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Smart manufacturing in an Industry 4.0 setting requires developing unique infrastructures for sensing,
wired and wireless communications, cyber-space computations and information tracking. While an
exponential growth in smart infrastructures may impose drastic burdens on the environment, the con-
ventional Life Cycle Assessment (LCA) techniques are incapable of quantifying such impacts. Therefore,
there is a gap between advances in the manufacturing domain and the environmental assessment field.
The capabilities offered by smart manufacturing can be applied to LCA with the aim of providing
advanced impact assessment, and decision-making mechanisms that match the needs of its manufactur-
ing counterpart.
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1. Introduction: a closer look at the consequences of Industry
4.0

Since the introduction of Industry 4.0 concept in Germany [1],
several conceptual and novel manufacturing paradigms have
emerged as responses to advances in the Information and Commu-
nication Technology (ICT) domain. Smart manufacturing [2], cyber
manufacturing [3], computer-integrated and cloud manufacturing
[4,5] and cloud remanufacturing [6] are among the paradigms that
call for intensive interconnectivity and interoperability of manu-
facturing modules and services through cyber-physical systems
(CPS). Industry 4.0 is believed to shift the manufacturing paradigm
toward a socially-connected [7], and service-oriented cyber-
physical network. This transition is usually considered to have
immediate benefits for consumers [8], as well as manufacturers,
through informed and timely decision making [9] facilitated by
advanced data management techniques. However, the deep and
long-term environmental and social impacts of this revolution
should be investigated further. A CPS requires intelligent connec-
tivity, advanced data management, and computational capabilities
[10], all of which necessitate exponential growth in the ICT infras-
tructure. The CPS implementation can bring prominent benefits in
prognostication and machine health monitoring using the men-
tioned interconnectedness via similarity identification [10]. How-
ever, while the efficiency of ICT has been drastically improved
over the recent years, their environmental and societal aspects
are still disputable [11]. Therefore, the policies regarding the
implementation of Industry 4.0 should be examined systematically
from a holistic perspective, so that adequate measures can be taken
to avoid future adverse impacts. Nevertheless, conventional Life
Cycle Assessment (LCA) techniques are unable to properly assess
smart manufacturing [12]. This paper takes the first steps in shed-
ding light on potential environmental and social impacts of smart
manufacturing and laying the ground for developing adequate
tools to address this issue by identifying the shortcomings of LCA
in analyzing smart manufacturing and remarking the required fea-
tures of future LCAs.

2. Exponential growth in ICT and the corresponding
environmental and societal concerns

Originally, it was believed that technological advancements in
ICT had significantly decreased energy intensity [13], and probably
the corresponding environmental impacts. However, later on, new
opinions have been expressed on the point that environmental
impacts of ICT are very complex [11]. Many empirical studies have
revealed that elevating the efficiency of technologies does not nec-
essarily alleviate their environmental impacts. Despite the sub-
stantial improvements that such systems bring into the equation
with respect to efficiency, the environmental challenges corre-
sponding to them are not intuitive. For example, although the envi-
ronmental impact per unit functionality of desktop processors
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have decreased over time, the impacts of a typical processor
remained the same, due to the increase in the functionality [11],
which has also been historically the case for the automobile indus-
try [11]. Another example can refer to the energy consumption
required for manufacturing computers and electronic products
which has been stable over time and has not decreased properly
in response to drastic advancements in their corresponding tech-
nologies, compared to other manufacturing sectors (Fig. 1).

Moreover, a number of comparative studies that evaluated the
impacts of the transition from conventional services to ICT based
services suggested that e-services may actually impose additional
environmental impacts, depending on the usagemix and behavioral
patterns of users [15]. For instance, Caudill et al. [16] discussed that
the transition from regular commerce to e-commerce can have neg-
ative environmental impacts if the practice does not reach its full
potential. The possible environmental benefits of ICT-based ser-
vices, in comparisonwith their conventional counterparts, are heav-
ily dependent on the extent to which they are adopted, the users’
parameters and the life span of devices [17–19]. There is often a
trade-off between benefits offered by advanced technologies in
reducingmaterials and efficient usage of resources and other adver-
sary effects such as increasing energy consumptions. In addition, the
effect of Khazzoom-Brookes postulate that describes the rebound
effect regarding the increase in consumption as a result of increasing
efficiency [20] should also be noted. For a comprehensive list of
studies, the reader may refer to [21].

