boolean (Thomas, 1973;
Kauffman, 1969) models, logical models (Morris er al., 2010) and
constraint-based approaches (Bordbar et al., 2014), among others.
Metabolic networks, in particular, are often challenging to model
dynamically using ODE approaches because kinetic parameters needed
for ODE models are often unavailable (Varma and Palsson, 1994). Hence,
steady-state approaches that do not need kinetic information are employed

such as the Systems Biology Markup Language (SBML) (Hucka et al.,
2003) or CellML (Hedley et al., 2001), have been established. Both
SBML and CellML have been successfully applied to the encoding of
models using a single modeling framework, but the support of multiple
framework adds new challenges. This paper addresses this problem by
developing a methodology and corresponding implementations to support

to model metabolism, so called flux balance analysis (FBA) (Savinell and
Palsson, 1992; Varma et al., 1993) based on constraint-based optimization
© The Author 2017. 1
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assuming steady state. This method only requires the connectivity of
the reactions and metabolites along with the respective stoichiometry, an
objective function (e.g. cell growth), and additional constraints like flux
bounds. The idea is to constrain the model based on the stoichiometry of
the reactions and optimize the objective function while satisfying the flux
constraints. The advantages of using such method include its efficiency
and not requiring any kinetic information.

Biological research questions often require the coupling of different
model formalisms. One such recent example is the whole-cell model for
the Mycoplasma genitalium (Karr et al., 2012) that is encoded using a
mixture of boolean networks, stochastic processes, differential equations,
and FBA.

1.2 Dynamic flux balance analysis

One disadvantage of FBA is that it cannot express the dynamics of the
metabolites since it does not change amounts or concentrations of species,
but only provides information about the optimal flux distribution for the
given optimization problem. Due to this limitation, the field of dynamic
FBA (DFBA) (Varma and Palsson, 1994) has emerged, which couples the
stationary flux distribution resulting from FBA with the kinetic update of
the metabolites taken up or consumed by the FBA network, i.e., the FBA
submodel is coupled to a kinetic model (ODE) via a multi-framework
approach.

Besides the whole-cell model which uses DFBA as a core module,
many DFBA models have been constructed for different metabolic
pathways. DFBA has been applied in small-scale examples (Varma and
Palsson, 1994; Mahadevan ef al., 2002; Luo et al., 2006), over medium-
size models (Pizarro et al., 2007; Lequeux ef al., 2010; Meadows ef al.,
2010), and up to genome-scale DFBA applications (Hanly and Henson,
2011; Hjersted et al., 2007). For a recent overview, see Table 1 in (Hoffner
etal.,2013).

The coupling between FBA and kinetic model parts has hereby be
implemented via three main approaches, i.e., static optimization approach
(SOA), dynamic optimization approach (DOA), or direct approach
(DA) (Gomez et al., 2014). DOA approaches discretize the simulation
time and optimize simultaneously over the entire time period by solving
a nonlinear programming problem (NLP). The DA approach directly
includes the LP solver in the right-hand side of the ordinary differential
equations (ODEs). The SOA approach solves the LP at each time step
using a Euler forward method assuming constant fluxes over the time
step (Gomez et al., 2014). Most of the published DFBA models use
the SOA approach, which is relatively simple to implement and not as
computationally demanding (see methods algorithm).

1.3 Exchangeability & reproducibility of models

Despite the multitude of published DFBA models, currently no standard
for the exchange of such models exists. Existing models are hard-coded
in programming code, e.g., the whole-cell model in MATLAB. Hereby,
the mathematical models in their respective formalisms are embedded in
the script along with the connections between the kinetic and flux balance
parts of the models. As a consequence, it is not possible to exchange
existing DFBA models between different software tools. Thus, they cannot
be reproduced or validated. This is especially problematic in the case
of DFBA models because often multiple optima can exist for the FBA
model part (and the various time steps), and the resulting DFBA solutions
are not unique, but depend on the actual implementation, i.e., how an
implementation or solver selects one of the possible solutions. In addition
solutions can depend on the selected step size in SOA if the step size is
not small enough.

While it is possible to replicate the same scripts in different
programming languages, it is unpractical to do so as replication is error

prone, requires unnecessary work, needs conversions that can lead to
data loss, and most importantly does not solve the underlying problem of
exchangability of such models. For these reasons, script replication makes
achieving reproducibility difficult and often infeasible. The necessity of
an exchange format for DFBA resulted from efforts trying to encode and
reproduce the DFBA submodel of the whole-cell model using standards
during the whole-cell workshop (Waltemath et al., 2016).

1.4 Model standards

In order to achieve exchangeability and reproducibility of models,
standards for the encoding of models have been created. The de-facto
standard for systems biology models is SBML (Hucka et al., 2003). SBML
core elements are used to describe mathematical models of reaction-based
networks and provide the means to encode computational models based on
ODEs (deterministic and stochastic). SBML uses packages for extending
the functionality of the core elements. While SBML is used to encode
mathematical models of biological networks, there are different standards
for other purposes: the Simulation Experiment Description Markup
Language (SED-ML) is used for describing simulations (Waltemath
et al., 2011), the Systems Biology Graphical Notation (SBGN) is used
for describing visualizations (Le Novere er al., 2009), and COMBINE
Archives are used for exchanging collections of modeling files (Bergmann
etal.,2014). The main advantage of using these standards over hard-coding
models in code is the ability to exchange models between research groups
and reproduce results using various tools that support these standards.

In this work SBML core in combination with the hierarchical model
composition (comp) package (Smith et al., 2015) and the flux balance
constraints (fbc) package (Olivier and Bergmann, 2015) is used for
describing the multi-framework DFBA models. The comp package is
used to construct hierarchical models, providing the means to build built
models from submodels and define the interfaces between them. The fbc
package is used to encode the FBA submodel consisting of the metabolic
network, the flux bounds for the reactions, and an objective function,
allowing to perform FBA. In addition, SED-ML is used to describe how
each SBML model should be simulated, i.e., provide reproducible example
simulation experiments by encoding which simulation algorithm to use
and its corresponding parameters, as well as the defining the time course
simulations for the DFBA. COMBINE archives are used for the exchange
of the encoded models, simulation descriptions and reference solutions.

One of the challenges in current SBML models is the limitation on
the expression of models using different formalisms. Although there are
several tools that support ODE simulation and FBA, they all support
them independently. In order to overcome this challenge, this paper
introduces a scheme that allows the coupling of ODE and FBA models.
This paper demonstrates that this scheme provides exchangeability
and reproducibility by encoding and simulating DFBA models in both
iBioSim (Madsen et al., 2012) and sbmlutils (Koénig, 2017).

2 Methods
2.1 Model encoding

The DFBA models presented in this paper were created in the proposed
scheme either using a graphical user interface in 1BioSim or a script-
based approach in sbmlutils. For a given model, the TOP, FBA,
BOUNDS, and UPDATE submodels were packaged with respective
simulation files using SED-ML in COMBINE archives for the exchange
between tools. All models and simulation results are available from
https://github.com/matthiaskoenig/dfba.
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Fig. 1: Overview of the implemented SOA algorithm for DFBA. After
initialization of the model, the FBA and kinetic simulations are run in an
iterative manner until the simulation end point. In every step, FBA is used
to compute the reaction rates of the FBA network. Subsequently, based on
the computed FBA rates, the values of the species are updated dynamically.
In the SOA approach, FBA fluxes are assumed to be constant within a time
step. For a detailed description see the methods section.

2.2 Stationary optimization approach (SOA)

A stationary optimization approach for DFBA was implemented as
a simulation algorithm in iBioSim and sbmlutils following the
simulation scheme depicted in Figure 1.

The first step is the initialization of the model. All of the species and
parameters in the model are initialized, where each variable’s initial value
is computed. After the initialization step, the FBA submodel is executed.
During the FBA step, reaction fluxes are computed using the initial flux
bound values where the flux bounds for the reactions come from the
top-level using SBML comp replacements. In SBML, replacements of
parameters and species indicate the top-level entities are the same entity
as the one being replaced. Once the fluxes are computed, they are assigned
to parameters using assignment rules on the top-level. These parameters
are assigned reaction rates computed as functions of the fluxes.