This is particularly critical in the case of smart manufacturing in
big data and Industry 4.0 environments that entail ubiquitous con-
nectivity, information transmissions, and computations. These
essentials of smart manufacturing require a boost in developing
the required infrastructures for sensing, cyber-space computations,
and information tracking. Therefore, environmental impacts
should be one of the most vital concerns related to smart manufac-
turing, besides other challenges such as cyber-physical threats [22]
since they not only influence the environment but also have eco-
nomic and societal consequences.
3. Limitations of Life Cycle Assessment

LCA is the assessment of environmental (and social) impacts of
a product or a service throughout their entire life cycle, from the
extraction of raw materials to the end of life waste management
Fig. 1. Consumption per dollar of value added of m
[23,24]. While LCA is the number one tool for investigating the
environmental burdens of a product or service, it has certain limi-
tations that make it incapable of studying smart manufacturing.

Uncertainty in the definition of the functional unit: in LCA, a sys-
tem boundary should be defined such that the inputs and the out-
puts of system processes can be assessed. The system boundary
which defines the functional unit helps the results of the analysis
to be scalable. However, defining the system boundary is arbitrary
[25], which makes different analyses of similar products or services
unalike. While defining the proper functional unit has always been
a challenge even in conventional LCA, the depth of impact is larger
in the case of smart manufacturing since the concept of cloud, new
business models, and resource and equipment sharing make it very
difficult to define the physical boundary of enterprises and the
scope of their responsibilities.

Inability to address emerging systems and the lack of datasets: LCA
requires established data to assess the impacts of a process or a
product. Therefore, LCA is incapable of analyzing emerging systems
and technologies [26,27]. In other words, LCA is not capable of
forecasting [12] since the existing LCA databases are not complete
to cover emerging technologies and behaviors and the required
datasets currently do not exist.

Consideration of steady-state systems: LCA is not prominent in
analyzing temporal or spatial effects [28]. LCA usually focuses on
global perspectives and assumes high levels of homogeneity. Thus,
segregated systems that demonstrate high heterogeneity levels
impeach the results of LCA [12].

The above-mentioned limitations impede conventional LCA’s
ability to comprehensively assess the possible environmental
impacts of smart manufacturing in an Industry 4.0 environment.
In an intensively interconnected network of manufacturing mod-
ules, defining a robust functional unitwithout neglecting the related
processeswouldbeunrealizable. Furthermore, the concept of Indus-
try 4.0 is in its early stage of implementation with some unknown
effects. For example, one of the critical properties of manufacturing
in an Industry 4.0 setting is self-adaptiveness and self-configuration
[10] that entails nonlinear and heterogeneous behavior of modules.
4. Capabilities offered by smart manufacturing

While the emergence of smart manufacturing may impose new
challenges and constraints for LCA, it also paves the way for
anufacturing in the US from 1998 to 2010 [14].



Table 1
Features of future LCAs with respect to the capabilities offered by smart
manufacturing.