After computing reaction fluxes, the update step is performed
concurrently with the dynamic step by computing the time-evolution of
every species in the UPDATE and KINETIC submodels. Species that affect
any flux bound in the FBA submodel are updated in the top-level. The new
bounds are used in the FBA submodel for the next time step. Simulation
time is incremented at the end. If the time limit is reached, then simulation
is complete. Otherwise, all of the steps are repeated.

The SOA simulation algorithm has been implemented in iBioSim
and sbmlutils. The iBioSim tool uses the structure of (Watanabe
and Myers, 2014) for simulation. The sbmlutils tool uses
roadrunner (Somogyi et al., 2015) for the kinetic simulation and
cobrapy (Ebrahim et al., 2013) to solve the FBA problem. Both iBioSim

and sbmlutils take an SBML file that describes a DFBA model and
a SED-ML file that describes the simulation experiment. In the proposed
approach, SED-ML is mainly used to indicate which simulation algorithm
to use, the time points in which tools should print out the values of
the variables, the initial time and the time limit. The SED-ML files
provide a minimal simulation experiment to check reproducibility between
implementations. The value of each time increment for SOA is defined as a
parameter with id d¢ in the SBML model, which can be overwritten by the
SED-ML file for the actual simulation. Ontology terms for the description
of DFBA simulation algorithms have been introduced in the Kinetic
Simulation Algorithm Ontology (KISAO) (Zhukova et al., 2011) and are
used in the SED-ML descriptions, i.e., KISA0: 0000500 (SOA-DFBA).

2.3 Reproducibility between tools

In order to test interoperability based on the proposed scheme, models
were built in both the iBioSim and the sbmlutils tools. Models
built in iBioSim were then imported into sbmlutils and vice-versa
to check whether models could be interpreted by both tools consistently.
This was done in an iterative manner and resulting issues were solved by
clarifying the encoding scheme, e.g., by adding additional rules which
resolved ambiguities.

Reproducibility of DFBA models is challenging because there may
exist several possible outcomes that satisfy the objective function and
constraints of the FBA models. Depending on how a solver and
implementation selects one of the multiple optima different trajectories
can result from the DFBA simulation. The issue of multiple optima was
solved by guaranteeing uniqueness of the solution in every time step based
on Flux Variability Analysis (FVA) (Mahadevan and Schilling, 2003). FVA
gives the possible minimal and maximal fluxes for each reaction in each
step of the simulation. If all minimal fluxes are equal to all maximal fluxes
for a time point a solution is unique in the time point. If all time points
are unique the solution is unique. As a practical note: If the solution is not
unique, the addition of additional constraints to the FBA problem allows
to make the solution unique.

Reproducibility of the model simulations was tested by comparing
the numerical SOA results between the two tools for models with unique
solutions (see Supplementary Material S2). Results were assumed as
numerical identical if the absolute difference for every time point ¢, for
all dynamical FBA species in the model ¢, was smaller than the tolerance
e=1E-5,ie.,

abs(ci(tk) shmiutits = Ci(tk)iviosim) < € Vei, ty

In SOA-DFBA it is important that the time steps dt are small enough
so that the solution converges against the correct solution, and solutions
vary if selected step sizes are too large (e.g. changing the step size in the
toy_wholecell model from 1.0 to 0.1 resulted in differences in steady
state concentrations of up to 10%). Consequently, different step sizes were
tested for the models and step size of the simulations were selected, so that
smaller step sizes did not change the simulation results.

3 Results

The major result of this work is the creation of the first schema for encoding
DFBA in SBML, demonstrating multi-framework computational models
to be exchanged and reproduced between tools. In the following the schema
and its application to multiple DFBA models is presented.

3.1 Schema for dynamic flux balance analysis

This paper proposes for the first time a schema to encode hybrid models,
such as DFBA models, in SBML. The developed schema consisting of
rules, guidelines, and additional information is available as Supplementary
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Fig. 2: Overview of schema for encoding DFBA models in SBML. The
hierarchical SBML model is composed of a top-level model with four
submodels: FBA, BOUNDS, UPDATE, and KINETIC. The individual
submodels are connected via ports. The respective SBML packages used

< Connections

are listed in the models, as well as the simulation framework used. The
BOUNDS submodel calculates the upper and lower flux bounds based on
metabolite availability. The FBA submodel computes the reaction fluxes
of the metabolic fbc model using the bounds as constraints. The UPDATE
submodel calculates the dynamic update of the dynamic metabolites
affected by the FBA model. The rates of change are herby functions of the
FBA fluxes. The KINETIC submodel includes all of the other processes in
the model, which may affect or be affected by entities in metabolism. The
top-level model ties together the different submodels using SBML comp
replacements and replacedBy constructs.

Material S1. The latest version of the document is available from
https://github.com/matthiaskoenig/dfba/. Proposals, errata, and updates to
the schema are managed via the respective issue tracker and releases.

In this section we provide a high-level overview over the underlying
concepts used in the schema, followed by application of the schema to
encode DFBA models.

The DFBA model is constructed hierarchically using the SBML comp
package, separating the hybrid model in different building blocks based on
the respective functionality and modeling frameworks (Figure 2). The top-
level model is hereby composed of four submodels: (i) a kinetic submodel
that computes flux bounds based on the dynamic metabolite availability
and ensures that the FBA problem is constrained by the available metabolite
resources (BOUNDS submodel); (ii) a FBA submodel that encodes
metabolism as a FBA problem (FBA submodel); and (iii) a kinetic
submodel that updates the amounts and concentrations of the dynamic
metabolites changed via the FBA submodel via consumption or production
(UPDATE submodel); (iv) an optional kinetic submodel that represents a
dynamic part with all kinetics other than the metabolic pathway, such
as DNA transcription, DNA translation, and protein degradation, among
others (KINETIC submodel). Alternatively, arbitrary kinetics can be part
of the top model.

The top-level model ties together the three different submodels using
SBML comp replacements and replacedBy constructs with the interface

between the submodels defined via comp ports (which define which model
components of the submodels can be connected, i.e, are exposed).

In order to describe the different formalisms of each submodel, the
Systems Biology Ontology (SBO) is used (Courtot et al., 2011). The SBO
defines controlled vocabulary terms used in the systems biology field. The
SBO terms are arranged in a taxonomic hierarchy using a tree structure.
This allows the grouping of terms that are related to one another. The
modeling formalisms of the individual submodels are described using
terms on the modeling framework branch, where FBA models are described
using the flux balance framework term, stochastic processes are described
using the non-spatial discrete framework term, and differential equations
are described using the non-spatial discrete framework term. Although
the terms for stochastic processes and differential equations can be used
for describing either stochastic or deterministic simulation methods, these
terms were selected because they are the ones that best describes these two
formalisms.

In addition to the modeling formalism other key components are
annotated in the submodels via SBO terms in the schema, e.g., the upper
and lower flux bounds and the exchange reactions in the FBA submodel
defining which metabolites can be consumed or produced in the FBA part
of the DFBA, or the dynamic species in the top model changed by the
FBA submodel. By the means of these annotations the interface between
the hybrid submodels can be clearly defined.

All of the interconnections between the submodels are encoded in
SBML rather than using an external approach like for instance via SED-
ML. The connections between model components are crucial information
of the model and should be part of the model encoding. SED-ML is only
used to encode which simulation to run with the model. As a consequence,
this schema requires only a single hierarchical SBML model and a single
SED-ML file.

3.2 Minimal Example (toy_wholecell)

In order to illustrate the proposed schema, a simplified example of a whole-
cell model was created with a model overview depicted in Figure 3. This
figure shows how the different submodels connect with each other in a
flat form. The model is available as COMBINE archive in Supplementary
Material S3, the Cytoscape visualization as Supplementary Material S4.

This model is constructed hierarchically where a top-level model is
created to instantiate different submodels (BOUNDS, UPDATE, and FBA)
and make the necessary connections between them. The figure illustrates
the structure of each submodel and how each submodel ties in with
each other in a flat version of the model once all of the connections are
established.

In the example the FBA submodel imports species A and convert it
via a linear chain of reactions to species C. The exchange reactions EX_A
and EX_C contain the rate of consumption and production of the respective
species. The TOP model contains assignment rules which assign the fluxes
to the parameters pEX_A and pEX_C, which are used by the UPDATE
model to update the dynamic species A and C via the update reactions
update_A and update_C. The BOUNDS model calculates the bounds
of all FBA exchange reactions, i.e., constraining by the availability of the
dynamic species, as well as bounds changed by kinetic expressions. In the
example the upper bound ub_R1 of reaction R1 is changed via a rate rule.
Additional kinetics are encoded in the TOP model, i.e., akinetic conversion
of C to C (these could also be in a separate KINETIC submodel).