Smart manufacturing
characteristics

� Massive data collection
� Real-time data analysis
� Possibility of waste reduction
� Higher automation level
� New business models
� Flexible and local supply chains, less
transportation

� Increase of information flows and decrease of
material flows

� Higher consumption, new markets

Features of future LCAs � New databases
� New definition for functional units, new
boundaries

� Methods that consider heterogeneity
� Sub-product level impact assessment
� Sub-process level impact assessment
� Proactive impact assessment
� Temporal, spatial and global impact assessment
� Low uncertainty w.r.t result generalization

Capabilities of smart
enterprises

� Ability to collect data from all sources
� Real time computation and assessment of
impacts via cloud computing

� Ultimate traceability of product and process
paths via IoT

� Product identity data tracking for accurate and
exclusive impact assessment

� Simultaneous self-configuration w.r.t economic
and environmental requirements
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developing new tools based on the capabilities it provides. Self-
awareness has been suggested as one of the core properties of
smart manufacturing [29]. This self-awareness is supposed to be
utilized in order to closely monitor, assess and predict the machi-
nes’ health status in real time. However, the concept of self-
awareness can be extended even further to environmental impacts
and carbon footprints. In the conceptual framework of an ever-
present LCA system, each manufacturing machine or process has
an interconnected environmental tracker agent that records and
reports inputs (e.g., energy) and outputs (e.g., waste) in real-
time. The communication protocols such as MTconnect [30] and
RFID tagging facilitate recording the data such that the data can
be processed in a data processing unit. The traceability of such a
framework enables retrieving queries about temporal, spatial and
global impacts of a desired entity.

The definition of the functional unit should be redefined in the
future ‘Ubiquitous Life Cycle Assessments (U-LCA)’. Instead of defin-
ing physical boundaries and linearly scaling the results, the inten-
sive interconnectedness provided by Internet of Things (IoT), will
enable the cyber-space avatars of machines to tag, monitor and
track any inputs or outputs, and assess the corresponding impacts,
individually and in real-time. The traceability provided by IoT
should enable the future LCAs to be able to evaluate the environ-
mental impacts to any arbitrary level with respect to processes,
products, regions or durations. The assumptions regarding the lin-
earization of heterogeneous attributes such as variable power
demands, feed rates, process parameters or use-phase consumers’
energy consumption can be relaxed through tracking and calculat-
ing the impacts of any single product or process exclusively via
specific identity data.

Moreover, U-LCA, as a transformative system, should play a
more proactive role in manufacturing systems compared to the
conventional LCAs that only focus on assessment of the impacts.
The self-configuration scheme, which is a prerequisite of smart
manufacturing [3], can be extended to include the environmental
Fig. 2. Schematics of implementation of the U
dimension of manufacturing machines and processes. Using the
recorded environmental impacts data, coupled with deep learning
and multi-objective optimization techniques, optimum configura-
tions are achievable that simultaneously meet economic, environ-
mental and even social requirements. Table 1 summarizes the
features of future LCAs with respect to the capabilities offered by
smart manufacturing.
-LCA for usage phase of hard disk drives.
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5. Implementation of U-LCA using product identity data

The implementation of U-LCA concept facilitates more accurate
and exclusive impact assessments using product identity data. For
certain ICT products in which the usage phase contributes signifi-
cantly to the life cycle environmental impacts, assuming static and
average-oriented usage mixes can potentially skew the results of
LCA analyses [12,31]. Fig. 2 illustrates an overview of the imple-
mentation of U-LCA concept for an example of Hard Disk Drives
(HDDs). Self-Monitoring, Analysis and Reporting Technology (S.
M.A.R.T) provides the opportunity to track and monitor power-on
hours of individual HDDs during their usage phase. The data pre-
sented in Fig. 2 have been provided by PC Rebuilders & Recyclers,
a remanufacturing facility located in Chicago, IL. The individual-
based and exclusive product tracking provides more accurate
information about the distribution of power-on hours, the electric-
ity consumption, and the corresponding impact estimations using
product identity data. Moreover, the tractability provides capabil-
ities to retrieve sub-level impact queries with respect to various
factors such as product model, and usage type (e.g., commercial
use vs. residential use).
6. Conclusions

This paper discusses the possible environmental burdens that
can be imposed by the implementation of smart manufacturing
in an Industry 4.0 setting and the limitations of conventional LCA
techniques in addressing the emerging needs of smart supply
chains. The capabilities offered by smart enterprises and the
requirements of future LCAs as ubiquitous systems have been
highlighted.
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