In order to validate the exchangability and reproducibility of the model,
simulations were performed using the simulation algorithm described in
Figure 1 withresults depicted in Figure 4. Both implementations resulted in
numerically identical results (see 2.3). Importantly, our encoding schema
allowed to reproduce the numerical results even if the step sizes were not
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Fig. 3: Detailed schema of the minimal example model (toy_wholecell). The figure shows the components in the BOUNDS, FBA and UPDATE
submodels. Links between submodel components are based on ports which are connected elements via TOP model replacements (replacedElements and
replacedBy). The flattened SBML comp model (FLATTENED) shows the resolved connections between the different submodels after these replacements
have been performed. The flattened model can not be simulated because the separation of frameworks is lost in the flattening process. The network
visualization are available as interactive graphs in Cytoscape as Supplementary Material S4, which provide additional information and annotation of the
components. The figure was created with cy3sbml using the SBML models (Konig et al., 2012).
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Fig. 4: DFBA Simulation results for the toy_wholecell model in two different tools. This demonstrates that models can be exchanged by different
tools using standards and the results can be reproduced when using the same simulation algorithm. Species 2 is converted to C via the FBA subnetwork
over time. C is converted to D via the kinetic parts in the top model. Species A is not consumed completely because the import of A in the FBA subnetwork
via R1 is shut down via a rate rule for the upper flux bound, and a steady state is reached. The model was simulated for 50[h] with a time step dt of 0.1[h].

yet small enough to have converged against the correct solution, thereby 3.3 Diauxic growth in E. coli (diauxic_growth)
allowing to test the effects of varying step sizes in a reproducible manner.

In addition to the presented minimal model, a second model of a
simplified DFBA glycolysis (toy_atp) is available in the supplement
(COMBINE archive in Supplementary Material S5, corresponding
Cytoscape visualization in Supplementary Material S6).

The next example is an encoding and reproduction of results from a
published DFBA model of diauxic growth of E. coli (Mahadevan et al.,
2002) consisting of four reactions between four metabolites, i.e., glucose
(Glext), oxygen (O2), acetate (A.) and biomass (X). The model can
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grow either aerobically on acetate (v1), aerobically on glucose (v2 or v3)
or anaerobically convert glucose to acetate:

vl :39.43A. + 3502 —+ X
v2:9.46Glcxt +12.9202 — X

v3: 9.84Glcxt + 12.7302 — 1.24A. + X
vd 1 19.23Gleat — 12.12A. + X

The kinetic part of the model is described by the following differential

equations:
dGlcat _ AGlext,x
dt
dA
¢ = Adepx

dt

dO.

T: = A%20X + kra(0.21 — O2)
X

i = (v14+v24v3+v4)X

where AGlezt AAc AO2 are the respective rows of each variable in the
stoichiometry matrix and kr,a is the mass transfer coefficient of oxygen.
For a detailed description see (Mahadevan et al., 2002).

The model is available in Supplementary Material S7, the Cytoscape
visualization in Supplementary Material S8.

The results in Figure 5 depict an exponential growth phase using
glucose aerobically until running out of glucose, which at this point the cell
grows linearly due to oxygen. When both oxygen and glucose run out, the
cell growth stagnates. Experimental data from (Varma and Palsson, 1994)
is plotted alongside the simulation results. The model is able to capture
the behavior observed in the experimental data. The results are equivalent
to the models in (Mahadevan et al., 2002).

We hereby showed that our schema is able to encode published DFBA
models, resulting in a reproducible and exchangeable model representation
between tools.

3.4 E. coli core (ecoli)

To demonstrate the feasibility of the proposed schema and method for
real-world examples of DFBAs, a larger metabolic network for the
core metabolism of E. coli (Orth et al., 2010) was encoded in the
proposed schema and simulated as shown in Figure 6. The model is
available as COMBINE archive in Supplementary Material S9. The
FBA submodel was downloaded from BiGG (King et al., 2015) (core
metabolism of Escherichia coli str. K-12 substr. MG1655) and transformed
to an DFBA model in an automatic fashion using sbmlutils. BiGG
models encode the exchangeable species via annotated exchange reactions
which allows and automatic inference of the dynamic species. Only
additional information required to run a DFBA simulations are initial
concentrations for the species. The automatic encoding of larger scale
examples demonstrates the scalability of the proposed encoding approach.

While sbmlutils is able to find a solution for the model, iBioSim
cannot as it runs into an unfeasible solution in the middle of simulation.
This captures the well-known problem of DFBA with multiple solutions.
The FBA problem is not constrained enough to result in a unique solution
and depending on which solution the simulator picks, different solutions
and thereby trajectories arise. Despite the existence of multiple solutions,
tools and LP solver typically pick solutions deterministically. Hence,

single tools can reproduce their own results, but results are irreproducible
between different implementation. Without the use of standards, this
could never be demonstrated because variations in results could be due
to discrepancies in the model, and not in the tool.

4 Discussion

Modularity of models, the ability to encode multi-framework models, and
reproducibility of models is indispensable for encoding more complex
models in computational biology. In this work we presented such an
approach, which allows a clear separation of the different modeling
frameworks via comp submodels and defining the interfaces between the
submodels. To our knowledge, this paper proposes and implements for
the first time an exchangeable and reproducible multi-framework scheme.
This scheme for encoding DFBA models in a standard way has been
implemented in two different tools, demonstrating the exchangeability and
reproducibility of our approach on various examples models like diauxic
growth in E.coli. iBioSim and sbmlUtils are freely available for
download and offer the necessary infrastructure for anyone to develop
DFBA models using the proposed scheme.

Currently, the proposed approach supports the modeling of DFBA
models based on the SOA simulation algorithm. Hence, our approach
only covers a subset of DFBA algorithms and possible frameworks which
could be coupled.

Most DFBA models are stiff and small time steps are required for
stability, making the SOA approach computationally expensive. Another
disadvantage of the SOA approach is that it requires a sufficiently small
fixed time step to give accurate results. Future directions include the
exploration of adaptive time steps for executing the DFBA with SOA,
alternative DFBA methods, such as DOA or DA, and extending our scheme
to encode such models.

Our current is limited to the coupling of ODE and FBA frameworks.
Different types of hybrid model, such as a mixture of differential equations,
stochastic processes, and boolean models still need further study. The
proposed approach of decoupling frameworks via hierarchical model
composition could work similarly for other modeling frameworks like
boolean models.

So far, only small to medium-size DFBA models have been encoded
in our proposed approach. For future work, we will encode genome-
scale metabolic models. This would allow us to assess the scalability and
performance of the proposed approach.
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(a) This is the simulation results for the diauxic growth of E. Coli in sbmlutils.

(b) This is the simulation results for the diauxic growth of E. Coli simulatedin iBioSim.

Fig. 5: This plot shows the results for the model representing diauxic growth in E. coli. The model is able to reproduce the general behavior captured from

experiment data. There is an exponential cell growth while glucose is present in the model, but when the cell runs out of glucose, growth slows down
and is affected mostly by oxygen. However, when the cell runs out of glucose and oxygen, growth diminishes significantly. The model was simulated for

15[h] with a time step dt of 0.01[h].
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Fig. 6: DFBA simulation results for core metabolism of E. coli with
sbmlutils. The proposed approach can be used in larger models, such as
the E. coli model described in the paper. The model is growing aerobically
on glucose in the initial phase and reaches a steady state after oxygen is
consumed. The model was simulated for 3.5[h] with a time step dt of
0.01[h].

S$2 Reproducibility results between sbmlutils and iBioSim

S3 toy_wholecell Minimal DFBA model COMBINE archive

84 toy_wholecell Minimal DFBA model Cytoscape session file
S5 toy_atp Minimal glycolysis DFBA model COMBINE archive
S6 toy_atp Minimal glycolysis DFBA model Cytoscape session file
87 diauxic Diauxic DFBA model COMBINE archive

88 diauxic Diauxic DFBA model Cytoscape session file

89 ecoli E.coli core DFBA model COMBINE archive
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